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Abstract

Although the stability properties of the wake past impervious bluff bodies have been widely

examined in the literature, similar analyses regarding the flow around and through porous ones

are still lacking. In this work, the effect of the porosity and permeability on the wake patterns of

porous rectangular cylinders is numerically investigated at low to moderate Reynolds numbers in

the framework of direct numerical simulation combined with local and global stability analyses. A

modified Darcy-Brinkman formulation is employed here so as to describe the flow behavior inside

the porous media, where also the convective terms are retained to correctly account for the inertial

effects at high values of permeability. Different aspect ratios of the cylinder are considered, varying

the thickness-to-height ratios, t/d, from 0.01 (flat plate) to 1.0 (square cylinder).

The results show that the permeability of the bodies has a strong effect in modifying the char-

acteristics of the wakes and of the associated flow instabilities, while the porosity weakly affects

the resulting flow patterns. In particular, the fluid flows through the porous bodies and, thus, as

the permeability is progressively increased, the recirculation regions, initially attached to the rear

part of the bodies, at first detach from the body and, eventually, disappear even in the near wakes.

Global stability analyses lead to the identification of critical values of the permeability above which

any linear instability is prevented. Moreover, a different scaling of the non-dimensional permeabil-

ity allows to identify a general threshold for all the configurations here studied that ensures the

suppression of vortex shedding, at least in the considered parameter space.
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I. INTRODUCTION

The flow of a liquid phase through a body containing interconnected patterns of voids

is frequently encountered in engineering applications as well as in nature. Examples in-

clude filtration, where it is necessary to separate solid particles from fluids, cooling systems,

where the presence of a porous medium can enhance the heat exchange thus increasing the

efficiency, or water penetration in a sand substrate. Additionally, several minute insects

such as the thrips (Thysanoptera) use hairy appendages for feeding and locomotion. These

filaments-made wings have convenient lift to weight and lift to drag ratios with respect an

impervious wing [1] and can be modelled as porous media made by arrays of cylinders [2]. In

a similar fashion, the seeds of the tragopon pratensis [3] are transported by the wind thanks

to a particular umbrella-like extensions called pappus, which can be seen as the equivalent

of a parachute. Also in this case, the flow pattern past these seeds advected by wind gust

can be explained using the model of a porous disk [4], with a Reynolds number based on

the pappus diameter around Re = 100.

Inspired by nature and motivated by engineering applications, the fluid dynamics of

porous media has received a growing interest over the years. At the beginning of the last

century, based on the concept that the permeability modifies the flow around a solid object,

Prandtl [5] designed a passive blowing system to control the flow past a circular cylin-

der. Subsequently, Castro [6] studied experimentally the flow around perforated flat plates

observing two different flow behaviours: a configuration in which the von Karman vortex

street dominates the wake, and another in which it is inhibited due to the air bleeding from

the holes. Furthermore, in some cases, the mean flow is characterized by the presence of

a detached recirculation bubble. He also observed that the transition between these two

states, i.e. with attached or detached recirculation region, is quite sudden. Successively,

the turbulent wake past a nominally two-dimensional porous cylinder has been investigated

[7], identifying two wake regions: a steady wake region that extends for several cylinder

diameters behind the body and a region further downstream associated with the formation

of large-scale wake oscillation (von Karman street). Increasing the porosity, and so the

permeability, the vortex street formation moves further downstream. More recently, the

problem of the flow around porous square cylinders [8, 9] and porous disks [2] has been

approached numerically. In the latter case, by increasing the disk permeability three dif-
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ferent flow regimes have been recognized: (i) first an effectively impervious regime, which

is characterized by the presence of a toroidal vortex recirculation region located close to

the disk, is observed at low permeability; (ii) subsequently a transition regime in which the

recirculation region shortens and moves downstream occurs for intermediate permeability;

(iii) a high permeability regime where the recirculation region is no more present.

The scenario described above, however, has been portrayed for the case of steady and

stable flow around a porous bluff body at moderate Reynolds numbers, thus overlooking the

occurrence of flow instabilities. In truth, although the stability properties of the wake past

impervious cylinders [10, 11] and axisymmetric bodies [12, 13] have been extensively inves-

tigated in the literature, this is not yet the case for porous objects. In this work, the flow

patterns around porous rectangular cylinders and their corresponding stability characteris-

tics have been investigated systematically for low-moderate Reynolds numbers by varying

the thickness-to-height ratio t/d and the porous medium properties in terms of permeability

and porosity. Firstly, the steady baseflows around permeable rectangular cylinders are com-

puted by solving numerically the incompressible Navier-Stokes equation in the pure fluid

domain that are dynamically coupled with a modified Darcy-Brinkman formulation [14].

In this formulation, which has been validated against benchmark results available in the

literature, the convective terms are retained to correctly account for the inertia effects at

high values of permeability. The global stability analysis is then performed as the perme-

ability of the porous medium is progressively changed, finding for each case the marginal

stability curve and studying the evolution of the associated eigenvectors. The sensitivity

of the base flow in different permeability regimes is also evaluated by means of structural

sensitivity analysis [15]. The region where the structural sensitivity is stronger defines the

so−called wavemaker, i.e. the portion of the domain where the instability mechanism acts

on the baseflow. The identification of the wavemaker is essential in a spirit of flow control,

highlighting the region in the wake where small perturbations are most effective on the flow

instability.

The onset of a globally unstable mode in the wake of porous cylinders and the possible

stabilization effect of the permeability are then connected to the local stability properties

of the flow with emphasis on the relation between the streamwise extension of the absolute

region and the one of the recirculation bubble. This connection is here explored in detail,

showing that global instability can persist even when recirculation is absent in the wake but,
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nevertheless, the wake velocity defect is sufficiently large.

The paper is organized as follows. The flow configuration along with the governing equa-

tions for the direct numerical simulations, global and local stability analyses are introduced

in section II. The numerical method and its validation are detailed in section III. In IV

the baseflow morphology and its global and local stability properties are first presented as a

function of the Reynolds number and permeability. Successively, the effect of porosity and

aspect ratios is investigated. Conclusions are outlined in section V. Further details on the

theoretical formulation and numerical convergence are provided in the appendices A and

B, respectively.

II. PROBLEM FORMULATION

In this section the theoretical framework and the governing equations for the direct nu-

merical simulations, global and local stability analyses are presented.

A. Flow configuration and governing equations

We study the stability of two-dimensional (2D) wakes past porous rectangular cylinders

invested by a uniform stream of velocity U∞ (Fig. 1) aligned with one of their symmetry
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Figure 1. (a) Representation of an elementary porous volume V . VS and VF are the solid and the

fluid portions of the volume V , respectively. (b) Sketch of the flow configuration: d is the reference

dimension of the body, t is its thickness. L1 is the distance between the body and the recirculation

bubble when this is detached and ∆L the length of the recirculation region, both measured on the

symmetry line y = 0.
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axis and orthogonal to their longest sides. The rectangular cylinders, characterized by a

thickness-to-height ratio t/d, are assumed to be made by a porous material with porosity

φ and permeability k. The porosity φ is defined as the fluid fraction Vf in the elementary

porous volume V , i.e. φ = Vf/V . The permeability k is instead a quantity related to the

structure of the porous medium, in terms of geometry, density and structural interconnec-

tion between the pores. When large permeability k is considered, the resistance of the fluid

to pass trough the porous body is low, and vice versa. Both φ and k are therefore quantities

linked with the local characteristics of the porous medium and, for a general material, they

can be defined as a function of the position inside the body. In the present study, only

homogeneous and isotropic porous bodies are however considered and the porosity and per-

meability are both considered uniform scalars inside the porous region. The characteristics

of the porous medium allow the flow to partially pass through the body, modifying the

behaviour of the resulting wakes. In particular, it will become clear that the recirculation

bubbles can assume different lengths, here labelled as ∆L, depending on the permeability

and, for specific configurations, recirculation regions can be detached from body, i.e. L1 > 0

(see Fig. 1b). It is important to highlight that, although the present work is focused on the

study of the wake past 2D rectangular cylinders, the procedure described in the following

can be considered as a general approach to study the instability of the flow past a generic

porous bluff body.

The fluid motion in the pure fluid region of the domain is described by the velocity field

u = (ux, uy) and the pressure field p, which satisfy the unsteady incompressible Navier-

Stokes equations:

∇ · u = 0, (1a)

ρ

(
∂u

∂t
+ u · ∇u

)

= −∇p+ µ∇2u (1b)

where µ and ρ are the dynamic viscosity and the density of the fluid, respectively. The set of

equations (1) is solved in a closed rectangular domain with suitable inlet, lateral and outlet

boundaries, which are specified at the end of this section.

Concerning the flow inside the body, the porous medium is modelled as a rigid medium

completely saturated with fluid. In the literature, different mathematical approaches have

been proposed to describe the motion of the fluid inside the pure fluid volume Vf (Fig. 1) of
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the porous medium [14, 16–18]. In the present work, the approach proposed in [19], which

is based on an averaging technique, is adopted. Referring to Fig. 1a, the superficial volume

averaged velocity can be defined as follows:

〈ub〉|x =
1

V

∫

Vf

ub(x+ xf ) dΩ, (2)

where x represents the position vector of the centroid of the averaging volume V and xf

the position vector of the fluid phase relative to the centroid. Concerning the pressure, it is

convenient to define an intrinsic volume averaged pressure at the centroid x as follows:

〈pb〉β|x =
1

Vf

∫

Vf

pb(x+ xf ) dΩ, (3)

where the average is now made only considering the volume of the fluid phase inside the

porous medium. The intrinsic definition of the pressure 〈pb〉β, linked with the corresponding

superficial one 〈pb〉 by the porosity φ, i.e. 〈pb〉 = φ〈pb〉β, results to be convenient since it is a

better representation of the pressure that can be measured at the boundary of porous bodies

in experiments. Thus, using the relations (2) and (3), the average fluid motion inside the

porous medium is seen to be governed by the following system of equations (see Appendix A

for details):

∇ · 〈ub〉 = 0, (4a)

ρ

φ

∂〈ub〉
∂t

+
ρ

φ2
〈ub〉 · ∇〈ub〉 = −∇〈pb〉β +

µ

φ
∇2〈ub〉 −

µ

k
〈ub〉. (4b)

Finally, considering d and U∞ as reference length and velocity scales, respectively, the overall

system of equations can be written in non-dimensional form as follows:

• Pure flow:

∇ · ũ = 0 (5a)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Re
∇2ũ (5b)

• Inside the porous medium:

∇ · 〈ũb〉 = 0 (6a)

1

φ

∂〈ũb〉
∂t̃

+
1

φ2
〈ũb〉 · ∇〈ũb〉 = −∇〈p̃b〉β +

1

φRe
∇2〈ũb〉 −

1

ReDa
〈ũb〉 (6b)

where Re = ρU∞d/µ is the Reynolds number and Da = k/d2 is the Darcy number. The sys-

tems of equations (5,6) are then completed by appropriate boundary conditions. Referring
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to Fig. 2, non-homogeneous Dirichlet boundary conditions specifying the undisturbed in-

coming flow are applied at the inflow, Ωin, and on the lateral boundaries, Ωlat, i.e. ũ = [1, 0].

Stress-free condition is imposed at the outflow boundary, Ωout, i.e. n · [µ∇ũ− p̃I] = 0. Con-

cerning the interface between the cylinder and the outer flow field, the quantities (ũ, p̃) and

(〈ũb〉, 〈p̃b〉) can be linked considering that, outside the porous body, the average velocity

and pressure correspond, in the present case, to the punctual velocity, i.e. 〈ũ〉 = ũ and

〈p̃〉 = 〈p̃〉β = p̃. In particular, assuming a homogeneous porous interface [19], velocity and

stress continuity are imposed on Ωcyl, i.e. ũ = ũb and n·[µ∇ũ−p̃I] = n·[µφ−1∇〈ũb〉−〈p̃b〉βI].
It is important to highlight that the use of different averaging definitions for the velocity (2)

and for the pressure (3) in the continuity of the stresses results to be appropriate thanks to

presence of the porosity φ in the expression of the boundary condition. In the following, the

superscript ·̃ , which indicate non-dimensional quantities, and the average brackets 〈·〉 will
be omitted for sake of brevity.

B. Global stability and sensitivity analysis

The occurrence of bifurcations of the system that drive the flow into different flow con-

figurations is studied in the framework of linear stability analysis. Using a unified nomen-

clature for the flow field inside and outside the porous body, (u,p) we consider the flow

solution as the superposition of a steady baseflow (U, P )(x, y) and an infinitesimal unsteady

perturbation (u′, p′)(x, y, t). As concerns the flow description outside the porous body, in-

troducing this decomposition in the system (5), two mathematical problems are obtained

describing the spatial structure of the baseflow and the evolution of the unsteady pertur-

bations. The baseflow outside the porous body is governed by the steady version of the

system (5). Perturbations of the baseflow are sought in the form of normal modes, i.e.

(u′, p′)(x, y, t) = (û, p̂)(x, y) exp(σt), where σ is the eigenvalue associated with the cor-

responding eigenfunction (û, p̂)(x, y). The dynamics of an infinitesimal perturbation can

be then described by the unsteady Navier-Stokes equations, linearized around the baseflow

solution (U, P ), that can be written as:

∇ · û = 0 (7a)

σû+U · ∇û+ û · ∇U = −∇p̂+
1

Re
∇2û. (7b)
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The same procedure can be applied disturbance dynamics inside the porous medium. The

baseflow inside the body is given by the steady version of system (6), while the perturbation

dynamics is given by:

∇ · û = 0 (8a)

1

φ
σû+

1

φ2
(U · ∇û+ û · ∇U) = −∇p̂+

1

φRe
∇2û− 1

ReDa
û (8b)

The linearized systems (7,8) are then completed with the following boundary conditions:

homogeneous Dirichlet condition is imposed at the inlet Ωin and on the lateral boundaries

of the domain Ωlat, while the stress-free condition is considered at the outflow Ωout. At the

fluid-porous interface Ωcyl, velocity and stress continuity condition between inner and outer

disturbances are applied in similarity of the interfacial condition imposed in the systems

(5,6).

The systems (7,8), together with their boundary conditions, define an eigenvalue problem

with, possibly, complex eigenvalues σn = λn + i ωn. The real part of the eigenvalue, λn, is

the growth rate of the global mode, whereas the imaginary part, ωn, is its angular velocity.

Thus, sorting the eigenvalues by their growth rates in descending order, i.e. λ0 > λ1 > λ2, ...,

the system is considered asymptotically stable if the growth rate of the leading eigenvalue

λ0 is positive, while it is asymptotically unstable if λ0 is negative.

Following [15], the evaluation of the sensitivity of the global eigenvalue to a structural

perturbation δL of the linear operators of the systems (7,8) allows to highlight the region of

the flow field where the instability mechanism acts on the baseflow. In particular, considering

a localized forcing f(x0, y0) = A0û(x, y)δ(x−x0, y−y0) acting on equations (6,7), where A0

is a generic feedback matrix and δ is the 2D Dirac function, the induced eigenvalue variation

δσ can be maximized as follows:

|δσ(x0, y0)| ≤ ||A0|| · ||û(x0, y0)|| · ||û†(x0, y0)|| (9)

where û† is the adjoint velocity field, solution of the following system of adjoint equations:

• In the clear fluid:

∇ · û† = 0 (10a)

σû† −U · ∇û† + û† · (∇U)T = −∇p̂† +
1

Re
∇2û† (10b)
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• In the porous medium:

∇ · û† = 0 (11a)

1

φ
σû† +

1

φ2
(−U · ∇û† + û† · (∇U)T ) = −∇p̂† +

1

φRe
∇2û† − 1

ReDa
û†. (11b)

The boundary conditions that complete the systems (10,11) are the same used for the direct

problem defined in the systems (7,8), except for the outflow boundary condition that can

be written as n ·
(
Re−1û† − p̂†I

)
= − (U · n) û†.

C. Spatio-temporal stability analysis

As mentioned before, the properties of the porous bodies affect the characteristics of the

wake and therefore its stability. In order to analyze in detail the nature of the instability and

its changes with the porosity and the permeability of the body, a spatio-temporal stability

analysis is carried out. Under the assumption of weakly non-parallel flow, the velocity

profile at each streamwise section is extracted and its stability is studied inspecting the

growth rate of a local perturbation of the form u′ = u∗ exp [i(αx− ωt)], where α is the local

wavenumber and ω the angular velocity. In order the study the absolute and convective

nature of the stability, the Briggs-Bers method is used [11], which consists in defining the

saddle point α0 in the complex α-space, i.e. ∂ω/∂α(α = α0) = 0 (the absolute wavenumber).

If the imaginary part of the corresponding absolute frequency ω0 is greater then zero, i.e.

Im(ω0) > 0, the flow profile is absolutely unstable, otherwise it is convectively unstable. As

pointed out in literature [11, 20], the extension of the absolute unstable region can be linked

to the characteristics of the global stability of the wake.

III. NUMERICAL METHOD

In this section, the numerical methods employed to solve the governing equations intro-

duced in Section II are described. The evaluation of the baseflow, steady solution of the

systems of equations (5,6), and the solution of the global eigenvalue problems (7,8) over the

rectangular domain sketched in Fig. 2 are carried out using FreeFem++ [21] solver. The

spatial discretisation is then obtained by a finite-element formulation based on the Taylor-

Hood elements. The unstructured grid is made of five regions of refinement (see Fig. 2),
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Figure 2. Sketch of the computational domain. The porous cylinder corresponds to the gray area

whereas the dashed line rectangles depict the mesh refinement regions. The spatial extent of the

computational domain is defined by the location of the boundaries x−∞, x+∞ and y∞ and the level

of the mesh refinement is controlled by the vertex densities nL, nC n1, n2, n3 and ns.

where the vertex densities have been chosen after a convergence study, whose results are

reported in detail in Appendix B.

As regards the identification of the absolute and spatio-temporal analysis, the 1D velocity

profile extracted form the baseflow at several streamwise positions is considered parallel as

in the local stability analysis [11]. The resulting parallel linear equations are then discretized

using a pseudo-spectral method employing Gauss-Lobatto-Legendre collocation points. The

saddle-point in the complex wavelength space α of the local angular velocity ω is then

localized using a Newton iterative method.

1. Validation of the model and its implementation against the literature

In this section, the mathematical and numerical approaches described in Sec.(II) and (III)

are validated against the results reported in [22]. The test case consists in the DNS of the 2D

flow in a square cavity of dimension L, where homogeneous Dirichlet boundary conditions

are applied at all the boundaries except for the top one, where a uniform tangential velocity,

i.e. ux = Ū , is considered. For a height (y−direction) of 0.33L the cavity is occupied

by a porous medium, whose porosity is fixed at φ = 0.8 and its permeability in the x−
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and y−direction is kx = 1.052 × 10−5 and ky = 2.196 × 10−5, respectively. Exploiting the

formulations described in equations (5) and (6), Direct Numerical Simulations (DNSs) are

carried out at ReL = ρŪL/µ = 100 and the results are reported in Fig. 3 (black lines),

together with the reference ones from [22] (red dots). Moreover, the results obtained using

the Brinkman-Darcy formulation are also depicted in red lines, where all the non-linear

terms are neglected (see Appendix A for details). The present model (black lines) is in

accordance with the data of [22](red dots), especially at the fluid-porous interface, where

the velocity gradients are correctly estimated. The good agreement between these two sets

of data results from having retained the convective terms in the equations (6), that allows

the inertial effects to penetrate inside the porous medium, according to the discussion of [22].

This speculation is indeed confirmed by the results obtained excluding the non-linear terms

from the formulation (red lines), that indeed deviate from the results reported in [22] at

the porous-solid interface. This mismatch, here small due to the low values of the Reynolds

number, the Darcy number and the specific flow configuration, may become relevant when

higher values of Re and Da and more complex geometries are studied.

In summary, since the DNS data in [22] have been obtained using a numerical method and

resolution which are different and independent from the ones adopted here, we can state

that results in Fig. 3 validate (i) the model employed for the porous media, (ii) the interface

boundary conditions between the porous body and the external flow and, lastly, (iii) the

numerical implementation of the proposed sets of equations.

IV. RESULTS

In this section, the results of the present work in terms of base flow characterization

and stability analysis are described in detail. In particular, different rectangular cylinders

are considered, varying the thickness-to-height ratio t/d from 0.01, i.e. a flat plate in good

approximation, to 1.0, i.e. a square cylinder. We anticipate that the baseflow morphology

and stability properties of the flow weakly depend on the ratio t/d and the porosity φ, as

already discussed in [2]. For this reason, we first focus on the the effect of the permeability,

k, and of the Reynolds number, Re, on the flow field in the case t/d = 0.25 and φ = 0.65.

Subsequently, the effect of the aspect ratio, t/d, and of the porosity, φ, on the results will

be discussed.
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Figure 3. Velocity profiles (solid lines) of (a) ux and (b) uy extracted at half of the cavity, i.e.

x = 0.5, compared to the results of [22] (red dots). The red lines in the inset figures depict the

velocity profiles obtained by the present numerical model, but neglecting the convective terms in

equation (6).

A. Rectangular cylinder with t/d=0.25

1. Base flow

The base flow consists, for all the Reynolds numbers here considered, in two perfectly

symmetric and counter-rotating recirculation bubbles located in the wake of the cylinder.

The geometric characteristics of the recirculation regions depend, however, on the considered

Reynolds number, Re, and on the permeability, k, of the body. In particular, let us first

study the effect of the permeability, keeping fixed the Reynolds number at Re = 30. At low

values of the permeability, e.g. Da ≈ 10−10, the resulting flow field is very similar to the one

that occurs around a solid cylinder, where the recirculation bubbles lie in the near wake of

the cylinder and remain attached at its base (see Fig. 4a). Increasing the permeability, i.e.

increasing the Darcy number, the flow field inside the cylinder becomes not negligible and,

for a critical value of the Darcy number, Dacr1, the recirculation bubbles detach from the

base of the cylinder, as visible form the streamline patterns reported in Fig. 4b,c. Finally,
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further increasing the Darcy number, a second critical value is present, Dacr2, such that

the recirculation regions disappear, as shown in Fig. 4d and only a wake velocity defect is

present past the cylinder. In particular, for Re = 30 the critical values are Dacr1 = 1× 10−7

and Dacr2 = 1.5× 10−3.
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Figure 4. Baseflow. Flow streamlines at Re = 30, and (a) Da = 10−10, (b) Da = 5 × 10−4, (c)

Da = 1.1× 10−3, (d) Da = 5× 10−3 (only half of the domain, i.e. y ≥ 0, is shown).

As visible in Fig. 4, the streamlines at the upper, i.e. x = 0 and y = 0.5, and lower

corners, i.e. x = t and y = 0.5, of the cylinder are modified, due to the characteristics

of the material that allows the flow to pass through the body (see Fig. 5). In particular,

the resulting shapes and dimensions of the recirculation bubbles can be related, then, to

the vorticity field. Increasing the permeability, the intensity of the vorticity at the two

separation points decreases. This is clearly visible in Fig. 6, where the colour-contours of

vorticity in the neighbourhood of the upper corner are depicted. The less intense vorticity

observed in the porous case leads to a reduction of the induced counter velocity in the wake,

leading to a smaller recirculation length in the streamwise direction and lower backwards

velocity intensity. Moreover, since the two vorticity layers are closer to the centre line as the

Da number is increased, a consequent reduction of the width of the recirculation bubbles in

y−direction is also found (see Fig. 4).
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Figure 5. Representative behaviour of the velocity field for the flow past a (a) solid and (b) porous

rectangular cylinder (Da = 5× 10−3) at Re = 30. The colours represents the velocity magnitude.
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Figure 6. Distribution of vorticity in the upper part of the body, at Re = 30 and (a) Da = 10−10,

(b) Da = 5× 10−4, (c) Da = 5× 10−3.

Similar effects are also found by fixing the permeability and increasing the flow Reynolds

number. Fig. 7 shows the streamline patterns for different values of the Reynolds number

with constant permeability and porosity set to Da = 1.1 × 10−3 and φ = 0.65, respec-

tively. It is possible to observe that the streamwise extension of the recirculation region, as

the flow Reynolds number is increased, increases at first, successively decreases and finally

disappears. At the same time, once detached, the recirculation bubble gets progressively

more distant from the cylinder, i.e. L1 increases monotonically with Re. The dependence

of the recirculation bubble length on the flow Reynolds number depends on the competition

between the inertia terms and the Darcy terms in the systems (5) and (6). As the flow
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Reynolds number is increased, the inertial terms become more important and, at the same

time, the viscous drag effects inside the porous media are reduced. Thus, the fluid can

easier pass through the body, strongly modifying the velocity field and, as a consequence,

the vorticity field.

In particular, when Re is increased, the generated vortical structures become more intense

(see 8b,c), with a consequent elongation of the recirculation bubbles. Successively, further

increasing the Reynolds number, the vorticity magnitude decreases (as in 8c), yielding the

recirculation bubbles to shorten until they disappear.
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Figure 7. Baseflow. Flow streamlines at Da = 1.1 × 10−3, and (a) Re = 40, (b) Re = 90, (c)

Re = 110, (d) Re = 140 (only half of the domain, i.e. y ≥ 0, is shown).
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Figure 8. Distribution of vorticity in the upper part of the body, at Da = 1.1 × 10−3, and (a)

Re = 40, (b) Re = 65, (c) Re = 110.
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Figure 9. Marginal stability curve (red line) in the Re-Da plane, and the different flow patterns of

the baseflow (delimited by the black lines).

The set of transitions in the flow morphology described above are explored by varying

both the flow Reynolds number and the Darcy number, and results are summarized in Fig.

9, where the type of wake flow, i.e. with attached, detached and no recirculation regions, is

delimited by the black lines in the Da − Re plane, for Reynolds numbers up to Re = 200.

It is possible to observe that the first critical Darcy value Dacr1 is almost constant at

1 × 10−7 and independent of the flow Reynolds number. On the other hand, the second
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Figure 10. Drag coefficient CD as a function of Da for Re = 20 (red line) and Re = 30 (blue line).

critical Darcy number Dacr2, that separates the cases with detached recirculation regions

from those without recirculation regions, is slightly decreasing with the Reynolds number,

reaching the value of Dacr2 = 8× 10−4 at Re = 200.

The wake modifications due to the permeability of the porous medium directly affect the

drag force FD on the body. When small values of Da are considered, the drag coefficients

CD, here defined as CD = FD/(0.5ρU
2
∞d), is very similar to the case of the solid cylinders.

Referring to Fig. 10, the drag coefficient is CD ≈ CD,solid = 2.18 at Re = 20 and it is

CD ≈ CD,solid = 1.88 at Re = 30. Increasing the Darcy number, the CD slightly decreases

first and a significant reduction is successively visible for Da > 1 × 10−3. In this range of

Da, the drag coefficient follows the scaling CD ∼ Re−1Da−1, as reported in [2].

2. Global stability analysis

In this section the results of the stability analysis for the wake flow of the porous rect-

angular cylinder with t/d = 0.25 are presented for Reynolds numbers up to Re=200 and

varying the Darcy number. As shown in the previous section, the characteristics of the

porous medium affect the behaviour of the wake flows and, consequently, a strong modifica-

tion of the stability properties can be expected in comparison to the solid case. In particular,
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this latter case shows a Hopf bifurcation that drives the flow field from a symmetric solution,

presented in the previous section, to a state which is periodic in time. This transition occurs

for the solid case at a critical Reynolds number Recr ≈ 35 and the resulting flow field is

characterized by a nondimensional time frequency equal to Stsolid = fd/U∞ ≈ 0.106.

The results from the global stability analysis applied to the porous cases confirm that

the nature of the instability is preserved for a wide range of values of the permeability.

However, it is possible to identify configurations where the steady and symmetric solution

remains stable for all the Reynolds numbers in the range considered here. This behaviour

is shown in Fig. 9, which reports the neutral stability curve (red line), i.e. the curve that

corresponds to the cases with null growth rate, λ0 = 0, for different values of Da, together

with the boundary curves that identify the different base flow configurations described in

the previous section. From Fig. 9, it is also possible to define, for a given Re, a threshold

value of the permeability, Dastabcr , beyond which the occurrence of the Hopf bifurcation is

suppressed. The value of the Dastabcr depends on the Reynolds number and it reaches a

maximum value of 1.2× 10−3 for Re ≃ 80, and it decreases as Re is further increased. This
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Figure 11. Marginal stability curve (red line) and (a) iso-contours of the length of the recirculation

bubble ∆L (colour lines), measured on the centerline.
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behaviour is highlighted in Fig. 11, where the neutral curve is reported together with the

iso-contours of ∆L in the Re − Da plane for 1 × 10−4 < Da < 1.5 × 10−3. It results that

the lower branch of the neutral curve follows the iso-contours of ∆L for a wide range of Da

up to Da = Dastabcr . For higher Re, the neutral curve crosses the iso-contours and enters in

the area of the flow parameters where no recirculation bubbles is present in the base flow.

Thus, for particular couples of (Da,Re), the flow is globally unstable even if no recirculation

regions are present, as for instance for Da = 8× 10−4 and Re=185. The possibility to have

a global instability is in fact linked to the presence of a sufficiently strong wake defect and it

is not directly related to the presence of regions of counterflow (see for example [10], [23] for

details). It is also interesting to observe from fig. 11 that, for some fixed values of Da, e.g.

Da = 10−3, the baseflow becomes first unstable and then recovers again a steady solution

when the Reynolds number is further increased.

In terms of spatial distribution of the leading eigenvectors, the global modes are affected

by the characteristics of the base flow. In particular, the downstream displacement of the

recirculation regions suggests that also the perturbations originate in a region which moves

progressively downstream as Re is increased. This behaviour is visible in Fig. 13, where the

marginal global modes for Re = 52 and Re = 132 at Da = 10−3 are reported.

The global stability analysis also provides information about the frequency of oscillation

of the corresponding unsteady linear mode. In particular, as mentioned in section II B, the

imaginary part of the leading eigenvalue, i.e. Im(σ0) = ω0, is the angular frequency of the

global mode and it well approximates the oscillation frequency of the nonlinear limit cycle

when the marginality conditions are considered, i.e. for Re = Recr and Re(σ0) = λ0 = 0 [24].

In the present case, the behaviour of the strouhal number, St = ω0d/2πU∞, in the Da−Re

plane can be then obtained following the evolution of the eigenfrequency ω0 along the neutral

stability curve presented in figure 9. This result is reported in figure 12, where the St is

depicted in the Da−Re space. As a general observation, the effect of the permeability on the

frequency results to be weak, at least for the considered geometrical configuration, leading to

a maximum variation of about 8 % on the non−dimensional frequency. In specific, starting

at low values of Da, e.g. Da = 1×10−8, the St number remains approximatively constant up

to Da = 1×10−6, close to the value corresponding to the solid case, i.e. St ≈ Stsolid ≈ 0.106.

Following the neutral curve, the non−dimensional frequency starts to increase, reaching the

maximum values of 0.115 for Da = 1.15× 10−3 and Re = 96. Lastly, following the neutral
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Figure 12. Behaviour of the non−dimensional frequency, St, of the leading global mode along the

neutral stability curve in the Da−Re plane.

curve at higher Re, the St slightly decreases up to a value of 0.112 for Da = 8 × 10−4 and

Re = 195.

From the literature it is known that the wavemaker of the vortex shedding instability is

localised in the recirculation region past a solid bluff body (see, for example, [25]). Conse-

quently, it is expected that the wavemaker region for a porous body follows the position of

the recirculation region or, in general, the position of the maximum wake velocity defect.

Following [15], the wavemaker can be identified evaluating the inner product between direct

mode and adjoint global mode. As an example, the adjoint leading modes are reported in

Fig. 14, for the same cases of the direct modes shown in Fig. 13. The shape of the structural

sensitivity is finally reported in Fig. 15.
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Figure 13. Real part of the streamwise component of the direct eigenvector at Da = 10−3 and (a)

Re = 52, (b) Re = 132, both on the marginal stability curve.

Figure 14. Real part of the streamwise component of the adjoint eigenvector at Da = 10−3 and

(a) Re = 52, (b)Re = 132.
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Figure 15. Sensitivity to structural perturbations of the bifurcating global mode at (a) Re = 45,

Da = 10−10, (b) Re = 45,Da = 9×10−4, (c) Re = 100,Da = 9×10−4, (d) Re = 160, Da = 9×10−4

(all the maps are here normalized with the local maximum of structural sensitivity).
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When low values of Da are considered, the wavemaker is located close to the body simi-

larly to the solid case (Fig. 15a). However, when Re and Da are increased, the wavemaker

moves downstream together with the recirculation regions (Fig. 15b,c). Finally, even if the

recirculation bubbles are not present anymore, the wavemaker still persists in the velocity

deficit region (Fig. 15d). Moreover, in this latter case, the structural sensitivity presents

a more complex spatial distribution, with no-negligible values not only in the near wake of

the body but also in the region further downstream in the wake. The results confirm that,

even without a recirculation region, a sufficiently strong wake defect can sustain an unsteady

global instability.

In order to gain more insight on this aspect the spatio-temporal stability properties of

the flow are given in the next section.

3. Spatio-temporal stability analysis

In this section, the local stability properties of the wake past porous cylinders are analyzed

in the framework of spatio-temporal stability analysis. In particular, the representative

case of Reynolds number of Re = 185 and aspect ratio t/d = 0.25 is here discussed for

three values of permeability, one globally unstable with a recirculation region, one globally

unstable but without recirculation and one which is globally stable. The objective is to

investigate the region of absolute instability in the three considered wakes so as to provide a

further viewpoint so as to explain the behavior observed by global stability analysis described

in the previous section. Specifically, at Da = 7 × 10−4, the base flow is globally unstable

and it is characterized by a large absolute unstable region, which includes the recirculation

region in the wake (Fig. 16a). The extension of the absolute region corresponds indeed

to the locations where the streamwise velocity at y = 0 is less then 0.05U∞, according to

the results of [10]. As anticipated, a counterflow is not necessary for the wake profile to be

absolutely unstable. As a consequence, there exists a range of Da such that the recirculation

bubble is not present, but the a global unstable mode is supported by a sufficiently elongated

region of absolute instability provided that the wake deficit is stronger than approximately

5%. This scenario is confirmed in Fig. 16b, where the Darcy number is set to Da = 8×10−4.

Finally, further increasing the permeability, the wake deficit is recovered and the absolute

region reduces or, eventually, disappears and, as a results, all the wake profiles become
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convectively unstable. In this case the flow becomes globally stable, as in Fig. 16c for

Da = 9 × 10−4. The results in terms of absolute growth rate are then summarized in Fig.

16d, where the stabilizing effect of the permeability, k, on the absolute unstable regions can

be observed.

Summarising, the results of this section show the link between the absolute instability

region and the global instability of the considered wakes. It is shown that the region of

absolute instability moves downstream together with the recirculation region or, in general,
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Figure 16. Local stability properties of the wake behind a porous disk with t/d = 0.25, Re = 185

and increasing Da. From top down, the absolute growth rate ω0i at different streamwise locations,

the baseflow streamlines, and the streamwise component of the velocity evaluated at the centerline,

for (a) Da = 7× 10−4, (b) Da = 8× 10−4,(c) Da = 9× 10−4. (d) The absolute growth rate ω0i for

the three cases reported.
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with the region where the wake velocity defect is concentrated. Moreover, it is clear by this

analysis that global instability is related to the velocity defect more than to the recirculation

regions, providing further quantitative support to what observed by global stability analysis

for those unstable configurations where recirculations are absent.

B. Effect of the porosity and of the aspect ratios on the stability of porous rect-

angular cylinders.

The previous section shows the results for configurations at different values of the per-

meability Da but with fixed porosity φ = 0.65 and thickness-to-height ratio t/d = 0.25. In

this section, the effect of these two parameters on the flow characteristics is investigated.

Firstly, the effect of the porosity on the stability characteristics is investigated for the case

with t/d = 0.25. The marginal stability curves and the region of the parameter space where

the baseflow has not recirculation regions, i.e. ∆L = 0, have been evaluated for porosities

of φ = 0.80 and φ = 0.95. The results, reported in Fig. 17 together with the ones obtained

for φ = 0.65, show that the porosity weakly affects the stability properties and the main

discrepancies are concentred in the upper branches of the neutral curves. In general, the

qualitative behaviour is preserved and, moreover, in all the cases the iso-contours of ∆L = 0

cross the neutral curves, identifying regions in the (Re,Da) space where the self-sustained

oscillations are present even in absence of recirculation regions.

Finally, the effect of the thickness-to-height ratio t/d of the cylinder on the stability

properties is studied for the case with porosity equal to φ = 0.65 and different values of Da.

In particular, the t/d is here varied from 0.01, i.e. thin plate configuration, to 1, i.e. square

cylinder configuration. The results in terms of neutral stability curves, reported in Fig. 18a

normalizing the critical Reyonlds number with the corresponding values for the non-porous

cases, show that the qualitative behaviour remains the same for all the cases, although

the curves are shifted along the Da−axis. In particular, it is possible to observe that the

variation of t/d mainly modifies the contribution of the Darcy terms in the equations (6)

and, thus, the effect on the stability curve is expected to be linear with t/d. This speculation

is indeed confirmed in Fig. 18b, where the neutral stability curves are reported using the

Darcy number based on the body’s cross-section, i.e. Da∗ = Da · (t/d)−1 = k/(td). All the

curves roughly collapse onto the same curve, as clearly visibile in Fig. 18b, especially for
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Figure 17. Effect of the porosity on the bifurcation diagram and on the isocontour ∆L = 0, for

φ = 0.65 �, φ = 0.8 � and φ = 0.95 ◮; isocontours of ∆L = 0 are reported as dashed lines of the

two cases φ = 0.8 and φ = 0.95, highlighting with a black circle its intersection with the neutral

stability curve (see the zoomed view at the center of the figure).

the cylinders with t/d < 0.5. This new definition of the non-dimensional permeability Da∗

allows, finally, to identify a sharp threshold DaT
∗ = 5 × 10−3 (Fig. 18b) valid for all the

considered geometries beyond which the baseflow is always linearly stable and, then, the

occurrence of time periodic wake solutions is unconditionally prevented in the parameter

space here considered.
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Figure 18. Effect of the thickness-to-height ratio t/d on the bifurcation diagram. (a) Neutral

stability curves in the Da−Recr plane and (b) using a modified Da∗ = Da · (t/d)−1 = k/(td). The

considered cases are: t/d = 0.01 �, t/d = 0.1 H, t/d = 0.25 •, t/d = 0.5 �, t/d = 1.0 ◮.

V. CONCLUSIONS

In this work the characteristics and the stability properties of the steady flow around

porous rectangular cylinders at low-moderate Reynolds numbers have been investigated.

The problem has been tackled numerically using a mathematical model for the flow inside

the porous medium that is based on the volume averaged Navier Stokes equations. The re-

sulting formulation, which takes into account both the viscous and inertial terms inside the

porous medium, has been validated against direct numerical simulations documented in the

literature [22]. Once validated, the resulting numerical tools have been applied to study the

flow past rectangular cylinders by systematically varying their aspect ratio, the permeability

(by varying the Darcy number), the porosity and the flow Reynolds number. It results that

the permeability strongly affects the flow pattern, while a weak effect on the characteristics

of the flow has been observed varying the porosity. These behaviour are in agreement with

the results reported in [7, 8], where the author showed that the force coefficients and the

frequency of the oscillating wake past a porous square cylinder depend essentially only on

the permeability of the body.

For all Reynolds numbers and thickness-to-height-ratios investigated, the baseflow is char-

acterized by a recirculation region that gradually becomes smaller and detaches from the
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body as the value of Da is increased, up to a critical value beyond which the recirculation

region vanishes. The occurrence of similar flow patterns have been already documented in

[2], where the flow past a porous disk was numerically studied. In the paper, the author

also documented a reduction of the drag coefficient with the permeability, similarly of what

observed in the present planar rectangular case. This behavior has been here explained

in terms of modification of the vorticity field due to the suction and blowing effect from

the body walls: when the permeability increases, the wake vorticity decreases yielding a

reduction of the induced counter velocity in the wake leading, in turn, to a smaller and

weaker recirculation length in the streamwise direction. The mechanism here described is

similar to the effect of a base bleed on an unsteady wake: depending on the configuration,

there exist values of ratio between bleed and incoming velocity for which the wake shows a

steady quiescent flow region, where the vorticity of the two separated shear layers gradually

decreases (see, for instance, [26]).

The position and the elongation of the recirculation regions, both of which depend on the

body porosity and on the flow Reynolds number, are seen to affect the stability properties of

the baseflow. In particular, for a sufficiently low value of Da, two complex-conjugate global

modes associated with the vortex shedding become unstable when the flow Reynolds number

exceeds a critical value. As Re is further increased, depending on the value of Da, the flow

can become stable again. Moreover, if Re is kept constant and Da is varied, for each value of

Re, a critical Darcy number Dacr exists beyond which the recirculation region vanishes and

the flow becomes stable. This sudden modification of the flow regime, i.e. from oscillatory to

steady flow, confirms what suggested in the seminal experimental study by Castro [6] where,

for the flow past a perforated plates, the author demonstrated the existence of regimes at

high porosity where periodic vortex shedding in the wake is suppressed.

It has been here observed that the marginal stability curve in the Da − Re plane well

correlates with one iso-level of ∆L, i.e. the length of the recirculation region. Interestingly,

the flow can be unstable even without a recirculation region if a sufficiently elongated region

exists with a wake defect larger than 95%. This behaviour has been readily explained by

investigating the local stability properties of the baseflow and by identifying the region of

absolute instability in the wake. This analysis shows that when the velocity on the symmetry

axis is less than the 5% of the free-stream velocity the baseflow can sustain locally absolutely

unstable perturbations. The baseflow patterns and their stability properties are seen to only
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dependent weakly on the porosity of the body for a given permeability. On the other hand,

when the thickness-to-height ratio t/d is increased the corresponding stability curves are

shifted towards increasing Darcy numbers meaning that higher permeability is needed to

stabilize the wake past bodies which are progressively more elongated in the streamwise

direction. It has also been observed that the neutral stability curves collapse on each other

when they are scaled using a Darcy number based on the body’s cross-section. Moreover,

the existence of a general critical permeability that ensures the suppression of oscillating

wakes for all the cases here presented is of fundamental importance and we expect that this

feature will be identified also for wakes of other bluff bodies that show similar bifurcation

scenarios than the one here investigated.

It can be concluded that the body porosity has a significant impact not only on the

baseflow configurations, as already pointed out in the literature (as, for example, in [2]),

but also on its stability properties. Some of the observed patterns are different from those

we think for wakes past impervious bluff bodies. These include, for instance, separation

regions that are detached from the body and from which vortex shedding takes place, or

vortex shedding originating from regions of flow which is slowed by the porous body but not

recirculating and positioned downstream of the body. For all these unusual cases we have

provided here a full characterisation and explanation, using numerical simulation, local and

global stability analysis.

From the analysis described here it is clear that the permeability can be an effective control

to stabilize the wake past porous bluff bodies. Permeability can be the result evolution in

nature, as it is probably the case for particular seeds as described in the introduction. In

this respect, the methods and the results provided here could help in understanding possible

optimisation criteria that nature has pursued by evolution, which is a very important topic in

research. Moreover, the results here presented suggest how permeability can be designed on

purpose in specific engineering applications for flow control, at least for what concerns wakes

past plane bluff bodies. Finally the effects of the permeability, that have been unraveled

here in the specific case of rectangular cylinders, have potential impact in many other flow

cases of interest, both from the fundamental and the practical viewpoints.
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Appendix A: Mathematical model for the flow inside the porous medium

The body is assumed to be a homogeneous and isotropic porous medium which char-

acteristics are its porosity φ and permeability k. Referring to a representative volume

of the porous medium V (Fig. 1a), we define the superficial average velocity 〈ub〉|x =

1

V

∫

Vf
ub(x+xf ) dΩ and the intrinsic average velocity 〈ub〉β|x = 1

Vf

∫

Vf
ub(x+xf ) dΩ, and the

same definitions are valid for the pressure. Using an averaging technique, i.e. ub = 〈ub〉β+u′
b

(see [18, 19]), the equations for the flow through a porous medium can be written as:

∇ · 〈ub〉 = 0, (A1)

ρ

φ

∂〈ub〉
∂t

+
ρ

φ2
〈ub〉 · ∇〈ub〉+

ρ

φ
∇ · 〈u′

b · u′
b〉

︸ ︷︷ ︸

I−subfilter scale stress

=

= −∇〈pb〉β +
µ

φ
∇2〈ub〉 − µ/k〈ub〉

︸ ︷︷ ︸

II−Darcy term

− Fµ/k〈ub〉
︸ ︷︷ ︸

III−Forchheimer term

(A2)

In this problem we can neglect, without effects on the flow behaviour, the terms (I) and

(III). For what concerns the term (I), it is an additional contribution to diffusion, usually

called mechanical dispersion. Using a similarity with turbulent stresses (see [27]):

ρ

φ
〈u′

b · u′
b〉ij = −µmech(

∂〈ubi〉
∂xj

+
∂〈ubj〉
∂xi

) (A3)

We can estimate the mechanical viscosity using µmech = cglβ
√
e, where e = (〈u′

bi
u′
bi
〉)/2 ∼

〈ubi〉2/2, lβ is the microscopic characteristic length (lβ ∼
√
k), and cg is a coefficient that

depends on the pores geometry.

Using as reference quantities the incoming velocity U and the height of the rectangle d,

we define the Reynolds number Re = ρUd/µ and the Darcy number Da = k/d2.

Defining the Reynolds number Reβ based on the microscopic characteristic length Reβ =
ρ〈ub〉β lβ

µ
∼ 〈ub〉β

U
ReDa1/2, where

〈ub〉β
U

∼ 10−1, we can evaluate the ratio between the mechan-

ical dispersion and the Darcy term,

Rm =

ρ
φ2∇ · 〈u′

b · u′
b〉i

µ/k〈ubi〉
∼ ρ

√
k|〈ub〉|〈ubi〉

d2
k

µ
∼ ReβDa (A4)

As an example, Re = 200 and Da = 10−3; so Rm ∼ 10−4; so we can neglect the subfilter

scale stress.
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For what concerns the Forchheimer term, according to [18] F ∼ cF ·Reβ, with cF ∼ 10−2;

the order of magnitude of the ratio between the Forchheimer term and the Darcy term is

10−3, and so we neglect also this term. In order to verify this assumption, some simulations

have been performed (which are not reported here for the sake of brevity): an appreciable

effect on the results is not observed; in particular, the variation of the pressure drop in the

body is around the 1%, for Re = 200 and Da = 10−3 .

The equations are made nondimensional using the incoming velocity U and the height of

the rectangle d and they can be written as follows:

• Pure fluid:

∇ · ũ = 0 (A5a)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Re
∇2ũ (A5b)

• Porous medium:

∇ · 〈ũb〉 = 0 (A6a)

1

φ

∂〈ũb〉
∂t̃

+
1

φ2
〈ũb〉 · ∇〈ũb〉 = −∇〈p̃b〉β +

1

φRe
∇2〈ũb〉 −

1

ReDa
〈ũb〉 (A6b)

where the superscripts ·̃ represent the nondimensional quantities.

Appendix B: Results of global stability analysis obtained using various meshes for

the cylinder with t/d=0.25

In this section, the effect of the spatial extent of the computational domain and vertex

densities on the results of the global stability analysis is presented. The vertex densities are

here controlled using different regions of refinement in the computational domain (Fig. 2).

The results of the mesh convergence are reported in Table I, for the case t/d = 0.25,

Re = 160 and Da = 9 × 10−4 for five different meshes, denoted M1 to M5. The meshes

M1 and M2 differ only for the size of the computational domain. In particular, for M1,

x−∞ = −50, x∞ = 75 and y∞ = 40, whereas for M2, x−∞ = −25, x∞ = 50 and y∞ = 20

(Fig. 2). Comparing the leading global eigenvalues obtained for these two meshes, it is

clear that the domain size has a negligible impact on the results, at least in the range of

the parameters here considered. Thus, keeping constant the domain size of M2, the vertex

density is progressively increased in the meshes M3, M4 and M5. The corresponding results
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Mesh x−∞ x+∞ y∞ nL nC n1 n2 n3 ns nt 103λ ω

M1 -50 75 40 160 120 6.3 4.2 3.1 0.4 86798 -1.98711 0.70191

M2 -25 50 20 160 120 6.3 4.2 3.1 0.8 43910 -1.64652 0.70959

M3 -25 50 20 160 120 9.6 7.7 3.8 1.1 81370 -1.73814 0.70984

M4 -25 50 20 160 120 12.5 8.3 6.2 1.5 131438 -1.78355 0.70973

M5 -25 50 20 160 120 15 10 7.4 1.8 169862 -1.81198 0.70984

Table I. Results of the mesh convergence for the configuration t/d = 0.25, Re = 160 and Da =

9 × 10−4. Referring to Fig. 2, the characteristic parameters of the meshes are: x−∞, x+∞ and

y∞ represent the coordinates of the computational domain, respectively; nL and nC designate the

vertex densities on the vertical and horizontal edge of the cylinder; n1, n2, n3 and ns label the

vertex densities on the different regions of refinement of the computational domain; nt is the total

number of the elements of the grid. λ and ω are, respectively, the real and imaginary part of

resulting global eigenvalues.

show that also the the vertex densities have a small impact on the global stability results

and, in particular, three significant digits remain constant for all the computations here

performed.

Summarizing, the results of the convergence analysis show that the spatial discretization

employed in M2 is suitable to ensure the reliability of the results of the global stability

analysis and, thus, it has been chosen to present all the results reported in the paper.
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