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Abstract: Frequency-domain electromagnetic induction (EMI) methods are commonly used to map
vast areas quickly and with minimum logistical efforts. Unfortunately, they are often characterized by
a very limited number of frequencies and severe ill-posedness. On the other hand, electrical resistivity
tomography (ERT) approaches are usually considered more reliable; for example, they do not require
specific calibration procedures and can be easily inverted in 2D/3D. However, ERT surveys are, by
far, more demanding and time consuming, allowing for the deployment of a few acquisition lines per
day. Ideally, the optimal would be to have the advantages of both approaches: ease of acquisition
while keeping robustness and reliability. The present work raises from the necessity to cope with this
issue and from the importance of enforcing realistic constraints to the data inversion without being
limited to (over)simplistic spatial constraints (for example, characterizing the smooth and/or sharp
regularization). Accordingly, the present research demonstrates, by means of synthetic and field data,
how the EMI inversion—based on realistic prior models—can be further enhanced by incorporating
additional pre-existing pieces of information. While the proposed scheme is quite general, in the
specific examples discussed here, these additional pieces of information are, respectively, a reference
model along a line across the survey area, and an ERT section. The field EMI results were verified
against extensive ground penetrating radar (GPR) measurements and boreholes.

Keywords: electromagnetic induction; electrical resistivity tomography; spatially constrained inversion;
realistic prior distribution; ground penetrating radar

1. Introduction

Geophysical techniques consist of non-invasive sensing methods that are used to infer
the physical properties of the subsurface. For example, electrical resistivity tomography
(ERT) and electromagnetic induction (EMI) methods are commonly used to retrieve the
electrical properties of the investigated medium. As such, they are useful to infer the
electrical resistivity (and chargeability) of the subsurface [1–4]. ERT data are collected using
arrays of dozens of electrodes coupled with the soil to ensure galvanic contact with the
ground and are, nowadays, regularly inverted using 2D or 3D forward modeling [5–7].
On the contrary, EMI measurements can be performed without any physical contact with
the surface and can be generally inverted using simple 1D forward modeling [8–10]. Due
to the need for physical coupling between the electrodes and the ground, ERT surveys
are more troublesome than their electromagnetic counterpart. Hence, for example, in the
attempt to speed up the acquisition time of typical ERT surveys and be able to cover larger
areas quickly, mobile (pseudo-)ERT systems have been developed and tested [11–13]. On
the other hand, standard EMI equipment is routinely used to assess (quasi-)3D resistivity
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distribution of extremely vast areas [14–16]. In fact, many EMI systems are specifically
designed to be operated while mounted on helicopters [17,18].

On the other hand, ERT data do not require any complex procedure for calibration
since a test on well-characterized (internal) resistances is sufficient to guarantee measure-
ment consistency and is typically performed automatically using commercial equipment.
Unfortunately, this is not true in the case of EMI as, to have absolute calibrated measure-
ments, EMI instruments need to go through a sequence of adjustments [19–25].

Mapping the measurements collected at the surface into physical properties of the
subsurface is, in both the cases of ERT and EMI, an (ill-posed) inverse problem. As will
be discussed in detail in the next sections, an appropriate solution to the inverse problem
can only be obtained by including additional sources of information. So, additional pieces
of information contribute to the selection of the unique and stable physical model of the
subsurface, whose ERT and EMI responses are in sufficient agreement with: (i) the geophys-
ical measurements and (ii) the prior knowledge [26]. This prior knowledge might consist
of the pre-existing information about the investigated site. The inclusion of additional
information into the inversion is, indeed, the essence of regularization theory [27].

Of course, the assessment of the matching between the observed responses and
those generated using the inversion models requires a forward modeling calculation.
The forward modeling maps the distribution of the physical properties of the subsurface
(i.e., the model) to its geophysical responses (i.e., the calculated data). Clearly, for each
method, there might exist a variety of possible forward modelling tools characterized
by: different dimensionality (1D, 2D, 3D, and even 4D), computational costs, numerical
accuracy, and adherence to the actual physical phenomena involved in the investigated
processes (e.g., are the induced polarization effects incorporated?). Generally speaking,
an inversion scheme based on 3D forward modeling might be more accurate than its 1D
version under complex 3D geological settings. However, calculating 3D responses is more
computationally demanding. The modeling error that is introduced with approximated
forward modeling is, clearly, also an issue in the case of sophisticated 3D forward modeling
tools. In fact, even the most advanced 3D ERT forward modeling will be, in any case, just a
mere approximation of the real electrical phenomena. Having said this, not considering
the inevitable tridimensionality of the subsurface has detrimental effects on the 1D EMI
inversions that are (too) often disregarded [28,29]. Despite that, 1D inversion of EMI data
is the most common procedure used due to the computational costs and intricacies of 3D
EMI forward modeling approaches. In this respect, the practical availability of simple 1D
codes for the inversion of large EMI datasets has been addressed, for example, through
enforcing some level of spatial coherence between adjacent sounding locations [30–33]. In
these cases, the ill-posedness of the EMI inversion is tackled by introducing regularization
terms, acting not only vertically (at the level of each individual sounding) but also laterally,
preventing spurious oscillations of the resistivity values between neighboring sounding
locations [34]. Over the years, several options have been investigated and implemented
as regularization terms (both lateral and vertical). Examples of possible choices for the
regularization term that are gaining popularity are those based on the minimum support
stabilizer [35–37]. These relatively novel regularization strategies promote the selection of
solutions characterized by blocky transitions, whereas the most standard approaches (based
on the L2 norm) favor, among all the possible solutions compatible with the observations,
the one minimizing the spatial variation of the model parameters. To a lesser extent, similar
arguments are also valid for the ERT inversion, and, indeed, also in this case, several
stabilizer terms have been proposed to tackle its ill-posedness [38,39].

In case of available ancillary information, the same regularization schemes have been
used to promote consistency between the inversion of ERT and/or EMI data with the
additional sources of knowledge. For example, this is the case of time-lapse inversion,
in which the “ancillary” information for the inversion of the dataset at time ti is brought
either by the result from the previous dataset collected at time ti−1 (with ti > ti−1) or by the
reference model calculated for the initial time t0. Of course, similar strategies also proved
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their effectiveness when the ancillary data consisted of a few wells or of different kinds
of data, e.g., the interfaces from interpreted ground penetrating radar (GPR) or seismic
sections [2,40–43].

Despite the flexibility offered by the newest inversion schemes still based on the
minimization of an objective functional [44], probabilistic approaches are becoming more
frequent as the required computational resources are more commonly available [45,46].
The great advantage of probabilistic approaches lies in their capability of assessing the
uncertainty of the results in a very immediate way and in the possibility to be fed with
arbitrary (realistic) prior model distributions [45,47]. In fact, a probabilistic solution consists
of an ensemble of models (namely a probabilistic model) rather than of the unique model
minimizing the objective functional. From that ensemble of models, the uncertainty of a
specific feature can be readily extracted through simply counting the relative occurrence
of that feature. On the other hand, the a priori information necessary for the inversion
can be provided in the form of samples of the prior distribution [48]. Basically, the prior
distribution defines the models to be evaluated as possible solutions to the inverse problem.

In the present research, there was the necessity of testing a strategy based on a realistic
prior distribution ensuring that the individual 1D EMI results were compatible with specific
expectations about the subsurface (so, not, merely, sparse or smooth vertical resistivity mod-
els). In addition, it was crucial to guarantee that, laterally, the solutions were also consistent
with the available knowledge about the site; in particular, the present work discusses and
compares the effects of taking advantage (as additional constraints during the inversion of
1D EMI data), alternatively, of: (i) a 2D ERT section and (ii) a 2D geological interpretation.

In the following, the results obtained for the experimental dataset were verified and
compared against available ground penetrating radar (GPR) measurements and bore-
hole logs.

2. Methods

The goal of the present research was to provide an effective way to include the available
prior information, as much as possible, into the inversion of the EMI datasets collected for
the (quasi-)3D characterization of the subsurface. Indeed, in most cases, the acquisition of
electromagnetic data is performed with, in mind, an idea of the target or with the concurrent
availability of different kinds of geophysical measurements [41]. In the present case, at least
in the first place, while inverting the EMI data collected over the area under investigation
(Figure 1), we assumed the contemporaneous presence of the ERT results along a single
acquisition line. Hence, the point here was to migrate the information provided by, for
example, the 2D ERT section, across the entire 3D domain of the EMI survey, and, by doing
that, to address the inherent ill-posedness of the inversion of EMI data. EMI inversion
is extremely ill-posed as a consequence of: (1) the (very) limited number of observations
(in our specific case, the used equipment allows for the collection of three frequencies per
sounding), (2) the noise in the data, and (3) the nonlinearity of the forward modeling.

In the deterministic framework, the ill-posedness of the data inversion is tackled by
minimizing an objective functional. Such a functional consists of a data misfit term and
a stabilizing term. The stabilizing term is meant to select, amongst all possible solutions
compatible with the data (i.e., the models fitting the observations within the noise level), the
unique and stable one that is in accordance with the prior information. Hence, eventually,
the picked solution depends on the choice of such a stabilizing term (the regularizer) [49].
Basically, the subset Qδ of all the possible solutions compatible with the measurements d is
defined, within the larger model space M (Figure 2a), by all the models characterized with
a data misfit smaller than the expected noise level δ in the observations. So, with M being
the set of all possible models m, Qδ can be defined as Qδ = {m ∈ M|‖F(m)− d‖ ≤ δ}, in
which F represents the forward modeling. On the other hand, the minimization of the
stabilizer term s specifies the correctness subset Mc of the model space. The crucial property
of the correctness set is that, within Mc, the original inverse problem is well posed (i.e., the
solution exists, is unique, and stable). Therefore, the regularized solution can be found in
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the intersection of Mc and Qδ. A common choice for the regularizer s is s(m) =
∥∥m−mapr

∥∥;
in this case, the model solution m is selected to fit the data (in fact, m ∈ Qδ) and, at the
same time, to be the closest possible to a reference model mapr (Figure 2a) [27].
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Figure 1. The survey area of the field test. The large yellow, orange, and blue dots represent the
boreholes’ locations in the survey area. The large pink dot is a borehole that has not been considered
in this study as it is outside the investigated volume. The EMI soundings are shown in light blue;
the ERT line is depicted as a red line; the perimeter of the area on which the GPR data have been
collected is outlined with green lines. The coordinates have been anonymized.

In the present research, the subset of the possible models was not simply defined by
the noise level in the data δ but also as a subset of the realizations of a prior distribution
designed accordingly to the available information about the target. Thus, in the proposed
approach, the inversion result m was selected by the regularizer s(m) as the unique and
stable solution within the intersection Qδ ∩ P, in which P denotes the set of the prior
distribution samples (Figure 2b). In all the following proposed tests, the adopted regularizer
was chosen as the distance with respect to a reference model: s(m) =

∥∥m−mapr
∥∥.



Remote Sens. 2023, 15, 3993 5 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 25 
 

 

 
Figure 2. Regularized inversion. 𝐷 is the set of all possible measurements; 𝒅 is the measurements� 
vector consisting of the summation of the (ideal, unknowable) true data vector 𝒅  and the noise 𝜹; 𝐹 is the forward modeling mapping the models 𝒎 (belonging to the set of possible models 𝑀) into 
the data 𝒅 . Hence, the set of all possible models consistent with the data is 𝑄 = 𝒎 | 𝒎 ∈𝑀 and ‖𝐹(𝒎) 𝒅‖ ‖𝜹‖ =  𝛿  . (a) The regularizer 𝑠(𝒎)  selects from 𝑄   a specific solution 𝒎 
that also belongs to the correctness set 𝑀  [27]. (b) Distinct from the previous case, the set of all the 
possible solutions was no longer defined uniquely by 𝛿, but rather by the intersection 𝑄 ∩ 𝑃, in 
which the set 𝑃 consists of the samples of the prior distribution. 

In the present scheme, the benefit—in terms of the uniqueness and stability of the 
solution—brought by the stabilizer term is unchanged, whereas the difference with the 
original approach lies in the further adherence of the selected solution to the prior 
knowledge used to create the samples in 𝑃. In the present implementation, the set 𝑃 was 
populated using the samples that were defined in quite a general manner. In all the tests 
discussed in the following, we generated each of the 20 ×  10  elements of 𝑃 as follows: 
1. Discretizing the 1D resistivity model 𝒎 in a certain number of layers 𝑁  (in our spe-

cific case, we always considered 31 layers; the interfaces of those layers are at fixed 
depths; the layers� thicknesses increase logarithmically with the depth; the top of the 
bottom half space, i.e., the top of the 31st layer, —is at 30 m depth); 

2. Picking a random number 𝑁  from a homogeneous distribution varying from 3 to 𝑁 _ 𝑁  (in all the inversions performed in the present paper: 𝑁 _  was always 17 ); 𝑁   is the number of layers whose resistivity values are selected randomly. 
Hence, out of 𝑁 , 𝑁  layers have a resistivity value picked from a homogeneous dis-
tribution spanning from a minimum and a maximum resistivity value (in our specific 
case, the resistivity was made varying from 0.5 Ωm to 10  Ωm); 

3. Associating each of the remaining (𝑁 𝑁 ) layers to its specific resistivity value; that 
resistivity value is set equal to the linear interpolation between the adjacent layers 
whose resistivity was determined randomly as described in the previous point. 
The 𝑁  range depends on the fact that the resistivity of, at least, two layers must be 

assigned, while too large a number of randomly defined layers (i.e., 𝑁 _ ≃ 𝑁 ) would 
generate vertical profiles that are too erratic to be realistic. More generally, in agreement 
with all the caveats highlighted in the scientific literature (e.g., [50]), the safest—and, in 

Figure 2. Regularized inversion. D is the set of all possible measurements; d is the measure-
ments’ vector consisting of the summation of the (ideal, unknowable) true data vector dt and
the noise δ; F is the forward modeling mapping the models m (belonging to the set of possi-
ble models M ) into the data d. Hence, the set of all possible models consistent with the data
is Qδ = {m|m ∈ M and ‖F(m)− d‖ ≤ ‖δ‖ = δ}. (a) The regularizer s(m) selects from Qδ a specific
solution m that also belongs to the correctness set Mc [27]. (b) Distinct from the previous case, the
set of all the possible solutions was no longer defined uniquely by δ, but rather by the intersection
Qδ ∩ P, in which the set P consists of the samples of the prior distribution.

In the present scheme, the benefit—in terms of the uniqueness and stability of the
solution—brought by the stabilizer term is unchanged, whereas the difference with the orig-
inal approach lies in the further adherence of the selected solution to the prior knowledge
used to create the samples in P. In the present implementation, the set P was populated
using the samples that were defined in quite a general manner. In all the tests discussed in
the following, we generated each of the 20× 106 elements of P as follows:

1. Discretizing the 1D resistivity model m in a certain number of layers Nl (in our specific
case, we always considered 31 layers; the interfaces of those layers are at fixed depths;
the layers’ thicknesses increase logarithmically with the depth; the top of the bottom
half space, i.e., the top of the 31st layer, —is at 30 m depth);

2. Picking a random number Nn from a homogeneous distribution varying from 3 to
Nl_max < Nl (in all the inversions performed in the present paper: Nl_max was always
17); Nn is the number of layers whose resistivity values are selected randomly. Hence,
out of Nl , Nn layers have a resistivity value picked from a homogeneous distribution
spanning from a minimum and a maximum resistivity value (in our specific case, the
resistivity was made varying from 0.5 Ωm to 104 Ωm);

3. Associating each of the remaining (Nl − Nn) layers to its specific resistivity value; that
resistivity value is set equal to the linear interpolation between the adjacent layers
whose resistivity was determined randomly as described in the previous point.
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The Nn range depends on the fact that the resistivity of, at least, two layers must be
assigned, while too large a number of randomly defined layers (i.e., Nl_max ' Nl) would
generate vertical profiles that are too erratic to be realistic. More generally, in agreement
with all the caveats highlighted in the scientific literature (e.g., [50]), the safest—and, in
our opinion, the most correct—way to verify the representativeness of the considered prior
models with respect to the available knowledge consists of performing an a posteriori check.
Our prior knowledge of the site under investigation is based on a single 2D ERT section
(as shown in Figures 1 and 3a). Coherently, the effectiveness of our choices concerning the
free parameters defining the elements of P has been checked via the systematic comparison
of the resistivity distribution that was obtained through inverting the ERT measurements
(Figure 3a) against the best-fitting selection of the samples of the prior distribution to be
used to invert the EMI data (Figure 3b).
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Figure 3. Consistency check of the prior models. (a) The 2D resistivity distribution obtained through
inverting the ERT data collected along the profile crossing the investigated area (Figure 1, red line).
The only portion shown here corresponds to the part overlapping the EMI survey. (b) The 2D section
obtained using the best-fitting 1D models of the prior P (Figure 2).

Indeed, the representativeness of the samples of the prior distribution not only con-
cerns the quality of the models but also the numerosity of the realizations. So, a reasonable
fitting of the resistivity section shown in Figure 3a demonstrates that the characteristics of
the samples match those of the target and that their numerosity is also sufficient. In our
specific case, the prior distribution was defined via 20× 106 elements, which are likely far
more than what would be considered strictly necessary.

Concerning the depth range defining the prior models, as in any other inversion
scheme, it must be defined accordingly to the frequencies used. In particular, the use of
discretization with a too small number of layers and/or with a limited maximum depth
should be avoided since they may lead to unsatisfactory data fitting and/or unwanted
abrupt resistivity variations caused by insufficient parameterization. On the contrary,
over-parameterizing the models does not have any negative effects other than the increased
computational costs of the prior distribution calculation. Actually, having the prior models
with a large number of layers and significant depth (which in our specific case was 30 m)
allowed for the present analysis to focus on the effects of the constraint and the chosen
prior rather than on those induced by the number of layers and/or the limited depths.

Once the prior models have been generated, the corresponding geophysical responses
need to be calculated by making use of the available forward modeling approximation:
in our specific case, F (see, for example, [51–53]). So, while the set of the prior models P
belongs to M (Figure 2b), it is also necessary to calculate its image in D, i.e., F(P). The
elements of F(P) can be immediately compared against the observations d.
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In a broader perspective, the rationale behind the construction of the prior is rather
similar to the way the training datasets are created in the context of the machine learning
approaches [54]; also in those cases, the set of couples (m, d), consisting of the prior models
and the corresponding electromagnetic responses, and forming the training dataset, are
generated in accordance with the stationary assumption. Hence, the couples in the training
dataset (as well as of the prior ensemble P and the associated image F(P)—Figure 2b) need
to be independent and identically distributed (IID) random variables [55].

After F(P) is calculated, it is possible to determine the models associated with the
data belonging to the intersection F(P) ∩ F(Q δ) between the images in D of the subsets of
the model space P and Qδ, meaning the corresponding subset P ∩Qδ ⊂ M can be easily
defined. Finally, the model m ∈ P ∩Qδ minimizing the regularizer s(m) is selected as the
solution to the inverse problem.

The proposed approach can be considered an extension of the spatially constrained
inversion [19,31]. However, in the proposed scheme, the vertical regularization was not
limited to a simple request for maximum smoothness. Indeed, in the present approach,
the spatial coherence in the vertical direction was provided by being an element of the
prior ensemble P. Thus, the resemblance with the spatially constrained inversion was
merely limited to the way in which the lateral bindings were formalized, paving the way
for the reconstruction of much more complex geological features (compatible with the
prior information).

It might be worth mentioning that, in the proposed scheme, the EMI soundings next
to the ERT section (or, in general, to any other available source of prior information) were
directly conditioned using the resistivity values of the ERT section itself (e.g., Figure 3a),
whereas the EMI soundings that were further distant from the ERT section were constrained
to the adjacent EMI soundings (towards the original constraint, i.e., the ERT section). Hence,
the influence of the original information derived directly from the ERT section competed
with the conditioning supplied by the EMI measurements and gradually lost its intensity
as a result. This is consistent with the fact that far from the ERT section, we expected a less
significant resemblance between the electrical and the electromagnetic results.

From a computational point of view, the proposed approach was only apparently
expensive. In the reality, for similar geological settings, the elements of P can be pre-
calculated and, since the forward response is independent for each 1D model, this procedure
is massively parallelizable. In addition, all the difficulties connected with the minimization
of the objective functional of the standard deterministic approaches (for example, the
selection of Tikhonov’s parameter [56]) are automatically removed: the problem reduces to
the simple calculation of the norm of the model distance in s(m).

3. Experimental Data

The field observations (Figure 1) discussed in the rest of this study have been collected
in the vicinity of Osby, Sweden. The investigated area is characterized by post-glacial
fluvial sediments down to about 30–40 m deep. The geology is complex with heterogeneous
materials with different grain sizes (from clay to cobbles) and alternating layers (mainly
dominated by sand and gravel). In some areas, the top meter mostly comprises organic
material or filling gravely deposits. In addition, the test site is distinguished by the presence
of a supposedly non-metallic pipe embedded in a sequence of sandy and gravelly layers.
The synthetic test was designed to mimic similar features as the experimental case.

In short, the field data consisted of:

1. The EMI measurements collected using a Profiler EMP-400 manufactured by GSSI [57–59]
with three operative frequencies: 5 KHz, 10 KHz, and 15 KHz. The EMI equipment
was calibrated on-site following the procedure outlined by the manufacturer. The
sounding locations (1550 soundings with 3 frequencies each) were depicted as light
blue dots in Figure 1 over an area of approximately 20 m× 30 m.

2. One ERT acquisition line crossing, in the middle, the entire EMI survey area (red
line in Figure 1). The ERT survey was performed using a Terrameter LS2 instrument
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(GuidelineGeo), with 81 electrodes spaced 1 m. The contact electrical resistance was
less than 1 KΩ, and the 1603 data points obtained were acquired via a gradient nested
array. The inversion of the ERT section, performed with the software pyGIMLi [60], is
shown in Figure 3a (only the portion of the profile included in the area investigated
with the EMI method is visible). In Figure 3a, at around X = 29 m, the presence of the
pipe is clearly recognizable as a very conductive spot.

3. Several GPR profiles in a 1 m grid, overlapping the area of the EMI survey. GPR
data were acquired using an ImpulseRadar CO1760 instrument. The GPR results
were obtained through processing the 170 MHz signal following the standard work-
flow consisting of: band-pass filtering, time-zero correction, ringing removal via
FK-filtering, and application of the same gain to all sections. The processing output
was then Kirchhoff migrated and the signal’s envelope was subsequently interpolated
over the 3D volume. For the time-depth conversion, a homogeneous velocity was
considered across the entire survey volume; the used velocity value was 95 m/µs.
This specific value was estimated by fitting and averaging several diffraction hyper-
bolas. The reliability of the assumed velocity was verified through the migration and
its value was deemed to be compatible with the freshwater-saturated sand/gravel
environments [61] characterizing the field site.

In addition to the EMI, ERT, and GPR measurements, a few boreholes were also
available in the surroundings of the Osby site. Their locations are shown in Figure 1 as
yellow, orange, and blue large dots [62]. The borehole logs were characterized using the
sequences of the alternating sand, gravel, and stone layers.

As shown later in the text, the concurrent availability of the boreholes and the GPR
data allowed for the interpretation of the radar reflections associated with some of the
interfaces intercepted by the boreholes. The information from the radar and borehole logs
was used to validate the markedly different results obtained via the applied inversion
schemes. In particular, it is worth stressing that, in the acquisition area, the water table is
between 1 m and 2 m deep and that the groundwater consisted of fresh water (the field
is a few tens of meters from a river). Hence, we expected a significant correspondence
between the lithological interfaces delineated by the borehole logs and the transitions in
the subsurface electrical properties inferred from the EMI data.

4. Results

This section discusses the results of applying the schemes presented in the Section 2 to
both synthetic and field datasets.

4.1. Synthetic Test

For the synthetic dataset, we used the measurements simulated for the resistivity
distribution displayed in Figure 4a. The simulated data consisted of the EMI measurements
(of only the quadrature components) calculated for the three frequencies: 5 KHz, 10 KHz,
and 15 KHz, using a 1D forward modeling approximation. Thus, differently from the field
test (discussed in the following section): (i) no 3D effects were present in the synthetic
data, and (ii) the 1D resistivity model associated with each of the sounding locations was
considered separately.

The resistivity model (Figure 4a) consists of a relatively low resistivity half-space,
topped with a formation characterized by a thickness of around 10 m and a smoothly
increasing resistivity from the bottom to the surface. Additionally, a homogeneous rectan-
gular conductive body was embedded into the shallow formation: it is supposed to mimic
the presence of a pipe and the effects of the associated excavation trench; its trajectory has
been represented in Figure 4a as a solid purple line.
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Figure 4. Synthetic test. (a) The true model. (b) The EMI unconstrained inversion. (c) The EMI
inversion constrained by the ERT reconstruction. (d) The EMI inversion constrained by one section of
the true model (at Y = 10 m). The purple solid line in all panels shows the location of the pipe.

Prior to the inversion, some noise was added to the original (noise-free) synthetic data
(vertical bars in Figure 5b,d,f). In particular, the data to be inverted were contaminated with
Gaussian noise equal to 5% of each individual measurement, which was added on top of
further Gaussian coherent noise. The coherent noise was generated through perturbing the
true resistivity models; the model perturbation was selected to be Gaussian with a standard
deviation equal to 75% of the resistivity values of each layer. However, in the attempt to
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follow the conventional processing procedure, which is generally utilized when dealing
with field data, the actual noise estimation for the synthetic data was, on average: 110% for
the 5 KHz channel, 75% for the 10 KHz measurements, and 59% for the 15 KHz data,
respectively. These estimations were assessed through measuring, sounding-by-sounding,
the mismatch between the filtered data and the actual measurements. The used filter was a
simple average over a moving window four-soundings wide. Clearly, the data that were
subsequently inverted were the filtered ones.
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Figure 5. Synthetic test: vertical section at Y = 4 m (Figure 4a). (a) The true resistivity distribution.
(b) The synthetic data (with the associated error bars) compared against the EMI responses of the
models obtained via the unconstrained inversion (Figure 4b). (c) The EMI unconstrained inversion
result (Figure 4b). (d) The data misfit of the EMI responses of the models obtained via the inversion
constrained by the ERT reconstruction (Figure 4c) at Y = 10 m. (e) The vertical section of the 3D
resistivity volume inferred via the ERT-constrained inversion of the EMI data (d). (f) The data misfit
of the EMI responses of the models obtained via the inversion constrained by the true model section
at Y = 10 m (Figure 4d). (g) The vertical section of the 3D resistivity volume inferred via the inversion
constrained to the section at Y = 10 m of the true model (f).

By performing the unconstrained inversion (Figure 4b), the EMI soundings were
inverted individually, relying uniquely on the prior information brought by P. So, in this
case, there was no lateral coherence enforced by any reference model mapr. Still, since the
solution is an essential element of P, the vertical resistivity distribution cannot be arbitrary.
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In short, in the unconstrained inversion, the selected solution was not constrained with
any lateral bonds (i.e., there was no regularizer s(m)) but it was still conditioned in the
vertical direction by the geostatistical information used to generate the samples of P. The
unconstrained inversion (Figures 4b and 5b,c) fitted the noisy data extremely well and was
deemed to be capable of detecting the pipe. However, the unconstrained solution was
not able to reconstruct the conductive target nor the vertical resistivity variations across
the volume.

It might be worth noticing that the footprint in the data of the conductive pipeline
(Figure 5b) was larger than the lateral extension of the conductive inclusion (Figure 5a).
Consistently, the retrieved conductive anomaly (Figure 5c) was broader than the actual
simulated pipeline width. This larger footprint was deemed to originate from the way the
synthetic (noisy) data have been handled. In fact, as discussed before, the original noisy
data were laterally averaged to increase their robustness. At the same time, the spatial
filtering resulted in a smoothing (and smearing) of the anomaly effect in the data.

The unconstrained inversion was not able to properly reconstruct the pipe and the
layering of the background. To cope with this difficulty, one possibility was to spread
the local information—originated, for example, by some boreholes, other geophysical
measurements, or prior geological observations/expectations—across the EMI survey area.

In the present work, we explored the possibility of using the additional prior informa-
tion from a single 2D section crossing the volume of the investigated subsurface:

1. In the first test, the 2D section consisted of the result of a 2D ERT inversion (Figure 6b).
Specifically, the 2D ERT response of the true resistivity model section at Y = 10 m
(Figure 6a) was first calculated and then inverted. Then, the resulting ERT section
(Figure 6b) at that location was used to spatially constrain the EMI inversion.

2. In the second test, the 2D section consisted of a slice (still at Y = 10 m) of the true
resistivity model (Figure 6a).

Figure 4c,d show the EMI results obtained through constraining the inversion of
each sounding to the adjacent one and taking into account the two different hypotheses
concerning the availability of ancillary data: (i) the 2D ERT section in the middle of the
investigated volume, or (ii) a 2D section of the true model. The associated data fitting has
been displayed in Figure 5d–g. It is important to stress that the data fitting level for all
the reconstructions (e.g., Figure 5b,d,f) was extremely similar and, in all three cases, the
associated χ2 value was around 0.1 (indicating that the data were fitted well below the
noise level).
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Figure 6. Two-dimensional sections at Y = 10 m (a) of the true 3D resistivity model (Figure 4a); and
(b) of the inverted ERT data generated by the 2D resistivity section in (a).

In both cases (cf., for example, Figure 4c,d), the new constrained results outperform
the unconstrained inversion in Figure 4b in terms of the correctness of the resistivity values.
In fact, the constrained inversions can infer the true resistivity values reasonably well to the
depth of around 15 m. In fact, it does not really matter what kind of ancillary information
is used. Indeed, regardless of whether the ERT section or the true model is utilized in the
constrained inversions, the resistive top layer, as well as the more conductive half-space,
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are reconstructed properly (at least down to the depth where a significant sensitivity of the
data to the model parameters is to be expected). Unsurprisingly, the inversion relying on
the true model section (Figures 4d and 5g) were able to better retrieve the limited thickness
of the pipeline. This is particularly evident in Figure 7, in which the horizontal sections
of the true resistivity model at different depths (panels in the left column) are compared
against the corresponding horizontal slices of the 3D resistivity volumes obtained with the
different constraints.
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Figure 7. Horizontal slices of the 3D resistivity models in Figure 4. In each row: the true model, the
unconstrained inversion, the ERT–constrained result, and the Model–constrained result obtained
using the model section at Y = 10 m (Figure 6). (a) Slices taken at 0.5 m depth; (b) slices taken at
1.8 m depth; (c) slices taken at 4.0 m depth; and (d) slices taken at 9.0 m depth. As in Figure 4, the
horizontal location of the pipeline is shown as a purple line.

The horizontal slices at 4.0 m (Figure 7c) and 9.0 m (Figure 7d) depth show that: (i) the
constraints provide more information to reconstruct the background and the pipe path
better, and that (ii) the inversion constrained by the true model section at Y = 10 m (Figure 6a)
can overcome the shielding effect of the shallow conductive anomaly that is preventing the
retrieval of the more resistive layers below the pipeline in the unconstrained result.

4.2. Field Test

In the field test, the three EMI inversion results are displayed in Figure 8. Similar to
the synthetic test, the unconstrained result—relying simply on the data and the information
provided by the prior distribution (Figure 8a)—appears to be more resistive than the
constrained inversions (Figure 8b,c), which instead incorporate the information from the



Remote Sens. 2023, 15, 3993 13 of 25

2D ERT section and its interpretation, respectively. In Figures 8 and 9, it is clear how the
introduction of ancillary information (either via the ERT section or its interpretation) makes
the results more spatially consistent, significantly reducing the erratic variation between
the different adjacent 1D models.
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Figure 8. Field test. (a) Vertical slices of the 3D EMI unconstrained inversion. (b) The EMI inversion
constrained by the ERT reconstruction (Figures 1 and 3a). (c) The EMI inversion constrained by one
electrical section resulting from the interpretation of the ERT result (which was equal to the section of
the true model used in the synthetic study and is visible in Figure 6a). The purple solid line indicates
where the pipeline is supposed to be according to the additional available information retrieved from
the site.
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Figure 9. Horizontal sections of the GPR and of the resistivity volumes obtained with different
constraining strategies (Figure 8). Each row corresponds to a different depth: (a) 0.3 m; (b) 1.6 m;
(c) 2.1 m; (d) 2.6 m; (e) 5.0 m; and (f) 7.0 m. The location of the ERT section (and its geoelectrical
interpretation) is shown as a green solid line. The assumed position of the pipe is plotted in purple.
The red contours are shown as references to the GPR anomalies; their purpose is merely to make the
comparisons easier, and they are not necessarily connected to any specific geological features.

Moreover, Figure 9 compares, at different depths: (i) the horizontal slices of the
envelope of the GPR reflections, and (ii) the corresponding slices of the EMI volumes
obtained via different constraining strategies (but with the same prior model distribution).
Such a comparison confirms the effectiveness of the schemes incorporating the ancillary
information. For example, Figure 9c,d show that the EMI data can easily detect the relatively
conductive anomaly connected with the presence of the pipeline highlighted by the GPR
sections at 2.1 m and 2.6 m depths. The spatial coherence and consistency with the GPR
results are not limited to the reconstruction of the pipeline. Incorporating the additional
ancillary information leads to the retrieval of homogeneous domains in the EMI results that
are in good agreement with the (independently obtained) GPR results (e.g.,: Figure 9d,e).
Similarly to the synthetic test, the inversion based on the interpretation of the 2D ERT
vertical section seems to provide a more realistic reconstruction of the limited size of the
pipeline, and of the other surrounding features (e.g., at 5 m depth).
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Alongside the verification against the GPR data, vertical sections of the inferred re-
sistivity volumes have also been compared with the available borehole logs (Figure 1).
In Figure 10, the vertical sections of the different 3D EMI inversions are shown together
with the corresponding GPR vertical cross-section and the stratigraphy associated with the
nearest borehole (19GA42S). The significant differences between these vertical resistivity
sections highlight, one more time, the importance of incorporating the proper ancillary in-
formation into the inversion: even the constrained results are quite distinctive (Figure 10f,h).
And this variability occurs despite the observations being fitted in all the cases equally
well (Figure 10c,e,g). Moreover, the Model-constrained inversion appears to be in better
agreement: (i) with the GPR section (Figure 10i), and (ii) with the borehole log description.
For example, concerning the borehole stratigraphy, not only can the EMI results match the
conductive shallow layers, but the Model-constrained inversion can also correctly locate the
interface at 8.6 m depth (with around 67 m in elevation), as evident in the log (Figure 10b).
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Figure 10. Vertical sections of the EMI inversions performed making use of different ancillary
information. (a) Plain view of the site with the locations of the boreholes, the selected 1D resistivity
models (in green), and the ERT and GPR lines. (b) Description of the borehole. (c,d) Data fitting and
model for the unconstrained inversion. (e,f) Data fitting and model for the ERT-constrained inversion.
(g,h) Data fitting and model for the Model-constrained inversion. (i) The GPR envelope section. The
dashed lines in panel (h,i) are the interpretations of the radar section.
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Similar conclusions can also be drawn by checking the other boreholes. For example
(analogously to Figure 10), Figure 11 shows the results related to boreholes 19GA33S.
In this case, the different EMI inversions were also found to display quite different
resistivity distributions.
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shown in Figure 3a) by a deep conductive anomaly around the center of the section, 

Figure 11. Vertical sections of the EMI inversions performed making use of different ancillary
information. (a) Plain view of the field site with the locations of the boreholes, the selected 1D
resistivity models (in green), and the ERT and GPR lines. (b) Description of the borehole. (c,d) Data
fitting and model for the unconstrained inversion. (e,f) Data fitting and model for the ERT-constrained
inversion. (g,h) Data fitting and model for the Model-constrained inversion. (i) The GPR envelope
section. The dashed lines in panel (h,i) are the interpretations of the radar section.

The ERT-constrained result is characterized (consistently with the constraint, as shown
in Figure 3a) by a deep conductive anomaly around the center of the section, whereas the
data are equally well-fitted by the shallower and more compact conductive anomaly of
the Model-constrained result. This is, again, in accordance with the provided ancillary
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information characterized, in this case, by a blocky square conductive body embedded in a
laterally homogeneous background (similar to the distribution displayed in Figure 6a).

Furthermore, the features in Figure 11h were found to match better with the strongest
radar reflections (Figure 11i); the reconstruction based on the interpretation of the ERT
(Figure 11h) was able to detect the interface on the top of the fine sand layer at 5.5 m depth
(Figure 11b) more effectively compared to the other two inversions. This interface was
evident in the borehole stratigraphy and produced a strong reflection in the GPR section.

In the proposed inversion scheme, it must be noted that the smaller the noise level
assumed in the data, the less intense the impact of the constraint. In other words, if
the quality of the observations is high, the resistivity reconstruction is mainly based on
the measurements and the prior distribution samples (in principle, with no need for
additional inputs from the ancillary data). This can be further and more explicitly shown
by performing the ERT- and Model-constrained inversions assuming an extremely low
uncertainty in the data to be inverted. In this respect, Figure 12 shows the resistivity
sections in Figure 10, but now calculated for an assumed noise level equal to 0.01% of the
original one. Coherently, Figure 12f,h display identical resistivity sections that are almost
equal to the unconstrained result shown in Figure 11d.
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Figure 12. Vertical sections of the EMI inversions performed making use of different ancillary
information. Differently from Figure 10, here, the assumed data uncertainty is 0.01% of the original
one (a) Plain view of the field site with the locations of the boreholes, the selected 1D resistivity
models (in green), and the ERT and GPR lines. (b) Description of the borehole. (c,d) Data fitting and
model for the unconstrained inversion. (e,f) Data fitting and model for the ERT-constrained inversion.
(g,h) Data fitting and model for the Model-constrained inversion.
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5. Discussion

The present research discusses an inversion scheme to be applied to EMI data that
relies on the concurrent use:

1. Of an arbitrarily complex prior distribution (used for conditioning the solution along
the vertical direction, i.e., sounding-by-sounding).

2. Of the ancillary available information in the form of ERT cross-sections or in the form
of the interpretation of the geoelectrical cross-sections (which are useful for enforcing
lateral consistency across the final 3D resistivity volume).

From our results, it is clear how the inversion of EMI data is severely non-unique (e.g.,
Figure 10d,f,h). It is also evident that the ability to formalize the available information both
via the prior distribution samples and by means of the reference models (e.g., consisting
of the 1D models associated with the ERT result) is crucial. Indeed, the use of ancillary
data as a reference model allows migrating the information from a single ERT section (or
its interpretation) to the entire volume investigated via the EMI acquisition (e.g., Figure 9).
In addition, the availability of ancillary information allows for an effective check of the
consistency of the prior model distribution against the available pre-existing data (Figure 3).

The capabilities of the proposed approach are clear when the 3D EMI results were com-
pared against the geological descriptions of the borehole logs. For instance, Figure 11d,f,h
present quite different resistivity distributions in the neighborhood of the borehole, despite
their equally good fitting of the measurements. This ambiguity is related to the ill-posedness
of the original problem (which was tackled, in the three schemes, via the inclusion of three
different prior information types). To some extent, this ambiguity is also ascribable to the
low sensitivity of the data to relatively high resistivities (in this respect, e.g., cf. [63,64]).
In fact, very different high-resistivity values may not correspond to significantly different
responses. In the specific case of Figures 10 and 11, this problem was exacerbated by the
resistive anomalies nearby the wells being below a shallow conductive layer that highly
reduces the depth of investigation (or, in other words, the integrated sensitivity) [44,65].
Consistently, due to the limited depth of investigation, no experienced interpreter would
rely on these results at depth unless they were corroborated with ancillary observations.
The advantage of these proposed constrained schemes is that these ancillary observations
were integrated into the inversion itself ab initio.

Concerning the inherent ambiguity of the EMI inversion, it might be relevant to
compare the results of the proposed approaches against those inferred via a well-known
open-source software [34]. Even though this comparison was not the main focus of this
study, it can be helpful to appreciate the differences with respect to a more usual deter-
ministic approach. For this reason, the details of this comparison have been discussed
in Appendix A, in which the unconstrained inversions were inspected together with an
L2-norm inversion for both the synthetic and field datasets.

In addition, the lithological interfaces in the borehole logs were confirmed, not only by
the EMI inversions, but, independently, also by the GPR reflections. Based on the vertical
GPR sections considered in Figures 10i and 11i, a few reflectors have been interpreted in
accordance with the available borehole logs and the spatial coherence of the reflected signals.
These reflectors were shown, in this study, as colored dashed lines: red lines represented
the shallower reflectors, blue lines denoted the deepest reflections visible in the radargram,
while the green lines indicated several identifiable anomalies due to the heterogeneity of
the sedimentary deposits with variable grain size distributions. To make the subsequent
comparisons easier, the same GPR interpretations were copied on the Model-constrained
results in Figures 10h and 11h, respectively. It is evident that several GPR reflections were
caused by geological boundaries that were also visible in the borehole logs and in the EMI
results. For example, the dashed blue line in Figure 10i, associated with the reflection of the
top of the stones layer, matched well with the changes in resistivity both at the borehole
location and, in general, with the increase in conductivity at the bottom of the section
(Figure 10h). Moreover, the shallow conductive layer in Figure 10h matched well with
the organic matter found in the boreholes. This organic matter extends across the entire



Remote Sens. 2023, 15, 3993 19 of 25

area (red dashed line interpreted from the GPR), and we can also see some evidence of this
layer in in the ERT-constrained and unconstrained reconstructions in Figure 10d,f, as well
as in the deterministic inversion in Appendix A. Some of the GPR reflections highlighted
with the green and blue dashed lines were found to coincide with changes in the resistivity
profile, demonstrating the capability of the proposed inversion schemes to detect resistivity
contrasts with a decent resolution, despite the acquisition of only three frequencies.

A shallow reflection was also identified in the other vertical GPR section shown in
Figure 11i (shallow red dashed lines), which was found to match well with the shallow
conductive layer in Figure 11h. Furthermore, along this profile, a resistive layer close to
the borehole location was found to have a high correspondence with the radar reflection
from the top of the deep fine sand layer (second last dashed blue line in Figure 11i) and
the associated interface in the borehole (Figure 11h). Hence, several GPR reflections that
delineated contrasts in the lithology (green and blue dashed lines, Figure 11i) were found to
be correlated with changes in the resistivity profile (Figure 11h). This proves the correctness
of such geological interpretation, corroborated by two geophysical methods that were
independently acquired and processed.

It is important to stress that the proposed approach—once the prior distribution was
defined by means of numerous samples—is extremely effective from a computational
perspective. In fact, for similar geological settings (for which the same prior can be used),
no troublesome and lengthy minimization processes need to be undertaken.

Although utilizing a prior ensemble, the proposed implementation provides a single
solution. And the reason is mainly practical, since the final outcome of the project was
supposed to be a single, reliable model to be promptly interpreted. Having said this, in
the long run, it will be interesting to fully exploit the potential of the stochastic scheme
and retrieve a probabilistic solution rather than a single model compatible with all the
different pieces of available information. The probabilistic solution will consist of many
realizations of the posterior probability. Of course, implementing such a stochastic approach
may require assigning some uncertainty levels to the reference models (in addition to the
uncertainty of the measurements). However, in return, a probabilistic strategy would
provide a direct way to assess the probability of the presence of a specific feature across the
many realizations of the posterior distribution [50,66].

6. Conclusions

The proposed inversion strategy consists of incorporating the available information
about the subsurface under investigation via formalizing such knowledge as arbitrary
samples of the prior distribution. In this context, the 1D inversion of the numerous adjacent
EMI soundings was performed by selecting, amongst the models of the prior distribution,
those that better matched the observations. In this way, the vertical regularization was
performed by providing more complex/realistic pieces of information than in the more
standard sharp/smooth deterministic inversion schemes.

With respect to the lateral coherency of the resistivity models, the proposed approach
makes use of the additional local sources of knowledge (consisting of either ERT sections
or, even, geological interpretations). The influence of these additional pieces of information
was spread across the 3D volume of the EMI data in a spatially constrained fashion. Hence,
for each EMI sounding, among the models of the prior distribution compatible with the
observations and their associated noise level, the vertical resistivity profile that was also
closer to the adjacent result (influenced by the ERT or the geological interpretations) was
picked as the final solution.

By means of synthetic and field datasets, the performances of the proposed methodol-
ogy were verified. In particular, the obtained results revealed how the proposed strategy
can reconstruct (pseudo-)3D resistivity volumes from EMI measurements in better agree-
ment with the available boreholes and independent GPR reflections even far from the
localized source of ancillary information.
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Appendix A. Comparison between the Unconstrained Inversion and the Deterministic
L2-Norm Regularization

The paper details a novel inversion approach based on a realistic prior distribution,
which was guided by different kinds of potentially available ancillary pieces of information.
As such, the comparison against the more standard (deterministic) results might not be
fundamental. For this reason, it has been decided to include such a comparison in the
present Appendix A.

As a benchmark for the “standard” deterministic inversion, the L2-norm inversion,
as implemented in the well-known package EMagPy [34], has been chosen. For a fair
comparison, the setting chosen for such deterministic inversion involved the following:
(1) the use of a fully non-linear forward modeling; (2) a (30 + 1)-layer parameterization (the
same that was used for the proposed approaches); (3) an L2 norm of the data and of the
model (the regularization acts only vertically, and no lateral constraints were imposed);
(4) a unique value (0.07) for the regularization parameter that was used for every sounding;
and (5) the homogeneous 1479 Ωm model that was used as a starting model for all the
cases (synthetic and field examples). The resistivity of the starting model has been chosen
based on the value of the shallowest layer of the synthetic model.

From the description of the numerous settings chosen, it is evident that the determinis-
tic approach also indicates some a priori knowledge. Above all, the L2-norm regularization
favors the selection of smooth solutions, and this choice needs to be compared against
the variability characterizing the samples of the prior distribution. On this matter, for the
synthetic case, Figure A1 compares the models that were retrieved using the unconstrained
inversion in Figure 5c against its deterministic counterpart (Figure A1d).

The deterministic result of Figure A1d was deemed to clearly be in accordance with
the unconstrained inversion (Figure A1c). Unsurprisingly, the only difference observed was
that the deterministic solutions were smoother in degrading from a somehow conductive
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shallow layer to more resistive values at depth. The value of the regularization parameter
(0.07) was selected in order to ensure the same data misfit level of the unconstrained result.
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Figure A1. Synthetic test: vertical section at Y = 4 m (Figure 5a). (a) The true resistivity distribution.
(b) The synthetic data (with the associated error bars) compared against the EMI responses of
the models obtained via the unconstrained inversion (Figure 5b—solid line with circles) and the
deterministic inversion (dashed line with triangles). (c) The EMI unconstrained inversion result
(Figure 5c). (d) The EMI L2-norm deterministic inversion.

The same value for the regularization parameter has also been used systematically for
the inversion of the field observations (Figure A2a). The corresponding L2-norm result
is presented in Figure A2c. In this case, even more than in the previous synthetic test,
the deterministic solution (Figure A2c) was found to be significantly smoother than the
unconstrained result (Figure A2a) despite the similar data fitting. These differences can
be uniquely ascribed to the different prior information: in one case, formalized by the
samples of the prior distribution (allowing a larger vertical variability) and, in the other case,
imposed by the L2-norm regularization (favoring vertically smooth solutions). It is worth
mentioning that the homogeneous value of 0.07 for the regularization parameter leads to
a generally satisfactory data fitting for the right side of the considered section, whereas,
for the left side (and, in particular, for the higher frequencies), generates responses that
are not comprised in one standard deviation from the observed data points. In principle,
the optimal regularization parameter value should have been chosen a posteriori in order
to guarantee adequate data matching. This is always an extremely time-consuming and
computationally expensive procedure, which is, on the other hand, completely skipped in
the unconstrained inversion, as well as in all Model- and ERT-constrained inversions. This
advantage of the proposed approach was discussed in depth together with Figure 12.

Uniquely, from the observed data perspective, the inversions of panels b and c of
Figure A2 were found to be completely equivalent: there is no way to discriminate among
them and select one over the other as they fit the data equally well (which, strictly speaking,
is actually only true for the right side of the section). The only reason to select one instead
of the other is based on the adherence to the specific prior information.
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deterministic inversion (dashed line with triangles). (b) The EMI unconstrained inversion result
(Figure 10d). (c) The EMI deterministic inversion result.

From a computational perspective, it might be important to notice that, on a standard
laptop, the deterministic inversion of the around 1550 three-frequency soundings of the
field data took about 13 h, while the corresponding unconstrained inversion (with about
20 million models defining the prior) took about 27 s. Clearly, this comparison concerning
the computational time would only be fair if the time for the prior distribution calculation
were taken into account. However, for similar geological settings, there would be no need
to calculate different priors and, if a representative one is already available, it can be used to
obtain reliable and extremely fast results (potentially, paving the way for real-time design
of the survey and increased value of information of the collected measurements).
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