
1
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

A New Extended Formulation with Valid Inequalities for the
Capacitated Concentrator Location Problem

Massimo Di Francesco
Dipartimento di Matematica e Informatica, Università di Cagliari, 09124 Cagliari, Italy

Email: mdifrance@unica.it

Manlio Gaudioso
Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica,

Università della Calabria, 87036 Rende, Italy
Email: manlio.gaudioso@unical.it

Enrico Gorgone
Dipartimento di Matematica e Informatica, Università di Cagliari, 09124 Cagliari, Italy

Indian Institute of Management Bangalore, 560076 Bangalore, India
Email: egorgone@unica.it

Ishwar Murthy
Indian Institute of Management Bangalore, 560076 Bangalore, India,

Email: ishwar@iimb.ac.in

We present a new disaggregated formulation of the Capacitated Concentrator Location Problem (CCLP)
using the notion of cardinality of terminals assigned to a concentrator. This formulation consists of
O(mnn) variables and constraints, where m denotes the number of concentrators and n the number of
terminals, respectively. We prove that this extended formulation is stronger than the traditional one. We
also present two classes of inequalities exploiting the cardinality effect of the extended formulation.
The first class is a generalization of the well-known Cover and (1, k)-Configuration inequalities, which
collectively are stronger than the original Cover and (1, k)-Configuration inequalities. The second class,
called the 2-Facility Cardinality Matching Inequality, holds for the uncapacitated version of the
Concentrator Location Problem and can be lifted to become a strong inequality for CCLP. We solve the
LP relaxation of the extended formulation and use separation heuristics to identify and sequentially add
the previous valid inequalities to improve the lower bound. This approach is embedded in a branch-
and-bound. We test our solution approach on a large set of benchmark problems. The experimentation
shows that we can identify the optimal solution at the root node in most of the problem instances with
up to 50 concentrators and 50 terminals. For larger sized test problems with up to 100 concentrators and
1000 terminals, the branch-and-cut procedure using the disaggregated formulation outperforms the
branch-and-cut procedure applied to the traditional formulation both in terms of CPU and the required
number of branch-and-bound nodes.

Keywords: Integer Programming, Concentrator Location, Valid Inequalities.

1. Introduction
The Capacitated Concentrator Location Problem (CCLP) is a classic problem in network design and
has relevant applications in computer networks. The problem is best described as the optimal design of
a layered network where a central node is to be connected to a set of terminals through a set of satellite
nodes or concentrators [1]. This problem takes on greater importance due to its equivalence to the Single

2
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

Source Capacitated Facility Location Problem (SSCFLP), which has applications is logistics and supply
chain. Given a set M = {1,…, m} of potential concentrator locations and a set N = {1,…, n} of terminals,
a subset of locations in M have to be selected where concentrators will be opened with each terminal in
N being assigned to exactly one of the concentrators that are set up. The cost of setting up a concentrator
in location i is fi, while its associated capacity to provide computing resource to terminals is Ci. The
cost of serving each terminal j from concentrator location i is cij, while the terminal’s computing
demands is dj. Without loss of generality, one can assume dj ≤ Ci. CCLP is a decision problem in which
a set of concentrators in M are opened and each terminal in N is assigned to one of the open
concentrators. Such a decision must ensure that terminals are assigned to the opened concentrators such
that their capacity is respected. The problem then is to determine the decision that minimizes the sum
of the cost of setting up concentrators and the cost of assignment of terminals to concentrators. Let yi =
1 if concentrator iÎM is set up, 0 otherwise. Similarly, let xij = 1 if terminal j is assigned to concentrator
i, 0 otherwise. The standard integer programming formulation of CCLP is

(Px-y) 	 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒								𝐹(𝑥, 𝑦) = ∑ ∑ 𝑐!"𝑥!"!∈$!∈% + ∑ 𝑓!!∈% 𝑦! 	

 s.t.

3𝑥!"
!∈%

= 1																																														∀𝑗 ∈ 𝑁																																																						(1)

𝑥!" ≤ 𝑦! 																																																			∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁																																											(2)

3𝑑"𝑥!"
"∈$

≤ 𝐶!𝑦! 																																						∀𝑖 ∈ 𝑀																																																							(3)

 𝑥!" , 𝑦! 	 ∈ {0, 1} ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁 (4)

In (Px-y), (1) (known as semi-assignment constraints) specifies that each terminal in N is to be assigned
to exactly one concentrator. Constraints (2), known as Variable Upper Bound (VUB) constraints, ensure
that if a concentrator i is not opened, terminal j cannot be assigned to it. Knapsack constraints (3) enforce
the capacity restriction on each concentrator i. CCLP is known to be NP-Hard and therefore there has
been of considerable interest in developing solutions that can solve large instances of it in reasonable
time.

1.1 Literature Review

While several articles have been published on solution procedures to solve CCLP, they broadly fall
under two categories. The first and perhaps the most prevalent has been the use of Lagrangian
relaxation. Boffey [4], Pirkul [15] and Lo and Kershenbaum [11] were one of the earliest to address the
solution to CCLP and their variants. Pirkul [15], followed by Pirkul and Nagarajan [16], Sridharan [18],
Holmberg et al. [9] and Cortinhal and Captivo [7], all approached this problem by using Lagrangian
relaxation. Starting with the formulation (Px-y), constraints (1) were dualized, giving rise to a sub-
problem that involves solving a series of knapsack problem. While solving knapsack problems is not

3
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

“easy”, it is well known that dualizing (1) instead of (2), provides tighter lower bounds, and is therefore
overall more beneficial. There exist algorithms that solve the knapsack problems optimally whose
computational effort is pseudo-polynomial in the worst case. Martello et al. [13] provide an excellent
review of pseudo-polynomial algorithms to solve the 0-1 knapsack problem. It needs to be noted here
that since the knapsack relaxation is embedded in a branch-and-bound to solve CCLP, such exact
methods will still exhibit exponentially bounded effort in the worst case. The papers listed above all
used sub-gradient optimization to solve the Lagrangian dual. Their papers differed in the primal
heuristic methods used to generate good upper bounds. However, all the approaches essentially used
information provided by the Lagrangian dual to obtain good feasible solutions. Here, it is worth
mentioning the work of Celani et al. [5], who developed a fast dual-ascent procedure to solve the
Lagrangian dual, instead of employing sub-gradient optimization. Chen and Ting [6] supplemented the
Lagrangian relaxation approach with Ant Colony method to generate upper bounds. Similarly, Barcelo
et al [2], combined Column generation with Lagrangian relaxation to solve CCLP.

Another category of papers focused on the polyhedral structure of formulations of CCLP, introducing
strong formulations along with their attendant valid inequalities. These then result in a branch-and-cut
approach to find an exact solution to CCLP. Shima [17] considered a generalization of CCLP where in
each location i, K concentrator options are possible, each with different costs and capacities. Starting
with a formulation similar to (Px-y), they replaced the y variables by its complement (z = 1 – y). The
resulting formulation in x and z variables transforms the constraints similar to (3) into knapsack
constraints with a constant right-hand-side. They then introduced a form of lifted cover inequalities,
which are incorporated into a branch-and-cut framework. Labbè and Yaman [10] introduced the
Quadratic Capacitated-Concentrator Location (QCL) Problem, whose formulation involves constraints
which are quadratic. They studied the polytope of the resulting formulation and developed strong
inequalities for it. They then incorporated these inequalities as cuts in a branch-and-cut algorithm. Yang
et a. [19] considered the formulation (Px-y) for CCLP. In their approach, they introduced Lifted Cover
Inequalities (LCI) and Fenchel cutting planes (FCI) that arise from (3). They implemented exact
separation algorithms for both. Further, they implemented a cut-and-solve approach, wherein the
branching is done on a sum of variables, akin to a GUB constraint. Thus, a sub-problem is partitioned
into a sparse problem and a dense problem. The sparse problem being small is solved exactly and
therefore fathomed. Subsequent branching, if needed, is only done on the dense problem. Gouveia and
Saldanha-da-Gama [8] considered a special case of CCLP in which the demands dj = 1 for all jÎN.
Thus, constraint (3) in (Px-y) amounts to each concentrator i being capable of handling at most Q
terminals. They further considered an extension wherein several capacity options can be chosen at each
concentrator location. For both problems, they presented an extended formulation that disaggregates
the y variables in (Px-y) into various cardinalities, each representing the number of terminals assigned
to it. They also presented “≤” and “≥” inequalities for their extended formulation. Finally, Ahuja et al.
[1] focus entirely on reliable heuristics to find a good feasible solution to CCLP.

1.2 Contributions of this Paper

4
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

In this paper, we first present a new extended formulation of CCLP that induces cardinality of terminals
assigned to concentrator locations by appropriately disaggregating x and y variables in (Px-y) (similar to
but not the same as in [8], as discussed later in the paper). The disaggregated formulation consists of
O(mn2) variables and constraints. While the disaggregated formulation is larger than that in (Px-y), it is
stronger, i.e., its LP relaxation provides a tighter lower bound than that provided by (Px-y). We next
present two classes of inequalities that are specific to the disaggregated formulation. First,
generalizations of the well-known Cover and (1-k) Configuration inequalities for the disaggregated
formulation are presented. In an accompanying working paper [12], it is shown that these
generalizations when added to the disaggregated formulation, provide a tighter lower bound than when
their counterparts are added to (Px-y). This is because several of the Cover and (1-k) Configuration
inequalities in the disaggregated formulation imply stronger knapsack inequalities in (Px-y). The second
class of inequalities, called the 2-Facility Cardinality Matching inequality, holds for the un-capacitated
version of the Concentrator Location Problem and can be lifted to become a strong inequality for CCLP.
We provide details on how they can be lifted easily. At the root node, first the disaggregated formulation
is solved, followed by the addition of violated valid inequalities that are identified by appropriate
separation heuristics. If no more violated inequalities can be identified and the LP solution is still
fractional, then branching takes place. Thus, our procedure can be characterized as a branch-and-cut
approach, wherein cuts are added only at the root node.

The rest of this paper is organized as follows. In section 2, the disaggregated formulation is formally
presented. We also show why the LP relaxation of the disaggregated formulation is tighter than that of
(Px-y). In section 3, we present the two classes of valid inequalities alluded to earlier: a) generalizations
of Cover and (1, k) Configuration inequalities, and b) 2-Facility Cardinality Matching inequalities. We
also describe briefly, separation heuristics for each. In section 4, we present a detailed computational
study that assesses the effectiveness of our approach in terms of strength of the bounds and time required
to solve the problems to optimality. We provide concluding remarks in section 5.

2. Extended Formulation of CCLP

Associated with each concentrator location iÎM, let Ki denote the maximum number of terminals that
the concentrator at location i has the capacity to handle. We disaggregate the model (Px-y) by separating
each location into Ki location-cardinality combinations. Note that for each iÎM, Ki can be determined
as follows. The demands dj are first sorted from smallest to largest. Ki then represents the maximum
number of terminals that can be accommodated so that the accumulation does not exceed Ci. The
following binary variables are now defined:

𝑦!"! = #1, 𝑖𝑓	𝑘! 	𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠	𝑎𝑟𝑒	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑜𝑟	𝑖,0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 9,

𝑧!#"! = #1, 𝑖𝑓	𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙	𝑗	𝑖𝑠	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑜𝑟	𝑖	𝑤𝑖𝑡ℎ	𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦	𝑘! ,0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 9

The extended formulation is:

(Pz-y)

5
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒								𝐹(𝑧, 𝑦) = AA A 𝑐!#𝑧!#"!

$!

"!%&#∈(!∈)

+A A 𝑓!𝑦!"!

$!

"!%&!∈)

s.t.

3 3 𝑧!"&!

'!

&!()!∈%

= 1																																	∀𝑗 ∈ 𝑁,																																																										(5)

𝑧!"&! ≤ 𝑦!&! 																																											∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑘! = 1,…… ,𝐾! ,														(6)

3𝑑"𝑧!"&!
"∈$

≤ 𝐶!𝑦!&! 																				∀𝑖 ∈ 𝑀, 𝑘! = 1,…… ,𝐾! ,																																			(7)

3𝑧!"&!
"∈$

= 𝑘!𝑦!&! 																									∀𝑖 ∈ 𝑀, 𝑘! = 1,…… ,𝐾! ,																																			(8)

3 𝑦!&!

'!

&!()

≤ 1																																			∀𝑖 ∈ 𝑀,																																																																	(9)

𝑧!"&! , 𝑦!&! ∈ {0, 1}																												∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁, 𝑘! = 1,… . . , 𝐾! 																					(10)

In (Pz-y) , (5) represents the semi-assignment constraints across concentrator locations and cardinality.
Constraints (6), known as variable upper bound (VUB) constraints ensure that if a concentrator i with
designated cardinality ki is not setup, then terminal j associated with cardinality ki cannot be assigned
to it. Constraints (7) represents the knapsack constraints, defined for each concentrator and cardinality.
Cardinality constraints (8) enforce the requirement that if a concentrator of a specified cardinality ki is
used, then the number of terminals assigned to it must equal to ki. Constraints (9) ensure that at most
one cardinality type is used for each concentrator.

It is important to highlight here the difference between our formulation to that presented by Gouveia
and Saldanha-da-Gama [8] for CCLP. To begin with, our formulation addresses the most general case
of CCLP, while theirs considers a special case of CCLP wherein the knapsack constraint (3) is replaced
by a requirement that each concentrator can accommodate at most Q terminals. Consequently, in
Gouveia and Saldanha-da-Gama’s [8] formulation, the binary variables xij as defined in (Px-y) are
preserved, while the variables yi are disaggregated into Q number of variables 𝑦!"!, one for each ki =
1,…., Q. The constraints (2) and (3) in (Px-y) are replaced by constraints, ∑ 𝑥!""∈$ ≤ ∑ 𝑘!𝑦!&!

*
&!() and

(9) in (Pz-y) for each iÎM. To model the same problem, our formulation in (Pz-y) specializes to one in
which knapsack constraints (7) are removed, and Ki is replaced by a common upper bound of Q. The
principal difference then is that we disaggregate the xij variables as well.

It is worth noting that (Pz-y) and (Px-y) are strictly not equivalent. Every feasible solution in (Pz-y)
translates to an equivalent solution in (Px-y) with the same objective function value, while the converse
is not true. Specifically, (Px-y) allows a concentrator i to be setup (yi =1) without any terminal being
assigned to it. Such a solution is not feasible in (Pz-y). However, assuming that, without loss of generality

6
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

fi ≥ 0, the optimal solution to (Px-y) will always be one in which if a concentrator is selected, at least one
terminal will be assigned to it. This ensures that the optimal solution obtained from solving (Pz-y) and
(Px-y) have the same optimal value.

We next show that the LP relaxation of (Pz-y) provides a tighter lower bound than the LP relaxation of
(Px-y). Consider the following LP polyhedra:

LP(x, y) = {(x, y)ÎRmn+m |(1)-(3), x ≥ 0, y ≥ 0, are satisfied}, (11)

LP(z, y) = {(z, y)Î𝑅*+",*+| (5)-(9), z ≥ 0, y ≥ 0, are satisfied}. (12)

For each (z, y)ÎLP(z, y), consider the aggregation

𝑥!# = A 𝑧!#"!

$!

"!%&

																																																																					∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁.																																																(13𝑎)

𝑦! = A 𝑦!"!

$!

"!%&

																																																																										∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁,																																																(13𝑏)

Accordingly, let

LPa(x, y) = {(x, y)ÎRmn+m| (13) are satisfied for each (z, y)ÎLP(z, y)}. (14)

Proposition 1. LPa(x, y) Ì LP(z, y).

Proof: We first show that LPa(x, y) Í LP(x, y). Consider a solution (z’, y’)ÎLP(z, y). By aggregating z’
and y’ as described in (13a) and (13b), we obtain a (x’, y’)ÎLPa(x, y). As well, constraints (5)-(7) get
aggregated to become constraints (1)-(3), respectively, which along with x’ ³ 0 and y’ ³ 0, are satisfied.
Hence, (x’, y’)ÎLP(x, y) and LPa(x, y) Í LP(x, y).

We now identify instances in which (x, y)ÎLP(x, y), but (x, y)ÏLPa(x, y). Consider a (𝑥J, 𝑦J) ∈ 𝐿𝑃(𝑥, 𝑦),
where for some pair (i1, i2) ÎM, 𝑦J!# = 𝑦J!" = 1. Let J(i1) Ì N and J(i2) Ì N denote the set of terminals
assigned to i1 and i2, respectively. Further, let i) ∑ 𝑑##∈-(!#) < 𝐶!#, ii) ∑ 𝑑##∈-(!") <	𝐶!", but there exists
a j1Î{N-J(i1)-J(i2)} such that ∑ 𝑑##∈-(!#) + 𝑑## > 𝐶!#, but ∑ 𝑑##∈-(!") + 𝑑#" > 𝐶!". To complete the
solution (𝑥J, 𝑦J), 𝑥J!## = 1 for jÎJ(i1), 𝑥J!### = ∆	= (𝐶!# − ∑ 𝑑##∈-(!#))/𝑑##, 𝑥J!"# = 1 for jÎJ(i2) and
𝑥J!"## = 1 − ∆. Note that 0 < D < 1. By contradiction, suppose that (𝑥J, 𝑦J)ÎLPa(x, y). Then, 𝑦J!# =
∑ 𝑦J!#"!
$!#
"!%& = 1. Let |J(i1)| = k1. Since the number of positive 𝑥J!## variables in (𝑥J, 𝑦J) is k1+1, it follows

from (6) and (8), that ∑ 𝑦J!#"!
$!#
"!%"#,0 = 0. Observe that with regards to i1, (𝑥J, 𝑦J) satisfies knapsack

constraint (3) exactly. Therefore,

∑ 𝑑#(∑ 𝑧̂!##"!
"#,&
"!%&)#∈-(!#) + 𝑑## U∑ 𝑧̂!###"!

"#,&
"!%& V = 𝐶!# U∑ 𝑦J!#"!

"#,&
"!%& V. (15)

It is clear from VUB constraint (6) that the only way (15) would hold is if each of the knapsack
constraints (7) associated with i1 and each ki=1,…k1+1 is satisfied exactly. Further, due to (6), the only
way cardinality constraint (8) for ki = k1+1 can be satisfied is if 𝑦J!#"#,& = 𝑧̂!##,"#,& = ∆ for each

7
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

jÎ{J(i1), j1}. However, since ∑ 𝑑##∈-(!#) + 𝑑## > 𝐶!#, knapsack constraint (7) associated with ki = k1+1

is violated. This is suitably illustrated in Figure 1 below. Hence, (𝑥J, 𝑦J)ÏLPa(x, y). �

Figure 1. Illustration of an instance where LPa(x, y) Ì LP(z, y).

3. Valid Inequalities for (Pz-y)

In this section, we present three classes of inequalities, i) Cardinality Constrained Cover, ii) (1, 𝑝̂")-
Configuration inequalities, and iii) 2-Facility Cardinality Matching inequalities. We also present
separation heuristics for each one of them.

3.1. Cardinality Constrained Cover inequalities

We first present a generalization of the Cover inequality for (Pz-y), followed by a generalization of the
(1, k)-Configuration inequality. Let

H(x, y) = Conv{(x, y)ÎRmn+m| (1)-(4)} and (16)

H(z, y) = Conv{(z, y)ÎRw| (5)-(10), 𝑤 = ∑ (𝑛 + 1)𝐾!*
!%& . (17)

A cover inequality that is valid for H(x, y) is defined as follows. Consider a subset S Í N with |S| = s
such that,

(i) for all Ri Ì S, with |Ri| = ri, ∑ 𝑑##∈2! ≤	𝐶!,
(ii) however, for all Ri+1 Í S, |Ri+1| = ri+1, ∑ 𝑑##∈2!$# >	𝐶!.

Given the above conditions, a (s, ri)-cover inequality that is valid for H(x, y) is:

A𝑥!#
#∈3

	≤ 	 𝑟!𝑦! .																																																																																																																																													(18)

8
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

Definition 1. Consider a knapsack inequality, ∑ 𝑑#𝑥##∈(> 	𝐶. For some D Í N, and 0 ≤ k ≤ |D|, V*(D,
k) =𝑀𝑖𝑛[∑ 𝑑#𝑥##45 \ ∑ 𝑥##45 = 𝑘, 𝑥𝜖{0,1}|5|}.

Given that k items have to be selected, V*(D, k) represents the cumulative ‘demand’ if k smallest items
are selected out of set D. Now consider a set S defined in conditions (i) and (ii) above leading to (18)
and ki ³ 2. For some integer 𝑟̂!"!< Min {ki, s} that satisfies the conditions

a) for some 𝑅̀!"!Ì S, |𝑅̀!"! | = 𝑟̂!"!, ∑ 𝑑##∈27!%!
+ 𝑉∗b𝑁 − 𝑅̀!"! , 𝑘! − 𝑟̂!"!c ≤ 𝐶! , (19)

b) but for all 𝑅̀!"!,& Í S, |𝑅̀!"!,&| = 𝑟̂!"!+1, ∑ 𝑑##∈27!%!$#
+ 𝑉∗b𝑁 − 𝑅̀!"!,&, 𝑘! − 𝑟̂!"! − 1c > 𝐶! , (20)

 the following (s, ki,	𝑟̂!"!)-cover inequality is valid for H(z, y):

A𝑧!#"!
#∈3

≤ 𝑟̂!"!𝑦!"! .																																																																																																																																												(21)

In [12], the strength of the (s, ki,	𝑟̂!"!)-cover inequality is discussed in depth, including conditions under
which (21) is a facet of H(z, y). Suffice it to say, two properties of the (s, ki,	𝑟̂!"!)-cover inequality stand

out vis-à-vis the (s, ri)-cover inequality. First, for a given S there is one (s, ri)-cover inequality, while
several (s, ki,	𝑟̂!"!)-cover inequalities can be constructed, one for each ki ³ 2. Thus, (s, ki,	𝑟̂!"!)-cover
inequalities are a lot more ubiquitous. Second, given that 𝑉∗b𝑁 − 𝑅̀!"!,&, 𝑘! − 𝑟̂!"! − 1c ≥ 0, it follows
that 	𝑟̂!"!£ ri and (21) dominates (18). The following property shows that the addition of all (s, ki,	𝑟̂!"!)-

cover inequalities to LP(z, y) will provide a tighter lower bound than the addition of all (s, ri)-cover
inequalities to LP(x, y).

Proposition 2. Let i) LPa-cov(z, y) = {(z, y)ÎRw| (z, y) satisfies (5)-(9), z ≥ 0, y ≥ 0, and (s, ki,	𝑟̂!"!)-cover
inequality (21) for every iÎM, S Í N and ki} where 𝑤 = ∑ (𝑛 + 1)𝐾!*

!%& , and ii) LPa-cov(x, y) = {(x, y)Î
Rmn+m| (x, y) satisfies (13) for each (z, y)ÎLPa-cov(z, y). Then, LPa-cov(x, y) Ì LP(x, y)Ç{(x, y) satisfies (s,
ri)-cover inequality (18) for every iÎM, S Í N}.

Proof: Let LPcov(z, y) = {(z, y)ÎRw| (z, y) satisfies the (s, ki,	𝑟̂!"!)-cover inequality (21) for every iÎM, S

Í N and ki} and LPcov(x, y) = {(x, y)ÎRmn+m| (x, y) satisfies (13) for each (z, y)ÎLPcov(z, y), x≥0, 0≤y≤1}.
By definition, LPa-cov(z, y) = LPa(z, y)ÇLPcov(z, y) and therefore LPa-cov(x, y) = LPa(x, y)ÇLPcov(x, y).
Aggregating constraints in (21) over ki gives ∑ 𝑥!##∈3 ≤ ∑ 𝑟̂!"!𝑦!"!

$!
"!%& . Due to (9) and the fact that 	𝑟̂!"!£

ri, it follows that ∑ 𝑟̂!"!𝑦!"!
$!
"!%& ≤ 𝑟!𝑦!. Therefore, LPcov(x, y)Í{(x, y)ÎRmn+m| (x, y) satisfies (s, ri)-cover

inequality (18) for every iÎM, S Í N}. From Proposition 1, LPa(x, y) Ì LP(z, y). Therefore, LPa-cov(x,
y) Ì LP(x, y)Ç{(x, y) satisfies (s, ri)-cover inequality (18) for every iÎM, S Í N}. �

The following example illustrates Proposition 2.

Example 1. Consider a concentrator i with Ci = 60 with demands dj in sorted order being [15, 15, 14,
14, 13, 12, 8, 8, 7, 5, 4, 4, 4, 3, 3]. For S = {1,…, 6}, a (6, 4)-cover inequality is ∑ 𝑥!##∈3 ≤ 4𝑦!.

Intuitively, the (6, 4)-cover inequality enforces the condition that at most 4 items in S can be
accommodated. For a given S, several (s, ki,	𝑟̂!"!)-cover distinct inequalities can be configured. Observe

that 𝑉∗(𝑁 − 𝑆, 4)=14, 𝑉∗(𝑁 − 𝑆, 5)=18 and 𝑉∗(𝑁 − 𝑆, 6)=23, implying that the 4, 5 and 6 ‘smallest’

9
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

terminals consume resources of amounts, 14, 18 and 23, respectively. From this we obtain (s, ki,	𝑟̂!"!)-
cover inequalities: i) ∑ 𝑧!#9#∈3 ≤ 3𝑦!9 and ii) ∑ 𝑧!#:#∈3 ≤ 2𝑦!:. Intuitively, inequalities in i) (and ii))

describe the fact that if 8 (or 9) terminals have to be assigned to i, then at most 3 (or 2) terminals in S
can be accommodated, each of which are stronger than the (6, 4)-cover inequality. This is illustrated in
Figure 2 below.

We now illustrate possible solutions (z, y)ÎLP(z, y) solutions that violate one or more of the (s, ki,	𝑟̂!"!)-

cover inequalities above. More importantly, the corresponding solution (x, y)ÎLPa(x, y) satisfies all the
pertinent (s, ri)-cover inequalities. Consider the partial (z, y) solution: yi8 = 0.5, zi3,8 = 0.1, zi4,8 = zi5,8 =
zi6,8 = 0.5, zi11,8 = 0.4, zi12,8 = zi13,8 = zi14,8 = zi15,8 = 0.5, yi9 = 0.5, zi2,9 = 0.125, zi3,9 = zi4,9 = 0.5, zi,9,9 =
0.375, zi,10,9 = zi,11,9 = zi,12,9 = zi,13,9 = zi,14,9 = zi,15,9 = 0.5. Here, in fractional terms, the assignment of 8
and 9 terminals to i come into force. While this LP solution satisfies (6)-(9), the inequalities, i)
∑ 𝑧!#9#∈3 ≤ 3𝑦!9, where S = {1,…, 6} and ii) ∑ 𝑧!#:#∈3 ≤ 2𝑦!:, where S = {1,…,4}, are both violated.

The corresponding (x, y)ÎLPa(x, y) is: yi = 1, xi2 = 0.125, xi3 = 0.6, xi4 = 1.0, xi5 = xi6 = 0.5, xi9 = 0.375,
xi10 = 0.5, xi11 = 0.9, xi12 = xi13 = xi14 = xi15 = 1.0. This solution however satisfies the (6, 4)-cover inequality
∑ 𝑥!##∈3 ≤ 4𝑦!, where S = {1,…, 6}. �

Figure 2. Illustration of Example 1.

An additional point is worth noting about the (s, ki,	𝑟̂!"!)-cover inequalities described above. First, a
special case of the (s, ki,	𝑟̂!"!)-cover inequality is when 	𝑟̂!"!= 0. In Example 1 above, observe that for S
= {jÎN: dj ≥ 23}, 𝑟̂!: = 0, implying that for all jÎS. This is because, 𝑉∗(𝑁 − 𝑆, 8) = 38.

To identify a (s, ki,	𝑟̂!"!)-cover inequality that a solution to the LP relaxation of (Pz-y) violates, the
following separation heuristic is proposed. First, a i-ki combination for which 𝑦!"! > 0, along with its
support, 𝑆!"! = {𝑗 ∈ 𝑁|𝑧!#"! > 0} such that \𝑆!"!\ = 𝑠!"! is identified. Next, items in 𝑆!"! are sorted in
increasing order, in terms of the function value, gj(𝑦!"!,	𝑧!#"!, dj) = 	(𝑦!" − 𝑧!#" + 0.1)/𝑑#. This function
captures the idea that larger the value of 𝑧!#" and dj, more preferred is it to include j in S. A linear search
for SÍ𝑆!"! begins with s = 2. In the first iteration, the most ‘preferred’ items 1 to s are chosen from 𝑆!"!

09 =ijz

10
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

and added to S. If (19) or (20) are not satisfied with 	𝑟̂!"! = s-1, then in the second iteration, items 2 to

s+1 are chosen. Thus, in each subsequent iteration l, items l to s+l-1 are tested for (19) and (20) till s+l-
1 equals 𝑠!"!. When this occurs, s increments by 1 and the search continues. The search terminates when
s = 𝑠!"!. Whenever both (19) and (20) are satisfied for a given S, then 	𝑟̂!"! = s-1. At this point the cover
inequality (21) is lifted by expanding S to selectively include items in {𝑆!"!-S} in the following way.
First, all items jÎ{𝑆!"!-S} whose dj ≥ Max {dj| jÎS} are included. Next, if for jÎ{𝑆!"!-S} such that dj <
Max {dj| jÎS}, V*(S, 𝑟̂!"!) + dj + V*(𝑆!"!-S, ki-𝑟̂!"!+1) > Ci, then j is included in S. After this lifting

procedure, if the resulting cover inequality (21) is violated, it is added as a cut.

3.2 Cardinality Constrained (1, 𝑝̂")-Configuration Inequalities

The (1, k)-Configuration inequality is a well-known inequality credited to Padberg [14] that is used to
strengthen knapsack constraints. In that seminal paper, Padberg [14] also highlights conditions under
which the (1, k)-Configuration inequality is a facet of the knapsack polytope. Since in this paper, k
refers to cardinality, to avoid confusion, the same inequality is henceforth referred to as (1, p)-
configuration inequality. The principal idea behind the (1, p)-configuration inequality is the following.
For some ‘knapsack’ with a capacity of C, let SÌN denote a set of items that can all be accommodated
in the knapsack. However, there exists a ‘big’ item q not in S, that certainly cannot be accommodated
along with S. In fact, the item q is so big that only all subsets P(p-1)ÌS, each consisting of p-1 items
can be accommodated along with q. That is, all subsets of S consisting of at least p items cannot be
accommodated along with q, while they can be without q. This idea is captured in the (1, p)-
configuration inequality. To present this formally, for some concentrator i, let SÌN, with |S| = s and
qÎN\S, be such that

(i) ∑ 𝑑##∈3 ≤ 𝐶!, (22)
(ii) for all sets PÍS, with |P| = p and 2 ≤ p ≤ s, ∑ 𝑑##∈;∪{>} > 𝐶!, but (23)
(iii) for all sets P(p-1)ÌS, with |P(p-1)| = p-1, ∑ 𝑑##∈;(@A&)∪{>} ≤ 𝐶!. (24)

For some Rik(ri) Í S, with |Rik(ri)| = ri satisfying p ≤ ri ≤ s, the (1, p)-configuration inequality that is valid
for H(x, y) is,
 (𝑟! − 𝑝 + 1)𝑥!> +∑ 𝑥!##∈2!%(B!) ≤ 𝑟!𝑦!. (25)

The (1, p)-configuration inequality (25) essentially enforces the condition that in the absence of q,
concentrator i can accommodate all terminals in Rik(ri). However, in the presence of terminal q, at most
(p-1) terminals in Rik(ri) can be accommodated.
We now present a generalization of the (1, p)-configuration inequality by enforcing cardinality
requirements in (Pz-y) as follows. For some concentrator-cardinality combination i-k, consider SÌN such
that |S| = s ≤ k and a qÎN-S that satisfies

i) ∑ 𝑑##∈3 + 𝑉∗(𝛮 − 𝑆, 𝑘 − 𝑠) ≤ 𝐶!, (26)
ii) for every 𝑃̀"ÍS, with |𝑃̀" | = 𝑝̂", ∑ 𝑑##∈;7%∪{>} + V*(N-𝑃̀"-q,k-𝑝̂"-1) > Ci , (27)

iii) but for all 𝑃̀"(𝑝̂" − 1)ÌS, |𝑃̀"(𝑝̂" − 1)| = 𝑝̂"-1,
∑ 𝑑##∈;7%(@C%A&)∪{>} + V*(N-𝑃̀"(𝑝̂" − 1)-q, k-𝑝̂") ≤ Ci. (28)

Observe that (26), (27) and (28) are cardinality constrained equivalents of (22), (23) and 24),
respectively. For some concentrator i, it is possible to accommodate all terminals in S, as well as k-s

11
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

additional terminals. However, there exists a terminal q, which if assigned to i, then it is not possible to
assign all terminals in S, as well as (k-s-1) terminals from the remaining set {N-S-q}. In fact, only all
subsets 𝑃̀"(𝑝̂" − 1)ÌS containing 𝑝̂"-1 elements along with q and (k-𝑝̂") from the remaining set {N-
𝑃̀"(𝑝̂" − 1)-q}, can be accommodated.
Proposition 3. Consider a set SÌN and a terminal qÎ{N-S}, that satisfies (26), (27) and (28) for every
Rik(ri)ÍS with 𝑝̂"£ri£s. Then the following (1, 𝑝̂")-configuration inequality is valid for H(z, y):
 (𝑟! − 𝑝̂" + 1)𝑧!>" + ∑ 𝑧!#"#∈2!%(B!) ≤ 𝑟!𝑦!". (29)

Proof: The validity of (29) is established by showing that all feasible solutions in (Pz-y) satisfy it.
Clearly, yik = 0 and zijk = 0 for all jÎN satisfies (29). Next, consider the partial solution set, yik = 1, zijk =
1, for each jÎRik(ri), ziqk = 0. This solution is feasible due to (26), and of course satisfies (29) exactly.
Finally, consider the partial solution set: yik = 1, zijk = 1 for jÎ𝑃̀"(𝑝̂" − 1) for every 𝑃̀"(𝑝̂" − 1)Ì𝑁! and
ziqk = 1. Such a solution is feasible since it satisfies (28). It also satisfies (29). �
Proposition 4 below shows that the (1, 𝑝̂")-configuration inequalities provide a tighter description of
H(z, y) than (1, p)-configuration inequalities do for H(x, y).
Proposition 4. Let i) LP1p(x, y) = {(x, y)ÎLP(x, y)| (x, y) satisfies all (1, p)-configuration inequalities
(25)}, and ii) 𝐿𝑃&@C%(z, y) = {z, y)ÎLP(z, y)| (z, y) satisfies all (1, 𝑝̂")-configuration inequalities (29)}.
Further, let 𝐿𝑃D,&@C%(x, y) = {(x, y)ÎRmn+m| (x, y) satisfies (13) for each (z, y)Î𝐿𝑃&@C%(z, y)}. Then,
𝐿𝑃D,&@C%(x, y) Í LP1p(x, y).

Proof: Observe that one (1, p)-configuration inequality (25) is constructed for each Rik(ri) Í S. On the
other hand, several (1, 𝑝̂")-configuration inequalities (29) are constructed from the same set Rik(ri), one
for each k ≥ ri. If Rik(ri) = S while k = s = ri, then it is clear from (27) that V*(N-𝑃̀"-q,k-𝑝̂"-1) = 0. In
such a case, 𝑝̂" in (29) is exactly equal to p in (25). However, for values of k > ri, V*(N-𝑃̀"-q,k-𝑝̂"-1) >
0, and therefore 𝑝̂" ≤ p. For values of k < ri, by setting 𝑝̂" = p in (29), the resulting inequality will be
valid. That is because, the maximum value the left-hand-side of (29) can take is k < ri. By aggregating
constraints (29) for a given set Rik(ri) over k = 1,…., Ki, we obtain

A(𝑟! − 𝑝 + 1)𝑧!>"

B!

"%&

+ A (𝑟! − 𝑝̂" + 1)𝑧!>"

$!

"%B!,&

+A A 𝑧!#"
#∈2!%(B!)

$!

"%&

≤	A𝑟!𝑦!"

$!

"%&

.																(30)

Let 𝐿𝑃&@C%ADEE(z, y) = {z, y)ÎLP(z, y)| (z, y) satisfies all (1, 𝑝̂")-configuration inequalities (30)} and
𝐿𝑃F,&@C%(x, y) = {(x, y)ÎRmn+m| (x, y) satisfies (13) for each (z, y)Î𝐿𝑃&@C%ADEE(z, y)}. Since (30) is an
aggregation of (29), it follows that 𝐿𝑃&@C%(z, y) Í	𝐿𝑃&@C%ADEE(z, y) and therefore 𝐿𝑃D,&@C%(x, y) Í
𝐿𝑃F,&@C%(x, y). In (30), due to (13), the term ∑ 𝑟!𝑦!"

$!
"%& 	can be replaced by 𝑟!𝑦! and ∑ ∑ 𝑧!#"#∈2!%(B!)

$!
"%&

can be replaced by ∑ 𝑥!##∈2!%(B!) . Further, since 𝑝̂" ≤ p for k = ri+1,…, Ki, it follows from (13) that
∑ (𝑟! − 𝑝 + 1)𝑧!>"
B!
"%& + ∑ (𝑟! − 𝑝̂" + 1)𝑧!>"

$!
"%B!,& ≥ ∑ (𝑟! − 𝑝 + 1)𝑥!>

$!
"%& . Therefore, 𝐿𝑃F,&@C%(x, y)

Í LP1p(x, y). The result follows. �
The following example best illustrates the strength of the (1, 𝑝̂")-configuration inequality vis-à-vis the
(1, p)-configuration inequality.
Example 2. Consider a concentrator i with Ci = 60 and terminal demands in sorted order as [22, 15, 15,
14, 14, 13, 12, 8, 8, 7, 5, 4, 4, 4, 3, 3]. For S = {2,…,7} and q = 1, a (1, p)-configuration inequality is:
2xi1+xi2+xi3+xi4+xi5+xi6+xi7 £ 4yi. That is because the total demand of the 4 smallest concentrators in S
is 14+14+13+12 = 53, i.e. ri = 4. However, in the presence of q = 1, at most p -1 = 2 concentrators from

12
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

S can be accommodated. Consider the case of k = 6. Since 𝑉∗(𝛮 − 𝑆, 2) = 6 and 𝑉∗(𝛮 − 𝑆, 3) = 10,
the (1,	𝑝̂G)-configuration inequality is 2zi16+zi26+zi36+zi4k+zi56+zi66+zi76 ≤ 4yi6, implying that in the
absence of q = 1, there is space for 4 items in S, while in the presence of q = 1, there is space for at most
2 items in S. For k = 7, the (1,	𝑝̂")-configuration inequality is 2zi1,7+zi2,7+zi3,7+zi4,7+zi5,7+zi6,7+zi7,7 ≤ 3yi7.
The partial LP solution (z, y): yi6 = 0.5, zi2,6 = zi3,6 = 0.25, zi4,6 = 0.5, zi5,6 = 0.4, zi6,6 = 0.5, zi13,6 = 0.1, zi14,6
= zi15,6 = 0.5, yi7 = 0.5, zi1,7 = zi2,7 = 0.25, zi5,7 = zi6,7 = zi12,7 = zi13,7 = zi14,7 = zi15,7 = 0.5, satisfies constraints
(5)-(9). However, the (1,	𝑝̂")-configuration inequalities listed above for k = 6 and for k = 7, are both
violated. At the same time, the (x, y) solution obtained by aggregating as described in (13) is: yi = 1.0,
xi1 = 0.25, xi2 = 0.5, xi3 = 0.25, xi4 = 0.5, xi5 = 0.9, xi6 = 1.0, xi12 = 0.5, xi13 = 0.6, xi14 = xi15 = 1.0, which
satisfies the (1, p)-configuration inequality listed above. �

The separation heuristic proposed to identify violated (1,	𝑝̂")-configuration inequalities is briefly
described next. An i-k combination for which 𝑦!" > 0, along with its support, 𝑆!" = {𝑗 ∈ 𝑁|𝑧!#" > 0}

such that |𝑆!"| = 𝑠!" > k is first identified. The terminal q is obtained as dq = Max {dj| jÎ𝑆!"}. Let, Rik
= Sik-q. The set S and 𝑝̂" in (29) is determined from Rik as follows. First, Rik sorted in increasing order,
in terms of gj(𝑦!"!,	𝑧!#"!, dj) = 	(𝑦!" − 𝑧!#" + 0.1)/𝑑#. To obtain 𝑝̂", the smallest subset Rik(𝑝̂")ÌRik
consisting of the first 𝑝̂" elements in Rik that satisfy ∑ 𝑑##∈2!%(@C%) +𝑉∗(𝑁 − 𝑅!"(𝑝̂") − 𝑞, 𝑘 − 𝑝̂" −

1)>Ci-dq is obtained. Having identified Rik(𝑝̂"), S = Rik(𝑝̂"). Next, S is expanded to include those items
j*Î{Rik-Rik(𝑝̂")} that satisfy 𝑉∗(𝑆, 𝑝̂" − 1) + 𝑑#∗ + 𝑉∗(𝑁 − 𝑅!"(𝑝̂" − 1) − 𝑗∗ − 𝑞, 𝑘 − 𝑝̂" − 1) > 𝐶! −
𝑑>, as well as ∑ 𝑑##∈3 + 𝑑#∗ + 𝑉∗(𝑁 − 𝑆 − 𝑗∗, 𝑘 − 𝑠 − 1) ≤ 𝐶!. Whenever this happens, S = SÈj* and

s = s+1. This process of expanding S continues till all items in {Rik-Rik(𝑝̂")} have been explored or that
s = k. Having obtained S and 𝑝̂", several (1,	𝑝̂")-configuration inequalities (29) can be constructed, each
associated with a unique set Rik(ri)ÍS, for all 𝑝̂"≤ ri ≤ s, where |Rik(ri)| = ri. Amongst these, those that
the LP solution violates are added as cuts.

3.3 2-Facility Cardinality Matching Inequality

The 2-Facility Cardinality Matching inequality presented in this section is derived for the un-capacitated
version of (Pz-y), i.e., one without knapsack constraints (7). Of course, by definition, this inequality is
valid for (Pz-y) as well, albeit weaker. However, as will be shown later, it can be lifted to become a
strong inequality for (Pz-y), and the lifting procedure is quick. Intuitively, this inequality accounts for
how terminals are assigned to concentrators (or facilities) in a way that the cardinalities associated with
terminals are matched to that of concentrators.

A 2-Facility Cardinality Matching inequality is constructed around a pair of concentrators W = {i1, i2}
and a designated set of 4 terminals Hq = {jq1, jq2, jq3, jq4} selected from N. Further, for concentrators i1
and i2, respective cardinalities k1 and k2 are identified such that is when the LP relaxation of (Pz-y) is
solved initially, 0 < 𝑦!#"# < 1 and 0 < 𝑦!""" < 1. The construction of the 2-Facility Cardinality Matching

inequality begins by aggregating constraints in (8) over i and ki, resulting in

AA A 𝑧!#"!

$!

"!%&#∈(!∈)

= A A 𝑘!𝑦!"!

$!

"!%&!∈)

.																																																																																																				(31)

13
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

First, a set of z variables associated with jÎHq are selectively removed from left-hand-side of (31). They
are: a) 𝑧!#'#"! with i=i1 and all 1 ≤ 𝑘!# ≤ 𝑘& − 1, i = i2 with 𝑘0 + 1 ≤ 𝑘!" ≤ 𝐾!", and with iÎM-W, 1 ≤
ki ≤ Ki, b) 𝑧!#'""! with i=i2 and all 1 ≤ 𝑘!" ≤ 𝑘0, i = i1 with 𝑘& ≤ 𝑘!# ≤ 𝐾!#, and with iÎM-W, 1 ≤ ki ≤
Ki, c) 𝑧!#'("! with i=i1 and all 1 ≤ 𝑘!# ≤ 𝑘& − 1, i=i2 with 1 ≤ 𝑘!" ≤ 𝑘0, and with iÎM-W, 1 ≤ ki ≤ Ki,
d) 𝑧!#')"! with i=i1 and all 𝑘& ≤ 𝑘!# ≤ 𝐾!#, i=i2 with 𝑘0 + 1 ≤ 𝑘!" ≤ 𝐾!", and with iÎM-W, 1 ≤ ki ≤ Ki.

We refer to these missing z variables as ‘hidden’ assignments. Second, the right-hand-side of (31) is
modified wherein the coefficients of variables 𝑦!#"!# and 𝑦!""!" are decreased by 1, for all 1 ≤ 𝑘!# ≤

𝐾!# and 1 ≤ 𝑘!" ≤ 𝐾!". Finally, a constant 1 is added to the right-hand-side. This results in the following

2-Facility Cardinality Matching inequality:

A A 𝑧!##"!#

"#A&

"!#%&#∈(A{#'#,#'(}

+ A A 𝑧!##"!#

$!#

"!#%"##∈(A{#'",#')}

+ A A 𝑧!"#"!"

""

"!"%&#∈(A{#'",#'(}

+ A A 𝑧!"#"!"

$!"

"!"%"",&#∈(A{#'",#')}

+ A A A 𝑧!#"!

$!

"!%&#∈{(AH'}!∈)AI

≤ A b𝑘!# − 1c𝑦!#"!#

$!#

"!#%&

+ A b𝑘!" − 1c𝑦!""!"

$!"

"!"%&

+ A A 𝑘!𝑦!"!

$!

"!%&!∈)AI

+ 1					(32)

Figure 3 below illustrates some of those hidden assignments.

 Figure 3. Illustration of hidden assignments in 2-Facility Cardinality Matching Inequality

Proposition 5. Let HU(z, y) = Conv{(z, y)ÎRw| (5), (6), (8)-(10), 𝑤 = ∑ (𝑛 + 1)𝐾!*
!%& }, that is the

convex hull of the un-capacitated version of (Pz-y). Given a pair of concentrators W = {i1, i2} whose

14
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

respective, designated cardinalities {k1, k2}, a subset Hq = {jq1, jq2, jq3, jq4} of terminals whose
assignments are hidden as described above, the 2-Facility Cardinality Matching inequality (32) is valid
for HU(z, y).

Proof: We simply show that (32) is satisfied by all categories of feasible solutions to the un-capacitated
version of (Pz-y), i.e., one without the knapsack constraints (7).

Case I: Consider feasible solutions where no concentrator in W is used. Here, (32) reduces to
∑ ∑ ∑ 𝑧!#"!

$!
"!%&#∈{(AH'}!∈)AI ≤ ∑ ∑ 𝑘!𝑦!"!

$!
"!%&!∈)AI + 1. Due to (6), (8) and (9), all such feasible

solutions satisfy it.

Case II: Consider feasible solutions in which 𝑦!#"!# = 𝑦!""!" = 1, where 1 ≤ 𝑘!# ≤ k1-1 and k2+1 ≤ 𝑘!"

≤ 𝐾!". Observe that in this instance, all possible assignments of jq1 is hidden. Hence, the left-hand-side
value of (32) is at most n-1, with n-𝑘!#-𝑘!" terminals assigned to concentrators in M-W. The right-hand-
side is (𝑘!#-1) + (𝑘!"-1)+(n-𝑘!#-𝑘!")+1 = n-1. Hence, (32) is satisfied.

Case III: Consider instances where 𝑦!#"!# = 𝑦!""!" = 1, with k1 ≤ 𝑘!# ≤ 𝐾!# and 1 ≤ 𝑘!" ≤ k2. Here, all z

variables that describe the assignment of jq2 to any concentrator is missing. Therefore, here as well, the
left-hand-side value of (32) is at most n-1, while the right-hand-side is (𝑘!#-1)+(𝑘!"-1)+(n-𝑘!#-𝑘!")+1

= n-1. Therefore, (32) is satisfied.

Case IV: Consider the case of 𝑦!#"!# = 𝑦!""!" = 1, with 1 ≤ 𝑘!# ≤ k1-1 and 1 ≤ 𝑘!" ≤ k2. Here, jq3 is the

terminal whose assignment is missing and therefore the left-hand-side of (32) is at most n-1. However,
as with Case II and Case III, the right-hand-side of (32) will still be (𝑘!#-1)+(𝑘!"-1)+(n-𝑘!#-𝑘!")+1 = n-

1 and therefore satisfy (32).

Case V: The next case is when 𝑦!#"!# = 𝑦!""!" = 1, with k1 ≤ 𝑘!# ≤ 𝐾!# and k2+1 ≤ 𝑘!" ≤ 𝐾!". Here, jq4 is

the terminal whose assignment is missing and therefore the left-hand-side of (32) is at most n-1, while
the right-hand-side will be equal to n-1 and therefore (32) is satisfied.

Case VI: The last possible case is when exactly either 𝑦!#"!# = 1 or 𝑦!""!" = 1, but not both. Observe

that in this case, regardless of the value of 𝑘!# or 𝑘!", the assignment of exactly two terminals in Hq are
hidden. For instance, when		𝑦!#"!# = 1 with 1 ≤ 𝑘!# ≤ k1-1, then the assignment of jq1 and jq3 are hidden,
while if k1 ≤ 𝑘!# ≤ 𝐾!# then the assignment of jq2 and jq4 are hidden. When 𝑦!""!" = 1, then if 1 ≤ 𝑘!" ≤

k2, then the assignment of jq2 and jq3 are hidden, while if k2+1 ≤ 𝑘!" ≤ 𝐾!", then the assignment of jq1 and

jq4 are hidden. Thus, in all such instances the left-hand-side is at most n-2, while the right-hand-side is
n. Hence (32) is satisfied. �

Example 3. Consider the problem instance W = {i1, i2}, k1 = 3, k2 = 3, 𝐾!# = 4, 𝐾!" = 5, Hq = {jq1, jq2,
jq3, jq4} = {2, 3, 4, 5}. The partial LP solution that satisfies the un-capacitated version of (Pz-y) is: 𝑦!#,J =
𝑦!#0 = 𝑦!"J = 𝑦!"K = 0.5, 𝑧!#,0,J = 𝑧!#,K,J = 𝑧!#,J,0 = 𝑧!#,L,0 = 𝑧!#&,J = 0.5, 𝑧!",&,K =

𝑧!",J,K = 𝑧!",K,K = 𝑧!",G,K = 𝑧!",0,J = 𝑧!",L,J = 𝑧!",G,J = 0.5. This partial solution is illustrated in Figure 3

below. Observe that this solution satisfies constraints (5), (6), (8) and (9). However, it violates the 2-
Facility Cardinality Matching inequality where only the variables that are not zero are listed below:

15
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

𝑧!#&,J + 𝑧!#,0,J + 𝑧!#,K,J + 𝑧!#,J,0 + 𝑧!#,L,0 + 𝑧!",&,K + 𝑧!",J,K + 𝑧!",K,K + 𝑧!",G,K + 𝑧!",0,J + 𝑧!",L,J + 𝑧!",G,J

+ A A A 𝑧!#"!

$!

"!%&#∈{(AH'}!∈)AI

≤ 2𝑦!#,J + 𝑦!#0 + 2𝑦!"J + 3𝑦!"K + A A 𝑘!𝑦!"!

$!

"!%&!∈)AI

+ 1.																												(33)

It is clear from Figure 4 below that the fractional solution listed above violates (33) by 1.

In an accompanying paper [12], we describe in detail the strength of the 2-Facility Cardinality Matching
inequality. In that paper we show that the 2-Facility Cardinality Matching inequality is a facet of the
polytope HU(z, y) defined in Proposition 5. In addition, we show that for the special case of m = 2, the
2-Facility Cardinality Matching inequalities, along with constraints (5), (7), (8) and (9), completely
describes HU(z, y). While the 2-Facility Cardinality Matching inequality is a non-trivial facet of HU(z,
y), it need not be so for H(z, y). This is due to the presence of knapsack constraints (7). The inequality
(32) can be strengthened by using a sequential lifting procedure on the missing z variables in it. The
details on this procedure can be found in [12].

Figure 4. Illustration of Example 3.

The separation heuristic employed to identify a 2-Facility Cardinality Matching inequality (32) that the
current LP solution violates is as follows. First, a pair W = {i1, i2} with respective cardinalities k1 and
k2 is identified such that from the LP solution, 0 < 𝑦m!#"# < 1 and 0 < 𝑦m!""" < 1. In addition, 0 < 𝑦m!#"#A&
< 1 and 0 < 𝑦m!""",& < 1. Given such an LP solution, for each jÎN, the sum SUMq1(j) = ∑ 𝑧!̅##"!#

"#A&
"!#%&

+

∑ 𝑧!̅"#"!"
$!"
"!"%"",&

+ ∑ ∑ 𝑧!̅#"
$!
"%&!∈)AI is computed, followed by MINSUMq1 = MinjÎN{SUMq1(j)}.

16
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

Terminal jq1 is the designated terminal that corresponds to MINSUMq1. Clearly, MINSUMq1 = 0 implies
that the assignment of jq1 is hidden from (𝑖&, 𝑘!#) for 1 ≤ 𝑘!# ≤ 𝑘& − 1, (𝑖0, 𝑘!") for 𝑘0 + 1 ≤ 𝑘!" ≤ 𝐾!",
and (i, ki) for all iÎM-W and all cardinalities. Similarly, SUMq2(j) = ∑ 𝑧!̅##"!#

$!#
"!#%"#

+ ∑ 𝑧!̅"#"!"
""
"!"%&

+

∑ ∑ 𝑧!̅#"
$!
"%&!∈)AI , followed by MINSUMq2 = MinjÎN{SUMq2(j)} determines jq2. To determine jq3, the

sum used is SUMq3(j) = ∑ 𝑧!̅##"!#
"#A&
"!#%&

+ ∑ 𝑧!̅"#"!"
""
"!"%&

+ ∑ ∑ 𝑧!̅#"
$!
"%&!∈)AI , with jq3 corresponding to

MINSUMq3 = MinjÎN{SUMq3(j)}. Finally, jq4 corresponds to MINSUMq4 = MinjÎN{SUMq4(j)} where
SUMq4(j) = ∑ 𝑧!̅""&!"

'!"
&!"(&"

+ ∑ 𝑧!̅#"&!#
'!#
&!#(&#+)

+ ∑ ∑ 𝑧!̅"&
'!
&()!∈%,- .

If MINSUM = MINSUMq1+MINSUMq2+MINSUMq3+MINSUMq4 < 1, then (32) is added as a cut.

4.0 Computational Results

In this section we present a detailed computational study that compares the performance of our proposed
branch-and-cut algorithm that uses the disaggregated formulation (Pz-y) along with the valid inequalities
described in this paper to a generic branch-and-cut algorithm applied to the traditional formulation (Px-
y). The proposed branch & cut method has been developed in CPLEX 12.7, compiled with GNU g++
4.4.5 (with -O3 optimization option) and ran single-threaded on a machine with 8 processors (4 cores,
2.2 GHz), each with 16 GB of RAM, under a i686 GNU/Linux operating system. The separation
algorithms for the valid inequalities along with the disaggregated model have been implemented in
CPLEX using the call-backs.

Computationally, a potential disadvantage of using (Pz-y) over (Px-y) is its large size, even though the
increase is polynomial in nature. This can be of significant concern for large problems. In fact, since
each Ki in (Pz-y) can potentially be as large as n, for a problem with 200 terminals, the formulation in
(Pz-y) would be about 200 times larger than that in (Px-y), both in terms of variables and constraints. This
in turn has an impact on the time taken to solve LP relaxations in a branch-and-bound framework. To
alleviate the computational burden of solving a large linear program, we address this issue ‘locally’ as
follows. First, the LP relaxation of (Px-y) is solved. Next, we measure ci = ∑ 𝑥!##∈(, which in some

sense, represents the ‘number’ of terminals assigned to concentrator i, in the LP solution. Therefore, ci
for each iÎM can be fractional. The y and x variable for each i are now split into a prespecified number
of cardinalities or levels. In this paper, we tested our approach with these prespecified levels Li being
3, 7 and 11. To illustrate, with Li = 3, the three cardinalities used are: i) ki1 = ëciû-1, ii) ki2 = ëciû and iii)
ki3 = ëciû+1 for each iÎM. Accordingly, the variable sets {𝑦!"!# , 𝑦!"!" , 𝑦!"!(} and {𝑧!#"!# , 𝑧!#"!" , 𝑧!#"!(}

are defined for each iÎM. Using these variables, constraints (6) and (7) can be written as:

𝑧!#"* ≤ 𝑦!"* " iÎM, jÎN, l = i1, i2, i3 (35)

∑ 𝑑#𝑧!#"*#∈(≤ 𝐶!𝑦!"* 																				∀𝑖 ∈ 𝑀, 𝑙 = 𝑖1, 𝑖2, 𝑖3. (36)

Finally, the cardinality constraints (8) take the form:

∑ 𝑧!#"!##∈(≤ 𝑘!&𝑦!"!#, " iÎM (37)

∑ 𝑧!#"!"#∈(= 𝑘!0𝑦!"!", " iÎM (38)

17
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

∑ 𝑧!#"!(#∈(≥ 𝑘!J𝑦!"!(. " iÎM (39)

In the case of Li = 7, a maximum of 3 levels below and above ëciû are defined, while ensuring that no
level is below 1 and no level is above Ki. For instance, if for some iÎM, ëciû = 3, then two levels below
ëciû are specified. Similarly, if Ki = 4, then only one level above ëciû is specified. It is worth observing
that the use of constraints (37), (38) and (39), in place of (8), makes the resulting LP relaxation, weaker
than the relaxation of (Pz-y). However, as our computational results show, the slight loss in the lower
bound is more than made up by a dramatic reduction in the size of the formulation and consequently
the time taken to solve the LP relaxations. It is also worth mentioning that the inequalities described in
this paper apply to all levels except the lowest level.

The branch-and-cut approaches described above were tested on 36 medium to large size problem
instances. Details on how to generate these instances can be found in [3]. The problem size instances
can be found in Table 3. The 1st eight instances have sizes of |M| = 16 and |N| = 50, followed by the next
eight instances having sizes of |M| = 25 and |N| = 50. The 3rd set of eight problems comprised of instances
with sizes of |M| = 50 and |N| = 50. Finally, we tested a set of 12 problem instances with sizes of |M| =
100 and |N| = 1000.

Table 1. Comparison of bounds obtained at the root node between the Traditional formulation
and Disaggregated Formulation with Li = 3

Problems

Traditional Formulation Disaggregated Formulation - Li = 3

before cutting after cutting before cutting after cutting

Name
Time
(sec) GAP

Time
(sec) #CPX GAP

Time
(sec) GAP

Time
(sec) #user #CPX GAP

Pr.VI – cap61 0.00 7.7497% 0.01 50 0.0536% 0.01 0.0000% 0.01 0 0 0.0000%

Pr.VI – cap62 0.00 10.6211% 0.01 71 0.0852% 0.01 0.0000% 0.01 0 0 0.0000%

Pr.VI – cap63 0.00 12.4061% 0.01 85 0.0148% 0.01 0.1011% 0.05 1 5 0.0135%

Pr.VI – cap64 0.00 13.3786% 0.03 113 0.0799% 0.02 0.7154% 0.09 31 6 0.1060%

Pr.VII – cap71 0.00 10.3600% 0.00 60 0.0000% 0.01 0.0000% 0.01 0 0 0.0000%

Pr.VII – cap72 0.00 15.0625% 0.01 74 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.VII – cap73 0.00 18.2687% 0.01 92 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.VII – cap74 0.00 20.1189% 0.01 105 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.IX – cap91 0.00 17.0337% 0.01 80 0.0000% 0.01 0.0000% 0.01 0 0 0.0000%

Pr.IX – cap92 0.00 22.6502% 0.01 106 0.0000% 0.02 0.3534% 0.04 2 3 0.0000%

Pr.IX – cap93 0.00 25.3742% 0.02 136 0.2386% 0.02 0.6567% 0.06 2 6 0.2319%

Pr.IX – cap94 0.00 27.4029% 0.03 155 0.1439% 0.02 0.8873% 0.07 4 3 0.1619%

Pr.X – cap101 0.00 20.7767% 0.01 82 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.X – cap102 0.00 28.6275% 0.01 101 0.0000% 0.02 0.0000% 0.02 0 0 0.0000%

Pr.X – cap103 0.00 33.5287% 0.01 141 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

18
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

Pr.X – cap104 0.00 37.2816% 0.01 166 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.XII – cap121 0.00 21.5199% 0.02 187 0.0000% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.XII – cap122 0.00 27.1854% 0.02 254 0.0000% 0.01 0.3547% 0.06 2 3 0.0000%

Pr.XII – cap123 0.00 29.9184% 0.05 300 0.0531% 0.01 0.4339% 0.14 2 6 0.0224%

Pr.XII – cap124 0.00 32.0601% 0.03 300 0.9703% 0.02 0.9007% 0.12 4 4 0.1927%

Pr.XIII – cap131 0.00 25.6435% 0.02 195 0.0004% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.XIII – cap132 0.00 33.7876% 0.03 259 0.0000% 0.02 0.0000% 0.03 0 0 0.0000%

Pr.XIII – cap133 0.00 39.2374% 0.04 300 0.0389% 0.01 0.0000% 0.02 0 0 0.0000%

Pr.XIII – cap134 0.00 43.1707% 0.03 300 1.3070% 0.02 0.0000% 0.02 0 0 0.0000%

Pr.A – capa1 0.21 39.2222% 85.87 3279 5.3554% 373.50 2.1672% 373.50 0 0 2.1672%

Pr.A – capa2 0.20 57.0841% 273.20 3276 6.0115% 218.02 3.1074% 218.02 0 0 3.1074%

Pr.A – capa3 0.16 71.6843% 506.51 3252 5.7933% 146.79 1.8431% 146.79 0 0 1.8431%

Pr.A – capa4 0.14 83.7912% 478.48 3273 2.1163% 36.98 0.0010% 41.05 0 2 0.0006%

Pr.B – capb1 0.16 35.8444% 27.56 3297 2.5636% 197.75 0.3750% 197.75 0 0 0.3750%

Pr.B – capb2 0.15 49.9976% 83.62 3295 4.8634% 157.77 0.4060% 157.77 0 0 0.4060%

Pr.B – capb3 0.14 63.3218% 161.31 3296 5.0810% 135.45 0.3331% 135.45 0 0 0.3331%

Pr.B – capb4 0.12 75.4272% 187.14 3260 5.1424% 82.49 0.0929% 82.49 0 0 0.0929%

Pr.C – capc1 0.13 45.7482% 35.19 3291 3.6659% 90.35 0.5361% 125.48 0 2 0.5350%

Pr.C – capc2 0.13 57.8666% 60.58 3274 4.1103% 64.03 0.4205% 78.59 0 2 0.4085%

Pr.C – capc3 0.12 68.9805% 100.27 3290 3.5686% 43.05 0.0920% 52.25 0 2 0.0797%

Pr.C – capc4 0.11 79.5210% 136.89 3283 3.3855% 26.49 0.0500% 33.47 0 2 0.0404%

In Table 1, the results present a comparison of the performance of the disaggregated formulation with
Li = 3 and that of the traditional formulation. Specifically, the gap between the best lower bound and
upper bound in percentage terms, is measured at two points in time – once before any cuts are added to
the respective LP relaxations, and once after all possible cuts are added at the root node of the branch-
and-bound tree. Also measured are the total CPU time in seconds at both these points in time. In the
case of the traditional formulation, CPLEX generates a variety of cuts using its separation heuristics.
The number of such cuts added for each instance are reported under the heading #CPX. In the case of
the disaggregated formulation, we first look for violated (ni, ki,	𝑟̂!"!)-cover, (1, 𝑝̂")-configuration and 2-

Facility Cardinality Matching inequalities. The number of such cuts added to the disaggregated
formulation is reported under the heading #user.

A feature that stands out from the results in Table 1 is that the bounds obtained from the initial LP
relaxation of the traditional formulation is poor. The percentage gap varies from 7.75% to 79.52%. In
contrast, bounds obtained from the initial LP relaxation of the disaggregated formulation with Li = 3 are
very tight. In fact, in 16 of the 36 problem instances, the optimal integer solution was obtained from the
initial LP relaxation. Even among the remaining 20 instances, in all but 3 of those instances, the
percentage gap was found to be less than 1%. Consequently, for the traditional formulation, a large

19
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

number of cuts was generated by CPLEX. These numbers varied from 50 for the smallest instance to
more than 3000 cuts for all the big problem instance. Computationally, this translates to that many re-
optimisations of the resulting LPs. In contrast, very few cuts were generated for the disaggregated
formulation. With Li = 3, all the cuts generated were of the type, (ni, ki,	𝑟̂!"!)-cover, (1, 𝑝̂")-configuration,

besides the cuts generated by CPLEX. Because of the large number of CPLEX cuts generated for the
traditional formulation, the overall time taken at the root node for the traditional formulation is of the
same order of magnitude as that for the disaggregated formulation. This in spite of the disaggregated
formulation being much larger than the traditional formulation. Finally, the percentage gap obtained
after all the cuts were added at the root node was found to be smaller for the disaggregated formulation
as compared to the traditional formulation in 33 of the 36 instances. More importantly, for the large
problem instances, percentage gap was found to be significantly higher for the traditional formulation
as compared to the disaggregated formulation.

In Table 2, the same set of measurements that were made for Table 1, are reported for the disaggregated
formulation with Li = 7 and Li = 11. Clearly, the disaggregated model sizes are larger with Li = 7 and
with Li = 11. As against Li = 3, both for Li = 7 and Li = 11, a few more (ni, ki,	𝑟̂!"!)-cover and (1, 𝑝̂")-

configuration as well as a few 2-Facility Cardinality matching inequalities were generated. However,
the overall improvement in the lower bound was found to be marginal, given that in most cases, the
lower bounds were already very close to the optimal value. Of course, the time taken to solve the LP
relaxations for Li = 7 and Li = 11 are much more.

Table 2: Bounds obtained at the root node for the Disaggregated Formulation with Li = 7 and Li
= 11.

Problems

Disaggregated Formulation – Li = 7

Disaggregated Formulation – Li =11

 before cutting after cutting before cutting after cutting

Name
Time
(sec) GAP

Time
(sec) #user #CPX GAP Time (sec) GAP Time (sec) #user #CPX GAP

Pr.VI – cap61 0.04 0.0000% 0.04 0 0 0.0000% 0.02 0.0000% 0.03 0 0 0.0000%

Pr.VI – cap62 0.04 0.0000% 0.05 0 0 0.0000% 0.03 0.0000% 0.03 0 0 0.0000%

Pr.VI – cap63 0.04 0.1011% 0.17 3 8 0.0135% 0.05 0.1011% 0.15 3 9 0.0117%

Pr.VI – cap64 0.05 0.7151% 0.23 67 2 0.1141% 0.06 0.7151% 0.64 40 2 0.1265%

Pr.VII – cap71 0.03 0.0000% 0.04 0 0 0.0000% 0.03 0.0000% 0.03 0 0 0.0000%

Pr.VII – cap72 0.03 0.0000% 0.03 0 0 0.0000% 0.03 0.0000% 0.04 0 0 0.0000%

Pr.VII – cap73 0.04 0.0000% 0.04 0 0 0.0000% 0.03 0.0000% 0.04 0 0 0.0000%

Pr.VII – cap74 0.03 0.0000% 0.04 0 0 0.0000% 0.03 0.0000% 0.04 0 0 0.0000%

Pr.IX – cap91 0.02 0.0000% 0.02 0 0 0.0000% 0.03 0.0000% 0.04 0 0 0.0000%

Pr.IX – cap92 0.02 0.3534% 0.09 18 4 0.0000% 0.03 0.3521% 0.17 6 3 0.0000%

Pr.IX – cap93 0.03 0.6567% 0.11 16 5 0.2395% 0.06 0.6555% 0.22 8 8 0.2386%

Pr.IX – cap94 0.06 0.8873% 0.22 20 3 0.0594% 0.11 0.8840% 0.40 10 5 0.1624%

20
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

Pr.X – cap101 0.02 0.0000% 0.03 0 0 0.0000% 0.03 0.0000% 0.04 0 0 0.0000%

Pr.X – cap102 0.02 0.0000% 0.03 0 0 0.0000% 0.03 0.0000% 0.05 0 0 0.0000%

Pr.X – cap103 0.02 0.0000% 0.03 0 0 0.0000% 0.03 0.0000% 0.05 0 0 0.0000%

Pr.X – cap104 0.02 0.0000% 0.04 0 0 0.0000% 0.04 0.0000% 0.06 0 0 0.0000%

Pr.XII – cap121 0.03 0.0000% 0.04 0 0 0.0000% 0.04 0.0000% 0.06 0 0 0.0000%

Pr.XII – cap122 0.04 0.3547% 0.21 18 3 0.0000% 0.06 0.3534% 0.33 6 3 0.0000%

Pr.XII – cap123 0.05 0.4339% 0.31 18 6 0.0224% 0.08 0.4327% 0.52 8 8 0.0224%

Pr.XII – cap124 0.07 0.9007% 0.42 20 2 0.0818% 0.16 0.8947% 0.70 10 5 0.1927%

Pr.XIII – cap131 0.03 0.0000% 0.04 0 0 0.0000% 0.04 0.0000% 0.06 0 0 0.0000%

Pr.XIII – cap132 0.03 0.0000% 0.05 0 0 0.0000% 0.06 0.0000% 0.08 0 0 0.0000%

Pr.XIII – cap133 0.04 0.0000% 0.05 0 0 0.0000% 0.06 0.0000% 0.08 0 0 0.0000%

Pr.XIII – cap134 0.05 0.0000% 0.06 0 0 0.0000% 0.07 0.0000% 0.10 0 0 0.0000%

Pr.A – capa1 1995.86 2.1672% 1988.94 0 0 2.1672% ----- ----- ----- ----- ----- -----

Pr.A – capa2 1098.61 3.1074% 1148.92 0 0 3.1074% ----- ----- ----- ----- ----- -----

Pr.A – capa3 753.91 1.8431% 789.24 0 0 1.8431% 1518.21 1.8431% 1518.21 0 0 1.8431%

Pr.A – capa4 205.82 0.0010% 210.67 0 2 0.0006% 158.46 0.0010% 375.30 0 2 0.0006%

Pr.B – capb1 1192.25 0.3750% 1191.88 0 0 0.3750% 2598.40 0.3750% 2598.40 0 0 0.3750%

Pr.B – capb2 798.36 0.4060% 855.19 0 0 0.4060% 2080.06 0.4060% 2080.06 0 0 0.4060%

Pr.B – capb3 575.48 0.3331% 634.25 0 0 0.3331% 1318.68 0.3331% 1318.68 0 0 0.3331%

Pr.B – capb4 432.83 0.0929% 467.15 0 0 0.0929% 973.98 0.0929% 973.98 0 0 0.0929%

Pr.C – capc1 410.37 0.5361% 603.31 0 3 0.5086% 750.57 0.5361% 1558.26 0 3 0.5204%

Pr.C – capc2 337.14 0.4205% 340.28 0 1 0.4138% 829.35 0.4205% 829.35 0 0 0.4205%

Pr.C – capc3 232.28 0.0920% 258.18 0 0 0.0920% 339.66 0.0920% 505.53 0 1 0.0863%

Pr.C – capc4 179.74 0.0500% 186.18 0 0 0.0500% 244.33 0.0500% 434.58 0 1 0.0311%

Table 3 presents results on the same set of 36 problem instances in which the branch-and-cut procedure
using the traditional formulation is compared to the branch-and-cut procedure using the disaggregated
formulation with Li = 3. In both approaches, the tolerance limit on the gap between the lower bound
and the incumbent solution was set at e-6. In addition, both the procedures were aborted, as soon as the
time taken reached 1 hour. In the table, the total number of branch-and-bound nodes visited is reported
under column labelled #nodes. It is clear from the table that the performance of the branch-and-cut
procedure using the disaggregated formulation is found to be superior to the branch-and-cut procedure
using the traditional formulation, both in terms of time taken and the number of branch-and-bound
nodes visited. What is indeed significant is that the dominance of our proposed procedure becomes even
more pronounced for large problem instances. For instance, in problem labelled “Pr.A – capa4”, our
procedure solved the problem in 199.35 seconds using 101 branch-and-bound node visits. In contrast,
in the traditional formulation, the total time taken was 2160.63 seconds with 746 branch-and-bound
node visits. In the case of problem instance PrC – capc2, our branch-and-cut procedure took 298.24

21
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

seconds with 78 branch-and-bound node visits, while the branch-and-cut procedure using the traditional
formulation took 3104.63 seconds with 19070 branch-and-bound node visits. In 6 of the 12 large
problem instances, the branch-and-cut procedure using the traditional formulation had to be aborted
before solving to optimality as time limit of 3600 seconds was reached. In contrast, our proposed
procedure had to be aborted in just 2 of the 12 instances. In these two problem instances, the percentage
gap obtained from our procedure was found to be smaller than that obtained using the traditional
formulation. In summary, the computational results presented confirm the value of using the
disaggregated formulation along with its associated valid inequalities for solving large size and difficult
problem instances to optimality over the traditional formulation.

Table 3. Comparison in terms the total time taken and the # of branch-and-bound nodes visited
for the Traditional formulation versus Disaggregated Formulation with Li = 3

Problems

Traditional Formulation Disaggregated Formulation - Li = 3

Name M N Time (sec) #CPX #nodes GAP Time (sec) #user #CPX #nodes GAP

Pr.VI – cap61 16 50 0.02 42 12 0.0000% 0.01 0 0 1 0.0000%

Pr.VI – cap62 16 50 0.02 48 1 0.0000% 0.01 0 0 1 0.0000%

Pr.VI – cap63 16 50 0.04 74 25 0.0000% 0.07 1 5 3 0.0000%

Pr.VI – cap64 16 50 0.05 110 54 0.0000% 0.32 6 9 6 0.0000%

Pr.VII – cap71 16 50 0.01 68 1 0.0000% 0.01 0 0 1 0.0000%

Pr.VII – cap72 16 50 0.01 75 1 0.0000% 0.01 0 0 1 0.0000%

Pr.VII – cap73 16 50 0.01 98 1 0.0000% 0.02 0 0 1 0.0000%

Pr.VII – cap74 16 50 0.01 98 1 0.0000% 0.01 0 0 1 0.0000%

Pr.IX – cap91 25 50 0.02 83 1 0.0000% 0.02 0 0 1 0.0000%

Pr.IX – cap92 25 50 0.04 73 6 0.0000% 0.04 2 3 1 0.0000%

Pr.IX – cap93 25 50 0.05 77 21 0.0000% 0.50 2 8 52 0.0000%

Pr.IX – cap94 25 50 0.07 149 59 0.0000% 0.49 2 6 40 0.0000%

Pr.X – cap101 25 50 0.01 98 1 0.0000% 0.01 0 0 1 0.0000%

Pr.X – cap102 25 50 0.02 102 1 0.0000% 0.02 0 0 1 0.0000%

Pr.X – cap103 25 50 0.01 154 1 0.0000% 0.02 0 0 1 0.0000%

Pr.X – cap104 25 50 0.02 159 1 0.0000% 0.02 0 0 1 0.0000%

Pr.XII – cap121 50 50 0.08 167 1 0.0000% 0.02 0 0 1 0.0000%

Pr.XII – cap122 50 50 0.08 232 1 0.0000% 0.06 2 3 1 0.0000%

Pr.XII – cap123 50 50 0.11 20 1 0.0000% 0.24 2 6 6 0.0000%

Pr.XII – cap124 50 50 0.78 300 1193 0.0000% 0.86 2 9 67 0.0000%

Pr.XIII – cap131 50 50 0.03 243 1 0.0000% 0.02 0 0 1 0.0000%

Pr.XIII – cap132 50 50 0.05 217 1 0.0000% 0.02 0 0 1 0.0000%

Pr.XIII – cap133 50 50 0.07 272 9 0.0000% 0.02 0 0 1 0.0000%

22
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

Pr.XIII – cap134 50 50 0.12 294 210 0.0000% 0.02 0 0 1 0.0000%

Pr.A – capa1 100 1000 3584.89* 5500 17703 2.0647% 3598.88* 0 2 353 1.8325%

Pr.A – capa2 100 1000 3589.94* 5500 6858 4.3752% 3590.82* 0 0 1278 3.0066%

Pr.A – capa3 100 1000 3585.66* 5500 7808 2.6201% 1882.17 0 2 568 0.0000%

Pr.A – capa4 100 1000 2160.63 5160 746 0.0001% 199.35 0 5 101 0.0001%

Pr.B – capb1 100 1000 2827.60 5495 25220 0.0001% 858.43 0 122 1054 0.0001%

Pr.B – capb2 100 1000 3599.00* 5480 14626 0.1236% 1313.42 0 31 587 0.0001%

Pr.B – capb3 100 1000 3585.30* 5500 9871 1.1452% 649.10 0 41 509 0.0001%

Pr.B – capb4 100 1000 3591.17* 5500 10299 1.0689% 261.35 0 89 846 0.0001%

Pr.C – capc1 100 1000 1165.49 5179 7724 0.0001% 485,17 0 100 716 0,0001%

Pr.C – capc2 100 1000 3104.63 5485 19070 0.0000% 298,24 0 0 78 0,0000%

Pr.C – capc3 100 1000 810.56 5497 2888 0.0001% 202,39 0 36 334 0,0001%

Pr.C – capc4 100 1000 707.75 5500 1734 0.0001% 118,08 0 1 14 0,0000%

* Procedure aborted as time limit of 3600 seconds was reached.

For better assessing the behaviour of the proposed formulation, we have compared the results provided
by our algorithm with those presented in [9], where a Lagrangian heuristic for the standard integer
programming formulation P(x-y) is implemented. Constraints (1) are the relaxed ones. We have adopted
the test problems described in Table 1 of [9]. They are a total of 71 problems, grouped in five subsets,
characterized by different sizes and different quotients between the total capacity and the total demand.

In the following Table 4 we report, for each of the five groups, in column LH the average of the relative
gap between the upper and lower bounds obtained by the Lagrangian heuristics [9] and in column
DIS.FORM the average of the relative gap at the root node provided by our disaggregated formulation,
corresponding to Li = 7. What is indeed clear from the results in Table 4 is that the gap between the
upper and lower bounds obtained using DIS.FORM is uniformly smaller than the corresponding gap
obtained using the Lagrangian Heuristic reported in [9]. This in spite of the fact that the Lagrangian
heuristic involves solving a series of sub-problems which are the potentially hard knapsack problems.

Table 4. Gap comparison with Lagrangian Heuristics [9].

Problems LH Dis.. Form.– Li = 7

 Group M N GAP GAP
p1-p12 10 50 0,1192% 0,0667%
p13-p24 20 50 0,1608% 0,0989%
p25-p40 30 150 0,6956% 0,6824%
p41-p55 10-30 70-100 0,3753% 0,2788%
p56-p71 30 200 0,6063% 0,3813%

23
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

5. Concluding Remarks and Future Research Possibilities

In this paper, we present a new extended formulation of CCLP that uses the idea of cardinality
associated with each concentrator. Even though the resulting formulation is bigger in terms of the
number of variables and constraints, we show theoretically that it is indeed a stronger formulation. That
is, its LP relaxation provides a tighter lower bound than the LP relaxation of the traditional formulation.
In addition, we show that our proposed disaggregated formulation reveals generalizations of the Cover
and (1, k)-Configuration inequalities which collectively are stronger than the original Cover and (1, k)-
Configuration inequalities. Finally, we present another class of inequalities called: 2-Facility
Cardinality Matching Inequalities, which are specific to the disaggregated formulation. We first present
results of extensive computational tests on 36 benchmark problems which are medium to large sized
whose characteristics can be found in [3]. These results confirm the value of using our proposed
disaggregated formulation of CCLP. We were able to demonstrate that our approach was able to identify
the optimal solution at the root node itself in most of the reasonable sized instances. For the much larger
sized test problems, the proposed branch-and-cut procedure using the disaggregated formulation
outperforms the branch-and-cut procedure applied to the traditional formulation by a significant order
both in terms of CPU and the number of branches required to solve the problem to optimality. We also
compared our approach to the Lagrangian heuristic approach reported by Holmberg et al. [9] on the
same set of 71 test problems reported by them. Our computational results clearly show that much tighter
lower bounds are obtained using the disaggregated formulation along with its associated cuts, than those
obtained using the Lagrangian heuristic.
The results in this paper, both theoretical and computational, demonstrate an approach that seems very
promising. However, much remains to be done to take the idea of cardinality-based disaggregation to
its logical conclusion. From a theoretical standpoint, it is worthwhile extending the idea behind 2-
Facility Cardinality Matching inequality to more than two concentrators. It is also worthwhile exploring
the idea of generalizing the cardinality constrained Cover and (1, 𝑝̂")-configuration inequalities to more
than one facility or concentrator. Finally, the ideas presented in this paper can be applied to several
other closely related NP-Hard problems such as the Capacitated Steiner Tree problem and the
Capacitated Network Design Problem.

References

1. Ahuja R.K., J.B. Orlin, S. Pallottino, M.P. Scaparra, and M.G. Scutella, “A multi-exchange

heuristic for the single source capacitated facility location. Management Science, (50), (2004),
pp. 1749–760.

2. Barcelo, J., A. Hallefjord, E. Fernandez and K. Jornsten, “Lagrangean Relaxation and Constraint
Generation Procedures for the Capacitated Plant Location Problems with Single Sourcing,” OR
Spektrum 12, (1990), pp. 79-88.

3. Beasley, J. E., “An Algorithm for Solving Large Capacitated Warehouse Location Problems,”
European Journal of Operational Research 33, (1988), pp. 314-325.

4. Boffey, T. B., “Location Problems Arising in Computer Networks,” Journal of Operational
Research Society, 40(4), (1989), pp. 347-354.

24
© <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

5. Celani, M., R. Cerulli, M. Gaudioso, and Ya.D. Sergeyev, “A Multiplier Adjustment Technique
for the Capacitated Concentrator Location Problem,” Optimization Methods and Software,
10(11), (1998), pp. 87-102.

6. Chen, C.H. and CJ. Ting, “Combining Lagrangian Heuristic and Ant Colony System to solve the
Single Source Capacitated Facility Location Problem,” Transportation Research part E, 44,
(2008), pp. 1099–1122.

7. Cortinhal, M.J. and M. E. Captivo, “Upper and Lower Bounds for the Single Source Capacitated
Location Problem,” European Journal of Operational Research 151, (2003), pp. 333-351.

8. Gouveia, L. and F. Saldanha-da-Gama, “On the Capacitated Concentrator Location Problem: A
Reformulation by Discretization”. Computers & Operations Research, 33, (2006), pp. 1242-
1258.

9. Holmberg, K., Rönnqvist, M., and Yaun Di, “An Exact Algorithm for the Capacitated Facility
Location Problems with Single Sourcing,” European Journal of Operational Research 113,
(1999), pp. 544-559.

10. Labbè, M. and H. Yaman, “Polyhedral analysis for concentrator location problems”,
Computational Optimization and Applications, 34, (2006) pp. 377–407.

11. Lo, C. and A. Kershenbaum, “A Two-phased Algorithm and Performance Bounds for the
Concentrator Location Problem”, IEEE Transactions on Communications, 37(1989), pp. 1151-
1163.

12. Murthy, I., “Facets of the Cardinality Induced Disaggregated Formulation of the Capacitated
Concentrator Location Problem,” Working Paper (2018), IIM Bangalore, Bangalore, India.

13. Martello, S, D. Pisinger and P. Toth, “New Trends in Exact Algorithms to Solve 0-1 Knapsack
Problem,” European Journal of Operational Research, 123, (2000), pp. 325–332.

14. Padberg, M., “(1, k)-Configurations and Facets of packing Problems,” Mathematical
Programming 18(1) 1980, pp. 94-99.

15. Pirkul, H., “Efficient Algorithms for the Capacitated Concentrator Location Problem”,
Computers and Operations Research, 14 (1987), pp. 197-208.

16. Pirkul, H. and V. Nagarajan, “Locating Concentrators in Centralized Computer Networks”,
Annals of Operations Research, 36(1992) 247-261.

17. Shima, T., “Integer Programming Model and Exact Solution for Concentrator Location Problem,”
Journal of Operations Research Society of Japan, 43, (2000), pp. 291-305.

18. Sridharan, R., “A Lagrangean Heuristic for the Capacitated Plant Problem with Single Source
Constraints”, European Journal of Operational Research, 66, (1993), pp. 305–312.

19. Yang, Z, Feng Chu and Haoxun Chen, “A Cut-and-Solve based Algorithm for the Single-source
Capacitated Facility Location Problem,” European Journal of Operational Research, 221 (2012),
pp. 521-532.

