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Locomotion characteristics and movement patterns are reliable indicators of neurodegenerative diseases
(NDDs). This survey provides a systematic literature review of locomotion data mining systems for sup-
porting NDD diagnosis. We discuss techniques for discovering low-level locomotion indicators, sensor data
acquisition and processing methods, and NDD detection algorithms. The survey presents a comprehensive
discussion on the main challenges for this active area, including the addressed diseases, locomotion data
types, duration of monitoring, employed algorithms, and experimental validation strategies. We also identify
prominent open challenges and research directions regarding ethics and privacy issues, technological and
usability aspects, and availability of public benchmarks.
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1 INTRODUCTION

With the demographic change toward an elderly population, the proportion of elderly people is
increasing and it is projected that the old-age dependency ratio alone in the European Union will
increase from 27.5% in 2013 to 49.4% in 2050. Aging is associated with decline in cognitive func-
tion and mobility, and it has a significant impact on society [98]. For example, in 2013, the number
of People with Dementia (PwD) was more than 35 million worldwide, and this number is ex-
pected to double by 2030, reaching 115 million by 2050 [87]. With the shift toward an elderly
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Fig. 1. Survey scenario.

population, it is also expected that the shortage in professional caregivers will increase. Early de-
tection of age-related cognitive impairments could potentially help them find timely therapies and
be independent and socially active for a longer time. Automated intelligent technologies could pro-
vide easier and more accessible ways of early diagnosis of cognitive impairments. Several works
showed that Neurodegenerative Diseases (NDDs) are strongly related to locomotion anomalies
[62, 103, 110]. Thanks to the widespread availability of positioning infrastructures and inexpensive
portable devices to track locomotion, there is increasing interest in exploiting locomotion sensor
data and AI algorithms to support the diagnosis of NDDs. To evaluate the potential of automated
technologies to detect cognitive decline, in this survey we analyze the locomotion-based indica-
tors of NDDs and then look at different methods and sensor-based technologies for detection of
cognitive impairments based on locomotion data. We concentrate on those studies that tackle the
recognition of locomotion anomalies for NDD recognition, but we do not consider works that tar-
get the recognition of locomotion anomalies irrespectively of an NDD diagnosis. Consequently,
we consider only those works that are supported by an extensive experimental evaluation that
includes both cognitively impaired subjects and Healthy Control Subjects (HCSs).

We concentrate on three widespread types of cognitive decline in the elderly population:
Alzheimer’s Disease (AD), Huntington’s Disease (HD), and Parkinson’s Disease (PD). To
our knowledge, this is the most elaborated overview of the state of the art in detection of cogni-
tive impairments for the elderly from locomotion data, and it provides a practical guide for the
basis from which future technologies could be developed.

1.1 Survey Structure

The structure of our survey is illustrated in Figure 1. We divided the study into three different
parts, which correspond to the main building blocks of AI-based systems for NDD assessment.
The lowest level is related to primary or complex gait indicators, which are used for the diagnosis
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of NDDs according to clinical theory and practice. Those indicators provide the clinical ground
for designing an NDD detection system, as they identify which raw data are necessary for the
assessment. The middle level regards existing tools and technologies to acquire locomotion data at
coarse- and fine-grained levels in different environments, including wearable and infrastructure-
based systems. Finally, the highest level reports and discusses algorithms and applications that
process locomotion data for supporting the diagnosis of NDDs and for recognizing challenging
behaviors that may put the safety of cognitively impaired subjects at risk. As explained at the end
of this section, each level is addressed in a specific section of our article.

1.2 Contributions

The contributions of this work are as follows. We provide a systematic literature review of existing
technologies and algorithms for detection of locomotion anomalies as indicators for three types of
cognitive diseases: AD, HD, and PD. To our knowledge, this is the most extensive survey on this
topic. Additionally, we analyze the usage of existing technologies and algorithms for the detection
of locomotion anomalies and discuss the weaknesses and strengths in utilizing them. Based on
our analysis of existing technologies and algorithms, we discuss future directions, in which the
field of automated detection of locomotion anomalies could develop to increase the quality of
existing technologies and in that manner to improve the well-being of elderly people suffering from
NDDs.

1.3 Summary of Methodology and Main Findings

We queried the most prominent scientific search engines with a handcrafted query to retrieve the
paper candidates. From a pool of 1,277 retrieved articles, we selected and surveyed 128 papers
that matched our criteria regarding types of clinical indicators, sensor technologies, experimental
setup, and algorithm types. The survey indicates that the number of scientific works exploiting AI
and locomotion sensor data for the diagnosis of NDDs has been strongly growing, especially since
2010. Most papers address the detection of dementia and PD, which are the most common NDDs,
and a few address HD. Most works are based on indoor locomotion monitoring, and a few consider
more complex outdoor movement patterns. Several different Machine Learning (ML) algorithms
are used for NDD detection. The most common approach is to use classical ML algorithms such
as Random Forest (RF) or Support Vector Machine (SVM), whereas a few works adopt deep
learning methods. Some works relying on fine-grained motion indicators that rely on statistical
measures and thresholds to produce a prediction. The duration of monitoring ranges from a few
minutes for gait analysis to hours, days, or weeks for more complex patterns. The majority of the
experiments were held in controlled laboratory environments, but a large percentage of them were
conducted in naturalistic real-world environments such as the individual’s home. The results show
that this kind of technologies may effectively support the diagnosis of NDDs and help simplify
patient management. However, as explained in Section 7, the review showed that the state of the
art falls short in addressing different challenging issues.

The article is structured as follows. Section 2 introduces the three types of NDDs, their clin-
ical symptoms, and locomotion indicators. In Section 3, we describe the procedure used in this
study and the types of papers included. Section 4 analyzes the clinical locomotion indicators of
NDDs. Section 5 presents the technologies and tools used for the detection of locomotion indicators.
Section 6 discusses the existing algorithms for detecting NDDs based on sensing technologies. The
article concludes in Section 7 with a discussion of the shortcomings of existing technologies and
methods and the potential future directions in detecting cognitive impairments in the elderly based
on locomotion data.
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Table 1. Symptoms of AD

Early Stage Middle Stage Advanced Stage

Forgetfulness Having difficulty in remembering recent events and people’s names Having difficulty in walking
Losing track of time Getting lost at home and having difficulty in communication Experiencing behavior changes that may

escalate aggression
Getting lost in familiar
places

Needing help with personal care Having an increasing need for assisted
self-care

– Experiencing behavior changes, including wandering
and repeated questioning –

2 BACKGROUND

In what follows, we briefly introduce the three types of NDDs and their clinical symptoms and
locomotion indicators.

2.1 Alzheimer’s Disease

AD is the most familiar type of dementia, and it is considered as a syndrome that has a chronic
or progressive nature. It is defined as declination in cognitive function beyond what might be
expected from normal aging. People with Dementia (PwD) suffer from a lack of memory and
thinking capability, learning ability, and inability to communicate. The impairment in cognitive
function is generally accompanied and periodically preceded by weakening in emotional control
and social manners. It is regarded as a predominantly cognitive disorder. Gait abnormalities can
also be noticed in the disease’s early stages, including decreased walking speed, step length, step
frequency, and increased gait variability. Dementia is considered one of the main reasons for dis-
ability and dependency among older adults worldwide. It can be troublesome for PwD, caregivers,
and family members. Lack of awareness and understanding of dementia are being observed that
cause stigmatization and hindrances to diagnosis and care. The effect of dementia on caregivers,
families, and the community is quite diverse. It can be biological, psychological, social, and eco-
nomic. It might be challenging to detect dementia early since each individual is affected by the
disease differently, relying on the effect of the disease and the individual’s personality before
becoming sick. According to the World Health Organization1 approximately 50 million people
are diagnosed with dementia, and the most common symptoms of dementia can be classified
into three stages: early, middle, and late. Some common symptoms for these stages are listed in
Table 1. It can be noticed that the severity of the symptoms advances with progression of the
disease.

2.2 Parkinson’s Disease

PD is regarded as the most familiar movement disorder, involving more than 6 million individuals
worldwide. PD can have an early onset, although it primarily affects people over the age of 55
years, and progression of the disease slowly increases after the age of 65 [38, 105]. The World
Health Organization ranks PD as the second most familiar NDD. It hampers the nerve cells in the
brain that generate dopamine. Dopamine is necessary for transmitting messages to control and
coordinate movement. Approximately 0.1% to 0.2% of the dopaminergic neurons are lost per year
during normal aging. This speed is significantly accelerated in People with Parkinson’s Disease

(PwPD), and signs become apparent when nearly 70% to 80% of these neurons have been lost.
PwPD experience both motor and nonmotor symptoms. The most common motor symptoms

during the early stages of PD are resting tremors, rigidity, and bradykinesia, which are explained
as follows:

1https://www.who.int/.
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Table 2. Symptoms of HD

Movement Disorder Cognitive Disorder Psychiatric Disorders

Involuntary jerking or writhing movements (chorea) Difficulty in organizing or focusing on tasks Irritability
Rigidity or muscle contracture (dystonia) Lack of flexibility to get stuck on a behavior/action Social withdrawal
Abnormal eye movements Lack of impulse control that can result in outbursts,

acting without thinking
Insomnia

Impaired gait, posture Difficulty in learning new information Fatigue and loss of energy
Difficulty with talking/swallowing Slowness in processing thoughts or in finding words Frequent thoughts of death or suicide

(1) Tremor/shaking [105]: This starts in a limb, often the patient’s hand. Patients might experi-
ence rubbing of their thumb and forefinger back and forth, called a pill-rolling tremor. The
patient’s hand may shake when it is at rest.

(2) Bradykinesia [105]: PD may slow the patient’s action over time, making simple tasks com-
plicated and time consuming.

(3) Rigid muscles [105]: Muscle stiffness may appear in any portion of the body. As a result, the
stiff muscles cause pain and restrict the range of movement.

(4) Impaired posture and balance [105]: Posture may become stooped. Patients might suffer from
imbalance movement as a consequence of PD.

The hardship in controlling movement caused by PD harms the social and psychological situa-
tion of the patient, who feels secluded and ineffective in accomplishing simple tasks. PwPD in the
middle stage experience cramping (dystonia), dyskinesia, loss of postural reflexes, and Freezing

of Gait (FOG). FOG is one of the most common motor signs of PD and appears during advanced
stages of the disease. It is defined by a brief episode of involuntary lack of locomotion, a feeling
of being stuck in place when attempting to take a step or navigating through or turning around
barriers [89].

2.3 Huntington’s Disease

HD is defined as a progressive inherited NDD, inducing involuntary movement and cognitive prob-
lems, harshly impacting quality of life. It is caused by a cytosine-adenine-guanine (CAG) repeat
mutation in the HTT gene [39]. It has a comprehensive effect on a person’s functional capabilities,
resulting in motor, cognitive, and psychiatric disorders. The signs of HD can form at any age, but
they usually arise in people aged 30 to 40 years, and the beginning of the disease is diagnosed clini-
cally when motor abnormalities form. Impairment in motor control is regarded as the most familiar
sign of HD, ordered by chorea and dystonia. This, merged with the cognitive and behavioral symp-
toms, can impact day-to-day tasks. Nevertheless, cognitive and behavioral symptoms [39] can be
noticed many years (even decades) before motor symptoms, which progressively affect the quality
of life of People with Huntington’s Disease (PwHD).

When HD forms at an early age, signs are identical to those of PD, and the disease may advance
faster. Drugs are available to aid the symptoms of HD, but remedies cannot prevent the physical,
cognitive, and behavioral deterioration associated with the condition [8]. Therefore, most of the
current research in this area is based on detecting HD at an early stage so that patients may benefit
from prospective medical interventions that may assist in slowing advances of the disease. The
most common symptoms of HD are mentioned in Table 2.

3 MATERIALS AND METHODS

In this section, we explain the methodology used in our survey. We conducted a systematic review
to select the relevant studies considered in this article. We focused on locomotion-based data min-
ing techniques experimented on a significant number of patients, including both HCSs and people
with NDDs. In the following, we report our search strategy, including inclusion and exclusion
criteria, as well as statistics about the selected research works.
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Fig. 2. Flowchart of our literature search and selection method.

3.1 Search and Selection Strategy

Figure 2 illustrates our literature search and selection method. We queried different scien-
tific search engines—Web of Science, ScienceDirect, PubMed, and Scopus—considering academic
studies published in peer-reviewed journals and in proceedings of international conferences. We
handcrafted a search query to identify relevant papers published between 1975 and October 2020,
considering terms appearing in the title, abstract, or keywords of the papers. Our search query is
reported in Table 3. Its syntax is slightly different depending on the functionality of the consid-
ered database, without impacting the semantics of the query. Our literature search and selection
method is divided into four phases.

Paper Extraction. The whole query is divided into six parts connected by the “AND” operator.
The first part of the search query includes different terms to identify “neurodegenerative disorders.”
Since the target group of our study is elderly people, in the second part of the query we retrieve only
publications specifically related to that age group. In the third part, we select only papers related
to the use of sensor devices and pervasive computing technologies. The fourth part retrieves only
papers related to locomotion data mining. The fifth part selects only papers related to different
monitoring methods. The last part retrieves only papers published in conference proceedings or
scientific journals that were published after 1974. The query retrieved 1,277 papers in total.

Duplicates Removal and Quick Review. In the second phase, initially we performed duplicates
removal, keeping 1,132 papers. Then, we applied a quick review procedure to those papers to
ensure that they met our inclusion criteria. The title, abstract, and keywords of each paper were
evaluated by two of this article’s authors to ensure that they actually met the inclusion criteria
specified in the query string. In case of disagreement, the paper was discussed between all of this
articles’s authors to reach a consensus. As expected, the search query provided a relatively large
number of false positives. Most papers were excluded because they did not rely on sensor devices or
pervasive computing technologies, or considered diseases not related to neurocognitive disorders.
After this operation, we retained 128 papers.

Full Text Analysis. In the third phase, the full text of each remaining paper was assessed by two
of this article’s authors to exclude those papers that were preliminary versions of extended papers

ACM Computing Surveys, Vol. 56, No. 1, Article 10. Publication date: August 2023.
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Table 3. Literature Search Query

TITLE-ABSTRACT-KEYWORDS((“cognitive impairment” OR “cognitive problem” OR “cognitive issue” OR “cognitive decline” OR
“cognitive assessment” OR “dementia” OR “mci” OR “mild cognitive impairment (MCI)” OR “alzheimer’s disease” OR “neurodegenerative”)

AND (“elderly” OR “senior” OR “Aging Adults” OR “aging” OR “older adult” OR “adult”)

AND (“internet of things (IoT)” OR “indoor” OR “outdoor” OR “wearable” OR “ambient intelligence (AmI)” OR “ambient assisted living” OR “aal” OR
“healthcare application” OR “positioning technology” OR “ambient sensors” OR “Global Positioning System (GPS)” OR “accelerometer” OR “gyroscope” OR
“environmental sensors” OR “inertial sensor” OR “mobile” OR “Intelligent Assistive” OR “assistive Device” OR “device free” OR “intelligent systems”
OR “smartphone” OR “non-invasive” OR “human computer interaction” OR “hci” OR “mobile health” OR “smart homes”)

AND (“locomotion anomaly” OR “locomotion pattern” OR “locomotion” OR “abnormal movement pattern” OR “trajectory” OR “wandering” OR
“disorientation “ OR “movement traces “ OR “ambulatory gait analysis” OR “abnormal locomotion” OR “abnormality” OR “gait” OR “mobility” OR
“motor impairments” OR “motor assessment” OR “motor function” OR “acceleration” OR “spatial” OR “gait variability” OR “gait-cycle” OR
“functional assessment” OR “motor dysfunction”)

AND (“monitoring” OR “detection” OR “analysis” OR “non-intrusive” OR “unobtrusive” OR “reconstruction” OR “gait monitoring” OR
“gait detection” OR “remote monitoring” OR “trajectory mining”))

AND (LIMIT-TO (DOCUMENT TYPE,“(PEER REVIEWED JOURNAL) ARTICLE”) OR LIMIT-TO (DOCUMENT TYPE,“CONFERENCE PAPER”) OR
LIMIT-TO (DOCUMENT TYPE,“REVIEW”)) AND PUBYEAR > 1974

already included in our search, and to keep only those papers that met our inclusion criteria. In
this regard, we excluded those works that lacked a significant experimental evaluation with both
cognitively impaired seniors and HCSs. In case of disagreement, the paper was discussed by all of
this article’s authors to make a decision. After this phase, we retained 68 papers.

Cross-Referenced Search. In the fourth phase, we checked the references of the remaining pub-
lications to look for further relevant publications matching our search criteria to be included in
our survey. We also looked for additional relevant papers published by the same authors of the
included papers. Thanks to this search, we added 60 more papers. The full list of the reviewed
papers can be found in the supplementary materials.

3.2 Comprehensive Science Mapping Analysis

Recently bibliometric measurements have been increasingly expanding across various fields [2, 3,
55]. This technique is particularly suited for implementing the comprehensive science mapping
analysis of published studies of fragmented and controversial streams of research. As mentioned
previously, the papers in this survey can be divided into three main categories regarding the NDDs
and locomotion anomaly as follows: PD, HD, and dementia. The total number of published and
selected papers in this survey considering different databases are mentioned in Figure 2.

From another point of view, Figure 3 shows the number of selected papers by each category
compared to total number of the papers from the same category considering their publisher. As
can be seen, the selected papers in the Web of Science search engine represent the highest number
of total papers among the others.

3.2.1 Annual Scientific Production. Among the 128 included papers, 33 were survey or review
papers. Figure 4(a) represents the temporal trend of papers included in our survey, and it shows
an exponential increase in the number of papers related to sensor-based locomotion data mining
for NDD diagnosis.

3.2.2 Word Cloud. Word clouds are introduced as a tool to identify the most essential topics
dealing with a particular subject [2, 55]. Figure 4(b) presents the most frequent words adopted
by previous studies extracted by our search and selection strategy explained in Section 3.1. These
keywords, which are repeated more than 30 times considering all selected papers, demonstrate
that most of them are focused on the gait aspect of the cognitive disease that interests the
authors.

ACM Computing Surveys, Vol. 56, No. 1, Article 10. Publication date: August 2023.
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Fig. 3. Number of papers based on considered NDD categories and publisher.

Fig. 4. Selected papers.

Fig. 5. Selected papers.

3.2.3 Country-Specific Production. Figure 5 shows that the research papers included in this
survey came from 38 countries that include case studies conducted in these countries. As shown in
the figure, the countries that produced the most papers considering locomotion anomaly detection
and NDDs in sensory environments are the United States, Italy, Germany, and the United Kingdom.
In terms of country-specific production, the highest percentage was achieved by the United States
(22.75%), followed by Italy (10.17%), and then Germany (6.58%) and the United Kingdom (6.58%).
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Fig. 6. Selected papers.

3.2.4 Scientific Production Based on Disorders and Observation Location. Considering the kind
of disease, Figure 6(a) shows that PD essentially gained more attention among the researchers
compared to dementia, whereas fewer works are related to HD. Considering that some papers
address more than one disease, around 52% of papers address PD, about 41% of papers address
dementia, and 15% address HD. We further analyzed the scenario in which the individual’s loco-
motion is observed to provide the diagnosis. We considered two observation scenarios: indoor and
outdoor. Among the selected papers, as illustrated in Figure 6(b), statistics show that there are
68.18% of papers that rely on locomotion observation indoors, particularly in private residences,
retirement/nursing homes, or hospitals. Most methods relying on indoor observation assume that
the individual performs predefined instructions in the presence of one or more observers. A few
other papers rely on the observation of unsupervised locomotion during everyday activities in
real-world environments.

Papers that rely on the observation of outdoor locomotion are fewer (i.e., approximately 7.95%
of the papers). They assume the use of sensors embedded in wearable/portable devices (mainly
smartphones, watches, or shoes) or outdoor localization technologies such as GPS readers. Around
23.86% of the selected papers do not rely on the assumption that the locomotion is observed either
indoors or outdoors. The category of those papers is named General in Figure 6(b).

3.2.5 Scientific Production Based on Experiment Scenarios and Monitoring Duration. Figure 7(a)
shows the distribution of papers according to the duration of locomotion monitoring. We found
out that among those works that explicitly mentioned their observation duration (around 90 pa-
pers), many of them (around 63.3% of papers) monitored locomotion for less than 1 hour, around
8.9% of them did so for less than 24 hours, around 1% for less than a week, around 7.8% for weeks,
around 11.1% for months, and around 7.8% for 1 year or more. Furthermore, as shown in Figure 7(b),
56.5% of research works carried out their experiments in a laboratory environment, 38% in a natu-
ralistic environment such as the individual’s home, and 5.4% in both a laboratory and naturalistic
environments.

4 CLINICAL LOCOMOTION INDICATORS OF NDDS

We concentrate on clinical indicators of NDDs related to locomotion. Indeed, several works identi-
fied variations of gait patterns and locomotion anomalies typically observed in cognitively im-
paired subjects [66, 85, 125]. Different research studies consider wandering, a concept defined
by Algase et al. [5] as a “syndrome of dementia-related locomotion behavior having a frequent,
repetitive, temporally disordered, and/or spatially disoriented nature that is manifested in lapping,
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Fig. 7. Selected papers.

random, and/or pacing patterns.” Moreover, recent sensor technologies provide the possibility to
develop methods for gait analysis to characterize NDDs based on the observation of subtle anom-
alies in gait patterns. In a normal gait cycle, each stride contains eight phases with functional
patterns and objectives defined as follows:

(1) Heel strike: Initial contact of the foot touching the floor with the heel.
(2) Loading: When the knee flexes and the body weight is moved onto the limb while the other

foot is lifted.
(3) Mid-stance: When the opposite leg is lifted and advanced.
(4) Terminal stance: When the limb advances and the phase ends with the heel striking the

ground.
(5) Pre-swing phase: When the opposite foot starts touching the ground and the other one is

lifted.
(6) Toe-of f : Initial swing when the foot is lifted from the floor.
(7) Mid-swing: When the anterior limb advances.
(8) Terminal swing: When the leg moves ahead of the thigh, the foot strikes the floor, and the

advancement is completed with the flexion of the knee.

Gait disorders can be related to two main categories: neurological and non-neurological disor-
ders [85]. For the sake of this work, we concentrate on the former category. The instruments used
to analyze human gait can be classified into two major categories: ambient/portable wireless sen-
sors (e.g., see [24, 59, 125]) and wearable sensors (e.g., see [57]). For example, smart shoe wearable
sensor systems can measure the change in gait over time, and they have been used in neurological
exams to diagnose dementia and other neurological disorders. Center of mass movement during
walking can be easily tracked using a small Inertial Measurement Units (IMUs) attached to
the lower back, and it was used for neurological assessment considering the sinusoidal waveform
produced by trunk movements during the gait cycle [31].

4.1 General Indicators Based on Gait Analysis

Different low-level motion indicators have been proposed in the literature to detect NDDs [59, 128].
We classify these motion indicators into three categories: simple gait parameters, complex gait
parameters, and Nonlinear Dynamics (NLD) theory based features, presented next:

• Simple gait parameters: These indicators regard fine-grained characteristics of gait, mostly
considered in isolation, such as stride-to-stride fluctuations in walking (both in terms of
magnitude and dynamics), stride time, stride velocity, and stride length [92]. In this regard,

ACM Computing Surveys, Vol. 56, No. 1, Article 10. Publication date: August 2023.
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Table 4. Simple Gait Parameters

Parameter

Classification

Parameter Definition Ref.

Spatial

Stride length Distance traveled by the same foot by two consecutive heel contacts. [12, 23, 26, 31, 42, 47,
92, 95, 112]

Step length Traveled distance from one heel footprint to the heel of the opposite foot-
print.

[14, 23, 26, 27, 63, 74,
92]

Step width Distance between the line of progression of the left heel footprint and the
line of progression of the right heel footprint.

[50]

Distance The cumulative traveled distance. [47, 57, 67]

Temporal

Stance/swing time Duration of the stance/swing phase. [7, 74, 114, 125]
Stride time interval The time interval starts when one foot makes contact with the ground and

ends when that same foot contacts the ground again. It displays fractal
dynamics and reflects the rhythm of the locomotion.

[7, 12, 27, 47, 53, 63,
112, 114]

Stride time variability This is related to the control of the rhythmic stepping mechanism and cal-
culated by the mean and standard deviation of stride time.

[47]

Step time The time between two consecutive heel strikes. [14, 23, 31, 63, 71, 74,
92, 93, 114]

Step rate The rate of steps per minute, also called cadence. [12, 23, 26, 31, 50, 63,
93, 95]

Single support time ‘Single support’ happens when only one foot is in contact with the ground.
Single support time is the duration of single support.

[50, 93, 95]

Double support time ‘Double support’ happens when both feet are in contact with the ground.
Double support time is the duration of double support.

[26, 27, 79, 93–95, 112]

Spatiotemporal

Stride velocity The stride length divided by the stride time. [27, 41, 63, 71, 92, 126]
Stride/step frequency Number of foot contacts per second. [12, 41, 42]
Stride/step symmetry Duration amplitude similarity of the shape of acceleration curves compar-

ing right and left strides/steps.
[12, 23, 42, 71, 122]

Step time asymmetry Defined as the difference between the mean step time of each leg and the
combined mean step time of both legs.

[23]

Stride/step regularity A measure of stride/step to stride/step consistency. [12, 23, 42, 53, 71, 122]
Gait speed The distance walked divided by the ambulation time. [12, 23, 27, 31, 42, 47,

53, 74, 92, 95, 112, 114,
128] [12, 12, 23, 27, 31,
47, 53, 74, 92, 95, 112,
114, 128]

gait abnormalities mostly include decreased walking speed, step frequency, step length, and
increased gait variability [53]. In Table 4, we extend and refine the classification proposed
by Hollman et al. [50] to define the low-level indicators that we use in the rest of the article.
• Complex gait parameters: These parameters consider different temporal aspects of locomo-

tion, and structural or geometrical complexity of walked trajectories. We classify them into
three groups: variability, postural control, and frequential parameters. Parameters related to
variability are based on temporal characteristics of movement pattern, acceleration, speed,
duration, and distance. Postural control parameters such as the Timed Up & Go Test

(TUGT), Berg Balance Scale (BBS), Romberg Balance (RB), Short Physical Perfor-

mance Battery (SPPB) tests, and so forth include different kinds of postural and balance
assessment such as regularity of movements, angles of movement, and trajectory consis-
tency. Frequential parameters consider gait symmetry and are usually derived from Fourier
analysis of trunk accelerations. In Table 5, we provide a classification and description of
complex gait parameters.
• NLD theory based features: Gait assessment is considered as a beneficial tool to help with

the diagnosis process and to assess the neurological state of the people with NDD. It is the
assessment of a person’s walking pattern. Walking is a compounded process that can be
evaluated through the application of nonlinear analysis of human gait signals. NLD theory
has been introduced to the analysis of biological data. There are also NLD features [15, 83]
available such as the correlation dimension, the largest Lyapunov exponent, the Lempel-

Ziv Complexity (LZC), the Hurst exponent, Detrended Fluctuation Analysis (DFA),
and many others to assess gait impairments of NDD patients. These features are used to
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Table 5. Complex Gait Parameters

Parameter

Classification

Parameter Definition Ref.

Variability

Approximate
entropy

Measure regularity of a trajectory under the assumption that a sequence is regular
when it contains repetitive patterns and how its structural complexity varies over
time.

[71]

Jerk The rate at which a subject acceleration changes with respect to time. Jerk is the
first time derivative of acceleration. It quantifies the smoothness of a trajectory.

[12, 128]

Ambulation
fraction

The ratio between total time of ambulation and trajectory duration. [64]

Straightness The ratio of the distance between two consecutive trajectory segments and the
distance between the start and endpoint of these segments.

[60, 128]

Path efficiency The ratio between the distance from the start to the end of a trajectory and the
trajectory length.

[64, 128]

Postural
control

Turning angle The sum of the absolute angles between any two subsequent lines in a trajectory. [12, 64, 128]
Sharp angles Vector angles in a trajectory being equal to or more than 90 degrees. [25, 60, 67, 128]
Foot clearance Toe and heel height during the swing phase. [34]
TUGT Time taken for transition from sit to stand, walk, turning, and transition from stand

to sit.
[12, 79, 94, 121,
122]

Fall Any unintentional event that leads to the landing of individuals on a horizontal
plane.

[47, 94]

BBS/RB/SPPB tests Balance and postural control assessment to diagnose gait disturbance caused by
abnormal perception or awareness of the position and movement of the body
during predetermined tasks (i.e., Eyes Open Feet Together, Eyes Closed Feet
Together, Eyes Open Feet Apart, Eyes Closed Feet Apart).

[23, 94, 108, 109,
122]

Frequential
Harmonic ratio Step-to-step (a)symmetry within a stride. [41, 71]
Total harmonic dis-
tortion

Evaluates the complexity of the human motion by calculating the ratio between the
fundamental waves and the harmonic waves.

[71]

Z-method/S-
method/M-method

Gait events based on anteroposterior acceleration, acceleration norm, and vertical
acceleration. Both the Z-method and M-method define the gait cycle from the
initial contact timing. Additionally, the M-method provides final foot contact
timing estimates, swing, and stance duration. Conversely, the S-method considers
the zero-crossing instants of the acceleration norm.

[114]

discriminate between NDD patients and healthy subjects and to classify patients in several
stages of the disease. In some works [7, 48, 62], DFA is used for the gait assessments of
patients with PD and HD. In the work of Sejdić et al. [103], the authors performed a com-
bined analysis of spectral and NLD features to assess gait signals of 14 healthy persons,
10 PD patients, and 11 patients with peripheral neuropathy. These features were compared
using the Kruskal-Wallis and Mann-Whitney tests. There are notable differences observed
in features such as LZC and cross entropy, which allow to discriminate between healthy
persons and PD patients. In the work of Prabhu et al. [86], the authors classified 13 PD
patients, 13 amyotrophic lateral sclerosis patients, 13 HD patients, and 13 healthy subjects
using data obtained from force-sensitive resistors. The authors computed NLD features such
as Shannon entropy, the correlation dimension, the recurrence rate, and recurrence quantifi-
cation analysis. The classification was performed with SVM and a probabilistic neural net-
work to distinguish between patients with different NDDs and healthy persons. In Table 6,
we provide the general NLD theory-based features used to assess the neurological state of
patients.

4.2 Indicators of Dementia

As mentioned before, dementia causes a decline in thinking skills, severe enough to impair daily
life and independent living. In particular, it affects behavior, locomotion, feelings, and relationships.
Different high-level indicators have been presented in the literature to characterize the locomotion
behavior of people suffering from dementia [66]. We classify those indicators into four categories:
trajectory based, permission based, purpose based, and performance based. In Table 7, we define
the specific indicators according to our categorization and the most relevant research works in
which they are considered. In the following, we briefly discuss the three classes:
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Table 6. NLD Features

Feature Definition Ref.

DFA Observes the degree of correlation of one stride interval with previous and subsequent ones [7, 48, 62]
Largest Lyapunov
exponent

Provides information about the stability properties of the time series as it calculates the sensitivity to
initial conditions of the signal according to the rate at which the nearby trajectories of the phase space
converge

[15, 83]

Hurst exponent Assesses the long-term dependency of the time series [15, 83]
LZC Relates to the number of different patterns lies along a sequence which reflects the order that is retained

in a 1D temporal pattern
[15, 56, 83, 103]

(1) Trajectory-based indicators: Trajectory-based indicators are well known for categorizing the
patterns of abnormal locomotion behaviors by PwD. A popular model in this regard was
proposed by Martino-Saltzman et al. [72]. That model categorizes the trajectories into one
of four distinctive patterns of movement: direct, random, lapping, or pacing, illustrated in
Figure 8. The direct path is walked by cognitively healthy people, whereas random, pacing,
and lapping patterns are typical indicators of dementia. In particular, scientific studies have
demonstrated that severely demented individuals perform trajectory-based anomalies all day
long, whereas in those who are moderately demented, the percentage of those anomalies
increases in the evening and mostly at night [72].

In a different research study conducted by Kearns et al. [57], it was shown that the tortu-
osity of a walked trajectory is significantly correlated with cognitive status. A high value of
the fractal mathematical index of path tortuosity (Fractal D) indicates abnormal trajectories
that are typically observed in wandering behaviors [57]. Fractal D is a compact and effective
measure to characterize wandering behaviors.

(2) Permission-based indicators: Another class of indicators considers anomalous locomotion pat-
terns of people living in constrained environments, which violate the permissions of the care-
givers. We name this class of dementia-related locomotion anomalies permission-based indi-

cators. As shown in Table 7, these indicators are further classified into abscond/elopement
(leaving a safe environment without the caregiver’s consent), exit seeking (trying to open
locked doors without consent), and invasion/trespassing (invading the private environment
of other people without consent) [5].

(3) Purpose-based indicators: Most of the studies about wandering behavior consider it as an aim-
less, directionless movement. Only a few research studies support the theory of wandering
as a goal-seeking behavior. According to the latter theory, some wandering behaviors have
a specific purpose, such as to satisfy a need or to communicate a need. Accordingly, we clas-
sify those behaviors as purpose-based clinical indicators. Most of these indicators have been
identified by Algase et al. [5] and are described in Table 7.

(4) Performance-based indicators: These are based on the performance of certain tasks that eval-
uate cognitive dysfunction and memory impairment. The Mini-Mental State Examina-

tion (MMSE), Montreal Cognitive Assessment (MoCA), and Canadian Consortium

on Neurodegeneration in Aging (CCNA) are widely used measures and protocols to eval-
uate cognitive dysfunction based on gait analysis [20, 21, 63, 122]. The score range of MMSE
and MoCA is from 0 to 30. In these tests, if the final score is lower than 24 in MMSE, or less
than 20 in MoCA, the subject will be regarded as cognitively impaired. However, the CCNA
classifies gait disturbance into different categories such as normal gait, ataxic gait, antalgic
gait, cautious gait, frontal gait, and hemiparetic gait, among others.

Although trajectory-based indicators are mostly used for diagnosis only, permission-, purpose-,
and performance-based indicators are also used for ensuring the safety of the elderly suffering
from NDDs by monitoring his or her locomotion behavior and prompting caregivers accordingly.
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Table 7. Dementia Locomotion Indicators

Indicator

Classification

Indicator Definition Ref.

Trajectory based

Direct Defined as moving straight from one location to another one without relevant
diversion.

[65, 119]

Pacing At least three consecutive back-and-forth movements between two locations. [4, 59, 65, 67, 119]
Lapping Repeated circular movements around a small area. [4, 59, 65, 67, 119]
Random Inefficient or aimlessly movement across different locations, generally passing

through more than four locations.
[4, 65, 119]

Fractal D A statistical value extracted from a trajectory, which measures the geometric com-
plexity and tortuosity. It ranges from a value of 1 when the movement path is
entirely straight to a value of 2 when the movement path is random.

[57]

Permission based
Abscond (or
Elopement)

This situation is referred to when a patient leaves the hospital or the ward with
intent, leaving the safe environment’s boundaries, or forays into the community
without the caregiver’s consent, causing severe concerns.

[5, 17, 77]

Exit seeking In this situation, the patient attempts to leave a safe environment, pressing panic
bars or trying to open locked exit doors, and sometimes includes pulling, pushing,
kicking, and knocking or pounding on the door.

[5, 119]

Invasion and
trespassing

This situation occurs when the patient enters other people’s rooms without per-
mission, or when the patient walks into unauthorized spaces.

[5]

Performance based
MMSE Widely used set of question answering tests for screening cognitive function. It

indicates the presence of cognitive impairment in PwD. It has the measures of
orientation, registration (immediate memory), short-term memory, and language
functioning.

[122]

MoCA Considered as a clinician-reported measure that takes about 10 minutes to analyze
cognitive impairment. It measures cognition in various domains such as visual-
spatial skills, executive functions, attention, concentration, calculation, language,
abstraction, memory, and orientation.

[20, 27, 63]

CCNA Considered as a protocol on how to assess gait in the elderly, including preferred
and fast pace gait, and dual-task gait.

[21]

Purpose based

Inappropriate to
circumstance

This term is used when the patient constantly searches for something that is
unattainable, shows aggression, repetitive behaviors, and inappropriate behavior
by social standards.

[5]

Aimless and
disoriented

This type of wandering behavior is characterized by a lack of focus or no apparent
direction for reasons such as fear, memory loss, and feelings of discomfort (e.g.,
hungriness, boredom, pain). In this situation, the patient has difficulties in finding
the way and he or she is getting lost in familiar and unfamiliar places.

[5, 77, 113]

Escapist In this situation, the patient attempts to get somewhere beyond the view and con-
trol of the caregiver.

[5]

Persistent This situation occurs when the patient searches for ‘missing’ people or places
without rest for a long time.

[5]

Modeling (or
Shadowing/
Tagging/Trailing)

In this condition, the patient follows other people around. [5]

Nocturnal This situation occurs when the patient walks around inappropriately at night. [5]
Pottering Pottering refers to partial attempts to carry out household tasks that, with the

progress of cognitive decline, become less and less meaningful.
[5]

Repetitive This situation occurs when the patient walks toward a purpose, or carries out
tasks, inappropriately often, repeatedly, and with abnormal frequency.

[5]

Fig. 8. Travel patterns according to the Martino-Saltzman model [60].

4.3 Indicators of PD

As anticipated, PD severely affects the human motor system. Gait impairment such as bradykine-
sia is one of the most common disabling symptoms for PwPD. It refers to the slowness of move-
ment observed in patients. Locomotor dysfunction, shortened stride length, increased variability
of stride, and shuffling gait are cardinal features of PD. Therefore, different indicators were pro-
posed to characterize the pathological gait in PD. Gait analysis on the walking behavior of PwPD
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Table 8. PD Movement Indicators

Indicator

Classification

Indicator Definition Ref.

Single-task assessment FRT This test evaluates the stability of individuals by measuring the maximum distance they
can reach forward while standing in a fixed position.

[94]

Multitask
assessment

UPDRS Employed as a tool to calculate the intensity of PD, formed as a gold standard to observe
the response of medications in Parkinson’s patients. It is scored on a 0 to 4 rating scale
and is established on a few segments, such as motor impairment, behavior, and daily life
activities.

[28, 76, 89]

UDRS Used to estimate involuntary movements in PD patients due to medication assumption.
The scale has measurements for ‘on-dyskinesias’ (jerking or turning movements) and
‘off-dyskinesias’ (cramps).

[91]

MDS-UPDRS This is a revised version of UPDRS, formed in 2007, utilized to measure different aspects
of PD, including nonmotor and motor functions in activities of daily living and motor
complications.

[43]

H&Y Used to assess the progress Parkinson advancement and the level of disability, formed in
1967.

[14]

FOG Questionnaire (FOG-Q) Employed to measure FOG advancement for PD patients, FOG frequency, disorders in
gait, and connection to clinical features associated with gait and motor aspects.

[80]

NFOG-Q A renowned tool to estimate the progression of FOG. It is a self-reportable questionnaire
with nine items to assess FOG.

[80]

is usually performed by monitoring several low-level parameters, mentioned in Table 4, over ex-
tended periods, including stride length, step length, stride velocity, and swing time. There are also
a few common complex gait parameters and NLD features used to detect gait abnormality in PD,
mentioned in Tables 5 and 6.

Generally, gait disorders in PwPD are evaluated by observing the gait in a laboratory with the
help of one or more other clinical assessment scales. Several clinical indicators have been intro-
duced in the literature. We categorized them as multitask assessment indicators, which are illus-
trated in Table 8. The Unified Parkinson’s Disease Rating Scale (UPDRS), the updated version
of UPDRS, and the Movement Disorders Society Modified Unified Parkinson’s Disease Rat-

ing Scale (MDS-UPDRS) are the most common assessment scales to evaluate the severity of PD.
They are focused on estimating the intensity of PD. The UPDRS was developed in 1987 as a gold
standard for observing the reaction to medications employed to reduce the signs of PD [6]. These
tools are scored on a 0 to 4 rating scale, where higher scores denote risen severity. Traditionally,
these scales include three sections used to estimate critical areas of disability. They are based on
motor function, including getting up from a chair and postural stability. The Hoehn and Yahr

(H&Y) scale, formed in 1967 [49], is another most commonly used tool to evaluate Parkinson’s
symptoms and the level of disability established on motor function. It is ranked in stages from
1 to 5 and describes complex patterns of advanced motor impairment.

Advancement in H&Y stages is connected to motor decline, the decline in quality of life, and
neuroimaging studies of dopaminergic loss. Table 8 summarizes the leading clinical indicators for
PD related to locomotion analysis.

4.4 Indicators of HD

PwHD experience locomotion impairments that can lead to fall, reduce the quality of daily living
activities, and increase hospital admission and mortality. There are two main approaches to assess
mobility and balance impairments for HD diagnosis: semi-quantitative clinical observational tests
and laboratory-based assessment. The former approach is based on observation by a clinical expert
and regards the assessment of locomotion impairments such as bradykinesia and decreased veloc-
ity, dynamic balance loss, and increased base of support [94]. The latter approach is expensive,
as there is a need for extensive training, and it is not available in most clinical settings. Hence,
there is increasing interest in innovative tools for supporting the diagnosis of HD by utilizing
sensor instruments. Different clinical indicators have been proposed in the literature. We classify
them in two categories: single-task assessment and multitask assessment indicators, which are
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Table 9. HD Clinical Indicators

Indicator

Classification

Indicator Definition Ref.

Single-task assessment FRT This test evaluates the stability of individuals by measuring the maximum
distance they can reach forward while standing in a fixed position.

[94]

Performance-oriented
assessment

UHDRS It includes four components: Total Motor Score, Functional Assessment
Scale, Total Functional Capacity scale, and IS. It evaluates motor impair-
ment considering a range of voluntary and involuntary movements, includ-
ing retropulsion pull test for postural stability, bradykinesia, coordination,
balance, and gait.

[19, 23, 26,
70, 90, 93,
94]

HD-ADL A scoring-based scale which is including adaptive functioning assessment
based on daily living life activities and family relationships and it is
validated for PwHD.

[94]

illustrated in Table 9. Most of the gait indicators used for HD diagnosis are general gait indicators
(presented in Section 4.1). Here, we classified the locomotion indicators that are combined and
presented as clinical tests for recognizing anomalous gait related to PwHD. Aside from those indi-
cators, other research studies investigated the use of general gait indicators (including swing and
stance intervals, stride interval time series, gait velocity, the TUGT, and BBS and RB tests) for HD
diagnosis [7, 95, 114, 125]:

(1) Single-task assessment: Single-task assessment indicators rely on examination of gait or sta-
bility during the execution of a given locomotion task. The Functional Reach Test (FRT)

evaluates stability by measuring the maximum distance that an individual can reach forward
while standing. This measure has proved to be highly correlated with HD severity [94]. This
indicator is performed during a single session and is led by a therapist.

(2) Performance-oriented assessment: Performance-oriented indicators evaluate different abili-
ties, including stability and locomotion, during the execution of complex tasks. The Unified

Huntington’s Disease Rating Scale (UHDRS) considers motor impairment due to dif-
ferent voluntary and involuntary movements, together with the ability of independently
executing daily living activities [26, 93]. The Huntington’s Disease Activities of Daily

Living (HD-ADL) scale assesses balance, postural control, and adaptive functioning during
certain tasks, which may be impaired by abnormal perception of the body’s position and
movement in PwHD [23, 94].

5 TOOLS AND TECHNOLOGIES

It is possible to use a wide range of low-cost sensors to track the position of users and their move-
ments, detect cognitive problems, and ensure their safety. Therefore, all locomotion analysis meth-
ods have as a first step the collecting of movement data by utilizing sensory instruments. In this
section, we explain the most common sensors, either wearable/unwearable, for healthcare solu-
tions, and discuss their pros and cons regarding locomotion anomalies and NDDs. Moreover, we
refer to device-based technologies as those tools that require the user wearing a device/tag, or even
a device needs to be carried, whereas device-free technologies do not require user intervention and
mostly they are embedded in objects/environment [11, 81]. However, most of these devices could
be invasive and obtrusive, especially the ones that need to be worn all the time by the user. Most
importantly, the indoor localization technologies raise some serious privacy risks, as the position
of the user is always known and that may not be desirable for the user [100].

5.1 Device-Based Localization Sensors

Device-based location identification consists of wearable/mobile devices, such as watches, bands,
pendants, earphones, and collars, that help in locating the user:
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• Magnetic-based technology utilizes a mobile magnetic sensor, usually a mobile phone, to
measure the magnetic fields in different positions of an indoor environment. These mea-
surements are used to construct a map of the location, which represents a reference for user
localization [68].
• In mechanical-based devices, the user’s location is estimated with an IMU. The IMU uses

a combination of accelerometers, gyroscopes, and even magnetometers to calculate a tar-
get’s current position from a known starting point, with previously determined speed and
direction [4, 24].
• Location-based Radio-Frequency Identification (RFID) utilizes electromagnetic fields to

specify tags connected to things. An RFID system has a radio transponder, receiver, and
transmitter. It transmits data to a reader device when triggered by an electromagnetic inter-
rogation pulse from the reader device [101].
• Ultra-Wideband (UWB) systems [57, 64] transmit information over a large bandwidth

and use measures such as time of arrival and time difference of arrival to locate the distance
between two entities. UWB systems provide high accuracy. The UWB signal can penetrate
walls and many other additional materials.
• Force sensing technologies are those sensors used to detect physical pressure, squeezing, and

weight. They could be simple resistors that are embedded in shoes and change their resistive
value based on how much it is pressed, which are low cost [69] or mat-shaped step sensors
to detect contact of the feet on the floor where a footswitch is installed next to the patient’s
bed [66].
• A wristband, watch, or smartphone is incorporated with IMU technologies or different types

of sensors that are used as a combination of accelerometers, gyroscopes, touch screens, and
even magnetometers. A smartphone, as an example of an IMU, makes remote patient mon-
itoring possible and give faster access to providers and care, and such technology is widely
adopted for NDD monitoring [24, 45, 89, 100, 104, 120, 127]. It also leads to improved com-
munication, fewer hospital visits, and reduced patient costs. Furthermore, these wearable
wristbands and watches can be used in healthcare solutions because of their simple design,
common on-body placement, and connectivity with mobile phones [4, 48, 73].

5.2 Device-Free Localization Sensors

Device-free technologies allow gathering the user’s position without needing him or her to carry
any device. They are mainly based on motion detection and provide data in real time [37, 100].
There are different sensor technologies that can be used for this purpose, which are briefly ex-
plained next:

• Infrared-based technologies are utilized in passive infrared sensors and active infrared sen-
sors [51, 59, 63, 65]. The former measure infrared light radiations from people, as they emit
heat energy in the form of radiation. The latter require a transmitter to continuously send
beams of infrared light and a receiver detecting when the beam stream gets interrupted by
a mobile object moving across the scan area.
• Microelectromechanical Systems (MEMS) pressure sensors detect falls and wandering

patterns based on the number and pattern of activation on a gait mat or on the floor and
measure foot strike [106, 107].
• Ultrasonic transmitters emit an ultrasonic wave that gets reflected by objects in the scan area,

and they detect Doppler shift at low audio frequencies, similarly to microwave devices [61].
• Computer vision based sensors such as utilizing cameras or visual sensor networks are

promising in an ambient sensing approach to pervasive healthcare delivery. By utilizing
these kinds of technologies, it is possible to compare sequential images from captured video
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streams, monitoring 3D spaces, and detect movements when there are enough changes be-
tween the frames by scene analysis and proximity techniques even by compact on-node
image processing and computer vision algorithms [63, 72, 88, 116].
• Radio signals and their reflections can be used to detect individuals’ movement and position

over time. Furthermore, by utilizing microwave signals, the movement of an object causes
a phase shift in the emitted radiation, creating a signal at low frequency. Thanks to this
technology, ultra-low-power radio signals in tomographic motion detectors [11] and wall-
mounted sensors [57] can sense radio waves at frequencies that penetrate most obstacles
and walls, detecting the user’s position over large areas.
• Ambient light communication technologies are based on light sensors that receive the sig-

nals of light-emitting diode emitters with different flicker encoding so that they can be com-
pared to measure direction and position, as well as provide localization [11].

5.3 Strengths and Weaknesses of Localization Sensors

All device-free and device-based technologies, as shown in Table 10, have their own strengths and
weaknesses.

Mechanical-based systems are cheap and effective. They have high mean time between failure
and consume less power, but they are vulnerable to cumulative error. Acoustic systems can pro-
vide high accuracy even between rooms, but the signal detection should be low power to not
be heard and to not cause sound pollution. They are also sensitive to temperature changes and
noise. Magnetic-based systems offer high accuracy, but they are sensitive to conductive and ferro-
magnetic materials. Optical-based systems provide high accuracy and are not affected by a mul-
tipath effect, but they require line of sight and consume higher power, and range is affected by
obstacles [11, 100]. WiFi-based systems are relatively cheap and widely available without need-
ing complex hardware. Bluetooth is supported by most modern devices, such as smartphones and
smartwatches. It is low cost and has very low power consumption, but the signal is quite atten-
uated from obstacles. UWB systems provide high accuracy. They are less sensitive to multipath
effects and are immune to interference, but they have shorter range and their cost is high. RFID
systems consume low power and have wide range and low cost, but they require proximity and the
localization accuracy is low. MEMS pressure sensors are small in size, have lower cost and power
consumption, and provide high consistency.

In terms of accuracy, both mechanical-based systems and ultrasound systems offer higher ac-
curacy. The latter can reach accuracy from 0.01 to 1 m. Magnetic-based systems provide high
accuracy on the order of few centimeters. WiFi has an accuracy between 1 and 5 m; Bluetooth,
instead, has an accuracy from 2 to 5 m. A beacon can determine three ranges of proximity: imme-
diate (less than 50 cm), near (between 50 cm and 2 to 5 m), and far (between 5 and 30 mm). The
accuracy depends on interference from physical obstacles. UWB offers an accuracy of up to 10 cm,
whereas RFID accuracy is relatively low and is from 1 to 5 m.

In terms of obtrusiveness and privacy, ambient light systems, as audible sound, could be annoy-
ing to the user, but they could be resolved by reusing an already available light infrastructure to
be not intrusive or, in the case of audible systems, using digital watermarking of audio signals.
In computer vision sensors, however, they can do real-time monitoring but there remain privacy
concerns and scalability problems. Additionally, there is a difficulty in detail deduction or subtle
changes in movement patterns, and they are unable to detect physiological parameters, which may
lead to hindering their application for ambient sensing frameworks [100].

Infrared sensors offer 1 to 2 m accuracy, whereas light-emitting diode implementations using
fixed lamps report an accuracy below 20 cm. Utilizing infrared technology also has some limita-
tions, such as moderate accuracy, the need for more receivers to improve accuracy, and interference
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Table 10. Comparison of Tools and Technologies Related to Movement Detection

Tool Sensor Accuracy Installation Cost Complexity Scalability PowerConsumption Advantages Disadvantages

D
evice

b
a
sed

Magnetic High Low Moderate Moderate Low Real time, Easier to
assess physical activity

Unethical as it decreases a
person’s autonomy

Mechanical High High Moderate Moderate Relatively
high

Real time, Easier to
assess physical activity

–

UWB-IR
sensors

Low Low Moderate Low Relatively
high

Cheap, Nonintrusive –

RFID High High Moderate Moderate Low Real time, Easier to transmit
information over a large
bandwidth, Variety of
activities can be detected,
High accuracy

Initial cost, Array of tags is
needed, Adjustment is needed
in different environments,
Computationally complex,
Feature extraction needed,
Reduced performance in
complex environments

Force sens-
ing

Moderate Low Moderate Low – Cheap, Nonintrusive, Easy to
extract data, Detection
computationally simple

Arrangement of sensors is
important for higher accuracy,
Impractical for some activities
due to vibration

IMUs High Low Moderate Low Moderate High sampling rate, Triaxial
data measurement enables 3D
analysis, Sensors are small,
light weight, and
cost-effective, Monitoring of
gait properties during daily
activities, Active role of
patient can be monitored

Suffers from drift,
Uncomfortable since
sometimes needs to attach to
the body, Interruption in
actual data measurement due
to skin movement artifacts,
Different positions of sensor
attachments show variations
in acceleration sensing,
Limited battery duration,
Complex strategy to estimate
gait parameters

D
evice

free

Infrared Moderate High Low-
Moderate

Moderate Low Cheap for end user, Easy to
use, Detection in darkness,
Preserves privacy (low
resolution)

Sunlight inference, Needs
more receivers, Noise
sensitive, Low range of
detection

MEMS
pressure
sensors

Moderate Moderate Low High Low Extremely high sensitivity and
consistency, Nonintrusive,
Low power consumption,
Extremely scalable, Can be
readily integrated with
microelectronics

Expensive, Fabrication,
assembly unit costs, Testing
equipment to characterize the
quality and performance can
be very high for low quantities

Ultrasonic/
Ultrasound

Moderate High Moderate Moderate Low-
Moderate

Good precision, Nonintrusive Cost, Multipath effects and
line of sight

Computer
vision

High High High Low Moderate Real time, Good accuracy Sensitive to light conditions,
Privacy concerns, Unable to
detect subtle changes in
motion patterns and deducing
details

Radio
signal

Low-
Moderate

Low-
Moderate

Moderate Moderate Low Cheap, Penetrates most
obstacles and walls and covers
a large area, Nonintrusive,
Cost-efficient, High accuracy,
Acceptable performance in
complex environments

Requires proximity,
Computationally complex,
Feature extraction needed,
Sensitive to noise interference,
Adjustment needed in
different environments

Ambient
light

Low Low Moderate Low Relatively
high

Cheap, Nonintrusive Sensitive to light conditions,
Could be annoying for the
user

of infrared waves in the presence of fluorescent light and sunlight, leading to a reduction in system
usability. They also are invisible to the human eyes, whereas ultrasound is undetectable to the hu-
man ear, so they are not intrusive at all [100]. However, they are useful for movement detection, but
still there is a general limitation, which is low accuracy due to multipath effects and line of sight.

In summary, in practical applications, both device-based and device-free technologies provide
complementary information, and successful systems are only feasible by integrating the two sens-
ing modalities.

6 ALGORITHMS AND APPLICATIONS

In this section, we classified sensor-based algorithms and applications for recognizing NDDs ac-
cording to the locomotion indicators reported in Section 4. This classification is presented in
Figure 9. We also illustrate AmI techniques to recognize challenging behaviors.

6.1 Detection of Dementia

To categorize the existing solutions for recognizing symptoms of dementia, we propose the
classification shown in Figure 9.
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Fig. 9. The proposed framework for dementia detection approaches.

In the following, we present the most prominent methods according to our classification, namely
clinical assessment and ML-based assessment. Those methods are summarized in Table 11.

6.1.1 Clinical Assessment. In this group of approaches, detection is based on prior knowledge,
results of clinical tests, and statistical analysis of locomotion data by supervision of operators and
medical experts. Therefore, these kinds of approaches strongly rely on human resources and ex-
perts to evaluate the cognitive status of an individual. We further classify the clinical assessment
methods into low-level motion indicator assessment and task-oriented assessment methods, both of
which rely on general gait indicators. The former methods consider specific low-level motion indi-
cators, which in some cases allow distinguishing among the different dementia disease subtypes,
such as AD and dementia with Lewy bodies [74, 92]. Hence, the choice of the specific indicators
has an important impact on the diagnosis. In addition to motion indicators, the latter methods
consider executive and memory functions, adopting an approach called dual tasking. In both ap-
proaches, the patient evaluation is supervised by clinicians and executed during predefined, short,
structured testing sessions. The fact that tests are not performed in naturalistic conditions can ob-
viously have an impact on the effectiveness of the evaluation [12, 74]. The methods are described
as follows:

(1) Low-level motion indicator assessment: The evaluation of different gait features, including
simple and complex gait parameters, is commonly considered an important part of demen-
tia assessment, and their locomotion patterns are considered good predictors of diverse ad-
verse health outcomes and mobility “bio-markers” [114]. Different studies have shown that
by sensor-based gait cycle analysis of PwD vs cognitively healthy seniors, it is possible to
find a correlation between variability in different gait parameters and cognitive decline pro-
gression [12, 74]. As an example, the experiments conducted by Kearns et al. [57] revealed
that there is a correlation between higher tortuosity of the path with lower MMSE scores,
which is assessed by clinicians.

(2) Task-oriented assessment: Task-oriented methods are based on single-task and dual-task
(sometimes called Talking While,Walking [122]) walking assessment, which consider the
concurrent performance of a motor-motor or motor-cognitive task. The evaluation relies
on measuring the interference of the different tasks on each other. Indeed, while the indi-
viduals divide their attention to multiple tasks, they have difficulty in regulating the stride-
to-stride variations of locomotion, and this difficulty is stronger for cognitively impaired
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Table 11. Classification of Dementia Detection Methods

Locomotion

Anomaly Detection

Approach

Main Idea Characteristics Challenges Algorithms

C
lin

ica
l

a
ssessm

en
ts

Low-level mo-
tion
indicator
assessment

Methods rely solely on
different low-level gait
indicators including
simple and complex gait
parameters

–Possibility to find correlation
between gait parameters and
cognitive status
–Detecting early and longitudinal
cognitive changes
–Possibility of real-time assessment
–Useful to help in differentiating
between PwD and cognitively healthy
seniors

–Relevant clinicians’ effort for the
evaluation of cognitive status
–Clinical indicators and assessment
algorithms must be carefully chosen
–Experiments are supervised and
they are based on predefined, short,
structured testing sessions

Statistical
analysis [12, 57, 74, 79]

Task-oriented
assessment

Based on single- or
dual-task assessment,
and the latter consists of
evaluating gait
parameters together
with executive and
memory functions

–Ability to assess the concurrent
performance of a motor-cognitive or
motor-motor task independently
–More naturalistic gait assessment
–Useful to support the diagnosis of
cognitive impairment symptoms in
the early stage

–Need for clinical experts for
evaluating the test outcomes
–Algorithms, tests, and indicators
must be carefully chosen
–Complex execution and evaluation
of tests

Statistical analysis [27, 42,
47, 53, 71, 92, 126]

M
L

-b
a
sed

a
ssessm

en
t

Pattern-based
methods

Consider locomotion
data as a temporal
sequence of locations
(trajectories)

–They rely on unobtrusive
environmental positioning
infrastructures
–Based on wandering models such as
the Martino-Saltzman model
–Location data represented by
sequences or images
–Possible to add extra features and
data sources
–Suitable for long-term analysis

–Need large volume of data
–Trajectory segmentation is
challenging
–Execution of daily living activities
may interfere with the walked
trajectories

Shallow ML
algorithms [59, 60],
Multilayer deep neural
network [128],
K-repeating sub-strings
features [65], Recurrent
neural network [16]

Threshold-based
methods

They rely on
data-driven thresholds
to recognize gait and
locomotion phases

–Adaptive thresholds for the different
classes of individuals
–Low computational complexity and
latency

–Thresholds definition is
challenging and subject to
contextual factors
–They need model calibration for the
different subjects

Gait phase detection
method [75], Proposed
algorithm based on degree
of movement and
orientation [119],
Low-pass filtering and
threshold-based peaks and
valleys identification [121]

Feature-based
methods

Based on supervised ML
and feature extraction
methods to capture
multidomain
characteristics of
dementia

–Inclusion of multiple factors for the
recognition of dementia
–Integrated analysis of locomotion,
gait, and postural features
–Use of feature selection to improve
performance and reduce execution
time

–Classification performance
depends heavily on feature
engineering
–Need large volumes of data

Shallow ML
algorithms [20, 41, 46],
Convolutional neural
networks [63], Trend
analysis [64], Multiple
logistic regression [112],
probabilistic neural
network [122]

people [27, 112]. Impairment in executive functions (e.g., verbal fluency [71], visual-spatial
skills [47], counting aloud backward from 100 to zero [71]) is one of the earliest indicators of
cognitive decline. As an example, different experiments have proved that PwD have a more
variable within-bout and irregular trunk acceleration pattern, higher step duration and gait
complexity, and less variable across-bout walking pattern on single- and dual-task walking
(e.g., words enumeration) compared to healthy persons [47, 53, 92]. The execution and evalu-
ation of task-oriented assessment methods is more complex than the one of low-level motion
indicator methods but allows the recognition of early-stage cognitive decline.

6.1.2 ML-Based Assessment. Another group of approaches rely on ML algorithms to distinguish
between cognitively healthy subjects and PwD based on the observation of movement and behav-
ior. Compared to the clinical assessment approach, ML-based assessment enables the evaluation of
the cognitive status in more naturalistic settings. Indeed, the observation is usually carried out in
the inhabitant smart home or in instrumented retirement homes. Moreover, ML-based assessment
can be carried out unobtrusively for long time periods and requires less clinical effort compared to
the clinical assessment method, enabling both long-term and short-term monitoring [59]. We clas-
sified the different ML-based methods into three categories (see Figure 9): pattern based, threshold
based, and feature based. Pattern-based methods consider movement as a temporal sequence of lo-
cations, which describe the trajectories walked by an individual, and directly process that sequence
to provide a hypothesis of diagnosis. Threshold-based methods use thresholds inferred from the
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data to detect dementia based on locomotion signals collected by ambient or wearable sensors.
Feature-based methods apply ML algorithms to feature vectors extracted from locomotion data
for recognizing dementia. The underlying clinical indicators used by these methods are reported
in Section 4. The methods are as follows:

(1) Pattern-based methods: These methods process trajectory data to recognize abnormal
patterns that may indicate dementia according to specific indicators, such as the Martino-
Saltzman model [72]. Since ambulation episodes are composed of locomotion and nonloco-
motion phases, a key step is to segment locomotion traces to recognize significant trajec-
tories. A wrong segmentation of trajectories may disrupt the effectiveness of the pattern
recognition algorithms. Moreover, the execution of daily living activities, especially in in-
door environments, may impact the individual’s movements, increasing the complexity of
trajectories and incorrect detection [59]. Some pattern-based methods are nonsupervised.
For example, in the work of Khodabandehloo and Riboni [59], the authors detect loops (i.e.,
pacing and lapping episodes) building a buffer on the trajectory segments and considering
the percentage of intersection among the buffered segments composing the same trajec-
tory. Other works represent the trajectory as a string of locations, and detect abnormal pat-
terns using the longest repeated substring algorithm [65]. Other authors propose the use
of supervised ML algorithms to recognize abnormal trajectories. Zolfaghari et al. [128] rep-
resent trajectories as colored pictures to encode features such as speed and sharp points,
and they use a multilayer deep neural network for determining whether the trajectory is
by PwD, by a person with mild cognitive impairment, or by a cognitively healthy senior.
Since pattern-based methods rely on data acquired in naturalistic environments, they are
prone to misclassification errors due to noise in sensor data acquisition and interference of
external factors (e.g., activities, interaction with other people, obstacles in the home). Hence,
these approaches tend to be effective mostly for long-term monitoring [59]. Other methods
include the application of low-pass filters to location data for noise reduction especially for
data collected from inertial sensors, or the addition of extra features such as statistics ex-
tracted from trajectory data [59, 65], activities, and abnormal behaviors [60]. Furthermore,
Chaudhary et al. [16] tried to implement an early dementia detection system in an indoor
environment using travel patterns of the inhabitant and a recurrent neural network, which
automatically extracts the high-level features.

(2) Threshold-based methods: This category of methods detects gait phases by mining thresholds
from the data for segmenting events, recognizing gait cycles, and locomotion phases. Meng
et al. [75] used accelerometer data and adaptive thresholds to recognize the gait phases of
PwD and cognitively healthy seniors. In the work of Vuong et al. [119] the authors pre-
sented a solution for detecting locomotion anomalies in dementia patients using a wearable
Opal monitor that includes an accelerometer, a gyroscope, and a magnetometer. To recog-
nize direct, pacing, lapping, and random movement patterns, they considered translational
acceleration threshold to detect a walk event, then they tracked the movement orientation
until the algorithm would detect that the subject has made a complete stop. The classifica-
tion is done by considering a different range of orientation degrees for different locomotion
patterns. Wang et al. [121] proposed a threshold-based method to automatize the TUGT.
Event segmentation is based on thresholds to identify peaks and valleys during forward mo-
tion, swing points, and stance point. Experimental results showed that PwD need more time
for TUGT tasks such as sitting and standing up compared to cognitively healthy subjects. Of
course, in such methods, a key factor is the threshold definition. Since different subjects may
walk with high variation in cadence and step length, those works need adaptive thresholds
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for different classes of subjects and specific model calibration for the different individuals.
An advantage of threshold-based approaches is the low computational complexity and fea-
sibility for real-time applications at the edge.

(3) Feature-based methods: As explained before, dementia is a complex impairment that impacts
several domains. Hence, it is natural to consider different features for its detection. Feature-
based methods rely on feature extraction techniques to represent the different characteristics
of locomotion data, and on supervised ML algorithms to classify the feature vectors accord-
ing to the cognitive status of the subject. In feature-based methods, locomotion features
used for recognizing dementia include kinematic characteristics of postural control such as
displacement on the transverse plane and dispersion radius [20], accelerometer-based gait
parameters (e.g., walking speed, step frequency, compensation movements, acceleration vari-
ance) [41], gait symmetry and regularity [122], and other gait variables including step counts,
step duration, speed, and accelerometer and gyroscope statistical measures [46].

Toosizadeh et al. [112] extracted different features from accelerometers worn by patients
on the upper arm, on the wrist, and on the shins, during the execution of dual tasking. Those
features considered both upper-extremity function parameters (e.g., elbow angular velocity,
acceleration) and gait parameters (e.g., speed, time interval, distance). Analysis of variance
tests showed significant correlation between upper-extremity features acquired during the
dual task and the MoCA cognitive assessment result of the patient. Kumar et al. [64] used
trend analysis on different navigational features, including speed, path efficiency, angle turn,
and ambulation fraction, to distinguish PwD from cognitively healthy seniors considering
UWB location data acquired in an assisted living facility. Together with feature extraction,
some of these methods apply feature selection techniques to increase recognition rates, re-
duce computational effort, and avoid overfitting [41, 46, 122].
Kondragunta et al. [63] used data acquired from depth cameras during both single and dual
tasking, and extracted several features including step length, step time, stride time, and ca-
dence, by applying 3D human pose estimation techniques. They proposed using dynamic
time warping on those features to recognize PwD, individuals with mild cognitive impair-
ment, and cognitively healthy seniors. Compared to wearable sensor systems, techniques
based on cameras are less obtrusive, but they are prone to detection errors in low-light condi-
tions and are generally more computationally expensive. Moreover, the use of cameras pose
serious privacy issues, especially when they are deployed in private homes [9]. A shortcom-
ing of feature-based methods is that the accuracy of recognition strongly depends on feature
engineering. Moreover, being based on supervised learning, those methods have a need for
large volumes of training data that are expensive to capture in real-world settings.

6.2 Detection of HD

As explained in Section 4.4, HD determines impairment in motor control characterized by chorea
and dystonia. Several studies have shown that HD symptoms based on locomotion are observable
in premanifest individuals well before the actual diagnosis [23, 93]. Therefore, recognizing tem-
poral changes in gait parameters is important for early diagnosis and to help in delaying disease
progression. Different studies used pressure-sensitive walkway instruments capable of recording
spatiotemporal gait data with high precision [23, 90, 93–95]. Other works are based on wearable
sensors, such as force-sensitive switches embedded in shoes [7, 48], an accelerometer and gyro-
scope positioned on a waist belt [114], or IMUs attached to the shank [70]. Experimental results
have shown that PwHD experience a decrease in velocity, stride length, and cadence, and an in-
crease in parameters related to dynamic balance impairment, including increased time in double
support and gait asymmetry [90]. Furthermore, as presented in the state of the art, there are facts
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Table 12. Classification of HD Detection Methods

Approach Main Idea Characteristics Challenges Algorithms

Temporal
assessment
methods

Use IMUs mounted on waist
or embedded in shoes to
monitor temporal gait
parameters such as stride
interval

–Applicable indoors and outdoors
–Data can be acquired in
naturalistic conditions
–Minimally obtrusive

–Limited to certain locomotion data
–External events and noise can
impact the recognition performance
–Need for extensive training
datasets acquired in variegated
conditions

Statistical analysis [48],
Gait event detection
methods [114],
Threshold-dependent
symbolic entropy [7]

Hybrid
assessment
methods

Use wearable sensors or
sensorized pressure-sensitive
walkways to investigate
different aspect of mobility
and balance by considering
different types of clinical gait
indicators

–Accurate acquisition of motor
data alongside clinical walking
measures
–The use of different types of
indicators increases accuracy
–Good correlation with
fluctuation limitation and
quantitative gait measures and
gait patterns, dynamic balance,
and fall risk

–Results may reflect general gait
deterioration rather than HD
specifically
–Some of them need specific
laboratory equipment

Intraclass correlation
coefficient and
coefficient of
variation [95],
HMM [70], Statistical
analysis [23, 26, 90, 93,
94], Radial basis
function neural
networks [125], Long
short-term memory
network [82]

that the ability to preserve steady locomotion (i.e., low stride-to-stride variability of gait cycle inter-
val and its subphases) would be reduced in persons with NDDs [125]. Therefore, abnormal timing
of steps in NDDs leads to a distraction in gait and locomotor activity generation, and fortunately
these category of clinical tests are highly correlated with functional limitation and quantitative
gait measures related to gait speed [94, 125].

We classified the techniques for detecting HD locomotion anomalies into two categories: tem-
poral assessment methods and hybrid assessment methods. The main characteristics of these ap-
proaches are summarized in Table 12.

6.2.1 Temporal Assessment Methods. These methods use different strategies to examine gait
cycles and their correlations with HD by the analysis of complexity and uncertainty measures. In
particular, the stride interval in human locomotion reflects the rhythm of the locomotor system,
and its analysis provides a noninvasive approach for quantifying gait dynamics [7]. Since there
is a correlation between fluctuation in stride interval and HD, stride analysis allows detecting
locomotion impairment in PwHD at an early stage. Furthermore, the correlation degree in this
indicator is inversely associated with the degree of functional impairments in PwHD [48]. Different
research studies were able to differentiate PwHD from cognitively healthy subjects relying on
accelerometer-based gait event detection [114] and Shannon entropy [7]. However, these temporal
assessment methods need large volumes of training data acquired in variegated conditions, and
noise or data perturbation due to external events can affect their accuracy and reliability.

6.2.2 Hybrid Assessment Methods. To detect locomotion changes and quantify motor symp-
toms of HD in premanifest and early stages, it is useful to consider further markers in addition
to temporal indicators. Hybrid assessment methods investigate the progression of gait disorders
through the different HD stages according to a heterogeneous set of locomotion indicators. In
particular, the estimation of gait events related to stance and swing [70], as well as gait cycle vari-
ability, proved to be effective in recognizing early and longitudinal gait changes in PwHD [23].
Other works consider gait indicators to measure balance and symmetry in locomotion, which are
correlated to walking impairment progression in PwD [23, 94]. Those methods apply quantitative
phase plot analysis on the sinusoidal consecutive waveforms produced by trunk movement and
statistical assessment methods. However, those systems are subject to possible recognition errors
due to gait deterioration not specifically related to HD. Particular instruments such as sensorized
pressure-based pathways in controlled environments are useful to reduce noise in locomotion data
acquisition and to reduce the impact of external factors. Those methods do not support the data
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Table 13. Classification of PD Detection Methods

Approach Main Idea Characteristics Challenges Algorithms

Clinical assessment

–Methods are based on prior
knowledge, results of clinical
tests, and statistical analysis
of locomotion data by the
supervision of medical
experts
–Based on single or dual-task
assessment such as free
walking, opening and closing
doors, climbing stairs

–Detecting long-term changes in
stride length
–Demonstrate the effectiveness of
gait in natural environment
–Provides clinical validity of the
algorithm derived from sensor to
detect dyskinesias in PD patients
–Possibility of real-time
assessment

–Challenging to monitor
accurately stride length over an
extended period to characterize
pathological gait

Statistical analysis [13, 34, 35,
78, 91, 97, 106, 107, 116, 118]

M
L

a
ssessm

en
ts

Feature-
based
assessment
methods

These methods rely on
various feature extraction
methods, data collected from
wearable sensors, and use
ML-based algorithms to
distinguish between PD
patients and HCS

–Investigate the effect of gait and
tremor features for early
detection of PD
–Based on postural analysis such
as step distance, walking speed,
stance, and swing phase
–Apply in real-life conditions

–Difficult to determine significant
features
–Need extensive data for the
feature classification task

LDA [84], SVM [14, 22, 54, 84],
Naive Bayes
classifier [14, 22, 115],
RF [22, 115], MLP [115],
DT [14], K-nearest
neighbor [115], Deep
1D-Convnet [29], Deep MLP
(DMLP) [120], Convolutional
neural networks [117]

Image
processing
based
assessment
methods

These methods rely on the
camera used for gait analysis
to classify normal or PD’s
gaits; based on processing
images and videos from
walking sessions of the PD
patients and a classifier, it
can detect abnormal gait
pattern using a computer
vision based algorithm

–Process images and videos from
the patient’s activity, identify
every stride of the patients
–Employ ML-based classifier
–Identify PwPD in the early stage
and diagnose Parkinson’s ailment
with the support of a clustering
method that detects abnormal gait
patterns

–Difficult to determine significant
features from the image
–Need extensive data for the
classification task

Principal component analysis
[18], LDA [18], Regional
convolutional neural network
[44], Canny operator and
Gaussian filter [127], SVM
[44, 58]

Pattern-
based
methods

–Processed data to recognize
abnormal patterns that may
identify Parkinson
–Based on shifted 1D-LBP,
abnormal gait patterns, and
ML methods using the
dataset on gait signal

–Considers 1D-LBP from the LBP
for extracting features from
sensor signals
–Employ in real-time application
by detecting local changes in gait
signal

–Difficult to determine significant
patterns
–Need extensive data for the
classification task

Naive Bayes [30], Logistic
regression [30], RF [30, 96],
SVM [96], DT [96], ZUPT
algorithm and Kalman
filter [33], Bayes classifier [88],
Bag-of-words method [96]

acquisition in fully naturalistic conditions, and their cost makes them unsuitable for continuous
and large-scale deployments [94].

6.3 Detection of PD

As explained in Section 4.3, our human motor system is affected by PD. The most significant in-
dicators of PD are locomotor dysfunction, shortened stride length, increased variability of stride,
and shuffling gait. Therefore, it is essential to identify these parameters for diagnosing PD. Gener-
ally, gait disorders of PD are assessed by UPDRS. Gait freezing deteriorates the quality of life by
reducing mobility and increasing falls. Patients with freezing episodes also have problems with
lack of steady gait. Some research has recognized the gait disorders of PD based on wearable
sensors [106, 109] placed on the patient’s back or wearable devices such as smartwatches [73].
Several studies were also conducted to measure spatiotemporal gait parameters using pressure-
sensitive mats such as GAITRite [13]. Emerging wrist bands or smartwatches integrated with an
IMU are pledging into wearable healthcare solutions. Experiments also showed that upper body
variables need to be computed together with the consideration of spatiotemporal characteristics
to gain a more holistic inspection of PD for use in clinical or nonclinical environments [13, 73].
Wearable inertial sensors were used to monitor and measure head and pelvis accelerations. Pear-
son’s product-moment correlations were computed from upper body accelerations, including mag-
nitude, smoothness, regularity, symmetry, attenuation, and spatiotemporal characteristics such
as postural control [13]. Therefore, detection methods of PD are mentioned in the following
in two ways: clinical assessment methods and ML-based assessment methods. Table 13 summa-
rizes the characteristics of existing techniques, classified into clinical or ML-based assessment
methods.
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6.3.1 Clinical Assessment Methods. In the clinical assessment method, PD is detected based on
prior knowledge, results of clinical tests, and statistical analysis of locomotion data by the supervi-
sion of medical experts. Hence, these approaches intensely depend on expert evaluation to assess
an individual’s cognitive status. Patient evaluation is supervised by clinicians and executed dur-
ing predefined, short, structured testing sessions. Generally, the severity of PD is measured with
the UPDRS [32] score and the H&Y stage [10], as well as the New Freeze of Gaiting Question-

naire (NFOG-Q) [52]. Clinical evaluation can be done based on the performance of simple motor
task such as walking a short distance and getting up out of a chair and the standing or walking
turns [35]. The short stride length characteristic of Parkinsonian gait can be noticed from long-
term changes in stride length. Locomotor impairment is one of the leading characteristics of PD.
However, many other symptoms of PD, such as rigidity, difficulty swallowing, upper body tremor,
and dyskinesias, cannot be noticed with a stride monitor [78]. Clinical evaluation was conducted
employing the leg dyskinesia item of the UPDRS [91]. Generally, dyskinesias in PD patients are
associated with motor dysfunctions, including gait and balance deficits.

6.3.2 ML-Based Assessment Methods. Currently, PD is not curable. An earlier diagnosis is nec-
essary to enhance the patient’s treatment. Gait analysis is an essential step in PD diagnosis, as gait
abnormalities have been reported to appear at earlier stages. Since changes in gait are among the
foremost symptoms of this disease, a gait classifier would be beneficial for physicians. Therefore,
ML assessment methods can classify abnormal and normal gait. There are different approaches
available to detect PD using ML, and here we divide ML assessment methods into three categories:
feature based, image processing based, and pattern based:

(1) Feature-based assessment methods: The diagnosis of PD can be challenging in its earlier
stages, and Parkinsonian gait is characterized by small steps, a slower gait cycle, smaller
swing phase, and lengthier stance phase. Physicians evaluate these features in their diag-
nosis process to confirm the presence of PD. Gait evaluation can be difficult since it can
be influenced by several aspects, such as age and health condition. Despite the consider-
able interest in Parkinsonian gait analysis, there is no accurate tool to help physicians with
gait evaluation. To detect the characteristics of gait, feature extraction methods and ML
have been used. However, gait is a physiological characteristic that differs for each person
according to age, health, and other intrinsic factors. Therefore, manual preprocessing and
feature extraction will always be limited in their capacity. Generally, the feature-based as-
sessment method is used to extract significant features that will help diagnose PD. Various
features such as step distance, stride length, stride velocity, stance and swing phases, heel
and normalized heel forces, swing time of Parkinsonian patients, and walking speed were
extracted from the data collected from wearable sensors and after that examined using an
ML-based algorithm to select the most influential features that would help differentiate be-
tween the two groups: subjects with PD and healthy people. Generally, supervised learning
methods such as Linear Discriminant Analysis (LDA) [84], SVM [14, 22, 54, 84], the naive
Bayes classifier [14, 22, 115], RF [22, 115], Multilayer Perceptron (MLP) [115], Decision

Tree (DT) [14], K-nearest neighbor [115], and Deep 1D-Convnet [29] are used for distin-
guishing between PD patients and HCSs. Furthermore, recently novel ML and deep learning
based multimodal technologies have been used to identify severity in PD patients’ actions
by analyzing speech, movement patterns, and evaluation of motor capabilities [117, 120].
The rationale of this approach is that they may effectively capture discriminative features
from time-series data or other IMU sensors collected data without the need of sophisticated
feature engineering efforts.
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(2) Image processing based assessment methods: Image processing technologies have been em-
ployed widely for PD diagnosis. PD patients show large gait variability and slower walking
speeds than normal people. Cho et al. [18] introduced a gait analysis system based on a com-
puter vision based technique for the detection of gait patterns of PD. They captured a few
videos of both normal subjects and patients with PD. They processed the images from the
videos to characterize the subjects. Principal component analysis and LDA were employed to
extract features, and the minimum distance classifier was used as the classifier. Seven PwPD
and seven healthy people from Buddhist Tzu Chi General Hospital in Taiwan participated in
this study. It used the image sequences of human silhouettes during walking and extracted
the intrinsic features by LDA. It can identify healthy people and PD patients by their gaits
with high reliability, and it is considered a promising aid in the diagnosis of PD. Khan et al.
[58] also presented a computer vision based marker-free method to detect abnormal gait in
PwPD. In this study, subjects are videotaped with several gait cycles for the gait analysis of
PwPD. To develop a silhouette, the subject’s body is segmented through a color segmentation
process. A skeleton is formed by computing the medial points of each body segment. Motion
cues such as the cyclic motion of legs and the posture lean of the subject during the gait are
extracted from the skeleton. Then the comparison study was compared between these two
cues with the cues of the probable perfect gait pattern to assess gait impairment. Generally,
a computer vision based technique is introduced for gait analysis to classify normal or PD
gaits using a camera. In the work of Gong et al. [44], a masked regional convolutional neural
network is applied for extracting human silhouettes from video frames based on recorded
videos of normal gaits. After that, the gait energy images are constructed based on extracted
human silhouettes as features, which are applied to develop an SVM model for classifying
healthy and PD gaits in video clips.

(3) Pattern-based assessment methods: These approaches process trajectory data to recognize ab-
normal patterns identifying PD. Walking is a part of human movement monitored by the
human brain. Gait deficits and abnormal walking patterns may appear if the brain fails to
control this movement. Walking patterns can be monitored continuously and remotely over
time by wearable sensors. The bag-of-words approach [96] was introduced where each indi-
vidual’s walking time series is defined as a bag of words. The ratio of the words together with
ML techniques such as linear SVM, DT, RF, and K-nearest neighbor were employed to distin-
guish between patients with PD and healthy individuals. Although the bag-of-words method
is used to distinguish between PD and healthy age-matched individuals, this method is also
applicable to other health conditions. Each individual’s walking time series is converted into
signal subsequences using an overlapping sliding window. Then, each subsequence is char-
acterized using a few statistical descriptors and similar subsequences are assigned the same
word. Therefore, each person’s data is converted into a bag of words and then evaluated us-
ing accelerometers’ data collected from the ankles. The proposed approach illustrates a vital
step toward providing healthcare through continuous monitoring and advanced analysis of
movement patterns [96]. Another method was introduced to diagnose PD based on a shifted
1D Local Binary Pattern (LBP) using an ML algorithm [30]. The gaitpdb dataset was used
for the evaluation task, consisting of three gait datasets based on gait signals from different
circumstances. Statistical features were extracted from histograms of gait signals changed by
shifted 1D-LBP. ML methods such as naive Bayes, logistic regression, MLP, were employed
to extract and classify features that can be successfully used in PD detection from gait [30].
This approach may also be utilized to diagnose other symptoms such as speech. It can also
be applied in any real-time application by detecting local changes in a signal.
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Table 14. Challenging Behaviors

Approach

Classification

Disease Behaviors
Application

Environment

Experiment

Environment
Sensor Technologies Algorithms

Single
modality

Dementia (+
Parkinson)

Gait disturbance,
Wandering,
Ambulatory gait
behavior

Indoor/Outdoor Lab/Real
world

Computer vision [17], GPS
[67, 123],
Accelerometer [124], QR
codes [113]

Statistical analysis [113],
Density-based spatial
clustering of applications
with noise [123], Loop detection
method called Θ_WD [67],
Analytical algorithm for
analyzing acceleration data +
K-means clustering to classify
the gait variables [124], HMM
[17]

Multi
modality

Dementia (+
Parkinson)

Wandering,
Disorientation,
Limping, Fall
detection, Agitation,
Localization

Indoor/Outdoor/
General

LabReal
world/Both

GPS [25, 72, 102],
Accelerometer [25, 51, 102],
Computer vision [72],
Accelerometer, Metal plate,
Infrared [51], Electronic
patch, RFID [72], Actillume,
StepWatch, Step Sensor, and
TriTrac-R3D [4], Optical
and video cameras [36]

Proposed algorithm [25],
Different ML methods [102],
Markov chain model [51],
Pedestrian dead reckoning,
Statistical analysis [4, 72],
Multistage spatial-temporal
graph convolutional network
[36]

Nevertheless, it is hard to define significant features or patterns that can help in diagnosing
PD. Moreover, ML-based assessment methods require large volumes of expensive training
data to employ in the classification task.

6.4 Challenging Behavior Recognition

In people who suffer from NDDs, disorientation and wandering behaviors can cause potential
harm, such as accidents, injuries, and sometimes death, which can occur during either the day
or night [123]. These kinds of behaviors are a main concern for care personnel, as patients
require continuous surveillance. This is a stressful task, which leads to confinement feelings and
immense stress for caregivers. However, it is possible to use AmI and assistive technologies to
recognize those challenging behaviors that may lead to accidents and injuries in patients with neu-
rocognitive diseases [66, 123]. Generally, when a challenging behavior is recognized, those systems
promptly inform the caregiver by issuing an alert, or they automatically trigger procedures to avoid
the occurrence of accidents. For instance, the system may automatically lock doors or use wireless
technologies to activate an alarm through the emission of sound or light.

To perform accurate motion analysis, those systems use techniques similar to the ones used
to recognize symptoms of neurocognitive diseases [51, 123]. Human locomotion data in an in-
door environment can be collected by using both device-free and device-based sensing modali-
ties, whereas in outdoor environments the systems rely on mobile devices. Advanced systems use
sensor data fusion methods to improve the accuracy and significance of acquired data. Whereas
single-modality methods consist of one or multiple sensors of the same technology, multimodality
methods use different kinds of sensors to acquire multimodal data. In the following, we present
existing challenging behavior detection approaches according to the preceding categories, and the
main methods are summarized in Table 14:

(1) Single-modality methods: In different works (e.g., [67, 123]), the authors use GPS data to de-
tect wandering behaviors, whereas other works (e.g., [124]) use accelerometers for the same
objective. Regarding data analysis, the techniques proposed in the work of Lin et al. [67] and
Wojtusiak and Nia [123] rely on clustering, whereas in one of the works [67], the authors
detect loop-like locomotion traces based on the Martino-Saltzman model. In particular, the
work presented by Wojtusiak and Nia [123] is specifically based on detecting wandering by
means of iterative clustering followed by ML. Other approaches monitor patients with cog-
nitive impairment to alert caregivers when they leave the bed or exit the door. In the work of
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Chen et al. [17], the authors use cameras and background subtraction technologies to model
the scene background, together with the Hidden Markov Model (HMM) to automatically
detect elopements and alert caregivers. A tool named AssisT-In for indoor wayfinding and
wandering detection is presented in the work of Torrado et al. [113]. It is based on tagging
the environment with QR codes, which need to be scanned by the user through a smart-
phone so that he or she can be located and can receive directions to get to the destination.
That method is simple, inexpensive, and easily deployable. However, the used data localiza-
tion technology is not well suited especially for people with cognitive impairment, since QR
codes must be scanned frequently. An obvious advantage of single-modality approaches is
simplicity; however, noise and heterogeneous environmental conditions can affect the ro-
bustness, feasibility, and stability of those approaches.

(2) Multimodality methods: The recognition of more complex challenging behaviors such as per-
sistent, shadowing, pottering, or repetitive behaviors, poses additional issues. Those behav-
iors are not only based on the patient’s trajectory but also consider environmental conditions,
such as the presence or movement of other people. For this reason, some systems, including
that in the work of Martino-Saltzman [72], integrate different technologies such as RFID and
GPS. In the work of Homdee et al. [51], the authors use door sensors and wearable devices
to detect doorway crossing events and location tracking errors with walking directions by a
Markov model method, and provide correct location information using the most likelihood
method. In another work [25], the authors use a smartwatch provided with GPS and an ac-
celerometer to detect wandering and alert the patient’s relatives when needed. Moreover,
the development of novel treatments for objectively assessing FOG, which is a debilitating
gait impairment in PD, is severely limited by its difficulty. Therefore, Filtjens et al. [36] used
the Vicon 3D motion analysis system, which is combination of optical and video cameras
for FOG assessment. They formulated it as an action segmentation problem where temporal
models are tasked to recognize and temporally localize the FOG segments. It applies spatial
graph convolutions on the human skeleton graph at each timestep that connects the same
markers across consecutive timesteps.

7 DISCUSSION ON OPEN CHALLENGES

In this work, we explored different methods and technologies for detecting the symptoms of NDDs
based on locomotion data. However, given the sensibility of the task, particular care should be
taken before introducing these technologies in medical practice. A first fundamental challenge in
sensor-based healthcare systems is the protection of privacy. Indeed, it is well known that the re-
lease of location data determines serious privacy issues [99]. Of course, the continuous observation
of movements and locomotion patterns may reveal not only medical conditions but also personal
routines, activities, and preferences. This problem is particularly evident in systems based on out-
door locations. For instance, recurring presence in specific locations may reveal sensitive data
such as political opinions or religious beliefs, whereas frequent co-occurrence with other people
may expose private contacts. The continuous observation of indoor locomotion traces at home
may also challenge the individual’s privacy, revealing the presence of other people or the execu-
tion of private activities of daily living. For this reason, a privacy-by-design technology must be
adopted when designing and implementing locomotion-based healthcare systems [9]. Together
with privacy, it is important to adopt effective cyber-security mechanisms to protect sensitive
data regarding the individual. This requirement is particularly important in IoT systems, which
are prone to different kinds of attacks [111]. Moreover, the use of sensor data and AI methods for
neurocognitive disease assessment raises serious ethical and legal concerns, including informed
consent acquisition, safety, transparency, data ownership, algorithmic fairness, and biases [40].
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From a technological point of view, the need for continuous data acquisition and processing chal-
lenges the power requirements of portable or wearable systems. Novel edge computing solutions
optimized for the execution of ML algorithms and supported by privacy and security mechanisms
need to be introduced [1]. There is also the need for optimized, energy-efficient, and effective noise
suppression algorithms for accurate localization and location data processing [81].

Finally, the accurate evaluation of proposed tools and methods necessarily relies on extensive
experiments in naturalistic conditions. However, in this domain, the setup of experimental testbeds
and experimentation with a large set of participants, including both people with NDD and HCSs,
is particularly complex and expensive. Moreover, acquired data contain sensitive information. For
these reasons, there is a lack of large datasets acquired for long time periods on a significant num-
ber of individuals that are publicly available. This fact limits the possibility of experimentally com-
paring different solutions for AI-based neurocognitive disease assessment using common testbed
datasets. A potential solution for this could be the option to integrate external evaluation pipelines
into the computation infrastructure of the institution holding the dataset, allowing external
researchers to evaluate their hypotheses without the risk of data privacy violation.

8 CONCLUSION

Since the average age of the population is projected to increase significantly in the near future,
early diagnosis of cognitive decline among elderly people is becoming a key objective of health-
care systems worldwide [98]. This survey explored different technologies and methods that have
been demonstrated to be successful in detecting symptoms of NDDs based on locomotion sen-
sor data and AI algorithms. We investigated 128 peer-reviewed papers discussing the detection of
dementia (37%), HD (11%), and PD (44%), as well as some discussing both dementia and PD (4%)
and PD and HD (4%). The experimental results presented in these papers have shown that these
new technologies may provide effective support for practitioners and caregivers to improve the
diagnosis and simplify patient management. In that sense, this work provided a detailed overview
of different technologies and AI methods for detecting symptoms of NDDs based on locomotion
sensor data. Furthermore, it discussed the open challenges and potential solutions to making the
detection of NDD symptoms with AI methods more accessible and beneficial for the research
community and for the practice.
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