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Dynamic Resilient Containment Control
in Multi-Robot Systems
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Abstract—In this paper we study the dynamic resilient contain-
ment control problem for continuous-time multi-robot systems
(MRSs), i.e., the problem of designing a local interaction protocol
that drives a set of robots, namely the followers, toward a region
delimited by the positions of another set of robots, namely
the leaders, under the presence of adversarial robots in the
network. In our setting, all robots are anonymous, i.e., they do
not recognize the identity or class of other robots. We consider as
adversarial all those robots that intentionally or accidentally try
to disrupt the objective of the multi-robot system, e.g., robots
that are being hijacked by a cyber-physical attack or have
experienced a fault. Under specific topological conditions defined
by the notion of (r,s)-robustness, our control strategy is proven to
be successful in driving the followers toward the target region,
namely a hypercube, in finite-time. It is also proven that the
followers cannot escape the moving containment area despite the
persistent influence of anonymous adversarial robots. Numerical
results with a team of 44 robots are provided to corroborate the
theoretical findings.

Index Terms—Containment control, distributed algorithms,
large scale networks, multi-robot systems, resilient protocols.

I. INTRODUCTION

MULTI-Agent Systems (MASs) consist in large scale
networks of autonomous dynamical systems, capable of

observing the environment through their sensors and reacting
to it using their actuators. The ultimate goal of a MAS is to
cooperate in order to reach a global objective that the single
agent is not capable of reaching individually. Thanks to their
capability to model large networks of mobile robots or swarms,
in the last decades they gained a lot of interest both in the
academic and industrial environments, see for instance [1]–[3].
Multi-agent systems that involve robotic agents and/or swarms
are commonly known as Multi-Robot Systems (MRSs). One
of the great strengths of MRSs is the relatively small cost
of deployment of a large number of heterogeneous robotics
units that can fulfill tasks that the humans would not be
able to do or that would be too dangerous for them, e.g.,
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environmental exploration or search and rescue operations in
hostile environments like caves or areas subjected to severe
weather. Indeed, MRSs are envisioned to be exploited in
futuristic scenarios where a large number of robots provides
resiliency, flexibility and cost reduction. One of such futuristic
applications consist of satellite swarms which find strength in
numbers by being able to continue their operation and provide
service coverage despite outages, faults, or attacks [4]. Another
futuristic application consists in swarms of autonomous drones
that thanks to eventual improvements of their intelligence
enable a single pilot to control hundreds of them [5].

In order to design an effective and reliable MRS it is
necessary to address various challenges. One of the most
important ones definitely regards the locality of information,
i.e., the robotic agents in the network usually possess or can
communicate data only with agents which are close to them,
known as neighbors, hence great effort has to be devoted into
the design of distributed protocols, which enable the MRS
to achieve the desired objective using only local sensing and
communication. Another great challenge consists in being able
to design a MRS able to keep working under faults of sensor
or actuators, or even under cyber-physical attacks. While it is
generally true that there is strength in numbers, it is also true,
unfortunately, that most formal models of MRSs show that the
behavior that emerges from the local interactions of agents
through sensing or communication is extremely vulnerable
to the malfunction of single agents, i.e., a single agent can
disrupt, accidentally or intentionally, the emergent behavior of
a large scale network by executing movements different from
the nominal control action. In this work we aim to design a
distributed control protocol able to achieve the global objective
under the presence of adversarial agents, which may arise from
either faults or intentional cyber-physical attacks on the robotic
network.

A. Literature Review

In this work we address the dynamic resilient containment
control problem, i.e., the problem of letting a set of followers
reach and then remain confined within an area defined by
the positions of a set of possibly moving leaders, under the
existence of adversarial agents, i.e., robots that may have
suffered a cyber-attack or may have lost the capability of
executing the prescribed control protocol.

In the last decade, the containment problem has received
a lot of interest in the research community with several
studies such as [6]–[10] that address both the static and
the dynamic versions of the problem. The static containment
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control problem considers a containment region that is fixed in
space since the leaders that define it are stationary whereas the
dynamic version involves leaders that can possibly evolve and
move in their domain. The static version has been investigated
in [6] where the authors propose a distributed control strategy
for a team of unicycles able to drive the followers inside the
convex hull of a set of static leaders while also preserving
the connectivity of the interactions among the agents in the
network. Another example is [7] where the authors developed
an average consensus protocol that is also capable of achieving
the static containment problem under directed topology. A
hybrid containment problem has been studied in [8] where
the authors in the context of partial difference equations and
Laplacian feedback proposed a stop-and-go policy to move the
followers while keeping intermittently the containment region
active. In [9] the authors consider instead a Lyapunov based
approach applied to linear local interaction protocols under
fixed and switching network topologies that is able to drive
the followers to a convex hull defined by the positions of the
leaders in both the static and dynamic version of the problem.
The two different contexts of the containment problem are
addressed also in [10] where the authors provide a sliding
mode controller for a second order multi-agent system that is
proven to asymptotically reach a containment area when the
leaders are static whereas in the case of dynamic leaders with
bounded input the followers are only guaranteed to stay close
to the containment area.

In recent years, great efforts have also been devoted to
the study of secure distributed protocols [11]–[15]. In [11]
the authors propose a distributed algorithm to asymptotically
estimate a measurement under the presence of limited sensor
attacks in the network. A different approach is proposed
in [12], [13] where the authors introduce a new notion of
topology robustness and a new distributed protocol, known as
W-MSR algorithm, that is able to solve the consensus protocol
under such topological conditions. The basic idea of the
W-MSR protocol consists in collecting the local information
of the neighbors and then discarding the data coming from
the farthest neighbors. This kind of approach and notion of
robustness became quite popular at the state of the art, with
recent examples as [16]–[20]. For example, the author in [16]
developed a slightly edited version of the W-MSR protocol
to achieve resilient consensus for a hybrid multi-agent system
composed of both continuous time and discrete time dynamical
agents whereas in [17] the authors analyze the triangular and
square lattice robot formation interactions in order to guarantee
the necessary robustness to achieve resilient consensus.

In this work, our proposed robust interaction protocol builds
upon the notion of robustness introduced in [12], [13]. Ap-
plications of secure protocols to the containment problem are
still relatively scarce with recent example like [21], [22] that
address the output resilient containment problem. In [21] the
authors propose a distributed observer-based protocol that is
able to guarantee the uniformly ultimately boundedness of
the tracking error under the presence of adversarial agents
and sensor faults. In [22] instead the authors consider the
case of signal attacks on the dynamics of the followers and
propose an approach based on reinforcement learning to solve

the problem after it has been converted in an equivalent H∞
tracking problem. An alternative research direction to network
robustness is to develop protocols based on fault detection and
identification. These methods rely on the possibility to detect
the adversarial agents, exploiting the presence of external
agents [23] or requiring strict topological conditions [24].

Our distributed protocol is a discontinuous control action
based on the sign function. At the state of the art, many
works [25]–[32] have proposed distributed protocols based
on sign function able to solve consensus and optimization
problems. Just to mention a few, in [25] the authors proposed
four similar finite-time protocols for a high order multi-agent
system able to reach consensus in the case of a leaderless
network or able to track the leaders if present. In [26]
distributed optimization problems for convex functions have
instead been addressed. The authors were able to prove that
their algorithm is either able to reach consensus in finite-time
while asymptotically minimizing the cost functional or either
they are able to prove the finite-time convergence for both.
Distributed control strategies that use sign function have also
been shown to have a certain degree of robustness with respect
to disturbances [33]–[35] and uncooperative agents [36]–[38].
In [33] the authors introduced a distributed protocol for a
second order multi-agent system able to reach consensus in
finite-time under the presence of bounded disturbances while
also maintaining the initial topology. A finite-time consensus
on the median value is analyzed in [36], [39] where the
authors showed that the proposed protocol is also robust to
uncooperative agents if the network possesses a topological
property known as k-safety.

Finally, our convergence analysis is based on non-smooth
Lyapunov analysis. We refer the reader to [40]–[45] for a
comprehensive overview on the topic.

B. Main Contribution

In this paper, we consider a distributed sign-based local
interaction protocol for a first order multi-robot system that
has already been studied in the literature for the consensus
problem, e.g. [28]–[30], and characterize its properties in
regard to the dynamic resilient containment problem. The
MRS is proven to be robust against adversarial robotic agents
if certain topological conditions, known as (r, s)-robustness,
are met. In particular, we characterize a sufficient graph
theoretical condition that is able to guarantee the achievement
of the dynamic resilient containment of the followers in the
network.

Assumptions on the multi-robot system:
1) The robots in the network are all anonymous, i.e.,

incapable of discerning if their neighbors are followers,
leaders, or adversarial agents.

2) The robots do not have access to absolute positions
(GPS).

3) The robots are able measure the presence of their neigh-
bors with respect to their common bearing directions,
i.e., each agent can pinpoint the exact orthant in which
each neighbor lies with respect to the common bearing
directions and with respect to its own reference frame.
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4) The robots share d − 1 common bearing directions.
Methods to achieve common bearings exist, such as
the one presented in [46], but require measurement
of relative distance and bearing angles instead of just
presence.

5) The dynamics of the position of each robot can be
approximated by a continuous-time d-dimensional integ-
rator. Each follower and leader have bounded velocity.

In our preliminary work presented in [47] we addressed the
static containment problem under the presence of adversarial
agents in the network, providing a conservative graph theor-
etical condition, denoted as (k,S)-connectivity, that enables a
control law based on the sign function to achieve the desired
objective. In this work, as opposed to [47], we propose and
characterize several properties of a different and much less
conservative graph theoretical condition based on the notion of
(r, s)-robustness, while also considering the case of dynamic
leaders, i.e., robot leaders can move with bounded speed.
Furthermore, we extend our results to consider the case of
a time-varying switching graph.

C. Structure of the paper

The paper is organized as follows, in Section II fundamental
results on non-smooth analysis and preliminaries on the mod-
eling of the network are given. In Section III the dynamic
resilient containment control problem is formally stated and
the local interaction protocol is presented. In Section IV the
convergence properties of the proposed control strategy are
discussed. In Section V numerical simulations that illustrate
the effectiveness of the results are presented and finally in
Section VI concluding remarks are given.

II. PRELIMINARIES

A. Non-smooth analysis

In this section, we review some fundamental results con-
cerning non-smooth analysis that will be used hereafter in
the paper to investigate the convergence properties of the
considered distributed protocol.

Consider the (possibly discontinuous) dynamical system

ẋ = f(x), x ∈ Rn, x(0) = x0 ∈ Rn, (1)

where f(x) : Rn → Rn, is defined almost everywhere, i.e., it
is defined for every x ∈ Rn \W , where W is a subset of Rn
of measure zero. Furthermore, f(x) is measurable in an open
region Q ⊂ Rn and for all compact sets D ⊂ Q there exists a
constant AD such that ‖f(x)‖≤AD almost everywhere in D.

If the differential equation (1) has discontinuous right-hand
side, following [45] we understand the corresponding solution
in the so-called Filippov sense as the solution of an appropriate
differential inclusion, as explained in the next definition.

Definition 1 (Filippov Solution). A vector function x(·) is
called solution of (1) on a time interval [t0, ti] if x(·) is
absolutely continuous on [t0, ti] and for almost all t ∈ [t0, ti]

ẋ ∈ K[f ](x), (2)

where K[f ](x) : Rn → 2R
n

is defined as

K[f ](x) ,
⋂
δ>0

⋂
µ{H}=0

co{f(B(x, δ) \H)}, (3)

where
⋂
µ{H}=0 denotes the intersection over all sets H of

Lebesgue measure zero, B(x, δ) the ball of radius δ centered
at x, co the convex closure, and 2R

n

the set of subsets of Rn.

Briefly, the idea of the Filippov’s solution is that the tangent
vector to a solution, where it exists, must lie in the convex
closure of the values of the vector field in progressively smaller
neighborhoods around the solution point. A very important
aspect of this definition is given by the possibility of discarding
sets of measure zero. Indeed, this technical detail allows
solutions to be defined even at points where the vector field
itself is not defined. If f(x) is measurable and locally bounded
then the set-valued map K[f ](x) is upper semicontinuous,
compact, convex valued and locally bounded so that the
differential inclusion (2) possesses a Filippov solution for each
initial condition x0.

Let us now recall the definition of the Clarke’s Generalized
Gradient.

Definition 2 (Clarke’s Generalized Gradient [44]). Let
V (x) : Rn → R be a locally Lipschitz continuous function.
Its Clarke’s generalized gradient ∂V (x) is defined as

∂V (x) , co
{

lim
i→∞

∇V (xi)|xi → x, xi /∈ ΩV ∪N
}
, (4)

where ∇V denotes the conventional gradient, xi ∈ Rn
represents a point of an infinite succession which converges
to x ∈ Rn as i grows to infinity, ΩV is a set of Lebesgue
measure zero which contains all points where ∇V (x) does
not exist, and N is an arbitrary set of measure zero.

We now review the chain rule which allows to differenti-
ate Lipschitz regular functions along the Filippov’s solution
trajectories.

Theorem 1 (Chain Rule [42]). Let x(·) be a Filippov solution
to (1) and V : Rn → R be a Lipschitz and, in addi-
tion, regular function. Then V (x) is absolutely continuous,
(d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃V (x), (5)

where the set-valued Lie derivative ˙̃V (x) is defined as

˙̃V (x) ,
⋂

ξ∈∂V (x(t))

ξTK[f ](x). (6)

Let us now recall a revised version of the Generalized Lya-
punov theorem given in [41] based on the results given in [42].
This will prove useful to establish finite-time stability results
for dynamical systems described by differential equations with
discontinuous right-hand side.

Theorem 2 (Finite-Time Stability Theorem). Let x(·) be a
Filippov solution to (1) and V (x) : Rn → R, be a time
independent regular function such that V (x) = 0 ∀x ∈ C(t)
and V (x) > 0 ∀x 6∈ C(t), with C(t) ∈ Rn a compact set. Let
x : R→ Rn and V (x(t)) be absolutely continuous on [t0,∞)
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Figure 1. Example of sensing of presence between robots i and j utilizing
bearing angle measurements among robots.

with d/dt (V (x)) ≤ −µ < 0 with µ > 0 for ∀x 6∈ C(t).
Then, V (x(t)) converges to 0 in finite-time and x(t) reaches
the compact set C(t) in finite-time as well.

At this point, let us now define the discontinuous “sign”
function, the discontinuous and set-valued “SIGN” function
and the discontinuous vector “sign” function as follows

sign(y) =


1, if y > 0,

0, if y = 0,

−1, if y < 1,

y ∈ R, (7)

SIGN (y) ∈


1 if y > 0,

[−1, 1] if y = 0,

−1 if y < 0.

y ∈ R, (8)

sign(y) =
[
sign(y1), · · · , sign(yn)

]T
, y ∈ Rn. (9)

B. Robot and Network Modeling

Let G = (V, E) be an undirected graph, where
V = {1, . . . , n} is the set of robotic agents and E ⊆ {V ×V}
is the set of edges representing their ability to sense each
other. More precisely, an edge (i, j) belongs to the set E if
robot i can sense the presence of robot j. In addition, let
Ni = {j ∈ V : (i, j) ∈ E} be the set of neighbors of
robot i. Note that in a d dimensional Euclidean space, with
d > 0, sensing of presence under the assumption of d − 1
common bearing directions can be realized for example with
bearing angle measurements with respect to the d−1 common
bearing directions. Figure 1 depicts a scenario in d = 2 where
a common north bearing direction is shared between robot i
and robot j. The bearing angle measurements with respect to
the common north, represented here by ϕij and ϕji, allow the
robots to pinpoint the quadrants (orthants in generic multi-
dimensional spaces) in which their neighbors lie with respect
to their own reference frames. We want also to point out
that since the interactions among the robots are encoded by
a sensing graph, the robots are not susceptible to spoofing
attacks and similar threats that exploit exchanges of messages.

Let xi(t) = [xi,1(t), . . . , xi,d(t)]
T ∈ Rd be the state of

the robot i representing its position where xi,p(t) denotes the
p-th component of the state xi(t). In addition, let us assume
that the robots evolve with the single integrator dynamics,
i.e., ẋi(t) = ui(t), i ∈ V where ui(t) ∈ Rd is the local

control input to be later specified. Let us also recall the
definition of the infinity norm ‖ · ‖∞ that is defined as the
largest among the components absolute value of a vector, i.e.,
‖xi(t)‖∞ = maxp∈{1,...,d}{|xi,p(t)|}.

A path in a graph G is a sequence of consecutive edges
connecting two nodes. A graph is said to be connected if there
exists a path between any pair of nodes. A cut is a partition
of the node set V in two disjoint subsets S1,S2 ⊂ V which
are joined by at least one edge.

We now generalize the notion of cut for couples of disjoint
subsets of the node set V with the next definition of general-
ized cut set.

Definition 3 (Generalized cut set). Consider an undirec-
ted graph G = (V, E) and two non-empty disjoint node
subsets S1,S2 ⊂ V . Let the generalized cut set of S1
and S2, denoted as (S1,S2), be defined as the set of
edges with one endpoint in S1 and the other in S2, i.e.,
(S1,S2) = {(i, j) ∈ E : i ∈ S1, j ∈ S2}.

In the rest of the paper we denote the number of edges
belonging to the generalized cut set (S1,S2) as |(S1,S2)|.

We now report the notions of reachability and robustness
introduced in [12] for the case of directed graphs and adapted
here for the case of undirected graphs.

Definition 4 (r-reachable set). Consider an undirected graph
G = (V, E) with node set V , edge set E , and a non-empty
node subset S ⊂ V . We say that S is an r-reachable set if
∃ i ∈ S such that |Ni \ S| ≥ r, where r ∈ Z≥0.

Basically, a subset of nodes S ⊂ V is r-reachable according
to Definition 4 if there exists at least one node in set S with
at least r neighbors outside set S. Extending the concept of
r-reachable sets to a graph we obtain the next definition.

Definition 5 (r-robust graph). Consider an undirected graph
G = (V, E) with node set V and edge set E . We say
that G is r-robust if for all pairs of non-empty, disjoint
subsets S1,S2 ⊂ V , at least one of S1 or S2 is r-reachable,
where r ∈ Z≥0.

Notably, Definition 5 implies that at anytime in an r-robust
graph there is always a set that contains a node that possesses
at least r neighbors outside its set. This definition, however,
does not give any insight on how many nodes are satisfying the
reachability property. To improve the redundancy of informa-
tion in robust graphs, the same authors in [13] introduced the
notion of (r, s)-reachability.

Definition 6 ((r, s)-reachable set). Consider an undirected
graph G = (V, E) with node set V , edge set E , and a non-
empty node subset S ⊂ V . We say that S is an (r, s)-reachable
set if there are at least s nodes in S that possesses r or more
neighbors outside the set S, where r, s ∈ Z≥0.

Defining the set X rS as the set of nodes within the
subset S that have at least r neighbors outside S , i.e.,
X rS = {i ∈ S : |Ni \ S| ≥ r}, then Definition 6 is satisfied
when |X rS | ≥ s. Notice that r-reachability is equivalent
to (r, 1)-reachability so the notion of (r, s)-reachability is
a generalization of the concept of r-reachability. Now, ex-
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Figure 2. Example of a graph with 10 nodes that is (2, 2)-robust.

tending this definition to a graph we obtain the notion of
(r, s)-robustness.

Definition 7 ((r,s)-robust graph). Consider an undirected
graph G = (V, E) with node set V and edge set E . We say
that G is (r, s)-robust with r ∈ Z≥0 and 1 ≤ s ≤ |V| if for all
pairs of non-empty, disjoint subsets S1,S2 ⊂ V , at least one
of following holds:

1)
∣∣X rS1 ∣∣ = |S1|, i.e., all nodes in S1 are r-reachable;

2)
∣∣X rS2 ∣∣ = |S2|, i.e., all nodes in S2 are r-reachable;

3)
∣∣X rS1 ∣∣+

∣∣X rS2∣∣ ≥ s.
As for the concept of reachability, (r, 1)-robustness is

equivalent to r-robustness. Generally speaking, a graph that
is (r, s)-robust is also (r, s′)-robust with 1 ≤ s′ ≤ s.
Furthermore, any (r, s)-robust graph is clearly connected. The
reader is referred to [13] for more insight and properties of
(r, s)-robust graphs.

In Figure 2 it is depicted a (2, 2)-robust graph composed of
10 nodes. It can be verified by checking every pairs of non-
empty disjoint subsets of {1, . . . , 10} that one of the three
conditions introduced in Definition 7 is always satisfied. It
can also be seen that this graph is not (3, 1)-robust since for
example the sets S1 = {2, 3, 4} and S2 = {8, 9, 10} do not
have a single node with three or more neighbors outside their
respective sets. Regarding the notion of (r, s)-reachability we
can consider for example the set S3 = {4, 5, 6} and notice
that this set is (3, 2)-reachable since nodes 4 and 6 have both
at least three neighbors outside S3 while node 5 has only two.

III. PROBLEM SETTING

Let us consider a multi-robot system composed of three
different sets of robotic agents, namely followers, leaders and
adversarial agents. More specifically, the set of followers, de-
noted as Vf , represents the agents that execute the considered
control protocol. Furthermore, the set of leaders, denoted
as V`, represents the agents which define the containment area
that the followers are expected to reach and not escape from.
Finally, the set of adversarial agents, denoted as Va, represents
the agents that either purposely or unintentionally may disrupt
the desired behaviour of the system. Clearly the node set V
of the network G is such that V = Vf ∪V` ∪Va, with Vf , V`,
and Va disjoint sets. Moreover, we assume that the sets Vf
and V` are non-empty. In the rest of the paper, the following
additional set Vf` = Vf ∪ V` is used to denote the set of
followers and leaders together.

In particular, the state of the followers, leaders, and ad-
versarial agents have respectively the following dynamics

ẋi(t) = ufi (t), i ∈ Vf , (10)

ẋi(t) = u`i(t),
∥∥u`i(t)∥∥∞ ≤ u`max, i ∈ V`, (11)

ẋi(t) = uai (t), i ∈ Va. (12)

where ufi (t) ∈ Rd is the local control input of the fol-
lower i ∈ Vf , u`i(t) ∈ Rd is the local control input of the
leader i ∈ V`, and uai (t) ∈ Rd is the local control input of the
adversarial agent i ∈ Va. We assume that the control inputs
ufi (t), u`i(t), and uai (t) are all locally essentially bounded.
Moreover, we assume that the input of the leaders is upper
bounded by a positive scalar u`max ∈ R>0.

Remark 1 (Adversarial agents’ behaviour). The state of the
adversarial agents, as the other kinds of agents, evolve under
the assumption of locally essentially boundedness of their
control inputs. This requirement is related to the physical
nature of our MRS in which the states of the robots represent
their positions, hence requiring their state to be absolutely
continuous. Furthermore, we consider the worst case scenario
where the adversarial agents may influence the network with
arbitrary behavior, thus including the case in which they have
full knowledge of the network state and cooperate among them
to disrupt the desired behaviour of the MRS.

In the sequel, for the sake of analysis and without loss
of generality we collect the robots by sorting and labelling
them according to their kind. Note that this labeling is only
for the sake of our theoretical analysis; the agents are an-
onymous and thus are not able to discern the kind or identity
of their neighboring agents. Thus, we denote the stacked
vector of the followers’ state with xf = [xT1 , . . . , x

T
nf

]T

where nf = |Vf |, the stacked vector of the leaders’ state
with x` = [xTnf+1, . . . , x

T
nf+n`

]T where n` = |V`|, and
the stacked vector of the adversarial agents’ state with
xa = [xTnf+n`+1, . . . , x

T
nf+n`+na

]T where na = |Va| and
nf +n`+na = n. In addition, for the sake of the analysis we
will denote the stacked vector of followers and leaders state
as x = [xf

T
x`
T

]T . Furthermore, we will collect the p-th
component of the states of the followers and leaders in the
vector xp = [x1,p, . . . , xnf+n`,p]

T .
Our goal is to characterize a cooperative distributed pro-

tocol ufi (t) to be executed by the followers Vf so that they
reach in finite-time T the containment region C(x`(t)) defined
according to the position of the leaders V` and remain inside in
it for all t ≥ T , despite the influence of the adversarial agents.
In particular, the containment area that the followers will have
to reach and then remain within is a hypercube defined as

C
(
x`(t)

)
=
{
y ∈ Rd : yp ∈

[
xp(t), xp(t)

]
, p ∈ {1, . . . , d}

}
(13)

where the terms xp(t) and xp(t) represent the maximum and
minimum value among the p-th component of the leaders as

xp(t) = max
i∈V`

xi,p(t), (14)

xp(t) = min
i∈V`

xi,p(t). (15)
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We are now ready to formalize our problem.

Problem 1. Let us consider a containment region C(x`(t))
defined according to the location of the leaders as in eq. (13).
Our goal is to characterize a distributed cooperative control
law ufi (t) for the followers so that for any initial condition
xf (0), x`(0), xa(0), and any locally essentially bounded in-
put of the anonymous adversarial agents uai (t) with i ∈ Va,
the following holds true

xi(t) ∈ C
(
x`(t)

)
, i ∈ Vf , ∀ t ≥ T, (16)

with T the finite convergence time.

Next, we provide the distributed cooperative control
law ufi (t), implemented by each follower i ∈ Vf , that solves
Problem 1 under proper graph theoretical conditions on the
graph G:

ufi (t) = −α
∑
j∈Ni

sign
(
xi(t)− xj(t)

)
i ∈ Vf , (17)

with α ∈ R>0 a positive gain.
We recall that the control law in eq. (17) has already been

studied at the state of the art in works such as [28]–[30] for
the consensus problem. We are instead going to consider this
control law in the context of the dynamic resilient containment
control problem under (r, s)-robust networks.

Since the local interaction law (17) is implemented on
independent axes, the robots are only required to sense the
presence of neighbors with respect to the common bearing
directions on their own right-handed reference frame in order
to execute it. Furthermore, the robots need to share only d−1
common bearing direction since the d-th direction can be
evaluated by computing an orthogonal direction with respect
to the other common bearing directions.

We also point out that except for sensing of presence, each
robot does not perform any other operation such as ordering,
filtering, or scaling before executing the control law (17). This
is in contrast to many works on resilient control that rely
on i) filtering out data coming from the farthest neighbors
and ii) weighting the filtered data according to some non-
negative scalar. In our approach we do not scale the states
of the neighbors because the sign function is unaffected by
the magnitude of the states’ differences. Moreover, we do not
filter out portions of the data because under the topological
conditions considered in Theorem 3 it is shown that the sign of
the sum of the sign functions exploited in the local interactions,
i.e., the resulting direction in which the followers move, is
unaffected by the behaviour of the adversarial agents.

In the next section, we theoretically characterize:
i) the topological conditions that are able to guarantee the

robustness of the proposed control protocol (17);
ii) the finite-time required to the followers to reach the

containment area C
(
x`(t)

)
defined in eq. (13).

IV. THEORETICAL ANALYSIS

Before analyzing the theoretical properties of the proposed
control strategy let us first introduce the following topological
results on a (r, s)-robust graph G.

Lemma 1. Consider an undirected (r, s)-robust graph
G = (V, E). Consider three disjoint subsets V1, V2, and V3
such that V = V1 ∪ V2 ∪ V3, and V1, V2 are non-empty. Let
r > |V3|. Then it holds

|(V1,V2)| ≥ (r − |V3|) min {|V1| , |V2| , s} , (18)

where |(V1,V2)| is the cardinality of the generalized cut
set (V1,V2) in Definition 3.

Proof. Since the graph is (r, s)-robust and V1,V2 are non-
empty, disjoint subsets of V, by denoting X rV1 ⊆ V1 and
X rV2 ⊆ V2 the subsets of r-reachable nodes within V1 and V2,
it holds (see Definition 7) that at least one of the following
three conditions is verified:

1)
∣∣X rV1∣∣ = |V1|, i.e., all nodes in V1 are r-reachable;

2)
∣∣X rV2∣∣ = |V2|, i.e., all nodes in V2 are r-reachable;

3)
∣∣X rV1∣∣+

∣∣X rV2∣∣ ≥ s.
Now, we compute the cardinality of the generalized cut set

|(V1,V2)|, i.e., the number of edges with one endpoint in V1
and the other in V2 (see Definition 3).
• If 1) holds, i.e.,

∣∣X rV1∣∣ = |V1|, then |V1| ≥ s.
Since r > |V3| it follows that there are at least
(r − |V3|) |V1| edges connecting sets V1 and V2, thus
|(V1,V2)| ≥ (r − |V3|) |V1|.

• If 2) holds, i.e.,
∣∣X rV2∣∣ = |V2|, then |V2| ≥ s.

Since r > |V3| it follows that there are at least
(r − |V3|)|V2| edges connecting sets V1 and V2, thus
|(V1,V2)| ≥ (r − |V3|) |V2|.

• If 3) holds, i.e.,
∣∣X rV1∣∣+ ∣∣X rV2∣∣ ≥ s, then |V1|+ |V2| ≥ s.

Since r > |V3| and there are at least s r-reachable
nodes in V1 ∪ V2 it follows that there are at least
(r − |V3|) s edges connecting sets V1 and V2, thus
|(V1,V2)| ≥ (r − |V3|) s.

It easily follows that, in all cases, it holds

|(V1,V2)| ≥ (r − |V3|) min {|V1| , |V2| , s} , (19)

hence proving the statement of this lemma.

As it will be shown later, this result guarantees the ex-
istence of a certain number of connections between the two
cooperative sets of robots in the network, i.e., the followers
and the leaders, allowing us to prove the effectiveness of the
local interaction protocol introduced in eq. (17) in regard to
Problem 1.

We are now ready to state our result concerning the finite-
time convergence of the proposed distributed protocol intro-
duced in eq. (17).

Theorem 3. Consider a multi-robot system consisting of
nf followers, n` leaders, and na adversarial agents and with
network topology encoded by an undirected graph G = (V, E).
Let the dynamics of the robots be described by eqs. (10),
(11), and (12) under the assumption of locally essentially
boundedness of their control inputs. Moreover, let the control
inputs of the leaders be bounded by u`max ∈ R≥0, i.e.,∥∥u`i(t)∥∥∞ ≤ u`max. Let the followers execute the control
protocol in eq. (17). If graph G is (r, s)-robust, and if(

α− u`max

) (
r − na

)
min

{
nf , n`, s

}
> α

∣∣(Vf ,Va)
∣∣,

α > u`max, and r > na,
(20)
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where α is the positive gain in eq. (17) and
∣∣(Vf ,Va)

∣∣ is the
cardinality of a generalized cut-set as in Definition 3, then
there exists a finite-time T > 0 such that

xi(t) ∈ C
(
x`(t)

)
, ∀i ∈ Vf , ∀ t ≥ T, (21)

where the containment region C
(
x`(t)

)
is defined as in

eq. (13).

Proof. The main steps of the proof are hereinafter provided.
The complete proof is reported in Appendix A.

First we consider the evolution of the system along its p-th
component, then we generalize the result to hold in a complete
d-dimensional space. To this end, we consider the following
non-smooth Lyapunov candidate function

Vp(xp(t)) = VMp (xp(t)) + V mp (xp(t)), (22)

where the terms VMp (xp(t)) and V mp (xp(t)) express the
distance between the farthest robots and the leaders at the
maximum and minimum values xp(t) and xp(t) as

VMp (xp(t)) =
∑

i∈IMp (xp(t))

|xi,p(t)− xp(t)| ,

V mp (xp(t)) =
∑

i∈Imp (xp(t))

∣∣xi,p(t)− xp(t)∣∣ , (23)

where the sets IMp (xp(t)), Imp (xp(t)) are

IMp (xp(t)) =

{
i ∈ Vf` : xi,p = max

j∈Vf`

xj,p(t)

}
,

Imp (xp(t)) =

{
i ∈ Vf` : xi,p = min

j∈Vf`

xj,p(t)

}
.

(24)

Furthermore, we define the p-th component of the hyper-
cube C

(
x`(t)

)
as

Cp(xp(t)) =
{
y ∈ R : y ∈

[
xp(t), xp(t)

]}
. (25)

Then, in order to obtain a characterization of the general-
ized time derivative d/dt (Vp(xp(t))) we first analyze the
term VMp (xp(t)) considering two cases: i) VMp (xp(t)) > 0,
i.e., the case when there exists at least a follower outside the
containment region Cp(xp(t)), and ii) VMp (xp(t)) = 0, i.e., the
case when the followers are all confined in the containment
area Cp(xp(t)).

We invoke the results of Lemma 1 with V1 = Vf , V2 = V`,
and V3 = Va to prove that in case i) the generalized time
derivative d/dt

(
VMp (xp(t))

)
is bounded by

d

dt

(
VMp (xp(t))

)
≤ −

(
α− u`max

)
|(Vf ,V`)|+ α |(Vf ,Va)| ,

(26)
where |(Vf ,V`)| is the cardinality of the generalized cut set
introduced in Definition 3.

We then analyze case ii) and prove that the generalized time
derivative d/dt

(
VMp (xp(t))

)
is equal to zero.

We apply the same reasoning to the term V mp (xp(t)) and
then collectively stacks the bounds on the terms VMp (xp(t))
and V mp (xp(t)) to obtain the following bound on the general-
ized time derivative d/dt (Vp(xp(t))) as

d

dt
(Vp(xp(t)))≤−2

(
α− u`max

)
|(Vf ,V`)|+ 2α |(Vf ,Va)| ,

(27)

when there exists at least a follower outside the containment
region Cp(xp(t)).

Furthermore, we prove that the generalized time derivat-
ive d/dt (Vp(xp(t))) is equal to zero when the followers are
all contained in the area delimited by the position of the
leaders Cp(xp(t)).

We resort to Theorem 2 (Finite-Time Stability) to conclude
that the followers reach in finite-time T the containment
area Cp(xp(t)) and then remain confined in it ∀ t ≥ T .

Finally, we show that the result follows applying the same
reasoning to all the d components of the state.

From the result above it follows that for any leader control
input u`i(t), ∀ i ∈ V`, upper bounded by u`max, there will
always exists a positive gain α� u`max such that the condition
required in eq. (20) becomes

(r − na) min{nf , n`, s} > |(Vf ,Va)| . (28)

To further analyze eq. (20) and obtain a clear condition
on the maximum number of adversarial agents for which the
network is resilient, we note that it holds

na < r − |(Vf ,Va)|(
1− u`

max

α

)
min {nf , n`, s}

. (29)

We now characterize the convergence time of the considered
control strategy described in Theorem 3.

Theorem 4. Consider a multi-robot system such that The-
orem 3 holds. Then, the containment area C

(
x`(t)

)
defined

as eq. (13) is reached in a finite-time T that is upper bounded
by a finite positive value T equal to

T =
1

β
max

p∈{1,...,d}

{
max

{
VMp (xp(0)), V mp (xp(0))

}}
, (30)

where β is defined as

β = −
(
α− u`max

)
|(Vf ,V`)|+ α |(Vf ,Va)| , (31)

and the terms VMp (xp(0)), V mp (xp(0)) are

VMp (xp(0)) =
∑

i∈IMp (xp(0))

∣∣∣xi,p(0)− xp(0)
∣∣∣,

V mp (xp(0)) =
∑

i∈Imp (xp(0))

∣∣∣xi,p(0)− xp(0)
∣∣∣. (32)

Proof. In order to establish the convergence time let us
compute the following inequality

V hp (xp(t)) = V hp (xp(0)) +

∫ t

0

d

dt

(
V hp (x(τ))

)
dτ

≤ V hp (x(0))−
∫ t

0

β dτ = V hp (xp(0))− β t,
(33)

where h ∈ {m,M}. An upper bound on the convergence
time T is then

Tp =
1

β
max

{
VMp (xp(0)), V mp (xp(0))

}
. (34)

Since the evolution of the multi-robot system is decoupled
along its d dimensions we can conclude that the followers
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will reach the containment region C
(
x`(t)

)
with convergence

time T ≤ maxp∈{1,...,d} Tp. The result thus follows.

To conclude, we extend the results of Theorem 3 to consider
the case of a time-varying interaction graph G(t).

Theorem 5. Consider a multi-robot system consisting of
nf followers, n` leaders, and na adversarial agents and
with network topology encoded by an undirected time-varying
graph G(t) = (V, E(t)). Let the dynamics of the robots be
described by eqs. (10), (11), and (12) under the assumption
of locally essentially boundedness of their control inputs.
Moreover, let the control inputs of the leaders be bounded
by u`max ∈ R≥0, i.e.,

∥∥u`i(t)∥∥∞ ≤ u`max. Let the followers
execute the control protocol in eq. (17) and let Ω be a set of
instants of time of measure zero. If
• the edge set E(t) changes only at instants t ∈ Ω;
• the conditions in Theorem 3 hold for all t 6∈ Ω.

then, there exists a finite-time T > 0 such that

xi(t) ∈ C
(
x`(t)

)
, ∀i ∈ Vf , ∀t ≥ T, (35)

where the containment region C
(
x`(t)

)
is defined as in

eq. (13) and the finite-time T is upper bounded by T defined
as in eq. (30).

Proof. The proof is reported in Appendix B.

V. NUMERICAL SIMULATIONS

In this section, we provide numerical results to prove
the effectiveness of our theoretical findings. In particular,
we consider a multi-robot system composed of 44 robotic
agents moving in a 2 dimensional (13, 8)-robust time-invariant
network. The agents are partitioned as follows: 32 followers,
8 leaders, and 4 adversarial agents.

The leaders evolve using the following control inputs

u`i(t) =
[
− 1

4
1
8

]T
, i ∈ {33, 34, 36, 39},

u`i(t) =
[
− 1

4
1
4

]T
, i ∈ {38},

u`i(t) =
[
− 1

8
1
4

]T
, i ∈ {40},

u`i(t) = sin (2 t)
[
1
4

1
2

]T
, i ∈ {35},

u`i(t) = cos (t)
[
− 1

4
1
2

]T
, i ∈ {37}.

(36)

Since the maximum speed of the leaders is u`max = 1
2 ,

the followers execute protocol (17) with gain α = 10, and
the number of connections between followers and adversarial
agents is 65, it follows that the conditions of Theorem 3 are
satisfied, allowing the multi-robot system to solve in finite-
time the containment problem introduced in Problem 1.

The adversarial robots apply the following control inputs

uai (t) =
[
3
5

3
2 sin (t) + 3

20 t
]T
, i ∈ {41, 42},

uai (t) =
[
1
2 2 cos (2 t) + 1

10 t
]T
, i ∈ {43, 44}.

(37)

In Figure 3 the results of the numerical simulation are
reported. In particular, in Fig. (3a) it is depicted the starting
position of the robots, whereas in Fig. (3b) the final one
is shown. The followers are depicted with red circles, the
leaders with green squares, and the adversarial agents with

blue triangles. As shown in Fig. (3b), the followers are able
to reach and remain contained in the hypercube defined by
the positions of the leaders. The adversarial agents are not
shown in the figure since they moved far away from the
containment region C

(
x`(t)

)
, whereas the followers have

reached consensus and are all overlapped near leader 33. For
the sake of readability the agents’ connection are not shown.
Figs. (3c) and (3d) shows the agents’ evolution along the
x1 and x2 axes, respectively. The evolution of the states xi,1
and xi,2 are depicted with dashed colored lines with respect to
the type of agent they correspond to, whereas the containment
limits x1, x1, x2, and x2 are depicted with solid purple lines.
In both cases the agents are able to reach consensus and,
despite being influenced by the evolution of the adversarial
robots, manage to remain and track the movement of the
hypercube C

(
x`(t)

)
.

We reiterate that in our setting the robots are not aware of
the role of other agents in the network.

VI. CONCLUSIONS

In this paper the resilient containment control problem
in a multi-robot system with the presence of anonymous
adversarial agents was addressed. Under the assumption of
neighbors detection and the presence of d − 1 common
bearing directions, we characterized topological conditions
that enabled a local interaction protocol based on the sign
function to be robust against adversarial agents with arbitrary
control inputs. In particular, under such topological conditions,
we proved that the dynamic containment problem can be
solved if the velocity of the leaders is bounded and the
gains of the followers are at least equal to the speed of the
leaders. Furthermore, we proved that in the case of time-
varying graphs, the resilient containment control problem can
still be achieved under the same topological conditions. We
concluded the paper showing numerical results with a team
composed of 32 followers, 8 leaders, and 4 adversarial agents
in a 2 dimensional environment, proving the effectiveness of
the proposed control strategy. Future work will investigate
multi-robot system with higher system dynamics while also
removing the hypothesis of common bearing directions.

APPENDIX A
PROOF OF THEOREM 3

In order to prove the result we are first going to detail the
behaviour of the system considering a single p-th component;
then we will extend this reasoning to any d dimensional space.

Let us consider now the sets IMp (xp(t)) and Imp (xp(t))
collecting followers and leaders with the maximum and min-
imum value in the network with respect to the p-th component
defined as

IMp (xp(t)) =

{
i ∈ Vf` : xi,p = max

j∈Vf`

xj,p(t)

}
, (38)

Imp (xp(t)) =

{
i ∈ Vf` : xi,p = min

j∈Vf`

xj,p(t)

}
. (39)

Next, let us introduce the following non-smooth Lyapunov
function Vp(xp(t)) :Rnf+n`→ R≥0 defined as

Vp(xp(t)) = VMp (xp(t)) + V mp (xp(t)), (40)
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(a) Position of the team of robots at initial time t = 0 s.
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(b) Position of the team of robots at final time t = 15 s.
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(c) Evolution of the first component xi,1(t) of the robots with respect to the
limits x1(t) and x1(t) of the containment section C1(t).
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(d) Evolution of the second component xi,2(t) of the robots with respect to
the limits x2(t) and x2(t) of the containment section C2(t).

Figure 3. A multi-robot system composed of 32 followers, 8 leaders, and 4 adversarial agents in a (13, 8)-robust network.

composed by the terms VMp (xp(t)) and V mp (xp(t))

VMp (xp(t)) =
∑

i∈IMp (xp(t))

VMi,p (xp(t)), (41)

V mp (xp(t)) =
∑

i∈Imp (xp(t))

V mi,p(xp(t)), (42)

where the variables VMi,p (xp(t)) and V mi,p(xp(t)) are

VMi,p (xp(t)) =
∣∣∣xi,p(t)− xp(t)∣∣∣, (43)

V mi,p(xp(t)) =
∣∣∣xi,p(t)− xp(t)∣∣∣. (44)

Moreover, let us also introduce the p-th component of the
hypercube C

(
x`(t)

)
as

Cp(xp(t)) =
{
y ∈ R : y ∈

[
xp(t), xp(t)

]}
. (45)

It should be noticed that in virtue of the previous definitions,
the following holds

Vp(xp(t)) > 0⇐⇒


∃ i ∈ IMp (xp(t)) :xi,p(t) 6∈ Cp(xp(t))

or
∃ i ∈ Imp (xp(t)) :xi,p(t) 6∈ Cp(xp(t))

(46)
that is, the Lyapunov function in eq. (40) is positive as
long as there exists an agent in the maximum or minimum
sets IMp (xp(t)), Imp (xp(t)) that is not inside in the contain-
ment region Cp(xp(t)).

From now on, dependence on time t and state x will be used
only when introducing new concepts or variables and omitted
otherwise for the sake of clarity.

In the following, we will analyze only the first term of
eq. (40), i.e., VMp , since a similar analysis can be conducted
on the term V mp adjusting some details that will be discussed
later.
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Since VMp is a Lipschitz regular function we can resort to
the chain rule given in Theorem 1 to compute the set-valued
Lie derivative ˙̃VMp (xp) as

˙̃VMp (xp) =
⋂

ξp∈∂VM
p (xp)

ξTp K [f ] (xp), (47)

where the structure of the generalized gradient ∂VMp (xp) and
the set-valued map K[f ](xp) are now going to be character-
ized.

In order to describe the form of the generalized gradi-
ent ∂VMp (xp), let us introduce the set L (xp(t)) denoting the
leaders possessing the maximum value xp(t) as

L (xp(t)) = {i ∈ V` : xi,p(t) = xp(t)} = {l1, . . . , lL}, (48)

where {l1, . . . , lL} denotes the elements of the set L (xp).
Exploiting [44, Proposition 2.3.12] and [44, Proposition 2.3.3],
the generalized gradient assumes the following form

∂VMp ⊆ co
{
∂VM,l

p (xp) : l ∈ L (xp)
}

⊆ co

∑
i∈IMp

∂VM,l
i,p : l ∈ L (xp)

 ,
(49)

where the elements ∂VM,l
i,p (xp) are defined as

∂VM,l
i,p (xp) =

[
0, . . . , 0, Si, 0, . . . , 0,−Si, 0, . . . , 0

]T
,

i-th l-th
(50)

with Si = SIGN(xi,p− xp).
Furthermore, the generalized gradient ∂VM,l

p satisfies

∂VM,l
p ⊆

∑
i∈IMp

∂VM,l
i,p (xp) = (51)

[
0, . . . , Sν1 , . . . , Sνq , . . . ,−

∑
i∈IMp

Si, . . . , Sνh , . . . , 0
]T
,

ν1-th νq-th l-th νh-th

where the indices {ν1, . . . , νq, . . . , νh} correspond to the
agents in the set IMp . Note that the l-th element is in that
position because the leaders can also be part of the set IMp .

The structure of the convex hull is then the following

co

∑
i∈IMp

∂VM,l
i,p : l ∈ L (xp)

 =

co

{[
0, . . . , Sν1 , . . . , Sνq , . . . ,−

∑
i∈IMp

Si, . . . , Sνh , . . . , 0
]T
,

ν1-th νq-th l1-th νh-th

. . . ,
[
0, . . . , Sν1 , . . . , Sνq , . . . , Sνw , . . . ,−

∑
i∈IMp

Si, . . . , 0
]T}

ν1-th νq-th νw-th lL-th

=

 0, . . . , Sν1 , . . . , Sνh , . . . ,− γl1
∑
i∈IMp

Si +
∑

l∈L \{l1}

γl Sl1 ,

. . . , − γlL
∑
i∈IMp

Si +
∑

l∈L \{lL}

γl SlL , . . . , 0

T ,
(52)

where γl ∈ [0, 1],∀ l ∈ L and are such that
∑
l∈L γl = 1.

The zero elements in eq. (52) correspond to the followers and
leaders that are not part of the set IMp and L , respectively.
For the sake of brevity in the following we are going to denote
eq. (52) as co(∂VMp ).

The structure of the set-valued map K[f ](xp) is the follow-
ing

K[f ](xp) ⊆
[
K[f1](xp), . . . , K[fnf+n`

](xp)
]T
, (53)

where terms K[fi](xp) are defined in virtue of the agents
dynamics in eqs. (10), (11) and (17) as

K[fi](xp) = K

−α ∑
j∈Ni

sign(xi,p − xj,p)


⊆− α

∑
j∈Ni

K
[
sign(xi,p − xj,p)

]
=− α

∑
j∈Ni

SIGN(xi,p − xj,p), i ∈ Vf ,

(54)

if the agent i is a follower, or as

K[fi](xp) =
{
u`i,p
}
, i ∈ V`, (55)

if the agent i is a leader with u`i,p ∈ R the p-th component of
its control input u`i .

Consider now a generic vector ξp ∈ co(∂VMp ). We want

to analyze the dot product ξ
T

pK[f ](xp) in order to derive
properties that will hold also for the elements ξp ∈ ∂VMp

required to compute the set-valued Lie derivative ˙̃VMp intro-
duced in eq. (47). Denoting for convenience the vector ξp as

ξp =
[
ξ1,p, . . . , ξnf+n`,p

]T
, it holds from eq. (53) that

ξ
T

pK[f ](xp) ⊆
nf+n`∑
i=1

ξi,pK[fi](xp). (56)

Two different cases are now considered:
• Case i) VMp > 0;
• Case ii) VMp = 0.

From the definition of the set IMp in eq. (38), it follows that
in the first case there exists at least a follower i ∈ IMp such
that xi,p > xp whereas in the latter all the followers are inside
the containment area Cp.

Case i). In this case the set IMp is composed by fol-
lowers Vf only, otherwise VMp would have been equal to
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zero. We can therefore establish the value of the set-valued
function SIGN (xi,p− xp) as

SIGN (xi,p− xp) = {1}, ∀ i ∈IMp , (57)

obtaining the following form for the convex hull co(∂VMp )

co(∂VMp ) =[
0, . . . , 1, . . . , 1, . . . ,− γl1

∣∣IMp ∣∣ , . . . ,− γlL ∣∣IMp ∣∣ , . . . , 0]T .
ν1-th νh-th l1-th lL-th

(58)
Notice that the terms

∑
l∈L \{lw}γl Slw are not present be-

cause the leaders are not members of IMp . We also want to
point out that in this case the generalized gradient is a set
which contains a single point, i.e., a singleton.

In virtue of eqs. (54), (55) and (58) we can further develop
eq. (56) as follows
nf+n`∑
i=1

ξi,pK[fi](xp)

=
∑
i∈IMp

−α∑
j∈Ni

SIGN(xi,p − xj,p)

− ∣∣IMp ∣∣∑
l∈L

γl u
`
l,p

=
∑
i∈IMp

−α∑
j∈Ni

SIGN(xi,p − xj,p)−
∑
l∈L

γl u
`
l,p

 .

(59)
We are going now to detail the elements that compose eq. (59)
discerning the contributions of the neighbors Ni with respect
to the kind of the neighbor agent, i.e., if they are followers Vf ,
leaders V`, or adversarial agents Va. The following holds

− α
∑
j∈Ni

SIGN(xi,p − xj,p) = −α
∑

j∈Ni∩Vf

SIGN(xi,p − xj,p)

− α
∑

j∈Ni∩V`

SIGN(xi,p − xj,p)− α
∑

j∈Ni∩Va

SIGN(xi,p− xj,p).

(60)
Moreover, we can discern the contributions in two types: the
ones that come from neighbors that are at consensus with the
agent i and the ones that come from the rest of the agents,
that is

− α
∑
j∈Ni

SIGN(xi,p − xj,p) = −α
∑

j∈Ni∩Vf
j 6∈IMp

SIGN(xi,p − xj,p)

− α
∑

j∈Ni∩Vf
j∈IMp

SIGN(xi,p − xj,p)− α
∑

j∈Ni∩V`
j 6∈IMp

SIGN(xi,p − xj,p)

− α
∑

j∈Ni∩V`
j∈IMp

SIGN(xi,p − xj,p)− α
∑

j∈Ni∩Va

SIGN(xi,p − xj,p).

(61)
To further develop eq. (59) we now point out a few ob-
servations. First of all, since the graph G is undirected, the
followers xi,p ∈ IMp mutually cancel their contributions, i.e.,

∑
i∈IMp

−α ∑
j∈Ni∩Vf
j∈IMp

SIGN(xi,p − xj,p)

 = 0. (62)

Second, as already mentioned above, the set IMp is composed
only of followers Vf when VMp > 0, i.e., IMp ∩ V` = ∅.
Moreover, given the definition of the set IMp in eq. (38) we
can clearly define the value of the following term

SIGN(xi,p − xj,p) = {1} ∀ i ∈IMp ,∀j∈
(
Ni ∩ Vf` \ IMp

)
.

(63)

Finally, considering the worst case scenario, the adversarial
neighbors xj,p ∈ Va interactions can be bounded as

−α
∑

j∈Ni∩Va

SIGN(xi,p − xj,p) ⊆ −α
∑

j∈Ni∩Va

[−1, 1] . (64)

Putting everything together we get
nf+n`∑
i=1

ξi,pK[fi](xp)

⊆
∑
i∈IMp

− ∑
j∈Ni∩Vf`

j 6∈IMp

α− α
∑

j∈Ni∩Va

[−1, 1]−
∑
l∈L

γl u
`
l,p

 .

(65)

At this point, recalling that the number of edges between
two subsets of nodes S1 and S2 is the cardinality of gen-
eralized cut set (S1,S2), i.e., |(S1,S2)|, exploiting the fact
that

∑
l∈L γl = 1, and bounding the leaders control inputs

from above with the positive constant u`max ∈ R>0 such that∣∣u`i,p∣∣ ≤ u`max, ∀i ∈ V`, we obtain the following

˙̃VMp (xp) ⊆ α
[
− |(Vf ,V`)| − |(Vf ,Va)| − u`max

α
|(Vf ,V`)| ,

− |(Vf ,V`)|+ |(Vf ,Va)|+ u`max

α
|(Vf ,V`)|

]
.

(66)
It then follows from eq. (66) that the set-valued Lie derivat-
ive ˙̃VMp is negative definite if

−
(
α− u`max

)
|(Vf ,V`)|+ α |(Vf ,Va)| < 0. (67)

Applying the results of Lemma 1 with V1 = Vf , V2 = V`,
and V3 = Va we can infer that

|(Vf ,V`)| ≥ (r − na) min {nf , n`, s} , (68)

leading to

−
(
α− u`max

) (
r − na

)
min{nf , n`, s}+ α |(Vf ,Va)| < 0,

(69)
and thus proving the negative definiteness of the set-
valued Lie derivative ˙̃VMp (xp). At this point, recalling that
the following holds true for the generalized time derivat-
ive d/dt

(
VMp (xp)

)
∈ ˙̃VMp (xp) we obtain the following bound

d

dt

(
VMp (xp)

)
≤ −

(
α− u`max

)
|(Vf ,V`)|+ α |(Vf ,Va)| ,

(70)
proving the negative definiteness of the generalized time
derivative d/dt

(
VMp (xp)

)
.

Case ii). In this case, the set IMp is composed only of agents
that share the same value as xp, that is ∀i ∈ IMp : xi,p = xp,
i.e., agents that are on the maximum border of the containment
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area Cp. Notice also that in this case it holds by construction
that L ⊆ IMp where the inequality is strict when there exists
at least a follower in the set IMp .

This implies that eq. (51) will now assume the following
form

∂VM,l
p ⊆

∑
i∈IMp

∂VM,l
i,p (xp) = (71)

[
0, . . . , S, . . . , S, . . . ,−

∑
i∈IMp

S, . . . , S, . . . , 0
]T
,

ν1-th νh-th l-th lw-th

where S = SIGN(xp − xp) and lw is a generic leader in the
set L .

The convex hull co(∂VMp ) introduced in eq. (52) then
becomes

co(∂VMp )=
[
0, . . . , S, . . . , S, . . . ,− γl1

∑
i∈IMp

S +
∑

l∈L \{l1}

γl S,

ν1-th νh-th l1-th

. . . , − γlL
∑
i∈IMp

S +
∑

l∈L \{lL}

γl S, . . . , 0
]T
,

lL-th
(72)

where for a generic follower νq ∈ IMp ∩Vf the contribution on
the generalized gradient is a single S whereas for a generic
leader lw ∈ L the contribution is composed of two terms,
the first coming from the contributions when lw is considered
as the argument of the element xp and the latter when other
leaders are considered the argument of the value xp.

We want now to prove that the intersection in eq. (47)
contains only the singleton {0}. To do so, we have to show
first that {0} ∈ co(∂VMp ).

To this end, let us characterize the structure con-
vex hull co(∂VMp ) in eq. (72) by analyzing a vec-
tor ξp ∈ co(∂VMp ) and its components ξi,p. In particular,
the following holds for an element ξi,p corresponding to a
follower i ∈ IMp ∩ Vf

ξi,p ∈
[
− 1, 1

]
, (73)

which clearly contains the element {0}. Regarding the ele-
ments corresponding to the leaders i ∈ L we have

ξi,p ∈

− γlw ∣∣IMp ∣∣− ∑
l∈L \{lw}

γl , γlw
∣∣IMp ∣∣+

∑
l∈L \{lw}

γl

 ,
(74)

where the index lw corresponds to the agent i. Since
∣∣IMp ∣∣ ≥ 1

and
∑
l∈L γl = 1 we can conclude that the interval in eq. (74)

contains {0}.
Recalling eq. (56) let us now analyze the following dot

product

nf+n`∑
i=1

ξi,pK[fi](xp)=
∑

i∈IMp ∩Vf

ξi,p

−α∑
j∈Ni

SIGN(xi,p − xj,p)



+
∑
lw∈L

− γlw ∑
i∈IMp

ξi,p +
∑

l∈L \{lw}

γl ξl,p

u`lw,p. (75)

Considering the possible variation [−u`max, u
`
max] for the

control inputs u`lw,p of the leaders lw ∈ L , the fact that
SIGN(xi,p−xj,p) ⊆ [−1, 1], and rearranging some terms then
the following holds for eq. (75)

nf+n`∑
i=1

ξi,pK[fi](xp) ⊆
∑
lw∈L

u`lw,p

 ∑
l∈L \{lw}

γl ξl,p


+

∑
i∈IMp ∩Vf

ξi,p

−α∑
j∈Ni

[−1, 1] +
[
−u`max, u

`
max

]
⊆
∑
lw∈L

ξlw,p

[
− u`max, u

`
max

]
+

∑
i∈IMp ∩Vf

ξi,p

[
− α |Ni| − u`max, α |Ni|+ u`max

]
,

(76)
where

∑
l∈L γl = 1 has been exploited again.

In virtue of eqs. (73) to (76) and eq. (47) we can conclude
that the intersection will contain only the singleton {0},
implying that

˙̃VMp (xp) = {0}, (77)

and consequently proving that d/dt
(
VMp (xp)

)
= 0 in the case

VMp (xp) = 0.
A similar analysis can be carried out for the term V mp ,

replacing the upper limit xp and the set IMp with the equivalent
lower limit xp and the set Imp and adjusting the definition of
the set L to consider the leaders that assume the value xp. Do-
ing so allows us to obtain the same bound on d/dt

(
V mp (xp)

)
as
d

dt

(
V mp (xp)

)
≤ −

(
α− u`max

)
|(Vf ,V`)|+ α |(Vf ,Va)| ,

(78)
in the case V mp (xp) > 0 whereas d/dt

(
V mp (xp)

)
= 0 when

V mp (xp) = 0.
Now, since the generalized time derivatives

of both VMp and V mp are upper bounded by
−
(
α− u`max

)
|(Vf ,V`)| + α |(Vf ,Va)|, the following

bound on the generalized time derivative d/dt (Vp(xp)) can
be obtained
d

dt
(Vp(xp))≤−2

(
α− u`max

)
|(Vf ,V`)|+ 2α |(Vf ,Va)| ,

(79)
when there exists at least one follower that has not yet reached
the containment area Cp. At the same time, we can conclude
that when the followers are inside the the containment re-
gion Cp the generalized time derivative d/dt (Vp(xp)) is equal
to zero.

At this point, resorting to Theorem 2 (Finite-Time Stability)
where µ is defined as

µ = −2
((
α− u`max

)
|(Vf ,V`)| − α |(Vf ,Va)|

)
> 0 , (80)

we can conclude that the followers i ∈ IMp ∪ Imp : xi,p 6∈ Cp
move toward the containment area Cp defined by the leaders
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along the p-th component with a speed that is upper bounded
by eqs. (70) and (78) and that they eventually reach Cp
in finite-time T . Applying the same reasoning to all the
d components of the state, the result follows.

APPENDIX B
PROOF OF THEOREM 5

The result follows from the proof of Theorem 3. In par-
ticular, since the edge set E(t) is assumed to vary only with
respect to the time variable t and not with respect to the state
vector [xT xTa ]T , and by assumption it changes only at instants
of time which belong to a set of measure zero, it follows that
such instants of time can be disregarded in the analysis and
the structure of the set-valued Lie derivative in eq. (77) and
the negative definiteness of the generalized time derivative in
eq. (79) are not influenced as long as condition (20) is verified
for all t 6∈ Ω, i.e., (see eq. (79))

d

dt
(Vp(xp)) ≤ −µ, ∀ t 6∈ Ω, (81)

where

µ = −2α

((
1− u`max

α

)
|(Vf ,V`)| − |(Vf ,Va)|

)
> 2α.

(82)
Notice that this holds even if the parameters r and s change

with time, as long as the condition (20) is satisfied.
A characterization of the convergence time can be obtained

as done in Theorem 4 since the Lebesgue integral in eq. (33)
over the time instants t ∈ Ω has no contribution because the
set has zero measure and can hence be discarded. The result
thus follows.
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