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Abstract Peatlands are fundamental deposits of organic carbon. Thus, their protection is of crucial
importance to avoid emissions from their degradation. Peat is a mixture of organic soil that originates from the
accumulation of wetland plants under continuous or cyclical anaerobic conditions for long periods. Hence, a
precise quantification of peat deposits is extremely important; for that, remote‐ and proximal‐sensing techniques
are excellent candidates. Unfortunately, remote‐sensing can provide information only on the few shallowest
centimeters, whereas peatlands often extend to several meters in depth. In addition, peatlands are usually
characterized by difficult (flooded) terrains. So, frequency‐domain electromagnetic instruments, as they are
compact and contactless, seem to be the ideal solution for the quantitative assessment of the extension and
geometry of peatlands. Generally, electromagnetic methods are used to infer the electrical resistivity of the
subsurface. In turn, the resistivity distribution can, in principle, be interpreted to infer the morphology of the
peatland. Here, to some extent, we show how to shortcut the process and include the expectation and uncertainty
regarding the peat resistivity directly into a probabilistic inversion workflow. The present approach allows for
retrieving what really matters: the spatial distribution of the probability of peat occurrence, rather than the mere
electrical resistivity. To evaluate the efficiency and effectiveness of the proposed probabilistic approach, we
compare the outcomes against the more traditional deterministic fully nonlinear (Occam's) inversion and against
some boreholes available in the investigated area.

Plain Language Summary Wetlands are carbon pools subtracting carbon dioxide from the
atmosphere and accumulating it underground. The processes ongoing in these ecosystems form a dark soil,
extremely rich in organic matter, known as “peat.” Globally, peatlands are responsible for storing almost as
much carbon as the atmosphere. For that reason and to preserve them, it is very important to develop tools
capable of mapping peatlands. A good candidate for this goal is a geophysical method based on the diffusion of
electromagnetic signals into the ground. How the electromagnetic signals propagate depends on the electrical
resistivity of the subsurface. So, by studying those signals, we can think of reconstructing, point‐by‐point, the
electrical resistivity variability in the subsurface. Broadly speaking, different resistivities correspond to different
sediments. So, in turn, we can use the reconstructed resistivity distribution to map the peat deposits. In this
study, we show how to translate directly the electromagnetic signal into the probability of finding peat (rather
than in recovering the electrical property of the subsurface). We tested our approach on a data set collected
across an Alpine peatland in Italy and we verified our results against direct investigations and against more
traditional ways to interpret the geophysical signals.

1. Introduction
Peatlands are important carbon reservoirs, and some of them are located in mountain settings for which efficient
and reliable methodologies for the detection of their geometry, bottom morphology, and volumes are still lacking
(Pezdir et al., 2021; Silvestri, Christensen, et al., 2019; Trappe & Kneisel, 2019). Here, we explore the use of
ground‐based frequency‐domain electromagnetic induction (FDEM) technology to quantify peat thickness and
extension in a bog located in the Italian Dolomites in which peat overlays electrically conductive clay substrate.
Electrical resistivity is the main physical property retrieved via the inversion of the FDEM measurements
(Guillemoteau et al., 2016, 2019). Unfortunately, per se, this physical property of the investigated medium is of
little importance to map peatlands. Instead, a direct estimation of the probability of the occurrence of peat or clay
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would be preferable. In this paper, such probability is inferred by means of a probabilistic petrophysical inversion
of the geophysical measurements (Bosch et al., 2010; Grana, Russell, & Mukerji, 2022; Guo et al., 2023).

Probably, the first attempts to include petrophysical relationships into probabilistic inversion frameworks date
back to the beginning of the twenty‐first century, when such schemes were proposed for the uncertainty
assessment of the spatial distribution of physical properties in seismic reservoir characterizations (Connolly &
Kemper, 2007; Malinverno & Briggs, 2004). Since then, they gained increasing interest over the years (Hansen
et al., 2012; Minsley et al., 2021; Zunino et al., 2015). In fact—in addition to directly retrieving the crucial
lithological information, rather than merely the physical property—probabilistic petrophysical inversion has the
intrinsic advantage of providing an estimation of the uncertainty associated with the results, which is often
missing in traditional predictions (e.g., of the electrical resistivity) via deterministic inversions (McLachlan
et al., 2021a). Moreover, the proposed probabilistic approach allows for the formalization of quite complex prior
information (Bai et al., 2021). This is a further advantage with respect to more standard deterministic schemes in
which the ill‐posedness of the problem is tackled via the introduction of a regularizing term, which is often
capable of formalizing/enforcing (too) simple information/constraints related to the presence of smooth/sharp
transitions between different lithologies (Klose et al., 2022, 2023).

In the last decades, several ground geophysical methods have been effective in detecting and characterizing peat
deposits, both laterally and in‐depth. Ground penetrating radar (GPR) has been proven reliable and precise in
inferring the deposit thickness (Comas et al., 2015;Warner et al., 1990). Electrical resistivity tomography has also
been found successful (Elijah et al., 2012), especially, when used to reconstruct the variations of chargeability
associated with the presence of peat (Comas & Slater, 2004; Slater & Reeve, 2002). However, in general, the
above‐mentioned geophysical methodologies can be applied to relatively small areas and are extremely difficult
to perform in flooded environments like wetlands/peatlands (Zaru et al., 2023). In this respect, FDEM presents
several advantages as it does not require any direct coupling with the surface. In fact, several FDEM systems are
specifically designed to be operated while mounted on helicopters (Karshakov et al., 2017; Yin & Hodges, 2007)
and, probably, soon, on drones (Mitsuhata et al., 2022).

Due to measurement and modeling errors, and because of the band‐limited observations and finite amount of data
points (Qiu et al., 2020), retrieving the spatial distribution of electrical resistivity from the FDEM observations
requires solving an ill‐posed problem (Tarantola, 2005). In both deterministic and probabilistic inversion ap-
proaches, the ill‐posedness is addressed by making use of the available prior information. In the deterministic
approaches, such prior information is formalized via the regularization term (Zhdanov, 2002). Traditionally, the
L2‐norm of the spatial gradient of the model parameters is the most common choice for the regularization term
(implementing the so‐called Occam's inversion—Constable et al., 1987). Hence, in the case of the L2‐norm of the
gradient, the unique and stable solution of the regularized inversion is selected to be the smoothest possible model
that also fits the data within the noise level assumed for the measurements. In fact, the inverse problem is reduced
to the minimization of an objective functional consisting of the weighted sum of the regularization term (the
regularizer or stabilizer) and the data misfit. The weight between the two terms (generally, indicated with the letter
λ and sometimes named Tikhonov's parameter) is selected to ensure adequate matching between observed and
calculated responses while minimizing the regularizer (Zhdanov et al., 2006). In many cases, the geological
targets to reconstruct are expected not to be smooth; in such cases, the L2‐norm of the model gradient should not
be used, and more appropriate information (i.e., more consistent with the prior geological expectations) must be
included in the objective functional. In this respect, for example, recently, several regularizers based on the
minimum support of the model are gaining popularity (Guillemoteau et al., 2022; Rossi et al., 2022; Vignoli
et al., 2015). In the case of the minimum gradient support regularization, the inversion algorithm searches for the
model with the minimum number of significant variations of the physical parameters (and not for the model with
the minimum variation). Thus, the minimum gradient support favors the retrieval of sharp boundaries between the
geological structures (Vignoli et al., 2021).

However, the regularization terms need to meet some (mathematical) requirements: not all functional can be
regularizers able to transform an ill‐posed problem into a conditionally well‐posed one (Portniaguine & Zhda-
nov, 1999). Furthermore, formalizing complex (and realistic) prior information through a set of functionals might
be troublesome (if not impossible). In this respect, probabilistic approaches have indubitable advantages: prior
information can be described and incorporated into the inversion via the prior distribution, which, in turn, can be
defined by its samples (Hansen, 2021a; Hansen & Minsley, 2019). This leads to the possibility of creating the
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samples in accordance with quite arbitrary expectations about the investigated geology (Bai et al., 2021; Zaru
et al., 2023), without the limitations connected to the necessity of formalizing that information in terms of a
functional to be minimized.

Another crucial advantage of probabilistic approaches consists in their capability to provide an estimation of the
result uncertainty in a very natural way. The posterior probability distribution is the solution of probabilistic
inverse problems, and it is typically represented as an ensemble of models (realizations of the posterior proba-
bility distribution) conditioned on the data. This is different from the solution of deterministic inversions which
consists of the unique model minimizing the objective functional. Hence, in the probabilistic framework, for
example, from the final ensemble of models, the uncertainty of a specific feature can be readily extracted by
simply counting the relative occurrence of that feature (Hansen, 2021b; Høyer et al., 2017; Minsley, 2011;
Mosegaard & Sambridge, 2002; Mosegaard & Tarantola, 1995; Tarantola, 2005).

The above‐mentioned inversion strategies are generally used to image the geophysical property distribution (in
most of the FDEM methods, that is limited to the electrical resistivity of the subsurface). However, the
estimation of petrophysical properties—such as porosity, lithology, and fluid saturations—can be formulated
as an inverse problem. In this case, they are usually referred to as petrophysical inversions (in seismic
exploration, they are sometimes also known as rock‐physics inversion—e.g., Grana, Parsekian, et al., 2022). In
the deterministic frameworks, a physical relationship mapping the rock properties to the geophysical param-
eters is often necessary (Cao et al., 2023; Foged et al., 2014; Mastrocicco et al., 2010). Instead, in the
probabilistic context, like the one used in the present research, the connection between lithology and physical
properties is formulated in statistical terms and inherently incorporates the associated uncertainties (here, the
uncertainty is not the one characterizing the geophysical measurements, but, rather the one associated with the
petrophysical link) (Bai, 2022; Grana, 2016, 2020; Grana & Della Rossa, 2010; Gulbrandsen et al., 2017;
Madsen et al., 2023).

Thus, in the present work, we test a probabilistic petrophysical inversion on an FDEM data set originally collected
for the characterization of an Alpine peatland. We assess the performance of the proposed inversion scheme at the
locations of the several available boreholes (not used to constrain the inversion) and by comparing the obtained
results against more traditional deterministic Occam's inversions.

2. Materials and Methods
The forward modeling tools used in electromagnetic inverse problems are, nowadays, fully nonlinear and, despite
3D forward options could be available (Cox et al., 2012; Oldenburg et al., 2020), the use of 1D approximations is
still the standard in the industry and in the academia (Bai et al., 2020; Dzikunoo et al., 2020; Hansen & Fin-
lay, 2022; Ley‐Cooper et al., 2015; Viezzoli et al., 2008). The reason is mainly related to the computational costs
of 3D modeling (Cai et al., 2022; Guillemoteau et al., 2017; Kara & Farquharson, 2023). In the present research,
we make use of the fully non‐linear 1D forward modeling discussed, for example, in Elwaseif et al. (2017a).
Given a sequence of layers with known electrical, homogeneous properties—represented by the model m—the
1D forward modeling F(m) maps the resistivity (the sole electrical property we are investigating) distribution into
the observed FDEM response collected at the surface (described by d):

d = F(m). (1)

The goal of probabilistic formulations is to infer the posterior probability density (PDF) function, p(m|dobs),
measuring the probability of the model m being compatible with the observations dobs. According to Bayes'
theorem, p(m|dobs) is proportional to the product of the prior PDF of the model parameters p(m) and the con-
ditional PDF p(dobs|m). Thus, p(m|dobs) ∝ p(dobs|m)p(m), with p(dobs|m) connecting the measured data and the
model parameters. In the specific case of normally distributed noise in the measurements, the conditional
probability can be written as

p(dobs
⃒
⃒m) = kd exp(−

1
2
(dobs − F(m))TC− 1

d (d
obs − F(m))), (2)
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where: (a) kd is simply a normalization factor and (b) Cd is a matrix taking into account the correlated Gaussian
data noise. Here, we assume the noise to be uncertain and, consistently, consider diag(σd)− 2 = C− 1

d in which the
ith component of the vector σd is the standard deviation of the ith data component. In our specific case, [σd]i is the
standard deviation of the quadrature component of the ratio between the induced and the primary fields associated
with the ith frequency. In fact, during FDEM surveys, the measurements consist of the real and imaginary parts of
the ratio between the secondary (interacting with the subsurface) and the primary field (generated by the source).
Here, we limit our analysis to the imaginary part (the quadrature component) since it is the one mostly sensitive to
the electrical resistivity, whereas the real (in‐phase) component is mainly related to the magnetic susceptibility of
the investigated medium (Hendrickx et al., 2002).

Assuming a Gaussian distribution also for the model parameters, the prior information about the model m can be
formalized as follows:

p(m) = km exp(−
1
2
(m − m0)

TC− 1
m (m − m0)), (3)

with: (a) km being another normalization factor and (b) the Gaussian being centered on the reference model m0.

When Gaussian distributions are assumed both for the data noise (with Gaussian uncertainties described by the
covariance operator Cd) and the model parameters (with prior information on m described by the a priori
reference modelm0 with the associated uncertainty represented by the covariance operatorCm), the maximization
of the probability p(m|dobs) corresponds to the minimization of the regularized inversion objective functional
⃦
⃦
⃦C− 1

2
d (d

obs − F(m))
⃦
⃦
⃦
2

L2
+

⃦
⃦
⃦C− 1

2
m (m − m0)

⃦
⃦
⃦
2

L2
. This is a well‐known result (e.g., Tarantola, 1987; Tarantola &

Valette, 1982; Zhdanov, 2002) that bridges the gap between probabilistic and deterministic approaches. For
example, if the inverse of the model covarianceC− 1

m is taken equal to λ2LTL—with the positive scalar λweighting
the relative importance of the regularizer and the data misfit, and L being a discrete approximation of the spatial
derivative—then, the minimization of the objective functional implements the standard Occam's inversion
(Constable et al., 1987). In this specific case, the objective functional P(λ) (m, dobs) to be minimized during the
deterministic inversion is:

P(λ) (m,dobs)∝
⃦
⃦C− 1/2

d (dobs − F(m))
⃦
⃦2
L2
+ λ‖L(m − m0)‖

2
L2 . (4)

On one hand, the strategy we are proposing here relaxes one of these working hypotheses; in particular, in the
following, we do not make any assumptions on the Gaussianity of the model parameters distribution p(m) as we
consider quite general prior distributions defined via their realizations, which are generated through a geologi-
cally informed procedure.

On the other hand, we keep considering the noise contaminating the observed quadrature components to be
frequency‐by‐frequency, and location‐by‐location, independent, even though it is clearly not (Liu et al., 2023;
Minsley et al., 2012; Mitsuhata et al., 2001). Consistently with this assumption, we still approximateC− 1/2

d with a
diagonal matrix, whereas, for example, with the availability of a 3D FDEM forward modeling, we could have
included the noise component attributable to the modeling error associated with the 1D modeling approximation.
Bai et al., 2021 showed, for the time‐domain electromagnetic case (and following the prescriptions in Hansen
et al., 2014), how the inclusion of that additional source of data uncertainty into a probabilistic inversion via a
more complex (non‐diagonal) approximation ofCd can prevent misinterpretations and artifacts even in the case of
environments where the 1D approximation seems reasonable (so, even in the case of settings where the
assumption of the absence of significant 3D effects contaminating neighboring 1D soundings seems acceptable).
This is something to be investigated in future research; in the present manuscript, we simply evaluate the
probability associated with a certain model by using uniquely Equation 2.

Moreover, as it will be discussed below, each resistivity component ofmwill be a function of a specific lithology,
allowing the assessment of the probability of occurrence of a lithological category rather than the mere prediction
of a resistivity value characterizing a discretizing layer.
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2.1. Generation of the Prior Models

The prior distribution can be defined via its realizations. In the case under investigation, the hypothesis is that the
subsurface consists of a sequence of two lithologies: peat and clay. It is true that, in some cases, peat might overlay
more resistive bedrock (Boon et al., 2008; Comas et al., 2015; Kowalczyk et al., 2017), but our assumption is that,
anyhow, even in the case of a shallow bedrock, a clay unit is present due to the rock weathering or alluvial/glacial
origins (Osman, 2018). In addition, we assume that, for each sounding location, the associated model can be
composed of three lithological units, with no restrictions concerning their vertical sequence. So, for example, a
clay unit comprised between a shallower and a deeper peat layer can, in principle, be allowed. Consequently, each
1D model of the prior distribution is discretized with 200 layers with a thickness of 0.1 m, and two interface
depths are picked from a uniform distribution with values ranging from 0 to 20 m. This procedure defines the three
units. Subsequently, a lithology (either peat or clay) is randomly associated to each of the layers. Therefore, prior
sample models—consisting of 200 layers (gathered in 3 lithological units)—are generated. For each layer, it is
now possible to match a resistivity value drawn from two distributions describing the ranges of resistivity values
expected for each lithology (bar plots in Figure 1a). In order to ensure some additional vertical spatial coherence,
the original 200‐layer resistivity models are smoothed by means of a 5‐layer sliding average filter. In this way, the
assumption of independence between neighboring layers is loosened up and a vertical spatial correlation between

Figure 1. Resistivity distributions associated with each lithology. Panel (a) displays, as green bars, the probability density
distribution (PDF) of having a peat layer with a specific resistivity, and, as yellow bars, the corresponding PDF for the clay
layers. The solid lines show the corresponding distributions after a 5‐layer vertical moving average filtering of the samples of
the prior. In panel (b), the corresponding cumulative density functions (CDFs) are shown: the solid lines are related to the
CDF obtained after the 5‐layer vertical filtering and highlight that resistivity values lower than 200 Ωm are almost certainly
associated with clay, whereas layers with resistivities higher than 400 Ωm, most likely, are peat. Resistivities around 270 Ωm
have the same probability of being clay or peat.
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the 1D model parameters is introduced. The rationale behind this choice is that renouncing the high entropy
choice generates more geological plausible 1D resistivity profiles. After this model parameters conditioning, the
associated resistivity distributions for the peat and clay units are different from the original ones (solid lines in
Figure 1). The 5‐layer width for the filter has been chosen by inspecting the effect on the final resistivity vertical
profiles: a shorter span would have not satisfactorily reduced the erratic behavior of the original resistivity (thick
lines in Figure 1), whereas a filter window larger than 0.5 m would have smeared out the sharp interfaces between
the lithologies.

The resistivity ranges in Figure 1 have been deduced from the examples in the literature. Peat soil has a wide
resistivity range spanning from tens to a few hundred Ωm, depending on the moisture content, salt concen-
tration, degree of decomposition, and mineral composition (Mohamad et al., 2021; Silvestri, Christensen,
et al., 2019; Silvestri, Knight, et al., 2019; Valois et al., 2021). Also the resistivity of clay sediments may vary
significantly depending on the soil conditions (in particular, the water content and its salinity) (Cheng
et al., 2019; Samouëlian et al., 2005; Solberg et al., 2014). However, for the fresh‐water‐saturated clay expected
in the Alpine peatland, low resistivity values of the order of a few tens Ωm seem to be reasonable (Binley &
Slater, 2020).

Therefore, based on these assumptions concerning the possible lithological stratification and the resistivities
associated with such geological units, the samples of the prior distribution can be easily generated. Figure 2
displays two examples of the prior distribution models. It might be worth noticing that three lithological units
provide additional flexibility since the case of two effective units (e.g., peat covering clay—Figure 2a) is still a
feasible option, but, at the same time, it is also possible to experience a clay substrate with a peat intrusion
(Figure 2b). Clearly, a very informative prior (e.g., only two units) might be misleading in case of wrong initial
assumptions, whereas, to a certain extent, allowing a higher variability in the prior assumptions cannot be
detrimental (the only drawback is connected to the higher computational time).

Following this strategy, we populated (and defined) the prior ensemble with 105 samples. For each of them, the
associated FDEM response has been calculated by taking into account the geometry parameters, frequencies, and
elevation of the employed sensor. In this respect, the measured data set consists of 153,621 soundings collected by
using the following 11 frequencies: 1,025, 1,525, 2,875, 5,825, 7,775, 12,775, 15,325, 25,525, 36,225, 63,025,
80,225 Hz, with the recording device assumed at 1.0 m height from the surface. During the survey, we used a
GEM‐2 (Haoping &Won, 2003) in the horizontal co‐planar configuration. This device has a receiver‐transmitter
inter‐coil distance of 1.6 m. Performing the standard FDEM processing procedure preliminary to the inversion,

Figure 2. Samples of the prior distribution. Each prior model consists of 200 layers characterized by different resistivity
values (thin green or orange solid lines) gathered in three lithological units (of either clay or peat). The original 200
resistivities have been subsequently filtered to obtain 1D model samples with some vertical correlation (thick blue or red
solid lines). The mean resistivity calculated from the filtered values over each lithological unit is shown as a black thin
straight segment. Panel (a) displays a sample with the following lithological sequence: peat‐clay‐clay; consequently, the
mean resistivities for the two deepest units are almost indistinguishable (their interface occurs at around 5.5 m depth). Panel
(b) illustrates another example of a prior sample characterized by a peat unit sandwiched between two clay units.
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we laterally stacked and averaged between adjacent soundings in order to remove the outliers and assess the noise
in the data (cf., e.g., Zaru et al., 2023).

For every sounding, the response F(m) of each of the prior realizations is evaluated against the observed data dobs

through Equation 2. The posterior distribution is then defined by replicas of the models based on their probability.
Hence, the probabilistic inversion consists of an independent extended Metropolis algorithm, which is analogous
to the standard extended Metropolis algorithm (Hansen et al., 2016; Mosegaard & Tarantola, 1995) with an
infinitely long step‐length; this is equivalent to state that every new model proposal from the prior distribution is a
completely independent realization: indeed, in our specific case, it is precalculated. The proposed inversion
scheme is implemented in the SIPPI toolbox (Hansen et al., 2013a, 2013b).

3. Results
Figure 3 shows the horizontal slices at different depths (namely: 0.5, 3.0, 5.0, 8.0 m) of: (a) the realization of the
posterior distribution with the maximum likelihood (first column on the left); (b) the mean model obtained by
averaging the realizations of the posterior models (second column from the left); (c) the probability of
encountering peat; and (d) the probability of clay occurrence. Clearly, since we are simply assuming two lith-
ological categories (peat and clay), the two probabilities are complementary: the maximum probability of having
peat corresponds to the minimum probability of clay. It is fundamental to clarify that across the present paper, for
the sake of conciseness, we use the term maximum likelihood model to indicate the model of the prior ensemble
which is characterized by the highest likelihood; strictly speaking, that is not the actual maximum likelihood
model since it relates to the prior distribution. However, in this context, and after this caveat, there should be no
room left for ambiguities.

From Figure 3, it is evident that peat is mainly present in the northern‐central portion of the investigated area and
its evolution can be followed from the surface to significant depths (more than 8.0 m). In addition, a shallower
peat deposit can be detected in the southern part of the study area. It is worth highlighting the spatial coherence of
the result (including the maximum likelihood one) despite each sounding has been inverted separately without
introducing any horizontal constraint (again, prior information is provided uniquely via the prior distribution).

In order to verify our result, we compare the probabilistic outcome against the available boreholes and electrical
resistivity models obtained by a deterministic inversion. In this respect, Figures 4c–4f shows a vertical section
extracted from the (pseudo‐)3D volume in Figure 3. All the boreholes were drilled aiming at reaching the clay
bottom unit (more difficult to penetrate); however, that was not always possible. So, the depth of the boreholes is
supposed to be shallower or match the top of the clay substrate. For sake of clearness, the names of the boreholes
reaching the top of the clay unit contain an asterisk (e.g., B26*). From Figures 4c–4f, it is evident that the
geophysical reconstruction can detect quite precisely the morphology of the peat unit as it appears from the
boreholes. In particular, that is true for the boreholes B26* and B11, in the middle of the section. On the other
hand, a possible explanation for the mismatch with the borehole B31* is that it is actually quite off the profile. In
fact, the borehole B31* is approximately 4 m apart from the profile. It is worth mentioning that the borehole B26*
is the most reliable well as, differently from the others, its core has been extracted and analyzed (Poto et al., 2013).
Concerning the much shallower B33, that borehole simply confirms that, at that location, the peat substrate is
thicker than 2.5 m, and this evidence is compatible with what is inferred from geophysics. On the contrary,
accordingly to the borehole B6*, at that location, the top of the clay unit should be found at 1 m depth, whereas the
probable peat thickness (Figure 4e) is supposed to be around 4 m. A plausible justification for such a mismatch
will require further investigations; however, because of the noticeable lateral consistency of the geophysical
solution, despite the fact that each individual sounding is inverted separately, it is hard to believe in a systematic
artifact in the inversion process. In addition, as it will be discussed in the following, similar conclusions about the
B6* location can be drawn also by looking at the alternative deterministic reconstruction (Figure 4b).

In general, as it should be, many of the details visible in the maximum likelihood model (Figure 4c) disappear
when we check the mean model (Figure 4d) or the peat probability (Figure 4e). This is particularly evident at
depth, below the conductive clay, where the model parameters do not have a significant sensitivity with respect to
the (noisy) measurements; in other terms, those layers are below the DOI (Depth Of Investigation—e.g., Vignoli
et al., 2021; Zhdanov, 2002) and the details retrieved in some specific realizations of the posterior distribution are,
indeed, artifacts and are characterized by a low occurrence probability.
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Figure 3. Horizontal slices of the inversion results of the frequency‐domain electromagnetic (FDEM) data collected across the Danta peatland (Italy). Each row displays,
from left to right: (i) the resistivity solution with the maximum likelihood; (ii) the meanmodel of the samples of the posterior probability; (iii) the probability of peat; and
(iv) the probability of clay. Rows (a)–(d) show the horizontal slices of those models and probabilities, respectively, at depth 0.5, 3.0, 5.0, and 8.0 m. In the column 3, on
top of the peat probability, the location of the profile in Figure 4 is shown (in magenta), together with the position of the related boreholes (green circles).
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Figure 4.
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When we check the data fitting of the different models in terms of χ2 = (1/N)
⃦
⃦C− 1/2

d (dobs − F(m))
⃦
⃦2
L2
, in which

N is the number of data points per sounding (so, in this specific case, N = 11, with 11 being the number of used
frequencies), we can see that, not surprisingly, the maximum likelihood model (Figure 4a—red “+” markers) is
characterized by responses closer to the observations than the mean model (green “×” markers). Besides, the
maximum likelihood model generally fits the data below the optimal threshold χ2= 1. Interestingly, also the mean
model, which does not have any physical meaning, sensu stricto, is associated to reasonable χ2 values.

The maximum likelihood solution is equivalent to an inversion obtained by minimizing the data misfit in which
the well‐posedness of the inversion is enforced by selecting the solution among the prior models (Zaru
et al., 2023) rather than via the regularization term. The impact of the prior information is evident as the maximum
likelihood reconstruction is characterized by a significant lateral coherence (i.e., the solution turns out to be stable
with respect to perturbations in the data—i.e., moving from one sounding to the adjacent one) without an explicit
regularization term, and this while the data misfit is comparable with alternative, “more standard,” inversions. In
this perspective, it might be worth it to compare our probabilistic outcome with the deterministic Occam's
inversion (Figure 4b). In doing that, we used the extremely valuable open‐source McLachlan et al. (2021b)'s
implementation: EMagPy, with a parameterization similar to the one used for the probabilistic inversion. Hence,
for example, 30 layers discretize each 1D model; 30 layers seemed to be a good compromise between using a too‐
coarse discretization (with the risk of introducing an additional, unwanted, regularization parameter: the number
of layers) and the practical impossibility of running 200‐layer inversions in a reasonable amount of time. In the
deterministic approaches, the calculation of the Jacobian is generally the computational bottleneck of the
minimization process (Christiansen et al., 2016); even if, in the present research, we have not profusely inves-
tigated this aspect, most likely, within the conjugate gradient minimization utilized, the Jacobian's update makes
the cost of the deterministic inversion too high to be able to run it for the entire survey (even with a relatively small
number of layers). For this reason, we performed the deterministic inversion uniquely along the section high-
lighted in Figure 3 and shown in Figure 4b. The starting model for each of the 1D deterministic inversions along
the investigated profile is the same, with a decreasing resistivity with depth, ranging from around 500 Ωm at the
surface to approximately 100 Ωm at the bottom. The regularization weight, λ (Equation 4), is set for all soundings
equal to 0.07. This uniform value of λ along the entire profile guaranties an optimal mean data fitting (χ2 = 1)
across the section (cf. the horizontal blue dotted line in Figure 4a), despite, in principle, it should be adjusted in
order to ensure that similar condition being fulfilled sounding‐by‐sounding and not merely on average. Figure 4b
shows the deterministic reconstruction, whereas the associated data fitting levels can be checked in Figure 4a. In a
few sounding locations, the deterministic inversion has difficulties in fitting the data to a reasonable level.
Possible reasons for that could be related: to local minimization issues of the objective functional, and/or to the
inconsistency between the prior information enforced by the stabilizer, which promotes smoothly varying so-
lutions, not really compatible with the geology characterized by quite a sharp peat‐clay interface (sometimes
occurring at shallow depths). In this perspective, a sounding‐by‐sounding optimization of the λ value might have
been useful even if extremely time and computationally consuming. The deterministic inversion has a data misfit
that is largely overlapping with the one of maximum likelihood model; still, it is more laterally erratic, while, not
surprisingly, favors the retrieval of vertically elongated structures. On this matter, the comparison, for example, of
the portion of the sections between B26* and B11 as inferred by the two alternative inversion schemes, dem-
onstrates the impact of the different prior information incorporated in the probabilistic approach and in the
deterministic regularization: the complex information formalized via the prior distribution samples allows the
retrieval of a spatially consistent morphology of the peat unit, whereas this is prevented by the smooth regula-
rization (even in case of similar data fitting).

Figure 4. Inversion results. Panel (b) shows the fully nonlinear deterministic Occam's inversion performed with the software
package EMagPy (McLachlan et al., 2021b). Panels (c)–(f) display the results of the probabilistic petrophysical inversion; in
particular, panel (c) shows the maximum likelihood resistivity solution, whereas panel (d) exhibits the resistivity section
obtained by averaging the resistivity samples of the posterior distribution. Panels (e) and (f) show respectively the probability
of peat and clay occurrences for each of the 200 layers discretizing each 1D model. Panel (a) shows the χ2 value obtained by
comparing, against the observed data, the frequency‐domain electromagnetic (FDEM) responses of: (i) the deterministic
solution (blue dots); (ii) the maximum likelihood model (red crosses); and (iii) the mean model (green “×” markers); the
horizontal dotted lines are simply the mean χ2 value across the section for the three models in panels (b)–(d). The
parameterization for the two kinds of inversion is different: 200 layers are used for the probabilistic inversion; 30 for the
deterministic one.
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Figure 5.
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In addition, the good correspondence between the probabilistic result and the deterministic reconstruction in the
vicinity of borehole B6* questions the reliability of the direct measurement of the peat thickness deduced by the
drilling.

In terms of inversion performances, the probabilistic inversion basically requires only the forward calculations of
the samples of the prior distribution, which can be performed independently and, so, are massively and easily
parallelizable. The calculation of the conditional probability of Equation 2 is, then, straightforward and, in the
specific case of the entire Danta's data set (consisting of around 150,000 soundings—a size comparable with an
airborne survey; cf., e.g., Christiansen et al., 2016; Viezzoli et al., 2009), with a prior ensemble of 100,000 samples,
took approximately 1 hr (on a quite standard laptop equippedwith an Intel i7‐10750H/2.60GHz). Clearly, on top of
that, for a fair comparison, the time used for generating the prior samples and the associatedmeasurements must be
considered (for the 100,000 samples, on the same laptop, it took around one additional hour). However, it should be
stressed that for similar geological settings (and the same configurations of the geophysical instrumentation), the
prior models do not need to be recalculated every time and can be generated once and for all. On the other hand, at
least with the parameterizationwe used, the deterministic inversion of the entire Danta's data set was not feasible (it
would have neededweeks of calculation), and, for each of the several 2D profiles it was tested on (like in Figure 4),
requiredmore than one day. Furthermore, it might be relevant to stress that even if populating the prior distribution
might be difficult, similar troubles might be encountered with deterministic inversion schemes, not only in the
definition of the most appropriate stabilizer, but also in the selection of the optimal regularization weight and in
addressing all the issues connected with the optimization of the objective functional (including, e.g., the definition
of a suitable startingmodel). It is worth stressing oncemore that the high performances characterizing the proposed
probabilistic approach relate to the proposal strategy: since all the evaluatedmodels aremutually independent, they
can be precalculated in advance (in parallel) (Hansen, 2021a).

4. Discussion
Even if, in presenting the inversion results we referred repeatedly to the mean map (Figure 4d), clearly, the actual
probabilistic outcome (the posterior PDF) contains much more information than the mean model and its asso-
ciated standard deviation. In this respect, it is important to stress, that, also because of the non‐linearity of the
forward modeling, the resulting PDF might be non‐Gaussian. Therefore, the possible multi‐modality would make
the reduction of the probabilistic result to its mean and standard deviation misleading. In this respect, four
sounding locations (Figure 5a) have been selected to show the risk of taking just the mean as an immediately
interpretable result; in particular, in Figures 5b–5e, the posterior resistivity PDFs associated with those four
locations are plotted and compared against the mean resistivity vertical profile (red solid line), together with the
corresponding standard deviation band (between the green solid lines). Consistently with the previous caveat, the
resistivity PDFs present, at depth (specifically, where the occurrence of clay is more probable), a bi‐modal
pattern, which, in turn, makes the mean resistivity move between the probability maxima.

Hence, panels in Figure 5 confirm once more the importance of a probabilistic approach as, in this multi‐modal
situation, also deterministic approaches (e.g., orange dashed line in Figure 5b) could merely provide a local
assessment of the uncertainty (based on the Jacobian) associated with the unique retrieved solution. And, of
course, the same risk may take place if we draw our conclusions merely based on the mean model.

Also, it is worth noticing how the probability of peat occurrence (magenta solid line) drops rapidly when the gyttja
starts to be encountered (on the left side of Figure 5b, the detailed lithological description of borehole B26* can be
found).

Figure 5. Comparison of individual soundings. Panel (a) shows the locations of the selected frequency‐domain
electromagnetic (FDEM) soundings and the position of the borehole B26*. Panels (b)–(e) display the electrical resistivity
probability density functions (PDFs) as a function of depth for each of the four selected locations (respectively associated
with soundings no. 26805, 50,000, 100,000, and 150,000); for each of the selected soundings, the posterior PDF is compared
against the corresponding mean model resistivity (solid red line) and the relative standard deviation limits (the band between
the solid green lines), and, for completeness, also with the maximum likelihood model (black solid line) and the peat
probability (solid magenta line, whose x‐axis is shown on the top of each panel). For the sounding 26,805, the deterministic
inversion is also available and, consistently, is plotted in panel (b) as a dashed orange line. Sounding 26,805 was selected
since it is the closest to the borehole B26* whose stratigraphy is known and appears alongside panel (b).
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In Figure 5, the vertical resistivity profile corresponding to the maximum likelihood solution (black solid line) is
also plotted for each of the picked sounding locations. The maximum likelihood solutions are those (within the
prior ensemble) better fitting the data, not the most probable. Indeed, the maximum likelihood model is the
maximizer of the conditional PDF, p(dobs|m), in Equation 2, and not of the posterior PDF, p(m|dobs). In the
presented framework, since the prior is defined uniquely via its samples and there is no closed form for it, the
calculation of the most probable model is not possible.

Despite the maximum likelihood model being simply the model better fitting the observations, in the present
scheme, to some extent, it is still a regularized solution as the prescriptions infused by the prior distribution
impose a non‐arbitrary final model. As mentioned before, this is clear, for example, from Figure 4c: even
though neighboring soundings (characterized by similar measurements) are independently inverted, the cor-
responding results are similar (demonstrating a continuity of the models with respect to the data). And this is
particularly remarkable because no lateral constraints have been enforced. In other circumstances, it might be
useful to constrain the inversion also horizontally. An extension of the present scheme capable of considering
the expected lateral continuity might consist of adding a term taking into account the probability of a 1D model
being different from some reference model (possibly, the reference model can result from the previously
considered adjacent 1D sounding inversion). Similar attempts are described, for example, in Ardid et al. (2021)
and Zaru et al. (2023).

5. Conclusions
We presented a workflow for the probabilistic petrophysical 1D inversion of FDEM measurements and tested it
on a data set consisting of 11 frequencies collected throughout an Alpine peatland in northern Italy. The retrieved
posterior distribution has been analyzed in terms of maximum likelihood and mean models, and via the associated
peat (and clay) occurrence probability. It turned out that the peat probability can effectively reconstruct the
geometry of the peat layer and satisfactorily match the additional ancillary pieces of evidence about the inves-
tigated site. In particular, the probabilistic results have been compared against the available boreholes and their
capability was confirmed at least for the deepest (and most reliable) direct investigations. Furthermore, the
probabilistic scheme was also verified against the most standard deterministic Occam's inversion implemented in
a very well‐known open‐source software package. The deterministic and the probabilistic inversion show
remarkable differences due to the different prior information formalized in the two schemes (smooth vertical
constraints in the deterministic inversion; three lithological units with specific resistivity ranges in the proba-
bilistic approach). We also highlight that the adopted probabilistic approach can be extremely efficient paving the
way to quasi‐real‐time inversion in the field and on‐the‐fly optimization of the survey plans.

Future developments should involve the assessment of the modeling error and the inclusion of such an inevi-
table source of uncertainty into the inversion scheme as has already been done for the time‐domain counterpart
(Bai et al., 2021).

Data Availability Statement
The FDEM data inverted in this study, together with the associated uncertainties, are available at https://zenodo.
org/records/10155293 (Vignoli & Zaru, 2023). The code used to generate the forward responses can be retrieved
from https://github.com/elwaseif/FEMIC‐Code (Elwaseif et al., 2017b), whereas the probabilistic inversion
scheme is implemented in the SIPPI toolbox (Hansen et al., 2013a, 2013b), available at https://github.com/
cultpenguin/sippi (Hansen et al., 2013c). For the deterministic inversion, we used the software package EMagPy
(McLachlan et al., 2021a), which can be downloaded from here: https://github.com/hkexgroup/emagpy
(McLachlan et al., 2021b).
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