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1 Introduction

In this work, we extend to several proposals for quantum gravity, the idea introduced for
the first time in the seminal paper [1]. Therefore, it is a must to start with an incomplete
list of approaches to quantum gravity. In order to get a well-defined theory for quantum
gravity in the quantum field theory framework, there are basically five current proposals:
String Theory (ST) [2–4], Nonlocal Quantum Gravity (NLQG) [5–13], Higher Derivative
Quantum Gravity (HDQG) [14–16], Stelle’s Quantum Gravity (SQG) [17], and Asymp-
totically Safe Quantum Gravity (ASQG) [18–20]. String theory, NLQG, and HDQG are
finite theories, but the minimal NLQG and HDQG can be simply super-renormalizable and
asymptotically free. ASQG is also somehow finite in the Wilsonian sense, while SQG is
the only renormalizable theory of gravity. Therefore, SQG is a unique theory according to
the simple renormalizability of all the other fundamental interactions.

Perturbative unitarity is achieved in all the listed theories above. In ST (expanding
around the Minkowski background) and in NLQG (expanding around any solution of Ein-
stein’s equations of motion), the spectrum consists only of physical particles (detectable
propagating degrees of freedom) and the amplitudes, consistent with the Cutkowsky rules
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and unitarity [21–23], are obtained by means of analytic continuation of the external en-
ergies from purely imaginary to real values. On the other hand, in SQG, the ghost field
is removed by hand from the spectrum, and the perturbative unitarity is achieved at any
loop order by the mean of the Anselmi-Piva prescription that avoids the ghosts to be cre-
ated in the loop Feynman diagrams [24–28]. Finally, in ASQG, unitarity should emerge at
non-perturbative level [29].

That said, we are legitimate to ask the following question: can somehow these theories
explain one of the greatest mysteries of gravitational physics, namely dark matter? Indeed,
such an issue is not a recent discovery but actually goes back to the 1933 [30], and the most
common interpretation relies on the presence of a huge fraction of missing dust matter in
our Universe. Such presence of exotic matter is needed to explain various phenomena: the
galactic rotation curves, the structure formation in the early Universe, the cosmological
microwave background (CMB) radiation, the gravitational lensing, and the so-called “bullet
cluster”. However, we must honestly say that this point of view is based on the assumption
that the gravitational interaction, as well as all the other fundamental interactions, is the
same at every energy scale. In particular, usually, people modify the “right-hand side”
of Einstein’s equations (EE) while assuming correct the “left-hand side”. Indeed, it is
well known that it is very hard to modify consistently the EE at large distances without
introducing instabilities and facing off other issues. Therefore, in two recent papers [31, 32]
we addressed the galactic rotation curves’ problem without modifying gravity, but reading
the Einstein-Hilbert theory (EH) as Einstein’s conformal gravity (ECG) in the Higgs phase
after the Weyl conformal symmetry is spontaneously broken. This is tantamount to trying
to understand gravity instead of modifying gravity. In the context of conformal gravity
there are also indications that it can be possible to remedy the missing matter in the
spectrum of the CMB radiation as suggested in [33] (see [34] for a review on Mimetic
Gravity). In the latter paper, the authors showed that in Mimetic-Gravity, a theory very
similar to ECG, the FRW equation has an extra energy density term, but no new extra
propagating degrees of freedom. Such energy density behaves as dust matter and could fix
the issue with the CMB spectrum without the need of dark matter [35, 36]. In particular,
in the latter papers it was shown that the phenomenology of DM on galactic scales can
indeed be explained by minimal well-motivated extensions of mimetic gravity.

So far so good, but what about the bullet cluster and the structures’ formation? At the
moment, we do not know how to address the former issue, but we can provide the following
proposal for the latter one. We here closely follow the bright idea suggested in [1], where
the authors proposed that dark matter could be made of massless particles (gravitons in [1])
confined in a bound state. In this regard, as the outcome of this paper, we will show that
perturbative bound states at high energy can be created in both nonlocal gravity and higher
derivative gravity because such theories are asymptotically free or finite at short distances.
Indeed, the short-range weakness of all fundamental interactions described by NLQG and
HDQG motivated us in proposing that the formation of structures in the Universe is not
due to the presence of extra matter but to bound states of gravitons or other particles of
the standard model in its local or nonlocal ultraviolet completion. Afterward, such bound
states will serve as seeds on which other matter will clump. The same proposal also applies
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to string theory, where the tree-level scattering amplitudes are soft at high energy. Notice
that in this Universe scenario we only have the five percent of observed matter and no dark
matter at all. Because of the almost absence of interactions, in the early Universe, even
supermassive bound states can form that later will gravitationally attract baryonic matter
to form larger structures. Notice that in this scenario the amount of dark matter in the
Universe can be neglected, but still we can explain the structures formation. Nevertheless,
the conventional dark matter scenario is not excluded. Indeed, we can also assume that the
bound states characterize the amount of the needed extra matter, namely the twenty-five
percent of the claimed dark matter. This was actually the proposal in [1].

Summarizing we can have two scenarios: (I) a first one without dark matter in which
the structures formation is due to the weakness of all fundamental interactions in the early
Universe, (II) a second scenario in which bound states are created in the early Universe
to serve as the about twenty-five percent of missing matter in the Cosmos. Both the
scenarios need bound states that will be the real topic of this paper. Indeed, we will show
that in string theory and nonlocal or higher derivative theories, perturbative bound states
are allowed while the same states are not allowed in Einstein’s or general two-derivative
theories. We will follow the approximation introduced in [1] and consider the movement of
massless particles in an “effective potential” defined starting from the scattering amplitudes
in the Regge’s limit t � s. Indeed, after simple manipulations, we will be able to infer
about the “effective equations of motion” (EEoM) regulating the dynamics of massless
particles (notice that in the early Universe, we can always forget the mass term in the
dispersion relation).

We would like to stress once again that the content of this paper is very much quanti-
tative and less speculative regardless of the reasons given above, on which perhaps many
readers may not agree. Indeed, we will consider the following explicit examples: (I) a
sterile-scalar field in local and nonlocal higher derivative gravity, (II) string theory, (III)
nonlocal scalar electrodynamics, (IV) a φ3 higher derivative or nonlocal field theory, and
(V) general asymptotically free or finite NLQG and HDQG.

We will name the perturbative bound states of sterile massless scalars “gravi-scalar-
balls”, those made of pions in scalar-electrodynamics by “electroballs”. In string theory,
we will name the bound states “stringballs”, while in general, we will baptize the bound
states of any kind of massless particles “Planckballs” on the footprint of the “graviballs”
(bound states of gravitons) as stated in [1]. In what follows we use the metric signature
(−,+,+,+) and also adopt natural units c = ~ = 1.

2 Effective equations of motion

In order to investigate the emergence of bound states, we follow ref. [1] and consider a
system of two identical massless particles traveling in the xy-plane in opposite directions
with the same energy E1 = E2 = ω. According to [1], our computation is “semi-classical”
because we study the relativistic equations of motion based on the energy potential defined
as the Fourier transform of the t-channel scattering amplitude At(t) in the Regge limit
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t� s and t = −q2 = −~q 2 → 0, namely

V (|~r1 − ~r2|) = − 1
4E1E2

∫
d3q

(2π)3 e
i~q·(~r1−~r2)At(−~q 2) , (2.1)

where ~ri denotes the position of the i-th particle, and the Mandelstam variables are defined
as follows,

s = −(p1 + p2)2, t = −(p1 − p3)2 = −q2, u = −(p1 − p4)2, (2.2)

with q2 being the transfered momentum. We assume that the initial 3-momenta of the
particles are along the x direction, and we choose to work in the center of mass frame, such
that we have the initial 4-momenta:

pµ1 = (ω,−ω, 0, 0) and pµ2 = (ω, ω, 0, 0) . (2.3)

We here deal with a central force ~Fi = −~∇iV acting on the i-th particle. Therefore,
using the condition ~F1 = −~F2 and the symmetries of the system, we can reduce it to a
single-particle problem. In particular, the center of mass is at rest because in the initial
configuration ~p1 + ~p2 = 0. Then, choosing the origin of the coordinates system such that
at the initial time ~r0 ≡ ~r1(t0) = −~r2(t0), we have ~r1 = −~r2. Moreover, for the same reason
for the velocities, we have ~v1 = −~v2. Thus, we can consider the reduced system of a single
particle described by the vector:

~r ≡ ~r1 − ~r2
2 . (2.4)

The equations of motion describing our system can be derived from the following
relativistic relations for massless particles, namely [1]

~v ≡ ~̇r , (2.5)

~̇v = 1
ω

[ ~F − (~v · ~F )~v] , (2.6)

~v 2 = 1 , (2.7)

where (2.7) means that the particles travel at the speed of light, and the force and the
potential are:

~F (~r) = −1
2
dV (r)
dr

~r

r
= F (r) ~r

r
, (2.8)

V (r) = − 1
16π2ω2r

∫ ∞
0

dq q sin (2qr)At(−~q 2) , (2.9)

with r = |~r | and q = |~q |. Throughout this work we will use the “dot” notation to denote
the differentiation with respect to the time t. In deriving eq. (2.9) we used (2.4) in (2.1),
performed the integration over the angles, and used the relation (2E1)(2E2) = 4ω2 for
the normalization factor. The extra factor of 1/2 in (2.8) comes from the derivative with
respect to the reduced coordinate (2.4). The initial conditions are parametrized as

~r0 =
(
a

2 ,
b

2

)
and ~v0 = (−1, 0). (2.10)
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Now we go beyond the analysis of ref. [1] (which was purely numerical) and carefully
study the equations (2.5)–(2.6) in order to extract some general analytical constraints about
the formation of bound states. It will be convenient to make use of polar coordinates in
xy-plane, namely

x = r cosϕ, y = r sinϕ. (2.11)

Then, using the known formulas for the velocity and the acceleration in polar coordi-
nates [37]

~v = ṙ êr + rϕ̇ êϕ , ~̇v = (r̈ − rϕ̇2) êr + (2ṙϕ̇+ rϕ̈) êϕ , (2.12)

and also a central force ~F = F (r) êr, the radial and angular components of (2.6) are
respectively given by:

r̈ − rϕ̇2 = (rϕ̇)2F (r)
ω

, (2.13)

2ṙϕ̇+ rϕ̈ = −rṙϕ̇F (r)
ω

. (2.14)

In polar coordinates the initial conditions (2.10) read:

r(t0) =
√
a2 + b2

2 , ϕ(t0) = arcsin b√
a2 + b2

,

ṙ(t0) = − a√
a2 + b2

, ϕ̇(t0) = 2b
a2 + b2

.

(2.15)

Consistently with the Regge limit t � s, the initial angle has to be small, i.e ϕ(t0) ≈ 0.
Therefore, we should assume b� a.

A first integral of motion can be obtained multiplying (2.14) by r and defining the
angular momentum by the following relation,

~L = ~r × ~p . (2.16)

Indeed, eq. (2.14) can be integrated to give:

ϕ̇ = L

ωr2 , (2.17)

where
L(r) = L0 e

V (r)−V (r0)
2ω , L0 ≡ L0(t0) = b ω

2 . (2.18)

Instead of solving (2.13), we consider the simpler equation (2.7) in polar coordinates,1

ṙ2 + (rϕ̇)2 = 1. (2.19)

Replacing (2.17) into the above equation (2.19), we end up with:

ṙ = ±
√

2 [Eeff − U(r)] , Eeff = 1
2 ,

U(r) = U0

(
r0
r

)2
e
V (r)−V (r0)

ω , U0 = U(r0) = b2

2(a2 + b2) .
(2.20)

1Indeed, after plugging eq. (2.17) into (2.13) and (2.19) one can show that (2.13) and (2.19) give the
same solutions for r(t).
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Therefore, we have reduced the two-dimensional dynamical system (2.13)–(2.14) to a one-
dimensional problem for a particle moving in an “effective potential” U(r) with the “effec-
tive energy” Eeff = 1/2. All possible trajectories with U(r) 6 1/2 are allowed.

However, it is important to notice that, despite the function U(r), which is defined
in (2.20), resembles an effective potential of classical mechanics (and it can be analyzed
with in the general framework that we can find in standard textbooks [37]), its physical
interpretation is much more subtle for the following reasons. First of all, we notice that
U(r) and Eeff are dimensionless quantities, and, in particular from (2.20), we see that they
have the physical meaning of velocities squared rather than energies. Indeed, the eq. (2.20)
is nothing else but the rewritten equation for the constant modulus of the velocity (equals
to the speed of light) of a massless particle that cannot be at rest. For this reason, we
notice that even if the interaction potential V (r) is always attractive, i.e., V (r) < 0 ∀ r, the
effective potential U(r) is always a positive-defined function, see eq. (2.20), otherwise (2.7)
would be violated. Secondly, U(r) 6 Eeff = 1/2 is just a reflex of the limiting velocity of a
massless particle; if the particles could access regions where U(r) > 1/2 it would acquire
superluminal velocities. Therefore, any value of r with U(r) > 1/2 is not allowed. In
particular, even when there is no interaction between the particles, U(r) is non-zero. Using
V (r) = 0 in (2.20), we see that the effective potential boils down to a hyperbola

U free(r) = b2

8r2 , (2.21)

and substituting this expression into the first line of (2.20), after solving for r, one can re-
cover the parametric equation of a straight-line with constant velocity |~v | = 1, as expected
in the case where the interactions are turned off.

In what follows, we make use of a qualitative analysis of the effective potential U(r) to
infer about the existence of bounded solutions. In order to have bound states, the effective
potential (2.20) must have at least one local minimum Umin for a finite value of r. Of
course, no bound states can be formed whether the impact parameter vanishes, b = 0,
because we get U0 = 0, and finally U(r) = 0. Therefore, from now on, we will assume
that b 6= 0.

Before to proceed, we need to require some properties for the interaction potential (2.9).
As discussed in the introduction, our main goal is to consider modified potentials inspired
by several classical and quantum gravity models. However, before discussing such specific
examples, we can infer about many general results on the formation of bound states by
only looking at general properties of the potential.

Let us assume that the potential V (r) satisfies the following conditions:

(i) The singularity in r = 0 is removed in the proposed classical theory or by quantum
field theory corrections, namely V (r) is an analytical function around r = 0 such that
lim
r→0

V (r) <∞.

(ii) At large distances, the quantum effects are negligible, and the potential reproduces
the Newtonian one, i.e.,

V (r) ∼
r→∞

−1
r
. (2.22)
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Therefore, if the conditions (i)–(ii) holds, we have from (2.20) the following results for U(r),

lim
r→0

U(r) =∞ , U(r) ∼
r→∞

1
r2 . (2.23)

The first condition in (2.23) means that we have an infinite potential wall at the origin, so
the system can never reach the point r = 0.

We now look for extreme points for the effective potential (2.9). Taking the derivative
of U(r) with respect to r, we get:

dU

dr
= 2U0 r

2
0

r3 e
V (r)−V (r0)

ω Q(r) , (2.24)

where we introduced the new function:

Q(r) = −1− r

ω
F (r) . (2.25)

Because of (i)–(ii), the zeros and the change of sign of (2.24) are related to the function
Q(r), which mainly depends on the force F (r).

Under the assumptions (i)–(ii) for the potential, we have the following corollaries for
the force F (r).
(iii) F (r) is also an analytical function around r = 0, and we have:

lim
r→0

F (r) <∞ . (2.26)

(iv) The behavior of the force at large distances is:

F (r) ∼
r→∞

− 1
r2 . (2.27)

The conditions (iii)–(iv) implies that Q(r) is a continuous and differentiable function,
and that

lim
r→0

Q(r) = lim
r→∞

Q(r) = −1 . (2.28)

Therefore, Rolle’s theorem guarantees that the function (2.25) has at least one critical
point Q′(rc) = 0. Let us assume that at the critical point Q(r) takes the maximum value
Qmax. If this maximum is positive, namely

Qmax > 0 , (2.29)

then the equation Q(r) = 0 has at least two solutions and the derivative dQ/dr changes
the sign. In the simplest case, the effective potential (2.20) has two equilibrium points re
and, since U(r) is continuous on (0,∞), the conditions (2.23) imply that the effective
potential has a local minimum Umin = U(rmin) and a local maximum Umax = U(rmax),
with rmax > rmin and rmin 6= 0.

Hence, if Umax > Eeff there are three solutions of the equation U(rb) = Eeff, that,
together with the condition U 6 1/2, define the regions of the phase space that are allowed
for the evolution of the system (see figure 1). As we can see from (2.19) and (2.20), violating
the condition U 6 1/2 would be equivalent to violate the eq. (2.7). The two turning points2

2Indeed, it is possible that rb1 = rb2 for U0 = Umin = Eeff = 1/2. However, as (2.20) shows U0 = 1/2 is
only possible for a = 0. In general, any solution with a = 0 corresponds to a circular motion with radius
r0 = rb = b/2, U(rb) = U0 = Eeff . In this situation, the scattering condition a � b is violated. Therefore,
we always assume that r0 6= rb.
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r

V(r)

rb1
rb2

rb3
r0

r

U(r)

Umin

rmin

Umax

rmax

d2 U

d�
2

< 0

d2 U

d�
2

> 0

Eeff

rb1 rb� rb3r0

-1

r

Q(r)

Figure 1. Qualitative plots showing the comparison between V (r), U(r), and Q(r) in the case
where the scattering potential V (r) satisfies the requirements (i)–(ii). The shaded areas represent
the forbidden values for the radial coordinate r(t), where U(r) > 1/2 = Eeff . Although V (r) is
always negative, the effective potential U(r) is a positive-defined function. The red dot represents
the initial condition r0. For the solid-line curves, all the conditions in (2.30) are satisfied. In this
case, since rb1 < r0 < rb2 , the bounded solutions are allowed; the time evolution of r(t) is confined
in between rb1 and rb2 . Although Umin is only a local minimum, the region [rb3 ,+∞] (while in
principle not forbidden) remains inaccessible to the system. Indeed, accessing such region (with the
initial condition shown in the plot) would constitute a violation of the condition (2.7), which means
a velocity greater than the speed of the light. For this reason, the bounded movement is stable, and
in order to break the confinement the particle must be a tachyon. The dot-dashed line represents
the case where (I) in (2.30) is satisfied while the condition (II) is violated. Despite the fact that
Qmax > 0 because (II) is not true, there exist only a single turning point where U(rb) = Eeff .
Hence, the particles will scatter through the infinity, and bounded solutions are not possible in this
situation.

rb1 and rb2 with rb1 < rmin < rb2 , define the region of bounded motion [rb1, rb2], while in
the region [rb3,+∞], the two particles would reach a minimal mutual distance rb3 before
scattering away to infinity. In the case where the initial position is such that rb1 < r0 < rb2 ,
the movement is confined in the interval [rb1, rb2], and bound state solutions are allowed.
In figure 1, we have a plot of a typical graph for the potential V (r), the effective potential
U(r) and the function Q(r), under the assumptions (i)–(ii) that allow for bound solutions.
Otherwise, if Qmax 6 0, or Q(r) possesses only one local minimum, the function Q(r) can
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not be positive; therefore, the effective potential is a monotonically decreasing function,
and bound states are not allowed.

In summary, the necessary and sufficient conditions for bound states are:

(I) Qmax > 0 , (II) Umax > Eeff , (III) rb1 < r0 < rb2 , (IV) 0 < rb1 < rmin < rb2 < rmax ,

(2.30)
where r0 = r(t0) was defined in (2.15).

In order to find bound states of particles with energy ω, in the rest of the paper we
will assume Qmax > 0. On the other hand, by studying the change of sign in the derivative
dQ/dr we can found bounds on the equilibrium points re = {rmin, rmax}. For instance,
since Q(re) = 0, we have

d2U

dr2

∣∣∣∣∣
r=re

= 2U0 r
2
0

r3
e

e
V (re)−V (r0)

ω
dQ

dr

∣∣∣∣
r=re

, (2.31)

thus the sign of the second derivative of the effective potential is directly related to the
sign of the first derivative of Q(r). Evidently,

d2U

dr2

∣∣∣∣∣
r=re

> 0, for re = rmin ,

d2U

dr2

∣∣∣∣∣
r=re

< 0, for re = rmax .

(2.32)

Finally, before moving to the specific examples of our interest, a brief comment on Ein-
stein’s gravity is important. In the very inspiring seminal paper [1], the authors studied the
2→ 2 gravitons’ scattering in Einstein’s gravity by numerically solving the equation (2.6)
with interaction Newtonian potential, namely

V (r) = −4Gω2

r
. (2.33)

The potential (2.33) diverges in r = 0 and the first assumption in (2.23) is violated. For
the potential (2.33) the function (2.25) is:

Q(r) = −1 + 2Gω
r

. (2.34)

The equation Q(r) = 0 has only one root at

rmax = 2Gω , (2.35)

where the effective potential takes the following maximum value,

Umax = 1
8

(
b

2eGω

)2
e

4Gω
r0 . (2.36)
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Thus, for Einstein’s gravity, the effective potential posses only a maximum for r 6= 0.
In figure 2, we show the behavior of the effective potential in Einstein’s gravity. For this
effective potential, no bound states are allowed. The reason is that for Umax > Eeff , there
is only one turning point rb < rmax, where U(rb) = Eeff . So, if r0 < rmax = 2Gω, the
only possible motion is towards r = 0.3 Near r = 0, the force grows without any bound,
and the potential approximation makes no sense anymore. Considering non-linear effects,
based only on a purely classical point of view, very likely the system will end up in a
black hole with the particles reaching the singularity in r = 0 in a finite amount of proper
time. Indeed, the apparent bound states in the examples of [1] are such that the impact
parameter b/2 ≈ 2rmax and Umax . Eeff. Therefore, the system is close to the unstable
equilibrium point rmax, and the numerical solutions of (2.5)–(2.7) shown in [1] will rapidly
decay to r = 0 if we allow a bigger evolution time for the system.

We conclude that according to the analytic model described in this section, there are
no bound states of gravitons in Einstein’s gravity as usually defined in textbooks. Indeed,
the definition of bound states requires the motion to be confined between a minimum and
a maximum value of the radial coordinate, namely two turning points. However, we think
the analysis in [1] to be correct because if the energy is smaller than Umax and the gravitons
are at a distance r0 < rmax, then they turn out to be confined. We do not know exactly how
to classically interpret this bound state since the numerical integration of eqs. (2.5)–(2.7)
fails in r = 0 where the Newtonian potential is divergent. However, we argue that it should
represent the formation of a black hole. Indeed, rmax = 2Gω is the Schwarzschild radius
of the system. The same statement applies to any other theory providing a singular V (r)
potential in r = 0. This situation may change due to quantum effects; see the discussion
in [1].

Finally, we would like to stress more the main achievements of this section and the
differences between the present work and ref. [1]. First, differently from [1], where the
analysis of the equations of motion (2.5)–(2.7) was done only at a numerical level, here
we also obtain analytical results using the effective potential approach. The necessary and
sufficient conditions for the presence of bound states are summarized in eq. (2.30). As we
are going to see in the explicit examples of the next sections, the numerical solutions of
eq. (2.5)–(2.7) are in perfect agreement with the effective potential analysis. Second, the
main concern of ref. [1] was with a −1/r potential, while here, we are interested in modified
potentials V (r) inspired by several classical and quantum gravity models, all of them finite
at r = 0. As discussed in the previous paragraphs, for the −1/r potential, the semi-classical
equations of motion may allow the particles to reach distances close to r = 0, where full
quantum effects become very important. On the other hand, for finite potentials, V (r)
stays bounded for any r. When compared with the standard −1/r potential, this causes
the effective potential U(r) to acquire an infinite wall around r = 0 (cf. figures 1 and 2),
not allowing the particles to leave the classical regime. Therefore, in opposition to ref. [1],
the semi-classical analysis based only on the eqs. (2.5)–(2.7) with the interaction potentials

3The same is true for Umax < Eeff for any value of r0. For Umax > Eeff and r0 > rmax the particles will
scatter at the turning point r′b > rmax.
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r
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r

U(r)

Umax

rmax= 2Gω

Eeff

rb1
rb2

r

Q(r)

Figure 2. Qualitative plots showing the potential V (r) and the corresponding effective potential
U(r) for Einstein’s gravity. Notice that this case is very different from the one described in figure 1,
because here the condition (i) is violated and the potential V (r) diverges at r = 0. Therefore, the
effective potential U(r) goes to zero at the origin. It also shows the plot of the function Q(r). In this
case, Q(r) does not possess a maximum, thus there is no local minimum for the effective potential
U(r) at non-zero r. If Umax > Eeff with r0 < rb1 (or if Umax < Eeff) the particles will reach r = 0
where maybe the “semi-classical” approximation based on eqs. (2.5)–(2.7) does not hold anymore.
As proposed in [1], in this situation quantum effects may be responsible to bound the system. On
the other hand, if Umax > Eeff , but r0 > rb2, the particles will scatter at the distance rb2 going
afterwards to the infinity.

that we are concerned here serves as a good approximation for the description of the system
in all allowed distances.

3 A sterile scalar field coupled to nonlocal gravity: gravi-scalarballs

As a first example, let us consider ordinary two-derivatives matter coupled to nonlocal
gravity. The full action of our interest consists of a scalar field minimally coupled to
nonlocal gravity, namely

S =
∫
dDx
√
−g

[
2
κ2
D

(R+Gµνγ(�)Rµν + V (R))− 1
2g

µν∂µφ∂νφ−
1
2m

2φ2
]
, (3.1)
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where κ2
D = 32πG, V (R) is a “potential” at least cubic in the Riemann tensor and

γ(�) = eH(�) − 1
�

, (3.2)

where H(z) is an entire function. Since the scalar field is free in absence of gravity, namely
“sterile”, its presence does not spoil either the super-renormalizability or the finiteness of
the purely gravitational theory [8, 9].

In momentum space, and ignoring the gauge dependent terms, the graviton propagator
reads:

G(k) = e−H(−k2)

i(k2 − iε)

(
P (2) − 1

D − 2P
(0)
)
, (3.3)

where P (2) and P (0) are the usual spin two and spin zero projectors operators [38–40].
The tree-level gravitational scattering amplitude for 2-scalars into 2-scalars can be

easily obtained from the one in local gravity. For m = 0, the result is:

As = 8πGut
s
e−H(s) , At = 8πGsu

t
e−H(t) , Au = 8πGst

u
e−H(u) . (3.4)

Notice that for a proper choice of H(z) the amplitudes are soft in the ultraviolet regime,
namely they go to zero for large s, t or u. Therefore, the unitarity bound is satisfied at
tree-level. Indeed, if

H(�) = (−`2Λ�)n , (3.5)

and n is an even positive integer, the tree-level amplitude turns out to be soft. On the
other hand, if n is an odd integer, we face with two possibilities: (1) the propagator falls
off in the Euclidean, but the tree-level amplitude grows exponentially in the ultraviolet
regime; (2) the propagator grows exponentially, but the tree-level amplitude goes to zero.
Let us expand on the latter statement. For n = 1, H = −`2Λ� and the form factor is:

eH(�) = e−`
2
Λ� → eH(−k2) = e`

2
Λk

2 = e`
2
Λ(−k2

0+~k2) = e`
2
Λ(k2

4+~k2) = e`
2
Λk

2
E . (3.6)

Therefore, the propagator (3.3) falls off exponentially in Euclidean space. On the other
hand, the amplitudes in the three channels respectively read:

As = 8πGut
s
e−`

2
Λ(p1+p2)2 = 8πGut

s
e`

2
Λs , At = 8πGsu

t
e−`

2
Λ(p1−p3)2 = −8πGs(s+ t)

t
e`

2
Λt ,

Au = 8πGst
u
e−`

2
Λ(p1−p4)2 = 8πGst

u
e`

2
Λu = 8πGst

u
e−`

2
Λ(s+t) .

(3.7)

Differently, for n = 2 the entire function isH = (−`2Λ�)2 and the amplitudes (3.7) turn into:

As = 8πGut
s
e−[`2Λ(p1+p2)2]2 = 8πGut

s
e−(`2Λs)

2
,

At = 8πGsu
t
e−[`2Λ(p1−p3)2]2 = −8πGs(s+ t)

t
e−(`2Λt)

2
,

Au = 8πGst
u
e−[`2Λ(p1−p4)2]2 = 8πGst

u
e−(`2Λu)2 = −g

2

s
e−(`2Λ(s+t))2

,

(3.8)

which approach zero for s, t→∞.
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In the Regge limit t � s, which is what we need in order to compute the interaction
potential (2.9), the leading contribution comes from the amplitude in the t-channel, i.e.,

At(s, t) ≈ −8πGs
2

t
e−H(t) . (3.9)

For the amplitude (3.9) we can now compute the potential (2.9). In D = 4 we find:

V (r) = −8Gω2

πr

∫
dq

q
sin(2qr) e−H(−q2). (3.10)

As an explicit simple example we can evaluate (3.10) for the following form factor,

e−`
2
Λ� . (3.11)

As discussed above, for the string-inspired form factor (3.11), As and At in (3.4) diverge
for large s and t. However, if we do not care about such a problem, the potential (3.10)
after integration reads:

V (r) = −4Gω2

r
erf
(
r

`Λ

)
, (3.12)

where erf(x) is the error function and we used s = 4ω2. The potential (3.12) reduces to
the one in Einstein’s theory when r →∞ (or equivalently r � `Λ)

V (r) ∼
r→∞

−4Gω2

r
, (3.13)

while at the origin, we have

lim
r→0

V (r) = −8Gω2
√
π`Λ

. (3.14)

Therefore, the conditions (i)–(ii) for the potential are satisfied.
Analytical results can also be obtained for the form factors

e(−`2Λ�)n with n > 1 . (3.15)

For the case n = 2 (in this case, the tree-level amplitude falls off to zero at high energy
in all channels consistently with the request of having a soft amplitude in the ultraviolet
regime),

V (r) = −8πGω2

π`Λ

[
2 Γ
(5

4

)
1F3

(
1
4; 1

2 ,
3
4 ,

5
4; r4

16 `4Λ

)
− 1

3
r2

`2Λ
Γ
(3

4

)
1F3

(
3
4; 5

4 ,
3
2 ,

7
4; r4

16 `4Λ

)]
,

(3.16)
where pFq denotes the generalized hypergeometric function. However, the potentials (3.16)
and (3.12) have a very similar behavior in the ultraviolet as well as in the infrared regime.
Indeed,

lim
r→0

V (r) = −16Gω2

π`Λ
Γ
(5

4

)
, V (r) ∼

r→∞
−4Gω2

r
. (3.17)

Hence, in the rest of this section, we will study the implications of the simplest poten-
tial (3.12), being sure that the qualitative picture will not be affected by a different choice
of the form factor.
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Figure 3. Plot of the function (3.21).

From the potential (3.12) we get the force:

F (r) = −2Gω2

r2

[
erf(µr)− 2µr√

π
e−(µr)2

]
, (3.18)

where we defined µ = 1/`Λ introducing the non-locality scale. Studying (3.18), one can
prove that:

lim
r→0

F (r) = 0 and F (r) →
r→∞

−2Gω2

r2 . (3.19)

Thus, the force satisfies conditions (iii)–(iv). Together, the equations (3.13), (3.14) and (3.19)
imply that (2.23) and (2.28) hold true. So, the presence of bounded solutions is related to
the existence of the positive maximum for the function (2.25), Qmax > 0.

Using (3.18) we get for (2.25)

Q(r) = −1 + 2GµωS(µr) , (3.20)

where the function S(x) is defined by:

S(x) = erf(x)
x
− 2√

π
e−x

2
. (3.21)

The behavior of (3.21) is shown in figure 3. It has a maximum value Smax = 0.53 at the
point xmax = 1.51. Therefore, the first condition in (2.30) is:

Qmax = −1 + 2GµωSmax > 0. (3.22)

By solving the above inequality, we can find the following bound on the energy,

ω >
1

2SmaxGµ
. (3.23)

Let us assume that the non-locality scale is of the order of the Planck mass, i.e. µ ∼ MP.
Then, using G = 1/M2

P eq. (3.23) implies that:

ω > 0.95MP. (3.24)

If the condition (3.23) is satisfied, the equation Q(r) = 0 has two solutions and, as discussed
in section 2, the effective potential (2.20) has a local minimum at the point rmin and a local
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Figure 4. Plot of the function (3.26).

maximum at rmax > rmin. We can not find general analytic expressions for rmin and rmax,
but it is possible to find numerically values for them for fixed value of the parameters µ
and ω. However, using (2.31), it is possible to find some constraints on rmin and rmax by
studying the first derivative of Q at r = re

dQ

dr

∣∣∣∣
r=re

= 2Gω
r2
e

T (µ re) , (3.25)

where we introduced the function:

T (x) = 2x(2x2 + 1)√
π

e−x
2 − erf(x) . (3.26)

The plot of T (x) is shown in figure 4. Solving numerically the equation T (x) = 0, we find
that the root is approximately at x = 1.51. Therefore, the function T (µre) is positive for
0 < re < 1.51/µ and negative if re > 1.51/µ. Thus, according to (2.32) we have:

0 < rmin <
1.51
µ

< rmax . (3.27)

The above equation gives a lower and an upper bound for rmin, but only a lower bound for
rmax. To found an upper bound on rmax we study how the function Q(r) depends on the
non-locality scale µ. Taking the partial derivative with respect to µ we get:

∂Q

∂µ
= 8Gωµ2r2

√
π

e−µ
2r2

> 0 . (3.28)

Namely, Q is a monotonously increasing function of µ for any fixed r. Therefore, the
maximum values for Q are obtained in the limit µ→∞, when the potential (3.12) reduces
to the one of the Einstein’s theory (2.33). Hence, the possible values for rmax for the
non-local theory are bounded by the maximum radius of the local theory, which is given
in (2.35).

Therefore, the necessary and sufficient conditions for the existence of bound states are:

ω >
0.95
Gµ

, Umax >
1
2 , rb1 < r0 < rb2 ,

0 < rb1 < rmin < rb2 < rmax, rmin <
1.51
µ

< rmax < 2Gω .
(3.29)
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Figure 5. Three examples of bound states for µ = MP = 1. (a) shows the trajectory in the reduced
coordinate ~r (2.4) for tf = 100, and (d) shows the trajectories for the two particles with tf = 10.
In both cases ω = 5, a = 1, and b = 0.1. (b) shows the trajectory in the reduced coordinate ~r for
tf = 100, and (e) for tf = 8. Here ω = 10, a = 0.5, and b = 0.05. (c) Trajectory in the reduced
coordinate ~r for tf = 50, and (f) for tf = 5. Here ω = 20, a = 0.25, and b = 0.025. In blue, we
displayed the trajectory of the particle of radial vector ~r1, while in red, we displayed the particle
with radial vector ~r2 = −~r1.

In figure 5 we shows some examples of bound states by numerically integrating the equa-
tions (2.13) and (2.14) from t0 = 0 until a finite time tf and plotting the particles’ trajectory
in xy-plane with the aid of (2.11).

We conclude that in nonlocal gravity, the necessary condition for having bound states
of sterile scalars is ω &MP, and they have an extension rb2 that decreases with increasing
of the energy for fixed r0 and b. Moreover, the initial conditions must satisfy b � a and
rb1 < r0 < rb2 consistently with t � s. Since the existence of bound states is based on a
scalar field coupled to nonlocal gravity, we call these bound states: gravi-scalarballs.

A very similar result can be obtained in general [14], or Lee-Wick [15, 16] higher
derivative gravitational theories. The computation consists of merging together the results
of section 6 and the theory (3.1) with the form factor γ(�) replaced by a polynomial.

In this section, the interaction potential has been defined by means of tree-level scat-
tering amplitudes. Therefore, one may wonder if loop corrections can spoil our result and
bound states do not form. To answer this question, we need to understand if the good
properties (i)–(ii) for the potential, described in section 2, are destroyed by the loop con-
tributions. It turns out that the answer is actually negative. Indeed, typically the one-loop
quantum corrections have a Universal form in the ultraviolet regime; namely, they lead to
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include a k4 log(k2/µ2) term in the denominator of the propagator. However, such correc-
tion can only improve the convergence of the tree-level potential V (r) at r = 0 [41, 42].
In the far-infrared regime, the one-loop quantum corrections to the potential have also an
Universal form leading to the correction 1/r3 to the potential [41–45]. However, at large
distances 1/r3 is sub-leading with respect to the classical counterpart 1/r. We expect
that higher-loops contributions will also not spoil the conditions (i)–(ii) because of the
asymptotic freedom [46, 47] in super-renormalizable theories [5, 7, 9] or the softness of the
quantum amplitudes in finite theories [6, 8, 10, 11, 48].

Therefore, loop corrections will not change the main qualitative conclusions on bound
states here described.

4 Scattering amplitudes in string theory: stringballs

One of the main properties of string theory is the softness of the tree-level scattering
amplitude at high energy [4]. Therefore, string theory naturally has the right feature needs
in our scenario of dark matter as bound states.

Let us start reminding the following very compact and suggestive Veneziano-tree-level
scattering amplitude in closed string theory (see [49] and references in within),

A(string) =
Γ
(
−α′

4 s
)

Γ
(
−α′

4 t
)

Γ
(
−α′

4 u
)

Γ
(
1 + α′

4 s
)

Γ
(
1 + α′

4 t
)

Γ
(
1 + α′

4 u
) , (4.1)

(a similar result appears for the open string theory amplitudes). We now focus on the
string amplitude (4.1) and we take the limits: t � s, s � 4/α′, t � 4/α′ [49, 50] (see
also [51–55]). In the latter approximations the amplitude (4.1) reads:

A(string) ≈
Γ
(
−α′

4 t
)

Γ
(
1 + α′

4 t
) (−iα

′

4 s
)−2+α′

2 t

= −
Γ
(
−α′

4 t
)

Γ
(
1 + α′

4 t
) (α′

4 s
)−2+α′

2 t

(−i)
α′
2 t . (4.2)

In the last expression we properly extracted the factor (−i)α
′

2 t from which we get an
imaginary contribution to the amplitude. Such contribution is saying that the most likely
process is to create a massive closed string rather than the scattering of particles. Therefore,
in order to avoid such an inelastic regime, we have to assume again small t and the final
amplitude further simplifies to:

A(string) ≈ 4
α′t

(
α′

4 s
)−2+α′

2 t

= 64
α′3s2t

(
α′

4 s
)α′

2 t

. (4.3)

Now we can compute the potential for the scattering of gravitons in string theory after
selecting a suitable front coefficient in the proper generalization of formula (3.10) in string
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theory,

V (r) = #
∫
dq

sin(2q r)
q r

A(string)(s,−q2) = #
∫
dq

sin(2q r)
q r

(
− 64
α′3s2q2

) (
α′

4 s
)−α′2 q2

= −Gs
r

erf

 r√
α′

2 log
(
α′s
4

)
 for s� 4

α′
, (4.4)

where # = Gα′3s3/32π is the right coefficient according to the infrared Newtonian regime.
Taking s = 4ω2, we can rewrite eq. (4.4) as:

V (r) = −4Gω2

r
erf
[
M(ω, α′)r

]
, (4.5)

where according to s� 4/α′ (4.4),
ω2 � 1

α′
, (4.6)

and we defined the energy-dependent mass scale:

M(ω, α′) =
√

2
α′ log(α′ω2) . (4.7)

Comparing eq. (4.5) with (3.12), we see that the only difference between them is the
presence of the energy ω inside the error function. Therefore, all the results of section 3
remain true under the replacement of the parameter µ = 1/`Λ with M(ω, α′). Thus, the
bound on the energy ω can be obtained through (3.23) with the replacement µ 7→M(ω, α′)

ω >
1

2SmaxGM(ω, α′) , Smax = 0.53 . (4.8)

Unlike in section 3 here M is a function of the energy ω. Hence, we need to study with
care eq. (4.8) in order to obtain the bound on ω. Replacing (4.7) into (4.8) we get the
following inequality:

h(ω) < 0 , where h(ω) = log(α′ω2)
α′ω2 − 8G2S2

max
α′2

. (4.9)

The function h(ω) in (4.9) has the asymptotic limits,

lim
ω→0

h(ω) = −∞ , lim
ω→∞

h(ω) = −8G2S2
max

α′2
, (4.10)

and the equation h′(ω) = 0 has only one solution for ω equals to:

ωmax =
√
e

α′
, (4.11)

where the function h(ω) takes the maximum value

hmax = 1
e
− 8G2S2

max
α′2

. (4.12)

In the above equations e = 2.718 . . . is the Euler number. Therefore, it is possible to split
the study of the inequality in (4.9) into two distinct cases.
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(I) If α′ 6 2
√

2eGSmax, then hmax 6 0 and the inequality (4.9) holds for all values of ω
because of (4.10). In this case, the only bound on ω is given by (4.6). Therefore, the
necessary conditions for bound states are:

α′ 6 2.47G , ω � 1√
α′
. (4.13)

(II) If α′ > 2
√

2eGSmax, then hmax > 0 and the equation h(ω) = 0 has two distinct
solutions. We denote the roots of h(ω) = 0 as ω1(α′) and ω2(α′) with ω2(α′) > ω1(α′).
Clearly, ω1(α′) < ωmax < ω2(α′), then using eq. (4.11) we get:

ω1(α′) <
√
e

α′
< ω2(α′) . (4.14)

In the region ω1(α′) < ω < ω2(α′), the function h(ω) is always positive. On the other
hand, for 0 < ω < ω1(α′) and ω > ω2(α′) the function h(ω) is negative. Considering
the inequality (4.6), we can safely take ω >

√
e/α′ and given (4.14) the condition

h(ω) < 0 is reduced to ω > ω2(α′). Accordingly, the necessary conditions for having
bound states are:

α′ > 2.47G , ω � 1√
α′
, ω > ω2(α′) . (4.15)

The bounds on the maximum and minimum radius are the same as in section 3 with the
replacement µ 7→M(ω, α′).

Hence, in conclusion, the necessary and sufficient conditions for having bound state
solutions are (4.13) or (4.15) together with

Umax >
1
2 , rb1 < r0 < rb2 , 0 < rb1 < rmin < rb2 < rmax , rmin <

1.51
M(ω, α′) < rmax < 2Gω .

(4.16)
Finally, we consider an explicit example. We choose to work in Planck units, i.e.

1/
√
G = MP = 1 and we consider α′ = 10 so that we are in the situation described in

(II). Numerically solving the equation h(ω) = 0 we find the value for the highest root
ω2(α′) = 4.95. Thus, the condition (4.15) is satisfied, for example, for ω = 100 or ω = 200.
For this values of the energy ω we obtain the values for rmin and rmax shown in table 1(a).
As we can see the condition rmin < 1.51/M(ω, α′) < rmax < 2ω holds. In the examples of
table 1(a) we found that rmax ≈ 2ω because the values of ω are large when compared to
M(ω, α′). Moreover, for a given choice of initial conditions, all inequalities in (4.16) can
be satisfied. See, for example, table 1(b). In figure 6 we plot the trajectory in the xy-plane
for the initial values described in the table 1(b).

We conclude that in string theory bound states of gravitons form for any ω � 1/
√
α′

if the magnitude of
√
α′ is comparable with the Planck length,4 and they have extension rb2

4If the magnitude of
√
α′ is larger than Planck length, this conclusion may change. Indeed, in the

case (II) ω > ω2(α′) is required and we need to compare ω2(α′) with 1/
√
α′. It turns out that ω � 1/

√
α′

implies ω > ω2(α′) only if ω2(α′) and 1/
√
α′ are of the same order of magnitude. E.g., for α′ = 100 and

G = 1, 1/
√
α′ = 0.1 and we found numerically ω2(α′) = 21.9, such that 1/

√
α′ � ω2(α′). On the other

hand, if the value of
√
α′ is close to the Planck length, for example, α′ = 3, the conclusion in the text

remains valid because 1/
√
α′ = 0.6, which is comparable with ω2(α′) = 0.98.

– 19 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
1

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(a)

-4 -2 0 2 4

-4

-2

0

2

4

x

y

(b)

Figure 6. We here show two examples of bound states for α′ = 10: (a) ω = 100, a = 5, b = 0.5
and tf = 200; (b) ω = 200, a = 5, b = 0.5 and tf = 200.

M(ω, α′) 1.51/M(ω, α′) rmin rmax

ω = 100 0.13 11.46 1.73 199.99
ω = 200 0.12 12.13 1.32 399.99

(a)

a b r0 rb1 rb2 Umax

ω = 100 5 0.5 2.51 8.74× 10−2 5.22 8.83× 1017

ω = 200 5 0.5 2.51 4.21× 10−2 4.13 4.91× 1039

(b)

Table 1. Examples of parameters that satisfy the condition for having bound states.

that decreases with increasing of the energy for fixed r0 and impact parameter b. Moreover,
the initial conditions must satisfy b� a and rb1 < r0 < rb2 consistently with t� s.

Since the result is based on string theory, let us call these bound states: stringballs.

5 Nonlocal scalar electrodynamic: electroballs

We here investigate the feasibility of bound states in nonlocal electrodynamics coupled to a
complex scalar. This example will turn out to be useful in section 7 and in the conclusions
where we will generalize our results to all the fundamental interactions described by a local
or nonlocal ultraviolet completion of the standard model of particle physics. In particular,
we here discuss the case of a dimensionless coupling constant as a toy model for the nonlocal
standard model.

The action for the case of a massless complex scalar reads:

L = − 1
4e2Fµνe

H(�Λ)Fµν − (DµΦ)†(DµΦ) , (5.1)

where Dµ = ∂µ + ieAµ, and Λ = 1/`Λ is the non-locality scale. We do not need to intro-
duce the covariant d’Alembertian in the form factor for the electromagnetism action (5.1)
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because Fµν = ∂µAν − ∂νAµ is gauge invariant. The theory is the gauge analog of the one
presented in section 3. Indeed (5.1) is super-renormalizable with only one-loop divergences
proportional to FµνFµν . In the jargon of section 3, the scalar Φ is sterile because it is
non-interacting in the absence of the gauge field.

Following again the seminal paper [1] we focus on the π+ π− → π+ π− interaction,
whose scattering amplitude in the Regge’s limit t� s reads:

At ≈ −2ie2 s

t
e−H(t) . (5.2)

Comparing the above amplitude with (3.9), we get the potential (3.12) with in it the
replacement 8πGs = 16πGω2 → e2. The potential reads:

V (r) = −4Gω2

r
erf
(
r

`Λ

)
→ V (r) = − e2

4πr erf
(
r

`Λ

)
. (5.3)

Following the analysis in section 3, the condition on the energy ω for having bound states
is obtained simply making the replacement G→ e2/16πω2 in (3.23), namely:

ω >
1

2SmaxGµ
=⇒ ω <

µe2Smax
8π ≈ e2MP

8π . (5.4)

With again a similar analysis as the one in section 3 and the replacement µ = 1/`Λ, we get
the following necessary and sufficient conditions for the existence of bound states,

ω < 0.02µe2, Umax >
1
2 , rb1 < r0 < rb2 ,

0 < rb1 < rmin < rb2 < rmax, rmin <
1.51
µ

< rmax <
e2

8πω .
(5.5)

We conclude that contrary to the previous examples, in nonlocal massless scalar elec-
trodynamics the necessary condition for having bound states of pions is ω < e2MP, and
they have an extension rb2 that increases with increasing of the energy for fixed r0 and
b. Moreover, the initial conditions must satisfy b � a and rb1 < r0 < rb2 consistently
with t � s. Since the existence of these bound states is based on a scalar field coupled to
electromagnetism, we name these bound states: electroballs.

6 Local and nonlocal φ3 scalar field theories: scalarballs

In this section, we study the issue of bound states in a class of local and nonlocal scalar field
theories that have vanishing tree-level scattering amplitudes in the ultraviolet regime. In
particular, we are here interested in a theory with positive dimension coupling g, contrary
to the previous cases of negative dimension coupling or dimensionless couplings.

For a massless scalar with a cubic interaction, the general action reads:

S =
∫
dDx

[1
2 φf(�)�φ− g

3!φ
3
]
, (6.1)

where f(�) can be a local or a nonlocal form factor. We here assume to recover the local
two-derivative theory at large distances, namely f(z)→ 1 for z → 0.
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It is straightforward to derive the tree-level scattering amplitude for 2 → 2 particles.
The outcome in the s, t, and u channels reads:

As = − g2

sf(s) , At = − g2

tf(t) , Au = − g2

uf(u) . (6.2)

We can now compute the potential (2.9) in D = 4 taking the limit t� s, namely

V (r) = − g2

16π2ω2r

∫ ∞
0

dq

q

sin (2qr)
f(−q2) . (6.3)

Let us start with the two derivatives theory f(−q2) = 1. In this case, we consistently
obtain a Coulomb like potential, namely

V (r) = − g2

32πω2r
. (6.4)

Therefore, in the same fashion as in Einstein’s gravity, bound states are not allowed for (6.4)
(see discussion at the end of section 2). Indeed, the function (2.25) for the potential (6.4)
is given by

Q(r) = −1 + g2

64πω3r
, (6.5)

and the equation Q(r) = 0 has a single root at:

rtwo-dermax = g2

64πω3 , (6.6)

where the effective potential assumes the following maximum value,

Umax = 1
2

(
32πbω3

eg2

)2

e
g2

32πω3r0 . (6.7)

6.1 Fourth derivative scalar theory

For the case of a local scalar higher derivative theory consistent with a soft amplitude in
the ultraviolet regime (or softer than in the two-derivative theory), we can take the form
factor f(�) to be polynomial. Thus, the simplest possible choice is:

f(�) = 1− c1� → f(−k2) = 1 + c1k
2 → f(t) = 1− c1t , (6.8)

where c1 is a parameter of inverse mass square dimension and is positive in order to avoid
tachyons. Hence, for the above case the amplitude At is not soft but actually divergent for
t = 1/c1. Moreover, the pole in k2 = −1/c1 corresponds to a ghost-like instability.

If we do not care about such issues, the potential for the minimal local higher derivative
theory (6.8) is:

V (r) = − g2

16π2ω2r

∫ ∞
0

dq

q

sin (2qr)
(1 + c1q2) = − g2

32πω2
1− e−2µr

r
, where µ = 1

√
c1
. (6.9)

The force is given by

F (r) = − g2

64πω2r2

(
1− e−2µr − 2µre−2µr

)
. (6.10)
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Thus, we can prove that:

lim
r→0

V (r) = − g2µ

16πω2 , V (r) ∼
r→∞

− g2

32πω2r
,

lim
r→0

F (r) = − g2µ2

32πω2 , F (r) ∼
r→∞

− g2

64πω2r2 ,

(6.11)

and the conditions (i)–(iv) are satisfied.
Proceeding as in section 3, we look for the necessary and sufficient conditions for the

existence of bound states. For the force (6.10) the function (2.25) has the following form,

Q(r) = −1 + g2µ

32πω3S(2µr) , (6.12)

where the function S(x) is now given by:

S(x) = 1
x

[1− (1 + x)e−x]. (6.13)

The function (6.12) has maximum

Qmax = −1 + g2µ

32πω3Smax , (6.14)

at the point r = 1.79/2µ, where Smax = 0.30 is the maximum value of (6.13). Therefore,
Qmax > 0 implies the following necessary condition for having a bound state,

ω <

(
g2µSmax

32π

)1/3

≈ 0.14 (g2µ)1/3 . (6.15)

The derivative of Q at the equilibrium point Q(re) = 0 reads:

dQ

dr

∣∣∣∣
r=re

= g2e−2µre

64πω3r2
e

T (2µre) , (6.16)

where the function T (x) is defined by

T (x) = 1 + x+ x2 − ex. (6.17)

The feature of T (x) is shown in figure 7. The equation T (2µre) = 0 has a positive root at
re = 1.79/2µ. For 0 < re < 0.89/µ we have T (2µre) > 0, while T (2µre) < 0 if re > 0.89/µ.
According to (2.31), (2.32), and (6.16) we find:

0 < rmin <
0.89
µ

< rmax . (6.18)

The upper bound for rmax is given by the value rtwo-dermax that we found in (6.6) for the
two-derivative theory. Indeed,

∂Q

∂µ
= g2µr

16πω2 e
−2µr > 0 , (6.19)
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Figure 7. Plot of the function (6.17).
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Figure 8. Example of bound state for the fourth derivative scalar theory. Here we set g = 100,
µ = 1, ω = 2, a = 1, b = 0.05 and evolved the system till the final time tf = 150. (a) Effective
potential. (b) The trajectory in the xy-plane.

and the maximum value for Q is obtained when µ → ∞. As a result, the necessary
and sufficient conditions for the existence of scalarballs solutions in the fourth-derivative
theory are:

ω < 0.14 (g2µ)1/3 , Umax >
1
2 , rb1 < r0 < rb2 ,

0 < rb1 < rmin < rb2 < rmax , rmin <
0.89
µ

< rmax <
g2

64πω3 .

(6.20)

In figure 8 we show an example of bound states: in figure 8(a) we plot the effective po-
tential (2.20) and in figure 8(b) we have the corresponding numerical solution for the
trajectory.

6.2 Sixth derivative scalar theory

In order to have an amplitude well defined for any real value of s, t, and u, we can choose
the following quadratic polynomial:

f(�) = 1 + c2(−�)2 → f(−k2) = 1 + c2k
4 → f(t) = 1 + c2t

2 , (6.21)

which corresponds to the minimal sixth-derivative theory with complex conjugate ghosts
poles [15, 16].
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For the form factor (6.21), the potential and the force are

V (r) = − g2

16π2ω2r

∫
dq

q

sin(2qr)
(1 + c2q4) = − g2

32πω2
1− e−2µr cos (2µr)

r
, where µ = 1

√
2c1/4

2
,

(6.22)

F (r) = − g2

64πω2r2

{
1− [2µr sin(2µr) + (1 + 2µr) cos(2µr)] e−2µr

}
, (6.23)

and the conditions (i)–(iv) of section 2 read:

lim
r→0

V (r) = − g2µ

16πω2 , V (r) ∼
r→∞

− g2

32πω2r
,

lim
r→0

F (r) = 0, F (r) ∼
r→∞

− g2

64πω2r2 .

(6.24)

The function Q(r) is:

Q(r) = −1 + g2µ

32πω3S(2µr) , (6.25)

S(x) = 1
x

{
1−

[
cosx+ x(cosx+ sin x)

]
e−x

}
. (6.26)

The above latter function has a maximum value Smax = 0.46 at x = 2.06, where (6.25) has
also the maximum:

Qmax = −1 + g2µ

32πω3Smax . (6.27)

Therefore, the necessary condition for the existence of bound states, i.e. Qmax > 0, implies
the following inequality,

ω <

(
g2µSmax

32π

)1/3

≈ 0.17 (g2µ)1/3 . (6.28)

Once again, the bounds on rmin and rmax can be derived computing the derivative of
Q(r), i.e.

dQ

dr

∣∣∣∣
r=re

= g2e−2µre

64πω3r2
e

T (2µre) , (6.29)

T (x) = (1 + x) cosx+ x(1 + 2x) sin x− ex. (6.30)

The plot of the function (6.30) is shown in figure 9. Numerically we find that T (2µre) = 0
has a root at point re = 1.03/µ, so that T (2µre) is positive in the region 0 < re < 1.03/µ,
and it is negative for re > 1.03/µ. Thus, the equilibrium points satisfy:

0 < rmin <
1.03
µ

< rmax. (6.31)

Due to the oscillations of the potential (6.22), Q(r) is not monotonic with respect to µ
for fixed r. Hence, the upper bound on rmax will be slightly bigger than for the two-
derivatives (6.6). In order to find an upper bound on rmax we rewrite the function (6.25)
as follows,

Q(r) = −1 + g2

64πω3r
W (2µr) , (6.32)
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Figure 9. Left panel: plot of the function (6.30). Right panel: plot of (6.33).
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Figure 10. An example of bound state for the sixth derivative scalar theory. Here we set g = 100,
µ = 1, ω = 2, a = 2, b = 0.1 and evolved the system until a final time tf = 200: (a) effective
potential; (b) the trajectory of the system in the xy-plane.

where W (x) is defined as:

W (x) = 1−
[
cosx+ x(cosx+ sin x)

]
e−x . (6.33)

Since W (x) 6Wmax = 1.18 (see figure 9), rmax is bounded by

− 1 + g2

64πω3rmax
Wmax > 0 =⇒ rmax < 1.18 g2

64πω3 . (6.34)

Therefore, for the sixth-derivative theory the necessary and sufficient conditions for bound
states are:

ω < 0.17 (g2µ)1/3, Umax >
1
2 , rb1 < r0 < rb2 ,

0 < rb1 < rmin < rb2 < rmax, rmin <
1.03
µ

< rmax < 1.18 g2

64πω3 .

(6.35)

Finally, in figure 10 we show an example of scalarball for a set of parameters that sat-
isfy (6.35).

6.3 Nonlocal scalar field theory

We hereby extend the result of the previous sections to a nonlocal scalar theory. For this
purpose, we simply have to replace f(�) with an analytic function without zeros in the all
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complex plane at finite distance, namely

f(�) = eH(�) , (6.36)

and the amplitude (6.2) turns into:

As = −g
2

s
e−H(s) , At = −g

2

t
e−H(t) , Au = −g

2

u
e−H(u) . (6.37)

As example, we take the form factor e−σ�. As discussed before, the amplitude, in this
case, is not soft. However, if we again do not care about such problem, the potential (2.9)
after integration reads:

V (r) = − g2

32πω2r
erf(µr), µ = 1√

σ
. (6.38)

Since the potential (6.38) has the same functional form as the one considered in section 3,
many of the intermediate steps are the same as section 3. However, the final conclusion
for the bound on the energy ω is in contrast with (3.24) because of the different front
coefficient in (6.38). So, in order to avoid repetitions, we refer to section 3, and we here
just present the necessary and sufficient conditions for having bound states in the nonlocal
scalar theory, namely

ω < 0.14 (g2µ)1/3, Umax >
1
2 , rb1 < r0 < rb2 ,

0 < rb1 < rmin < rb2 < rmax, rmin <
1.51
µ

< rmax <
g2

64πω3 .

(6.39)

In figure 11 we show an example of scalarballs for the nonlocal scalar field theory.
We conclude that in the φ3 higher derivative or nonlocal theory, a necessary condition

for bound states of scalars is ω < MP,5 and extension rb2 increases for increasing energy
for fixed r0 and b. Moreover, the initial conditions must satisfy b� a.

7 Asymptotically free or finite theories: Planckballs

In force of the results in the previous section, we can make a proposal for scattering
amplitudes consistent with perturbative bound states at short distances and asymptotic
freedom. As a particular example, we can consider the following proposal for the scattering
amplitude of two-gravitons into two-gravitons including the loop-corrections, namely

A(+,+; +,+) = 8πGs
3

tu

1
f(t) , (7.1)

where the + stays for the helicity of the graviton and f(t) now can only come from the
loop corrections. Indeed, in well defined nonlocal theories [10, 11] the tree-level amplitudes

5For the sake of simplicity we here assume g = µ = MP.
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Figure 11. An example of a bound state for the nonlocal scalar theory with g = 100, µ = 1,
ω = 2, a = 1, b = 0.1, and tf = 100: (a) effective potential; (b) the trajectory of the system in the
xy-plane.

are the same as the local standard model coupled to gravity [48] so that the classical limit
is recovered for f(t) = 1. Let us shortly remind the theory in [10, 11, 48],

S[Φi] =
∫

dDx
√
−g (L` + Ei F (∆)ij Ej) , (7.2)

S` =
∫

dDx
√
−gL` , L` = 2

κ2R+ Lm , (7.3)

Ei(x) = δS`
δΦi(x) , (7.4)

2∆ikF (∆)kj ≡
(
eH(∆Λ) − 1

)
ij
, (7.5)

where Φi is a set of fields including the spacetime metric, F (∆)ij(x, y) is a symmetric
tensorial entire function whose argument is the Hessian operator ∆, and H(∆) is an entire
analytic function. Λ is the non-locality scale.

Therefore, in the nonlocal unified theory of gravity and matter, the bound states can
only form because of the quantum corrections that make the scattering amplitude smooth
in the ultraviolet regime. We are at the moment investigating such amplitudes, but we
already have indications about the scaling of the quantum form factor at high energy.
Indeed, the quantum corrections after resummation of the one-loop one-particle irreducible
contributions lead to a form factor with the following ultraviolet polynomial scaling,

f(�) ∼ �n , (7.6)

where n > 3 for D = 4. However, in general, it is a hard task to determine the quantum
form factor f(�); hence, we limit here to comment on what should be the outcome of the
loop-computations and resummation in order to have bound states at high energy. The
limit s� t for the amplitude (7.1) reads:

A(+,+; +,+) ≈ −8πGs
2

t

1
f(t) . (7.7)
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Therefore, the interaction potential (2.9) is:

V (r) = −8Gω2

π r

∫ ∞
0

dq
sin (2rq)

qf(−q2/Λ2) . (7.8)

As discussed in section 2, the potential should satisfy the conditions (i)–(ii) for the existence
of bound states. The convergence properties of the integral (7.8) with general form factor
f(−q2/Λ2) have been studied exhaustively in [41, 56]. The main outcome is that V (r) is
finite at r = 0 if the form factor grows as f(t) ∼ t or faster for sufficiently large values
of the argument t. On the other hand, V (r) ∼ 1/r for large r consistently with f(t) → 1
when t→ 0.

Therefore, the minimal outcome for the quantum form factor f(�) in order to have
a bound state is: f(�) ∼ � for large �. Given the preliminary results mentioned above,
bound states seem very likely to form at high energy.

Since the result is based on a nonlocal ultraviolet completion of all fundamental inter-
actions, let us call these bound states generically: Planckballs. In the latter class of bound
states, the suitable name for the states resulting from the amplitude (7.7) is quantum grav-
iballs. The properties of the Planckballs are the same as the gravi-scalarballs, namely they
form for ω &MP and they have an extension that decreases with the increase of the energy6
when the other parameters r0 and b are fixed. Moreover, the initial conditions must satisfy
b� a consistently with t� s.

If we consider a scattering process mediated by an interaction governed by a dimen-
sionless coupling constant g, then the outcome is the same of section 5, namely bound
states form if ω . g2MP. Let us expand on the latter statement considering the simple
example of the nonlocal scalar electrodynamics not defined like in section 5 but using the
recipe (7.5). The theory is explicitly obtained replacing the following local Lagrangian
in (7.5),

L` = − 1
4e2FµνF

µν − (DµΦ)†(DµΦ) , (7.9)

Therefore, the tree-level amplitude is the same of the local theory, namely

Atree
t ≈ −2ie2 s

t
. (7.10)

However, after resummation, according to the discussion above in this section, we expect:

A1PI
t ≈ −2ie2 s

t

1
f(t) . (7.11)

Thus, the results of section 5 can be applied to the amplitude (7.11) for the class of quantum
corrections discussed above.

8 Summary and discussion

We have shown that bound states of massless particles are allowed in: (I) a sterile scalar field
theory coupled to local or nonlocal higher derivative gravity, (II) string theory, (III) nonlo-
cal scalar electrodynamics, (IV) a φ3 higher derivative or nonlocal field theory, and (V) gen-
eral asymptotically free or finite NLQG and HDQG. This is mainly due to the weakness

6We here assume the non-locality scale Λ to be the Planck mass.
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of the fundamental interactions at short distances and, in particular, to the absence of
singularity in the potential V (r) at r = 0. The latter one is a universal property common
to all asymptotically free or finite theories.

In order to prove the existence of bound states and provide explicit examples, we used
the dynamical framework proposed in [1] that consists of a set of equations of motion
for relativistic massless particles interacting through a potential defined as the Fourier
transform of the scattering amplitude in the Regge’s limit. From the technical point of
view, using polar coordinates, we reduced the dynamical system to a one-dimensional
problem of a particle moving in an “effective potential” U(r). By studying such effective
potential, we proved that we could not have bound states in two derivatives’ theories and, in
particular, in Einstein’s gravity. On the other hand, in nonlocal gravity and string theory,
the correct bounds on the particles energy ω are given respectively by (3.23) and (4.13)–
(4.15). However, for the sake of simplicity, we can assume that the fundamental scales `Λ
and
√
α′ are both equal to the Planck length `P. Therefore, the only fundamental scale is

the Planck mass MP. In order to study the feasibility of bound states, the complete set of
initial parameters consists of:

ω : the energy of the massless fundamental particles,

b : impact parameter,

r0 ≡ r(t0) =
√
a2 + b2

2 : half of the initial distance between the two particles, (8.1)

which must satisfy the following conditions:

b� a , rb1 < r0 < rb2 , (8.2)

consistently with t� s. In (8.2) rb1 and rb2 are respectively the two turning points of the
orbital radius.

Hence, the necessary condition for having bound states of scalars or gravitons respec-
tively in the theories (I) and (II) reads:

ω > MP =⇒ bound states . (8.3)

• If we keep fixed r0 and b (and a also), and we vary the energy ω, it turns out that the
bound states extend to the maximum orbital radius rb2 that decreases with increasing
the energy ω. Therefore, very massive bound states have a very small size despite
having a very large mass.

• If we decrease b or r0 keeping fixed the energy ω (and a also), then rb2 increases (see
appendix A).

For the theories with (III) and (IV), the conditions for having “electroballs” and
“scalarballs” are opposite to those in nonlocal gravity and string theory. Since e is di-
mensionless and g has dimension of mass, the condition for creating a bound state is
ω < MP. Moreover, if ω increases, both rb1 and rb2 increase. In these theories, very light
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bound states have a small extension. Indeed, rb2 decreases if ω decreases for fixed a and b,
although rmax increases.

Summarizing even further: the necessary condition for having bound states depends on
the dimension of the coupling constant. If the coupling constant has mass dimension less
than −1/2 the condition is ω > MP, if the coupling constant has dimension larger than
−1/2 then the condition turns into ω < MP.7

In the general unified theory (V), we explicitly considered the case of graviballs. How-
ever, we expect the same results listed above to apply according to the mass dimension of
the coupling constant involved in the scattering process. The asymptotic freedom [46, 47]
in super-renormalizable theories [5, 7, 9] or the softness of the quantum amplitudes in finite
theories [6, 8, 10, 11] guarantee the stability and Universality of our result in a consistent
theory of all fundamental interactions [10, 11, 48].

From the geometric point of view, for scattering amplitudes mediated by the graviton
field, we can infer about the spacetime metric. For the potential V (r) (3.12), we can here
provide the explicit example of metric, which in isotropic coordinates is given by

ds2 ≈ −
(

1 + 2V (r)
ω

)
dt2 +

(
1− 2V (r)

ω

)
(dr2 + r2dΩ2) , |2V (r)/ω| � 1. (8.4)

By changing to the Schwarzschild coordinates (t, R, θ, ϕ), the metric (8.4) boils down to

ds2 ≈ −
(

1 + 2V (R)
ω

)
dt2 +

(
1 + 2RV ′(R)

ω

)
dR2 +R2dΩ2 , (8.5)

where here the “prime” denotes diferentiation with rescpect to R. The metric (8.5) is
singularity free with a de Sitter core in R = 0. Given a metric in the form (8.5), the event
horizon is defined as the solution of the equation (∇R)2 = 0 [57]. For the potential (3.12)
we get

(∇R)2 = 0 =⇒ 16Gωµ√
π

e−(µR)2 ' −1 . (8.6)

Since the above equation has no solutions, the metric (8.5) does not have an event horizon.
Similar horizonless exotic compact objects (named 2-2-holes remnants [58–60]) where dis-
covered in Stelle’s Gravity and proposed as candidate dark matter. Such 2-2-holes may be
viewed as non-perturbative bound states of gravitons and massive spin-2 ghost-like states
in quadratic gravity [61, 62].

In the main text we proved that the maximum value for rb2 is ≈ 2Gω for large ω.
However, even though the bound states for gravitons and particles interacting gravitation-
ally are confined inside the Schwarzschild radius, the metric (8.5) does not have an event

7Let us assume [g] ∼Mn and write the potential as V (r) ∼ −g2ω−2nr−1W (µr). Therefore, we have:

Q(r) = −1− rω−1F (r) ∼ −1 + µg2ω−(2n+1)S(µr) .

Here both W (µr) and S(µr) are dimensionless functions. Since the necessary condition for having bound
states is given by Qmax > 0, we get:

ω2n+1 < Smaxg
2µ .

Therefore, if n > −1/2 (namely 2n+ 1 > 0) we find ω < MP.
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horizon because of the weakness of the interactions that survive at the nonlinear level as a
feature of asymptotic freedom or finiteness. Other spacetimes with similar properties can
be obtained for the potentials (3.16) and (4.4). The result in (8.4) is in agreement with
the spacetime found in [63, 64], where for a value of the mass close to the Planck mass,
the solution does not show either the event horizon or the Cauchy’ horizon. On the other
hand, for large ω, we can have:

|2V (r)/ω| = 4Gω
r

erf
(
r

`Λ

)
& 1 or � 1 . (8.7)

because erf (r/`Λ) /r is a limited function. Hence, we enter in the nonlinear regime, and
the metric at large distances must reproduce the Schwarzschild one according to Einstein’s
gravity, while at short distances, the asymptotic freedom of the theory will guarantee the
correctness of (8.4) also at the nonlinear level. The outcome is a black hole metric similar to
the one in [63–67] or [68] depending on whether we impose or not the condition gtt = −g−1

RR.
On the other hand, for scattering amplitudes that do not involve gravity but Abelian

gauge fields — coupled to matter — and non-Abelian gauge fields (coupled or not to
matter), we can claim perturbative confinement. Notice that in higher derivative local or
nonlocal non-Abelian gauge theories, we have two confining phases: a perturbative one in
the ultraviolet regime and a non-perturbative one in the infrared regime. This is a feature
of the higher derivative or nonlocal theories if the quantum amplitudes at high energy fall
off faster than 1/(t log t) as shown in section 7. It turns out that the condition for having
bound states in gauge theory is opposite to the one involving gravity, namely ω < MP.
The latter statement has been derived for the toy models (III) and (IV), and it is mainly
due to the zero or positive dimension of the coupling constants.

Finally, in the unified standard model theory (V), both possibilities ω > MP or ω <

MP may arise depending on the dimension of the coupling constant and according to the
examples (I), (II), or (III).

We end up with a comment on the creation of bound states in the early Universe. If
the energy density for matter is ρ, [ρ] = M/L3, and 〈E〉 is the average energy per particle,
the number density is:

ρN = ρ

〈E〉
, [ρN] = Number of particles

L3 . (8.8)

We can also define the linear density, namely

ρN,` =
(

ρ

〈E〉

) 1
3
, [ρN,`] = Number of particles

L
. (8.9)

Therefore, the average free path is:

〈d〉 = 1
ρN,`

=
(〈E〉

ρ

) 1
3
. (8.10)

Since 〈d〉 ∼ r0 and r0 . rb2 , we get the following condition,

r0 . rb2 =⇒ rb2 &
(〈E〉
MP

MP
ρ

) 1
3

=⇒ 〈E〉
MP
.

ρ

MP
r3
b2 . (8.11)
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For ω ∼ 〈E〉 > MP (8.11) simplifies to:

rb2 &
(
MP
ρ

) 1
3
. (8.12)

Using the conserved quantity ρan = ρ0a
n
0 (n = 4 for radiation and n = 3 for dust mat-

ter), (8.12) turns into:

rb2 &
[
MP
ρ0

(
a

a0

)n] 1
3
. (8.13)

For n = 4 (radiation), a ∼ t1/2, t = tP, t0 = 1017 section, ρ0 = 1.8 × 10−29 gr/cm3 =
1.8× 10−24MP/cm3 (where MP = 10−5 gr),

rb2 &

[
MP
ρ0

(
tP
t0

)2
] 1

3

≈ `P , (8.14)

which is consistent with rb2 < rmax < 2Gω = 2G〈E〉 = 2`P (for 〈E〉 = MP) in (3.29). If we
go even further back in time, a(t) decreases together with the lower bound on rb2 . Hence,
we can speculate that the bound states in the theories (I) and (II) are very likely formed in
the early Universe and can be a proposal for a dark matter candidate, or simply, to be the
seeds for the later structure formation. Notice that if the bound states are formed in the
Planckian or Trans-Planckian regime, they will be diluted by inflation. Therefore, we need
to replace inflation with another mechanism to solve the problems of classical cosmology
and/or to fit the CMB spectrum for the scalar and tensor density perturbations.

For ω < MP, for example ω = 〈E〉 = 10−5MP, n = 4 (radiation), a ∼ t1/2, t =
tinflation ∼ 10−31 section, t0 = 1017 section, ρ0 = 1.8× 10−29 gr/cm3 = 1.8× 10−24MP/cm3

(MP = 10−5 gr), the inequality (8.11) reads:

rb2 &

[
10−5MP

ρ0

(
tinflation
t0

)2
] 1

3

≈ 8× 108 `P , (8.15)

which in the theory (IV) is consistent with rb2 < rmax < g2/64πω3 = g2/64π〈E〉3 = 1011`P
(for g = MP) in (6.39).

In general for 〈E〉 = 10−αMP, n = 4 (radiation), a ∼ t1/2, t = tinflation ∼ 10−31

section, t0 = 1017 section, ρ0 = 1.8× 10−29 gr/cm3 = 1.8× 10−24MP/cm3 (MP = 10−5 gr),
the inequality (8.11) turns into:

rb2 &

[
10−αMP

ρ0

(
tinflation
t0

)2
] 1

3

≈ 4× 10−23−α/3 cm = 4× 1010−α/3`P . (8.16)

According to (6.39) for the theory (IV), rb2 < rmax < g2/64πω3 = g2/64π〈E〉3 = 10−5+3α`P
(for g = MP) or α > 9/2.

According to (5.5), for the theory (III) the condition for having bound states (8.16),
assuming again the energy to be 〈E〉 = 10−αMP, has to be consistent with is rb2 < rmax <

e2/8πω = 4× 10−4+α`P or α > 21/2 (consistently with the perturbative expansion we here
assumed the coupling constant to be e = 0.1).

– 33 –



J
H
E
P
0
7
(
2
0
2
2
)
1
3
1

Summarizing, in the theory (III) we can create bound states at the end of inflation
with energy ω = 10−αMP for α > 11.5, while in the theory (IV) for α > 4.5.

Therefore, bound states for the theories (III) and (IV) can serve as dark matter formed
after inflation.

Once again, we remark that the analysis in this paragraph is very preliminary, and it is
not the main outcome of the paper. However, in order to support the idea of dark matter
as bound states, such preliminary analysis seems promising.

Let us make a final comment about the Bremsstrahlung effect and the stability of the
bound states. By such effect, we here mean the production of gravitational, electromag-
netic, or any other kind of radiation by the deceleration of a particle when deflected by
another particle. The moving particle loses energy, which is converted into radiation (i.e.,
gravitons, photons, etc.) according to the energy conservation.

In quantum field theory or, more precisely, in the perturbative Feynman expansion, the
Bremsstrahlung effect happens throughout the emission of gravitons or photons, etc., but
at a higher-order in the coupling constant’s expansion. Therefore, it is next to the leading
order in the perturbative expansion implemented here, because it consists of adding extra
external legs to the tree-level scattering amplitude. However, such an effect in principle
exists, and the loss of energy in favor of gravitons, and/or other particles may affect the sta-
bility of the bound states. A very preliminary inspection of the results in this paper shows
that electroballs, and quantum perturbative gaugeballs will survive the Bremsstrahlung
emission because they require ω < MP, while the stringballs seem unstable because their
energy should be ω > MP. Nevertheless, if the softness of the string amplitudes is pre-
served at quantum level, then the higher-order corrections in the coupling constant should
be harmless for the stability. The same argument should be true for the case of asymptot-
ically free theories. Therefore, on the basis of our present knowledge, we think that bound
states are perturbatively stable.
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A Extension of the bound states as a function of the impact factor b and
energy ω

Here we discuss how the turning points rb1 and rb2 changes with respect to the variations
of b or ω, with the other relevant parameters fixed.

• We start by considering variations of b, with ω and a fixed. Let rb denote the turning
points rb1 or rb2 . As discussed in section 2, the turning points are the solution of the
equation

U(rb) = Eeff = 1
2 . (A.1)
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rb1 rb2rb3 rb4

u(rb)

u(rb')

r

u(r)

Figure 12. Turning points of the function u(r) for two different values of the impact parameter,
namely b′ < b and u(r′

b) > u(rb). As the plot shows, |rb4 − rb3| > |rb2 − rb1|. When b decreases,
according to (A.2), u(rb) → u(rb′) and as consequence |rb2 − rb1| → |rb4 − rb3|. Thus, in this
situation the bound state size increases. The opposite situation is also true. When b increases,
u(r′

b)→ u(rb), |rb4 − rb3| → |rb2 − rb1| and the bound state size reduces.

Using (2.20) in (A.1), the above equation can be rewritten as:

u(rb) =
(

1 + a2

b2

)
u(r0) , where u(r) = 1

r2 e
V (r)
ω . (A.2)

In the scattering situation, a � b and r0 =
√
a2 + b2/2 ≈ a/2. Therefore, u(r0) ≈

u(a/2) can be treated approximately as a constant whether we keep fixed the param-
eters a and ω. Thus, in this situation (A.2) implies that if b decreases (increases) the
value of the function u(rb) increases (decreases). Therefore, the size of the interval
[rb1 , rb2 ] gets bigger (smaller) whether b decreases (increases), because rb1 and rb2 are
the endpoints of a valley of u(r), see figure 12.

The largest value for rb2 follows from the bound state condition Umax > Eeff
in (2.30), which implies

b > a

[
u(rmax)
u(r0) − 1

]−1/2
. (A.3)

If b approaches the above lower bound, (A.2) turns into equation u(rb) = u(rmax)
with the solution rb2 = rmax. Thus, rmax is an upper bound for the extension rb2 .
The largest value of rmax determines the maximum for rb2 .

• Now, we show how rb varies by increasing ω, with b and a fixed. Let us start with
the case of gravi-scalarballs, described in section 3. Using (3.12) we can write the
effective potential (2.20) explicitly, namely,

U(r) = U0

(
r0
r

)2
exp

{
4Gωµ

[erf(µr0)
µr0

− erf(µr)
µr

]}
, where U0 = b2

2(a2 + b2) .

(A.4)
Because |erf(x)| 6 |x|, the expression in the square brackets of (A.4) is negative for
r < r0 and is positive for r > r0. Thus, for r < r0 the function U(r) is a monotonously
decreasing with respect to ω, while for r > r0 it is a monotonously increasing function
of ω. Therefore, when we increase ω the curve of U(r) moves down in the region r < r0
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r

U(r)

Figure 13. Effective potential of gravi-scalarballs for different values of ω when a, b, and µ are
fixed. In the plot ω2 > ω1.

and it moves up in the region r > r0, see, e.g., figure 13. As the figure 13 shows, both
rb1 and rb2 decreases if ω increases. Moreover, we see that rmin decreases while rmax
increases whether ω increases. In particular, rmax → 2Gω when ω →∞.

For the stringballs, we just need to replace µ by M(ω, α′) in (A.4). M(ω, α′)
is given by eq. (4.7). Considering the bound state requirement ω � 1/

√
α′, we can

regard M(ω, α′) as a small quantity and write down the effective potential as

U(r) ≈ U0

(
r0
r

)2
exp

[
8G(r2 − r2

0)
3
√
π

ωM(ω, α′)3
]
. (A.5)

One can prove that

ωM(ω, α′)3 =
[

2
α′4/3

· (α′ω2)1/3

log(α′ω2)

]3/2

(A.6)

is a monotonously increasing function when ω >
√
e3/α′ and it is a monotonously

decreasing function for ω <
√
e3/α′. Thus, the change of the curve U(r) is similar

to the case of gravi-scalarballs, shown in figure 13. Hence, we end up with the same
conclusion: if ω increases, both rb1 and rb2 decrease, and rmin decreases while rmax
increases. Finally, rmax → 2Gω when ω →∞.

Given the different dimension of the coupling constant of the electroballs, and scalarballs
in fourth derivative, sixth derivative, and nonlocal theories, the conclusions for these models
are opposite to the one above. If ω increases, both rb1 and rb2 increase, and rmin increases
while rmax decreases.
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