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a b s t r a c t

One of the possible approaches for the solution of underdetermined linear least-
squares problems in general form, for a chosen regularization operator L, projects
the problem in the null space of L and in its orthogonal complement. In this
paper, we show that the projected problem cannot be solved by the generalized
singular value decomposition, and propose some approaches to overcome this issue.
Numerical experiments ascertain the stability of the new procedures.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We are concerned with the computation of the solution of linear least-squares problems

min
x∈Rn

∥Ax − b∥2, (1)

here ∥ · ∥ denotes the Euclidean norm, A ∈ Rm×n, x ∈ Rn, b ∈ Rm is a known vector, and rank(A) = r ≤
in(m, n). In the following we will denote by N (A) the null space of A.
If the solution of (1) is not unique, e.g., if m < n or A is rank deficient, a common choice is to compute

he minimal-L-norm solution ⎧⎨⎩min
x∈Rn

∥Lx∥2

x ∈
{

arg min
x∈Rn

∥Ax − b∥2},
(2)

where L ∈ Rp×n, with rank(L) = p, is referred to as the regularization operator and the two following
equivalent conditions hold true

N (A) ∩ N (L) = {0}, rank
([

A
L

])
= n. (3)
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The matrix L incorporates desirable properties for the solution. It is typically a diagonal weighting matrix
r a discrete approximation of a derivative operator, in which case L is banded with full row rank. For
xample, the matrices

D1 =

⎡⎢⎣−1 1
. . . . . .

− 1 1

⎤⎥⎦ ∈ R(n−1)×n and D2 =

⎡⎢⎣1 −2 1
. . . . . . . . .

1 −2 1

⎤⎥⎦ ∈ R(n−2)×n

re approximations to the first and second derivatives. Regularization operators of this form are often
eferred to as smoothing operators. An effective choice of L is such that the solution x is (at least approx-
mately) in the null space N (L). In fact, N (D1) and N (D2) include constant and linearly varying vectors,
espectively. A classical solution method for the problem (2) employs the singular value decomposition (SVD)
f A, if L = In, otherwise the generalized SVD of the matrix pair (A, L).

The singular value decomposition is a matrix factorization of the form

A = UΣV T ,

here U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n are matrices with orthonormal columns.
he non-zero elements of the diagonal matrix Σ ∈ Rm×n are the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0,
ith r = rank(A) ≤ min(m, n); see [1] for details.
Let A ∈ Rm×n and L ∈ Rp×n be matrices with rank(A) = r and rank(L) = p ≤ n. Assume that m+p ≥ n

nd conditions (3) are met. Then, the generalized SVD (GSVD) [1] of the matrix pair (A, L) is defined by
he factorizations

A = UΣAW −1, L = V ΣLW −1, (4)

here U ∈ Rm×m and V ∈ Rp×p have orthonormal columns ui and vi, respectively, W ∈ Rn×n is
onsingular, ΣA ∈ Rm×n, and ΣL ∈ Rp×n. The matrices ΣA and ΣL are diagonal matrices which assume
ifferent forms depending on m ≥ n ≥ r or r ≤ m < n; see [2,3] for explicit expressions of ΣA and ΣL.

A solution method which expresses the solution subspace as the direct sum of the null space of L and its
rthogonal complement has been introduced in [4] for the solution of large linear discrete ill-posed problems.
t has been applied in [5] coupled to the truncated SVD, and it has been employed in [6,7] in iterative
ethods for solving large scale Tikhonov minimization problems with a linear regularization operator in

eneral form.
The method is very effective when a basis for N (L) is available, but in the present paper it is proved that

t cannot be applied to problem (2) in conjunction with the generalized SVD.
In Section 2, we revise the method and show the reason for its failure when it is applied to the solution

f (2). We propose some approaches for its practical implementation in Section 3 and investigate, in Section 4,
heir numerical performance. Future research developments are discussed in Section 5.

. Problem setting

Let A ∈ Rm×n and L ∈ Rp×n be defined as above. Assuming A is fairly conditioned, we consider the
inimization problem (2) when either r = rank(A) = m < n or r < min(m, n). The case m ≥ n = r is

rivial, as the minimization of the residual admits only one solution, and minimizing ∥Lx∥ has no effect.
In the following we describe an approach, firstly proposed in [4,5], which explicitly determines a solution

omponent in N (L), that is, a component which is not damped by L. The approach is applicable when a
asis for N (L) is known and has a fairly small cardinality.

Let the orthonormal columns of the matrix B = [b1, . . . , bd] ∈ Rn×d, with d = n − p, span N (L). If
= D1 or L = D2, they can be obtained by orthonormalizing the bases

{(1, . . . , 1)T } and {(1, . . . , 1)T , (1, 2, . . . , n)T }

2
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for N (D1) and N (D2), respectively. Introduce the QR factorization

AB = QR, (5)

here Q ∈ Rm×d has orthonormal columns and R ∈ Rd×d is upper triangular and nonsingular, as
(A) ∩ N (L) = {0}, and define the orthogonal projectors

PB = BBT , P⊥
B = In − BBT , PQ = QQT , P⊥

Q = Im − QQT . (6)

Then, using that In = PB + P⊥
B and P⊥

Q APB = 0, we decompose the solution x of (2) as

x = x′ + x′′, x′ = PBx, x′′ = P⊥
B x,

nd we split the residual according to

∥Ax − b∥2 = ∥PQAx − PQb∥2 + ∥P⊥
Q Ax − P⊥

Q b∥2

= ∥PQAPBx − (PQb − PQAP⊥
B x)∥2 + ∥P⊥

Q AP⊥
B x − P⊥

Q b∥2.

etting y = BT x, we obtain

∥PQAPBx − (PQb − PQAP⊥
B x)∥2 = ∥Ry − QT (b − Ax′′)∥2. (7)

ince R is nonsingular, we can determine, for any x′′ = P⊥
B x, a vector y ∈ Rd so that the expression in

he right-hand side of (7) vanishes. This yields the component x′ = By in N (L) of the solution. Then, the
olution component x′′ in N (L)⊥ is computed by solving

min
x∈Rn

∥P⊥
Q AP⊥

B x − P⊥
Q b∥2.

We remark that since P⊥
Q APB = 0, in the above residual we can write P⊥

Q A in place of P⊥
Q AP⊥

B , i.e., we
o not require the computed solution to be in the range of P⊥

B . If the problem has infinitely many solutions,
e first solve the constrained problem⎧⎨⎩min

x∈Rn
∥Lx∥2

x ∈
{

arg min
x∈Rn

∥P⊥
Q Ax − P⊥

Q b∥2},
(8)

hen determine x′′ = P⊥
B x and substitute it in (7) to obtain x′ = By. Finally, the solution is x′ + x′′.

In this situation, it would be natural to solve (8) by computing the GSVD of the matrix pair (P⊥
Q A, L),

ut this cannot be done as the intersection of the corresponding null spaces is non-trivial, i.e., they do not
ulfill condition (3). In fact, we will prove that the two null spaces are coincident.

First we characterize a subset of the range R(Q) of the orthogonal matrix Q.

emma 2.1. Let Q ∈ Rm×d be the matrix defined in (5). If x ∈ N (L), then Ax ∈ R(Q), i.e.,

{z ∈ Rm : z = Ax, x ∈ N (L)} ⊂ R(Q).

Conversely, if Ax ∈ R(Q), then x ∈ N (L).

Proof. Let B ∈ Rn×d be the matrix whose orthonormal columns form a basis for N (L). Then, for any
x ∈ N (L) there exists y ∈ Rd such that x = By. From (5), it follows

Ax = ABy = QRy,

that is, Ax ∈ R(Q). Conversely, if Ax ∈ R(Q), then we can write Ax = Qz with z ∈ Rd. Considering the
nonsingular matrix R of (5), there exists y ∈ Rd such that z = Ry. It follows that x = By ∈ N (L). □
3
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Theorem 2.2. Let A ∈ Rm×n, L ∈ Rp×n, and P⊥
Q be the projector defined in (6). Then,

N (L) = N (P⊥
Q A).

Proof. First we prove that N (L) ⊂ N (P⊥
Q A). Let x = By ∈ N (L) for y ∈ Rd. Then, by (5),

P⊥
Q Ax = P⊥

Q ABy = P⊥
Q QRy = 0,

hat is, x ∈ N (P⊥
Q A). To prove that N (P⊥

Q A) ⊂ N (L), consider x ∈ N (P⊥
Q A). Hence,

0 = P⊥
Q Ax = Ax − QQT Ax,

that is, Ax = QQT Ax ∈ R(Q). From Lemma 2.1 we conclude that x ∈ N (L). □

In the next section we develop two numerical schemes to solve (8).

3. Solving the problem (8)

Let us consider the constrained least-squares problem (8). We extend the matrix B = [b1, . . . , bd], whose
columns span N (L), by adding p columns to obtain an orthonormal basis for Rn

[B B̃] = [b1, . . . , bd, bd+1, . . . , bn]. (9)

This implies N (L)⊥ = span{bd+1, . . . , bn}.
Since in (8) x ∈ N (L)⊥, then x = B̃z with z ∈ Rp, and the problem becomes⎧⎨⎩min

z∈Rp
∥LB̃z∥2

z ∈
{

arg min
z∈Rp

∥P⊥
Q AB̃z − P⊥

Q b∥2},
(10)

whose solution yields the component of the solution in N (L)⊥, i.e., x′′ = B̃z.

Theorem 3.1. Let L ∈ Rp×n, with p < n, and let B̃ ∈ Rn×p be the matrix defined in (9). Then, LB̃ is a
square invertible matrix of size p.

Proof. To prove nonsingularity it suffices to show that the dimension of the null space of LB̃ is zero. If
we assume that dim(N (LB̃)) ̸= 0, then there exists some vector x ̸= 0 such that LB̃x = 0. On the other
hand, B̃x is in N (L)⊥, so that LB̃x ̸= 0. This is a contradiction, and the rank-nullity theorem implies that
rank(LB̃) = p. □

Since LB̃ is a square invertible matrix of size p, we have

rank
([

P⊥
Q AB̃

LB̃

])
= p = n − d.

This means that the matrix pair (P⊥
Q AB̃, LB̃) fulfills the condition (3) and the problem (10) can be solved

by the GSVD of (P⊥
Q AB̃, LB̃); see Eq. (4).

A slight simplification of problem (10) can be obtained by considering a different, but equivalent,
regularization matrix. The matrix L is generally designed so that a meaningful component of the solution x
is not damped by the term ∥Lx∥. This is accomplished by choosing L in order that its null space contains
4
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such component. For this reason, we propose to set L = B̃T . In this case, LB̃ = Ip and the problem (10)
ecomes ⎧⎨⎩min

z∈Rp
∥z∥2

z ∈
{

arg min
z∈Rp

∥P⊥
Q AB̃z − P⊥

Q b∥2},
(11)

hich can be solved by the SVD of the matrix P⊥
Q AB̃.

The above approaches produce the minimal-L-norm solution of (1) when the matrix A has a small
ondition number, compared to the accuracy of the data. When A is ill-conditioned, both (10) and (11)
ield a regularized solution if they are solved by the truncated GSVD and the truncated SVD, respectively,
hile applying the truncated GSVD directly to problem (2) would be unfeasible.

. Numerical experiments

In order to investigate the accuracy of the proposed new approach, we performed a large number of
umerical experiments organized as follows. Chosen a test matrix and a model solution, we generated the
xact right-hand side for the corresponding linear system, and contaminated it by additive Gaussian noise
ith standard deviation δ. Then, we solved problems (2) and (10) by GSVD, and (11) by SVD. Since the

hosen matrices are strongly ill-conditioned, we employed truncated SVD/GSVD, selecting the truncation
arameter in order to minimize the ℓ2-norm error with respect to the exact solution. In this way, we are
omparing the best solutions that each method can produce.

The test matrices were Baart, Deriv2, Foxgood, Gravity, Heat, Phillips, and Shaw, from [8],
ilbert, Lotkin, and Prolate, from the gallery function of Matlab. We chose 7 model functions with
ifferent degree of regularity, and three regularization matrices, the discretization of the first, second, and
hird derivatives. The square linear systems were generated at two different dimensions, n = 40,100, and
hree noise levels were adopted, δ = 10−3, 10−2, 10−1, leading to 1260 test problems. Each experiment was
epeated 5 times with different realizations of the Gaussian noise, producing 6300 numerical tests; see [9–11],
here a similar experimental dataset was used.
The two new formulations (10) and (11) proved to be substantially equivalent to the standard ap-

roach (2). Indeed, in all numerical test the best error produced by the three methods differed by less that
.01%. The same result was obtained by solving rectangular underdetermined systems of dimension m × n,
ith n = 40,100 and m = n/2.
This shows that the additional transformations required by the two new approaches do not introduce

nstability in the computation, and encourages its application to more complicate regularization operators,
ther than the discrete approximations of the derivatives, as well as to the solution of large scale problems
y iterative methods, where a standard approach to deal with general form regularization is not available.

While the three considered methods perform similarly when the truncation parameter is chosen so as to
inimize the error in the solution, the situation is different when the regularization parameter is determined

y an automatic estimation algorithm, as it is done in real applications. In this case, we observed that some
xamples exhibit a better performance of the methods (10) and (11) with respect to the standard GSVD
ormulation.

In Fig. 1 we consider the test problem Deriv2 from [8] (setting the “example” parameter to 2), with a
oisy right-hand side with noise level δ = 10−2. The problem is solved by applying the truncated GSVD to
oth problems (2) and to (10), estimating the truncation parameter the L-curve method, introduced in [12].
he estimation algorithm is the one described in [13] and available in the corner routine from [8]; see [11]

or a comparison of methods for estimating a discrete regularization parameter. It is evident that in this
articular example the regularization parameter estimated by the L-curve for the LSNSB method produces

much better solution than when the same estimation algorithm is applied to (2).

5
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Fig. 1. Solutions of Deriv2 test problem from [8] computed by the truncated GSVD applied to (2) and to (10), labeled as LSNSB in
he legend. The truncation parameter has been estimated by the L-curve; the noise level is δ = 10−2.

. Conclusions

Solving underdetermined least-squares problems by computing the minimal-L-norm solution, for a chosen
egularization matrix L, is a common practice when sufficient information is available about the space that
ontains a desirable solution.

In this paper we proved that the solution method introduced in [4,5], which makes explicit use of a basis
or the null space of L, cannot be applied to the underdetermined least-squared problem in general form (2)
y means of the GSVD. We also propose two computational schemes to overcome this difficulty.

Numerical experiments show that the new approaches are as stable as the standard one, and suggest that
n some situation it may be more effective to apply regularization parameter estimation methods to the
ewly introduced formulations of the problem. Further research will investigate this aspect as well as the
pplication of the main idea of the method to iterative algorithms for the regularized solution of large scale
iscrete ill-posed problems.
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