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Abstract  
 

In this Thesis, the production of natural gas liquids (NGLs) and the challenge of monitoring 

and controlling the fractionation process are thoroughly explored. NGLs are the C2+ 

Hydrocarbon fraction contained in natural gas, which comprehend useful feedstocks for 

industrial production processes. The production and utilization of natural gas have become 

crucial topics in recent years for several reasons. Foremost, the technological advancements in 

extraction techniques have led to an increase in the availability of natural gas from 

unconventional reservoirs. Since NGLs have greater economic value compared to natural gas, 

their recovery has become increasingly economically significant, leading to a need for efficient 

NGL fractionation. This energy-intensive process is typically conducted in separation trains 

that include cryogenic distillation columns. NGL recovery processes widely used in industry 

have been simulated through the process simulator HYSYS® and analyzed under the 

imposition of typical process disturbances. The fractionation process considered in this work 

uses multicomponent distillation for NGL recovery, which is linked to the need for composition 

analyzers to achieve purity targets. Given the high cost of composition analyzers and the 

significant delays introduced in composition controllers it makes it unfeasible to profitably 

achieve the desired control goals. This study first aims to develop a proper and feasible control 

strategy for the process under investigation without the need for concentration analyzers. 

Different indirect quality control structures were developed and evaluated under the presence 

of changes in the inlet plant feed flowrate and composition, with the primary objectives of 

achieving an ethane recovery of 84 % and low levels of methane impurity in the bottom of the 

demethanizer column. In particular, the control strategies compared the use of direct 

temperature controllers widely used in industry, with the implementation of pressure 

compensator and cascade control using a regression boilup estimation. Also, a hybrid cascade 

control that updates the reference of the column temperature controller using in-line delayed 

concentration measurements at each sampling period is presented. The results indicate that 

besides the control structure developed without the use of composition analyzers, shows 

optimum performances under inlet feed flow disturbances, the hybrid cascade control schemes 

provide superior control performance in the presence of composition disturbances, allowing 

the new steady state offset elimination. To eliminate the offset obtained in the control of the 

methane concentration at the bottom of the demethanizer without the use of composition 
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analyzers, a data-driven control strategy based on soft sensors were developed by using 

Feedforward (FNN) neural networks and implemented in the HYSYS® simulation. Finally, 

the focus of the research work moves on towards exploiting the multitude of data made 

available by using the process simulator to develop a digital twin for the NGL recovery process 

evolving in the cold residue reflux (CRR) process scheme. The goal was to obtain a surrogate 

model using Long Short-Term Memory (LSTM) neural networks in non-conventional 

arrangement with incorporated physical knowledge to approximate the real dynamics of the 

column with reduced computation time. Several neural network architectures were compared, 

the best of which were integrated with two additional LSTM models for the digital twin 

realization. The models were trained and tested with realistic measurement noise, and only 

easy-to-measure variables were used as input data. The results showed that the digital twin 

effectively reconstructed the column's actual operations quite accurately, proving successful 

estimation for the considered target variables. Overall, the presented research proposes to 

exhibit the feasibility of attaining energy-efficient Natural Gas Liquid (NGL) recovery without 

using composition analyzers, offering a cost-effective and efficient alternative to traditional 

measuring instruments. Furthermore, the study introduces a novel application of LSTM neural 

networks in the development of digital twins for distillation columns, providing a valuable tool 

for optimization, monitoring and quality control by employing only easily and economically 

available plant measurements.  
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   Chapter 1  

 

1. Introduction   
 

The introductory chapter explains the motivation behind the development of this thesis. 

Next, a list of related publications and presentation in international and national 

conferences are shown. Finally, the state of art of control and estimation in 

multicomponent columns and the application of Neural Network modeling in chemical 

processes is summarized. 
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1.1. Motivations 

The industrial sector heavily relies on measurement sensors to provide insight into the state of 

ongoing processes. However, the actual status of all variables remains elusive due to the high 

cost of purchasing and maintaining measurement devices and the infeasibility of their 

installation within the equipment. The composition analyser represents one of the required 

instruments for product quality control and monitoring in multicomponent distillation columns. 

However, these measuring instruments are associated with a high cost of purchasing and 

maintenance, as well as long sampling time and measurement delays. These related 

disadvantages lead to the pursuit of different control and monitoring solutions, such as the use 

of temperature measurements to infer or indirectly control the desired composition. Since in 

multicomponent distillation columns, the concentrations achieved in each column tray are not 

uniquely related to the tray temperature, the use of temperature measurement does not always 

allow adequate composition control and estimation. The research project focuses on a natural 

gas treatment plant that uses multicomponent distillation columns for producing high-value by-

products: natural gas liquids (NGLs). This is a complex system which is greatly influenced by 

operating conditions such as pressure, temperature, and feed conditions, the process is also 

impacted by various disturbances, such as changes in the inlet flowrate and composition. 

In literature, the NGL recovery process has been extensively studied with many authors 

contributing to the understanding of the major aspects of natural gas field processing. Manning 

& Thompson (1991) and Kidnay et al. (2011) provided an overview of NGL recovery, while 

Mehrpooya et al. (2010) and Chebbi et al. (2010) presented different NGL recovery process 

optimization based on cost analysis. Other authors, such as Getu et al. (2013), Park et al. (2015), 

Kherbeck & Chebbi (2015), and Olsen et al. (2012), compared different NGL separation 

schemes employing Joule-Thompson expansion, turbo-expansion, and cryogenic distillation. 

In this field, the research has focused recently on the dynamics and control of product quality 

indices, mainly in the demethanizer column bottom product.  

The demethanizer column product quality control is particularly challenging due to the 

localized concentration drop in the column ends and the flat composition profiles in the central 

zone of the column. The proximity of the concentration drop to the column ends makes the 

problem of composition control difficult with only the use of indirect temperature control, as 

the temperature at the column ends also depends on the variation of non-key components, 

which are greater in the column end zones. Also, the presence of methane in supercritical 
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conditions in the last stages of the column contributes to obstacles to the use of indirect 

composition control through temperature measurement, largely influencing the temperature 

gradient and leading to enormous temperature variability in this part of the column due to his 

presence as mixture gas solute increasing the need of energy for the separation. 

Various works in the literature, including Chebeir et al. (2019) and Luyben (2013), have 

examined the NGL separation process dynamics and the demethanizer bottom product quality 

control in the presence of typical disturbances. Chebeir et al. (2019) proposed control structures 

with the implementation of composition controllers in a direct or cascade arrangement, while 

Luyben (2013) considered inferential composition control through temperature controllers and 

direct composition controllers. Both contributions consider the presence of composition 

analyzers in the plant but neglect the typical delay associated with composition measurements 

and measurement noise. 

The presented work first focuses on the optimization of product quality control for the 

demethanizer column in the NGL recovery plant without the use of composition analyzers. To 

maintain product specifications, different indirect composition control strategies were 

developed to mitigate the effects of these disturbances while enhancing the plant's energy 

efficiency. However, due to the lack of a biunivocal relationship between temperature and 

composition, indirect control of the compositions does not guarantee the respect of the desired 

product purities in multicomponent columns. Thus, to overcome the need for concentration 

measures and without composition analyzers to achieve the best control performances, deep 

learning techniques were applied, considering historical measurement data easily available in 

industrial plants for the implementation of software sensors able to predict the evolution of 

process variables that are difficult to measure over time. Information on all the process 

variables can be obtained utilizing process simulators, although the related calculation time 

makes it impractical to use the simulated model to optimize, monitor and control a real 

industrial plant. However, the simulator allows the collection of large amounts of process data 

that can be used to develop a data-driven digital surrogate with much shorter computational 

times. The combined use of commercial simulators and emerging machine learning techniques 

in conjunction with process knowledge makes it possible to attainment of a surrogate model 

with which design control, management, and optimization strategies. The final goal of the study 

thus aims to present a novel approach for the development of a multicomponent distillation 
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column digital twin which approximates the real dynamics of the column and that could be 

used for improving the efficiency of the NGL recovery process. 

 

1.2. List of Pubblications and Presentation in conferences 

Some of the topics in the present Thesis led to the development of the following contribution: 

• Mandis, M., Baratti, R., Chebeir, J.A., Tronci, S., Romagnoli, J.A. A Demethanizer 

column Digital twin with non-conventional LSTM neural networks arrangement. 

(2023). (Presented and accepted to the 33rd European Symposium on Computer Aided 

Process Engineering (ESCAPE33)); 

 

• Mandis, M., Chebeir, J.A., Romagnoli, J.A., Baratti, R., Tronci, S. Effect of the 

demethanizer improved control strategy on the separation train for the NGL separation 

process. (2022) IFAC-PapersOnLine, 55 (7), pp. 889-894. DOI: 

10.1016/j.ifacol.2022.07.557; 

 

• Mandis, M., Chebeir, J.A., Tronci, S., Baratti, R., Romagnoli, J.A. Control of a natural 

gas liquid recovery plant in a GSP unit under feed and composition disturbances. (2021) 

IFAC-PapersOnLine, 54 (3), pp. 182-187. DOI: 10.1016/j.ifacol.2021.08.239; 

 

• Tronci, S., Chebeir, J.A., Mandis, M., Baratti, R., Romagnoli, J.A. Control Strategies 

for Natural Gas Liquids Recovery Plants. (2020) Computer Aided Chemical 

Engineering, 48, pp. 1291-1296. DOI: 10.1016/B978-0-12-823377-1.50216-0; 

 

• Mandis, M., Baratti, R., Chebeir, J., Tronci, S., Romagnoli, J.A. Performance 

assessment of control strategies with application to NGL separation units. (2022) 

Journal of Natural Gas Science and Engineering, 106, art. no. 104763. DOI: 

10.1016/j.jngse.2022.104763; 

 

• Mandis, M., Chebeir, J.A., Baratti, R., Romagnoli, J.A., Tronci, S. Machine learning 

for monitoring and control of NGL recovery plants. (2021) Chemical Engineering 

Transactions, 86, pp. 997-1002. DOI: 10.3303/CET2186167; 

 

• Mandis, M., Baratti, R., Chebeir, J.A., Mandis, M., Tronci, S., Romagnoli, J.A. 

Comparison of non-conventional neural network architectures for the realization of a 

Demethanizer column Digital. (2023). (Manuscript under preparation). 

 

Works presented in national and international conferences: 
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• Dynamic simulation and control of NGL recovery plant, GRICU 2022 National 

Conference, 3 - 6 July 2022, Ischia (Italy); 

• Control strategies for NGL recovery plants, ESCAPE 30 European Symposium on 

Computer Aided Process Engineering, 31st Aug – 1st Sep 2020, Milan (Italy); 

• Control of a natural gas liquid recovery plant in a GSP unit under feed and composition 

disturbances, 11th IFAC International Symposium on Advanced Control of Chemical 

Processes, 13 -16 June 2021, Venice (Italy); 

• Effect of the demethanizer improved control strategy on the separation train for the 

NGL separation process, 13th IFAC Symposium on Dynamics and Control of Process 

Systems (DYCOPS),  14 - 17 June 2022, Busan (Republic of Korea). 

 

 

1.3. State of the art 

The NGL fractionation process will be addressed in this research work by considering the use 

of several distillation columns for the separation of the light components contained in the 

original mixture. Distillation columns are designed to carry out unit operations where due to 

the establishment of a liquid-vapor equilibrium a given stream is separated into two or more 

products to meet specified purity levels of key components. The goal of the control and 

estimation problems in the distillation column concerns the achievement of the desired product 

quality under the presence of non-eliminable process disturbances with the minimum waste of 

energy. Here an overview of the most related control and estimation literature for 

multicomponent distillation columns will be presented. Also, a brief discussion of the use of 

neural networks in the field of industrial processes is reported. 

 

1.3.1. Control of multicomponent distillation columns 

The control of product quality indices in distillation columns allows the achievement of high 

product quality as well as reducing processing time and operating costs (X. Zhu & Ji, 2022). 

To obtain an offset-free product quality control under the effect of inlet disturbances in 

presence of changes in operating conditions, the use of composition analyzers for the 

implementation of composition controllers is required. This type of control strategy is the 

simplest in terms of construction, but it also has several negative aspects. Indeed, such 

analyzers present several disadvantages such as significant costs of purchasing and 
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maintenance, reliability problems, and measurement delays. Due to these unfavourable aspects, 

the use of direct composition controllers may be inadequate for online composition control. An 

alternative to direct control is the indirect control of composition through temperature 

measurements (Hori & Skogestad, 2007). In industry, column product quality control is 

typically addressed through temperature controllers employing available temperature 

measurements. This type of control is commonly realized with PI feedback controllers, the 

most widely employed control system in industrial distillation columns. In binary distillation 

columns, a biunivocal relation between temperature and composition subsists, which is not true 

for multicomponent columns where multiple compositions are involved in the equilibrium 

calculation, leading to the existence of multiple solutions related to the same considered 

temperature. The use of temperature controllers in multi-component columns can however 

provide good disturbance rejection in indirect product quality control if a proper location for 

the temperature sensor is selected. Thus, essential in cases of multi-component columns is the 

choice of the temperature sensor location. Different criteria have been employed to select the 

best temperature sensor location for multicomponent columns where non-key components can 

strongly influence the temperature. Luyben (2005) and Hori & Skogestad (2007) suggested 

that locations close to the bottom, the top, and the feed stages should be avoided. Rademaker 

et al. (1975) suggested that sensors should be located where the temperature gradient is the 

largest and non-key compositions are almost constant. Another selection criterion that 

highlights the variations of the temperature gradient due to the variations in the key and non-

key component concentrations is given by the temperature gradient with a per-component 

contribution diagram analysis (Frau, 2011). The lack of informative temperature measurements 

on key component composition variations in a column section makes it impractically the 

installation of temperature controllers for dual-end control. In this case, only single-end control 

structures can be implemented for the quality control of distillate or residue. The remaining 

degree of freedom is fulfilled with the implementation of a ratio controller to limit the 

composition offset in the other product.  

The analysis of the dynamics and the control of the NGL recovery process employing 

cryogenic distillation technology has been investigated in the contributions of Luyben (2013c, 

2013a) and Chebeir et al. (2019). In the works of Luyben, the dynamic control of a 

demethanizer column with side reboilers is studied by comparing the effects of inferential 

composition control through temperature controllers and direct composition controllers. 
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Chebeir et al. examined the process dynamics of different NGL recovery processes in presence 

of typical disturbances. The work proposed a control structure that comprises the 

implementation of composition controllers in a direct or cascade arrangement. Despite both 

works comprising the presence of composition analyzers in the plant, the presence of delay, 

typically occurring with these measurement devices, was neglected not allowing a more 

realistic analysis of the use of composition controllers in the plant. 

On the other hand, the use of indirect composition controls, employing temperature controllers, 

despite being widely used in industry, may not be the best control strategy to guarantee product 

specifications as it cannot guarantee the respect of product quality but only the limitation of 

the disturbance effects. For this reason, new solutions have been explored to avoid the use of 

composition analyzers, while achieving optimal product quality control. 

 

1.3.2. Estimation in multicomponent distillation columns 

In distillation columns, the targets of the estimation problem are generally represented by 

product composition, due to disadvantages related to the use of composition analyzers and their 

high cost. To optimally control the process production targets without incorporating 

composition analyzers, one possibility is the use of inferential control through real-time 

composition estimations. The estimation of process variables can be also necessary for process 

monitoring purposes. The development of composition estimators is usually realized by 

secondary measurements, such as temperatures or others easily available variables. Two main 

classes of estimators can be developed: input-output data-driven estimators and model-based 

estimators. The first class requires training data in input to detect the relationship between input 

and output considered. Algorithms used for estimation in distillation columns include singular 

value decomposition (SVD) (Yu & Luyben, 1987), partial component regression (PCR) (Al 

Kalbani & Zhang, 2023), artificial neural network (ANN) (Chetouani, 2007) modelling, partial 

least square (PLS) regression (Mejdell & Skogestad, 1991; Zamprogna et al., 2005). The 

model-based estimators benefit from the incorporation of the process model in their definition, 

which leads to the realization of estimators robust to changes in operating conditions. State 

estimation of multicomponent distillation columns was first addressed by Joseph & Brosilow 

(1978), using for composition estimation a linear combination of temperature and flow 

measurements. The most employed estimation algorithm for dynamic and nonlinear systems 
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in process engineering is the Extended Kalman Filter (EKF) (Kalman, 1960). A discrete EKF 

was employed for binary and multicomponent batch distillation columns form Oisiovici & 

Cruz (2000). Another estimator comparable with EKF which benefits from a systematic and 

simple tuning procedure (Frau, 2011) is the Geometric Estimator (GE) (Alvarez & López, 

1999). A nonlinear geometric observer for composition estimation in a pilot-plant binary 

distillation column was developed by Tronci et al. (2005). A key issue in composition observers 

for distillation columns is the number and location of temperature measurements. In this work 

this issue has not to be considered as the realization of the estimators was conducted using data 

made available by the process simulator. 

 

1.3.3. Neural Networks applied to chemical process modeling 

As mentioned in the previous paragraph, ANNs are advanced tools that can be used for the 

realization of data-driven models in the industrial field. Commonly used methods include 

principal component regression, partial least squares, and artificial neural networks (ANNs) 

(Ge, 2017). ANNs have outstanding performance in apprehending the behavior and variables 

correlation in nonlinear physical systems and are known as universal approximators with the 

ability to learn and represent any complex input-output relationship (Lu et al., 2021). Thanks 

to these characteristics, ANNs are a powerful tool nevertheless, despite being theorized since 

the 1940s (McCulloch & Pitts, 1943), only recently it has become possible to take full 

advantage of its capabilities thanks to the possibility of access to the huge amount of 

information that can be acquired and exchanged in real-time with the rise of the so-called big 

data era in conjunction with modern advances in computational technology (Tao et al., 2016). 

Due to their simple structure and fast learning rate, a type of ANN widely used to model time 

series problems (Zhang et al., 2015) is given by feedforward neural networks (FNNs). 

However, their use allows the detection of only static correlations between inputs and outputs 

disregarding temporal dependencies, which is essential to obtain an adequate estimation when 

addressing the problem of time series modelling. Recurrent neural networks (RNNs) (Elman, 

1990) were developed to address time-dependent problems. Due to the introduction of a 

recurrent loop and a cell memory, RNNs can determine and store temporal dependencies even 

between events occurring far in time. Among the various RNNs types developed over time, 

one of the most useful when addressing with long time dependency is the Long-Short Term 

Memory network (LSTM) (Hochreiter & Schmidhuber, 1997), designed to overcome the 
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problem of the vanishing gradient. LSTM networks have been applied to different nature 

problems in chemical engineering including fault diagnosis (Pang et al., 2022; Wang et al., 

2022), process optimization (Zhu et al., 2020), soft sensors (Ke et al., 2017; Yuan et al., 2020), 

in particular soft sensors for product monitoring in distillation columns  (Ferreira et al., 2022; 

Rosyadi et al., 2023; Singh et al., 2005) and digital twin realization for plant monitoring, and 

control (Qu et al., 2020; X. Zhu & Ji, 2022). In particular, the use of LSTM networks for the 

development of digital surrogate models is of great interest in various fields of study, including 

the process industry. Indeed, a digital twin (Grieves, 2015) consists of a virtual model of whole 

plants or individual units which is interconnected with the actual equipment with which it 

exchanges information in real-time, and it can predict their dynamic evolution over time. For 

this reason, a digital surrogate can provide a useful tool for performance monitoring, predictive 

asset maintenance, production optimization and advanced process control.  
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Chapter 2  
 

2. NGL Recovery Industry 
 

This chapter presents an overview of natural gas and NGL characterization, as well as a 

summary of their principal uses. Also, the world's main basins and the most common 

technologies used for NGL fractionation are reported. 
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2.1. Natural Gas characterization  

Among the energy sources of fossil origin, natural gas, from an environmental point of view, 

is the cleanest, it is mainly used as a fuel as an alternative to the more traditional oil and coal. 

Indeed, natural gas is a clean-burning fossil fuel and is the least carbon-intensive fossil fuel. 

When burned, it produces lower emissions of sulfur dioxide, nitrogen oxides, and particulate 

matter compared to coal and oil. This makes it an attractive alternative for power generation 

and industrial use and one of the main uses of natural gas is as a fuel for heating and electricity 

generation. 

 

2.1.1. Characteristics and Composition  

Natural gas is a gas mixture colorless, odorless, and tasteless, as well as non-toxic and non-

corrosive. The characteristics and composition of this gas can vary depending on its source, 

but in general, it is mainly composed of methane, typically 85-90% of the total composition 

(Natural Gas - Composition and Properties of Natural Gas | Britannica, s.d.), and small 

amounts of other hydrocarbons such as ethane, propane, and butane, as well as impurities such 

as water vapor and carbon dioxide. The amount of these impurities can vary depending on the 

source. For example, natural gas from shale formations can have higher levels of impurities 

compared to gas from conventional reservoirs. The presence of the hydrocarbon fraction of 

C2+, known as NGL, is an additional source of profit: the heavier hydrocarbon compounds are 

separated, liquefied, and used as raw materials for other production processes. The extraction 

of the hydrocarbon fraction of C2+ is also used as a technique for fuel conditioning and dew 

point control of the mixture to avoid the formation of liquid inside the pipelines that can cause 

slowdowns in the flow and give problems to measuring instruments (Kidnay et al., 2011). 

 

2.1.2. Usage and Market price 

One of the main uses of natural gas is as a fuel for heating in residential and commercial 

buildings, and for power generation since it is relatively cheap and produces lower emissions 

of pollutants compared to coal and oil. The use of natural gas to produce energy is not a recent 

practice  (Kidnay et al., 2011), but this has increased in the last decades due to the so-called 

"shale gas revolution" (Caporin & Fontini, 2017) derived from technological advances in 
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extraction methods, including hydraulic fracturing and horizontal drilling. The technological 

advancement in fracking methods has bringing to access to huge volumes of gas trapped in 

shale formations (Feng et al., 2021). This has led to an increase in the quantities of Natural gas 

available and a consequent decrease in its selling price, which dropped to less than 30% of its 

previous highs  (Brigida, 2014; Caporin & Fontini, 2017; Feng et al., 2021; Luyben, 2013c). 

The increasing employment of Natural gas is also driven by the new awareness for planet 

preservation which increased the focus on renewable energy sources, subjected to fluctuations 

related to the nature of the source of energy. Natural gas in this context can be seen as an 

integrative source, whose availability is comparable to that of coal and oil, but with a reduced 

environmental impact. Also, natural gas is used as a feedstock in the production of chemicals, 

fertilizers, and hydrogen. In recent years, the use of natural gas in transportation has also been 

increasing, with compressed natural gas (CNG) and liquefied natural gas (LNG) being used as 

fuel for vehicles . The price of natural gas is determined by a variety of factors, including 

supply and demand factors, such as changes in production levels, changes in consumption 

patterns, the availability of alternative energy sources, the price of competing fuels such as oil 

and coal and weather conditions. The price can also be affected by government policies and 

regulations.  

 

2.1.3. World main basins 

Natural gas is formed over millions of years from the remains of plants and animals, and is 

found in underground reservoirs.  Some of the main natural gas basins in the world include 

(The world’s biggest natural gas reserves, s.d.): 

• Persian Gulf: This region is home to some of the largest natural gas reserves in the 

world. Iran holds the world’s second biggest natural gas reserves mostly located 

offshore while Qatar, the world's largest exporter of liquefied natural gas (LNG), holds 

the third largest natural gas reserves; 

• North Sea: it is located between the United Kingdom, Norway, Denmark, Germany, the 

Netherlands, and Belgium; 

• Russia is one of the largest natural gas producers in the world and has the world's largest 

natural gas reserves which account for about a quarter of the world's total proven gas 

reserves. The main natural gas basins in Russia are located in Siberia. 
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• The United States, the world’s largest producer and consumer of natural gas, has the 

fifth larger natural gas reserves, with the largest natural gas basins located in the Gulf 

of Mexico, the Rocky Mountains, and the Appalachian Basin; 

• Middle East: it is a major natural gas producing region, significant reserves are located 

in Iraq, Oman, Saudi Arabia and the United Arab Emirates (UAE); 

• Asia-Pacific: Turkmenistan holds the world’s fourth largest natural gas reserves, while 

countries such as Australia, Indonesia, and Malaysia have significant reserves; 

• Africa: Natural gas reserves are found in several countries in Africa, such as Algeria, 

Egypt, and Nigeria. 

Natural gas exploration and production is a constantly evolving industry and new basins are 

being discovered and developed all over the world. The extraction of natural gas from a basin 

can be done through conventional and unconventional methods. Conventional natural gas 

extraction involves underground reservoirs drilling and pumping the gas to the surface. 

Unconventional natural gas extraction methods, such as hydraulic fracturing involve injecting 

water, sand, and chemicals into the ground to release the gas from shale rock formations. 

 

2.2. NGL characterization 

NGLs are a clean, low-cost energy source consisting of the hydrocarbon fractions of ethane, 

propane, butane and heavier hydrocarbons contained in Natural gas. They are separated from 

the natural gas stream during the processing of natural gas and can be used as a fuel source or 

as feedstock for the petrochemical industry.  These compounds have a higher selling price than 

raw gas, justifying the construction and implementation of separation plants for their recovery.  

 

2.2.1. Usage and Market price 

NGLs have a variety of uses, including as a fuel source and as a feedstock for the petrochemical 

industry. The main uses of NGL can be summarized as follows: 

• Ethane is used as a feedstock for the production of ethylene, which is used in the 

production of plastics, such as polyethylene and polyvinyl chloride; 

• Propane is used as a fuel for heating and cooking in residential and commercial 

buildings, as well as for powering vehicles. It is also used as a feedstock for the 
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production of propylene, which is used in the production of plastics, such as 

polypropylene; 

• Butane is used as a fuel for heating and cooking in residential and commercial 

buildings, as well as a component in the manufacturing of gasoline; 

• Pentanes are used as a feedstock for the petrochemical industry and as a component in 

the manufacturing of gasoline; 

• Natural gasoline, a mixture of different hydrocarbons, including pentanes and heavier 

molecules, is used as a component in the manufacturing of gasoline. 

The demand and prices of NGLs are influenced by a variety of factors including geopolitical 

events, the price of crude oil, weather conditions, and competition from other energy sources. 

In addition, the prices of specific NGLs can also be influenced by their specific use and the 

availability of alternative feedstocks. The prices of NGLs can also vary depending on the 

location and method of transportation. Also, the profitability of the recovery process is 

impacted by the value of ethane as a liquid. Due to the difficulty of liquefying ethane compared 

to the other NGLs, it is the most energy-intensive and expensive to separate from raw gas 

(Ratner, 2018). When ethane's liquid value is high, maximizing its recovery leads to greater 

income. However, when ethane as a liquid has a low value, selling the ethane in residue gas 

provides greater income. While the value of liquid propane has almost always been higher than 

its value of gas (Pitman et al., 1998). 

 

2.2.2. Most common recovery technologies 

The fact that NGLs have normally a significantly higher value as products marketable 

separately than raw gas (Mokhatab et al., 2015) justifies the studies concerning plants and 

separation processes for their recovery. In the literature, several works in which different 

processes for the recovery of NGL are presented have been carried out by Manning & 

Thompson (1991), Mehrpooya et al. (2010), Kidnay et al. (2011), Chebbi et al. 2010, Getu et 

al. (2013), Park et al. (2015) and Kherbeck & Chebbi (2015). Several common technologies 

are used to recover NGLs from natural gas. Some of the most common include: 

• Cryogenic processing: This method uses extremely low temperatures to separate NGLs 

from natural gas. This process allows NGLs to separate and condense into a liquid form; 
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• Absorption: This method uses a liquid absorbent, such as propane or ethane, to separate 

NGLs from natural gas. The natural gas is passed through a tower containing the 

absorbent, where the NGLs are absorbed into the liquid. The NGLs are then separated 

from the absorbent and recovered; 

• Adsorption: This method uses a solid adsorbent, such as activated carbon, to separate 

NGLs from natural gas. The natural gas is passed through a tower containing the 

adsorbent, where the NGLs are adsorbed onto the solid. The NGLs are then separated 

from the adsorbent and recovered; 

• Membrane separation: This method uses a semi-permeable membrane to separate 

NGLs from natural gas. The natural gas is passed through the membrane, which allows 

the NGLs to pass through but not the natural gas; 

• Distillation: This method uses a distillation column to separate NGLs from natural gas. 

The natural gas is heated, causing the NGLs to be liquefied and separate from the 

natural gas. 

The choice of recovery technology will depend on the specific characteristics of the natural 

gas, the desired recovery rate, and the cost of the equipment. Cryogenic processing and 

distillation are the most common methods for NGL recovery in natural gas processing plants, 

with the ability to recover the product at high purities (Olsen et al., 2012). This process involves 

the use of a train of distillation columns, the first distillation column of the train, the 

demethanizer, is the heart of the separation process. For this reason, various process 

modifications have been studied to enhance the separation occurring in this unit. Different 

process schemes were developed, one of the first proposed and most common industrial 

schemes is the conventional turboexpander process. In this scheme, the necessary refrigeration 

for cryogenic distillation is supplied using the pressure jump between the inlet stream and the 

nominal conditions inside the column utilizing a turbo-expander (Campbell & Wilkinson, 

1981). Starting from this process scheme, with plant modifications and energy integrations 

operated to improve separation performance and reduce and minimize the energy demand 

required by the process (Wilkinson & Hudson, 1992), new process schemes have been realized. 

Among the most used are the Gas Subcooled Process (GSP) which uses the split-vapor concept 

to obtain column reflux and the Cold Residue Recycling Process (CRR) where, thanks to the 

addition of a cryogenic compressor, a part of the distillate is returned to the column as reflux, 

increasing in both cases the ethane recovery (Kherbeck & Chebbi, 2015).  
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2.3. Conclusion of the Chapter 

Natural gas is one of the cleanest fossil fuels and is primarily used as an alternative to oil and 

coal. It is a mixture of main methane and small amounts of other hydrocarbons, impurities such 

as water vapor and carbon dioxide. Natural gas is seen as an integrative energy source, with a 

lower environmental impact compared to coal and oil and is increasing in popularity due to the 

shale gas revolution and a greater focus on renewable energy sources. The main uses of natural 

gas include heating and electricity generation, as well as a feedstock for chemical production, 

fertilizers, and hydrogen. The price of natural gas is determined by various factors such as 

supply and demand, the availability of alternative energy sources, the price of competing fuels, 

and government policies and regulations.  The extraction of NGLs from natural gas is an 

additional source of profit and is used as well for fuel conditioning and dew point control. The 

most common recovery technologies include cryogenic distillation, absorption, and adsorption. 

NGLs are a clean, low-cost energy source consisting of natural gas heavier hydrocarbon 

fractions and have a variety of uses such as being a fuel source or feedstock for the 

petrochemical industry. Ethane is used in the production of plastics, propane is used for heating 

and as a fuel, butane is used for heating and gasoline manufacturing, and pentanes and natural 

gasoline are used as feedstock for the petrochemical industry. The demand and prices of NGLs 

are influenced by various factors such as geopolitical events, crude oil prices, and competition 

from other energy sources. 
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Chapter 3 
 

3. NGL Recovery Process  
 

This chapter illustrates the NGL recovery process plant schemes simulated and used as 

a case study in the presented research work, as well as the operating condition considered 

and the selected process specifications required. In addition, a description of the design 

procedure used for the deethanizer, depropanizer and debutanizer columns is given. 
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3.1. NGL Recovery process simulation 

The separation of NGLs is carried out through a fractionation unit consisting of a train of 

distillation columns in which first a cryogenic distillation for methane separation takes place. 

Subsequently, ethane, propane and butanes are separated using several distillation columns in 

a direct sequence arrangement. The NGL separation process was modelled and simulated 

through the Aspen HYSYS® process simulator, using the thermodynamic package given by 

the Peng-Robinson equations of state (EOS). The input data for the various simulations are 

based on realistic operating conditions (Chebeir et al., 2019). Natural gas is fed to the system 

with a flowrate of 4980 kmol/h at an inlet pressure and temperature of 5818 kPa and 35°C 

respectively, assuming that typical contaminants such as carbon dioxide, sulphuric acid, oils, 

and hydrates have been previously removed from the raw gas (Bassani et al., 2020; Nakhjiri et 

al., 2020). The composition of the gas is characterised by a low content of heavy hydrocarbons 

and is shown in Table 3.1. 

Table 3.1: Nominal feed composition (Chebbi et al., 2010) 

Components Mol fractions 

Nitrogen 0.01 

Methane 0.93 

Ethane 0.03 

Propane 0.015 

Butanes 0.009 

Pentanes 0.003 

Hexanes 0.003 

%C2+ 6 

 

 

3.2. Methane separation unit 

Three plant schemes widely used in industry for the methane separation unit were considered:  

• Conventional process; 

• Gas subcooled process (GSP);  

• Cold residue recycle (CRR).  
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The plants considered differ in the strategies used to optimize separation in the demethanizer, 

in terms of enhancing ethane recovery and energy efficiency.   

 

3.2.1. Conventional Process scheme 

The conventional scheme is depicted in Figure 3.1 together with the control loops necessary 

for the stability of the system. In this scheme, the main equipment of this separation system is 

a demethanizer column (T-100) of 30 stages with a reboiler (E-103) and no condenser. In this 

thesis the column trays are numbered from top to bottom, thus the number 1 will indicate the 

column top tray. The feed flow is pre-cooled through a heat exchanger (E-100) and a chiller 

(E-101). The chiller is intended to mimic a refrigeration system with an external refrigeration 

cycle. The precooled gas is sent to a first flash tank (TK-100) in which the condensed liquid is 

separated. The outgoing steam is sent to a further exchanger (E-102) to cool and condense the 

remaining hydrocarbons, which are separated from the gas by a second flash tank (TK-101). 

The gas exiting the flash tank (TK-101) is depressurised through a turbo-expander (TE-100) 

obtaining a gas-liquid flow supplied to the second stage of the demethanizer column. The liquid 

leaving the bottom of the separators is expanded, to meet the pressure required for column 

operations, with Joule-Thompson valves (JTV-100 and JTV-101) and fed into the column at 

the 8th and 26th stages. Once the hydrocarbon fraction of methane has been separated by the 

demethanizer, the NGL product is sent to the next columns of the separation train for heavier 

hydrocarbon separation and single commercialization. The sale gas leaving the top of the 

column goes through two heat exchangers (E-100 and E-102) as cold fluid and is then 

recompressed in the turboexpander TE-100 and compressor K-101. An important variable for 

ethane recovery is given by the flash tank (TK-100) temperature which depends on the 

conditions achieved in the chiller used to precool the feed. The specifications required by the 
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separation process were the achievement of an ethane recovery of 84% and a methane 

composition of 1 mol% at the bottom of the demethanizer column. 

 

Figure 3.1: Conventional separation unit with stability control loops. 

 

3.2.2. GSP Process scheme 

A schematic representation of the GSP separation unit is depicted in Figure 3.2 together with 

the stability control loops. The main part of the separation unit consists of a 30 stage 

demethanizer column (T-100) with no condenser and a reboiler (E-103). As for the 

conventional unit, the feed gas goes through a two-stage cooling process constituted by a heat 

exchanger (E-100) and a chiller (E-101). The precooled raw gas is then fed to the flash tank 

(TK-100) placed upstream of the column. By applying the “vapor split” concept, the vapor and 

liquid streams leaving the flash tank are split into two liquid and vapor streams. This “vapor 

split” concept is a unique feature of the GSP scheme, and it is critical to increasing energy 

efficiency (Pitman et al., 1998). Out of the two gas streams, one is sent to the heat exchanger 

E-102 for additional refrigeration, expanded by a Joule-Thompson valve (JTV-100) and fed to 

the top of the column to provide a liquid with low content of heavy components that acts as 
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reflux. The presence of cool liquids at the top of the column contacts and rectifies the vapors 

exiting the turboexpander allowing ethane and heavier hydrocarbons to be recovered. The 

remaining gas flow is decompressed in the turboexpander (TE-100) to meet the required 

column pressure and fed at the 8th column stage. The condensed stream leaving the flash tank 

is depressurized by a Joule-Thompson valve (JTV-100) and fed to the 26th stage of the column. 

Again, the bottom product of the demethanizer column is sent to the fractionator train while 

the gas leaving the top of the column is used as the cold fluid in the two heat exchangers (E-

100 and E-102) and then recompressed for its commercialization. Also in this case, the unit 

production goal was to reach 84% ethane recovery and a 1 mol% methane impurity level at the 

bottom of the demethanizer column. 

 

Figure 3.2: GSP separation unit with stability control loops. 

 

3.2.3. CRR Process scheme 

The CRR process scheme and the related stability control loops are depicted in Figure 3.3. This 

process represents an evolved version of the GSP scheme with the main goal of improving the 

economics of the NGL recovery process through a higher ethane recovery and a lower energy 
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demand (Hudson et al., 2003). The main difference of this process structure when compared to 

other schemes resides in the incorporation of a reflux stream to improve the rectifying section 

so that only a negligible amount of ethane and heavier components escaped from the column 

overhead. Again, the main part of the separation unit is the demethanizer column (T-100), 

which consists of a 30 stages distillation column with a reboiler (E-103) and no condenser. To 

provide column reflux, the top product is split into two streams. A cryogenic compressor (K-

102) is used to boost one of those streams to a slightly higher pressure so that the nearly pure 

methane stream can then be condensed by the flashed split-vapor stream (Pitman et al., 1998) 

used as the cold fluid in the heat exchanger (E-104).  The reflux of nearly pure methane is sent 

to the top of the demethanizer as a reflux stream. The other stream is used to precool the feed 

as cold fluid in the two heat exchangers (E-100 and E-102), this is then pressurized in the 

turboexpander TE-100 and compressor K-101 and stoked for selling. The desired specifications 

of the demethanizer separation are an ethane recovery of 84% and a methane impurity level of 

1 mol% in the bottom product. 

 

Figure 3.3: CRR separation unit with stability control loops. 
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3.3. Deethanizer column 

After the demethanizer, the following column of the separation train is the deethanizer (T-101), 

which is a 30 stages distillation column with a reboiler (E-106) and a condenser (E-105). A 

schematic representation of this column is given in Figure 3.4 along with the other columns of 

the separation train and the corresponding stability control loops. The column is fed at the 12th 

tray with the liquid stream leaving the bottom of the demethanizer column. The feed conditions 

were a flowrate of 277 kmol/h, a temperature of -5.1°C and a pressure of 2459 kPa. The column 

removes the propane from the mixture and produces an ethane product of high purity in the 

distillate. The production targets required for the deethanizer separation are the maintenance 

of an impurity of propane of 1 mol% in the top product, and an ethane concentration of 0.34 

mol% in the bottom product, these values were chosen following the process specification used 

in the work of Luyben (2013a).  

 

Figure 3.4:Distillation train comprehending the deethanizer column (T-101), the depropanizer column (T-102), the 

debutanizer column (T-103) with stability control loops. 

 

3.4. Depropanizer column 

The depropanizer (T-102) is constituted by a 46 stages distillation column with a reboiler (E-

108) and a condenser (E-107). The feed is represented by the liquid stream leaving the bottom 

of the deethanizer column, which is introduced at the 19th tray. The feed conditions were an 

inlet flowrate of 148 kmol/h, a temperature of 83.5°C and a pressure of 1760 kPa. The column 

produces a propane product of high purity as distillate. The specifications required in this unit 

are for the column top product a value of 0.6 mol% in the sum of the concentrations of i-butane 
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and n-butane; for the column bottom product a propane concentration of 0.1 mol%. Those 

values for the depropanizer product specification were taken from Luyben (2013a).  

 

3.5. Debutanizer column 

The debutanizer (T-103) is a 35 stages distillation column with a reboiler (E-110) and a 

condenser (E-109). This column is responsible for the removal of the butane fraction from the 

remaining mixture outcoming the bottom of the depropanizer. This liquid stream is fed at the 

18th tray with the feed conditions of a flowrate of 74 kmol/h, a temperature of 78.5°C and a 

pressure of 608 kPa. The product targets required for the separation are an impurity of i-pentane 

of 0.2 mol% in the column top product and an impurity of n-butane of 0.2 mol% in the bottom 

product (Luyben, 2013a).  

 

3.6. Separation Train Design  

During this research work, the columns of the separation train following the demethanizer 

column were designed and simulated by using the Aspen HYSYS® process simulator. The 

design specifications for the deethanizer, depropanizer, and debutanizer columns, are 

represented by the top and bottom impurity levels of key components, as well as the operating 

pressure of the various columns. The operating pressures for the deethanizer and depropanizer 

columns are chosen following the data reported in the work of Luyben (2013a), while the 

operating pressure of the debutanizer column was chosen so that cooling tower water could be 

used as a coolant in the condenser. The columns were firstly designed using the Aspen 

HYSYS® simulation in stationary mode, in which the properties of the mixtures are also 

calculated using the Peng-Robinson equations of state (EOS). For the design, the required 

purity targets for the top and bottom products were inserted as column specifications. In this 

way, the simulation modifies the flow ratios in the column by varying the condenser and 

reboiler duties, until convergence (if physically achievable) to the desired concentration values. 

 

3.6.1. Selection of Reflux Ratio and Number of Plates 

Having set the desired purities, the number of column stages was increased until the minimum 

reflux ratio was found. The values obtained were multiplied by a typical multiplication value 

of 1.3, resulting in the actual reflux ratio. The number of stages was determined by selecting 
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the number of stages that would guarantee the reflux ratio closest to the desired one, still 

considering the active specifications of the desired product quality. The number of column 

trays was then recalculated considering a separation efficiency of 75%. The choice of the feed 

plate was then made based on economic considerations, in particular the plate that could 

guarantee the lowest energy consumption considering reboiler and condenser duty was 

selected. The values of the reflux ratio, the number of plates and the feed plate position of the 

different columns are shown in Table 3.2. 

Table 3.2: Design specifications selected for deethanizer, depropanizer and debutanizer columns 

 Deethanizer Depropanizer Debutanizer 

Light Key component ethane propane n-butane 

Heavy Key component propane butanes i-pentane 

Nominal reflux ratio 1.125 2.533 1.554 

Number of trays 30 46 35 

Pressure drop [kPa] 0.62 0.61 0.6 

Feed tray 12° 19° 18° 

 

 

3.6.2. Column diameter and hold-up calculation 

The column diameters were designed using the automatic function available in the internals 

section of the Aspen HYSYS® simulator. The volumes of the reflux drum and the reboiler 

were obtained by considering a 5 min of liquid holdup when the vessel is 50% full as commonly 

used heuristics (Luyben, 2013b). The volume calculation for the reboilers was performed 

considering an inlet liquid flowrate equal to the liquid flowrate exiting the last tray of the 

corresponding column. While for the volume calculation for the reflux drums, an outlet 

flowrate equal to the sum of the reflux and distillate flowrates was considered. The values 

obtained for the column diameters and the corresponding reboiler and reflux drum volumes are 

shown in Table 3.4. 
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Table 3.3: Column diameters and volumes selected for deethanizer, depropanizer and debutanizer columns 

 Deethanizer Depropanizer Debutanizer 

Diameter [m] 2.2 2.1 1.7 

Reflux drum Volume [m3] 4.15 4.31 2.14 

Reboiler Volume [m3] 8.42 5.30 2.10 

 

 

3.7. Conclusion of the Chapter 

The NGL recovery process was modelled and simulated through the Aspen HYSYS® process 

simulator using Peng-Robinson equations of state considering a row gas with a low-content 

liquid. Three widely used plant schemes in the industry involving cryogenic distillation for 

methane separation were considered: the conventional, gas subcooled process (GSP), and cold 

residue recycle (CRR). The goal of the demethanizer separation was an ethane recovery of 84% 

and a methane composition of 1% at the bottom of the demethanizer column. The subsequent 

distillation columns of the train, the deethanizer column, the depropanizer column, and the 

debutanizer column were described and designed for the achievement of the required purity 

specification. The deethanizer desired product quality considers an impurity of propane of 1 

mol% in the top product and an ethane concentration of 0.34 mol% in the bottom product. In 

the depropanizer, the specification regarded a sum of the concentrations of i-butane and n-

butane value of 0.6 mol% in the top product and for the bottom product a propane concentration 

of 0.1 mol%. The debutanizer desired product quality concerned an impurity of i-pentane of 

0.2 mol% in the top product and an impurity of n-butane of 0.2 mol% in the bottom product. 
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Chapter 4  
 

4. Steady state analysis  
 

In this chapter, the steady state temperature and composition column profiles have been 

analyzed giving insight into the separation operations and understanding the internal 

behavior of the distillation columns of the plant. Furthermore, the influence of the 

composition variations on the column temperature gradient for the four columns has been 

studied by performing a temperature analysis with per component contribution analysis.  
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4.1. Temperature profile analysis  

To understand the thermal behavior of the column and obtain valuable information about the 

column's performance, in steady state conditions, the temperature column profiles of the 

demethanizer, deethanizer, depropanizer and debutanizer columns, were recorded and 

analyzed. The distribution of temperature, which is linked to pressure and composition in each 

tray as a result of the thermodynamic equilibrium established between the liquid and vapor 

phases, is a tool that allows the determination of the column's appropriate functioning.  

The temperature column profiles obtained for the demethanizer column of the conventional 

and GSP recovery unit are reported in Figure 4.1 and Figure 4.2. Concerning the CRR 

configuration, the profiles obtained are not reported as very similar to the ones obtained for the 

GSP. 

 

Figure 4.1: Conventional separation unit: Demethanizer temperature column profile. The red arrows indicate the position of 

the feed trays. 

The column temperature profile (Figure 4.1) obtained under nominal steady state conditions 

for the demethanizer located in the conventional unit shows to be practically flat across the 

enrichment section of the column, only a variation of about 4°C is observed in correspondence 

of the 8th tray where one of the three column feeds is located. Most of the temperature variations 

are localized in the stripping section of the column. This is due to the presence of the feed at 

the 26th tray and the presence of methane above its critical temperature of -82.6 °C, this last 
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part of the column is the region where most of the separation in the key components takes 

place. 

 

Figure 4.2: GSP separation unit: Demethanizer temperature column profile. The red arrows indicate the position of the feed 

trays. 

The column temperature profiles obtained for the demethanizer column in the GSP unit are 

shown in Figure 4.2. Here the column temperature gradient depicts a higher variability 

compared to the one obtained with the conventional scheme. In the first stages of the rectifying 

section, a temperature gradient of approximately 10°C can be observed. From this point on, the 

profile remains almost flat until the 26th tray, where the feed plate is located. Also, in this case, 

a drastic temperature increase can be seen in the last plates of the column due to the 

supercritical conditions of the methane fraction present. This analysis makes it possible to 

observe that the modifications introduced for the GSP scheme led to a more distributed 

separation along the column, with an enhancement on the separation operations localized in 

the first few trays of the enrichment section, as evidenced by the temperature gradient observed. 

The same results were found in the analysis of the CRR column temperature profiles. The same 

trend is registered in correspondence of the stripping section of the column, the temperature 

profile in the main part of the column is flat. Thus, it is possible to infer that the variability in 

concentration profiles is located near the top and especially in the last few stages of the column. 
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The steady state temperature column profiles obtained for the remaining distillation columns 

of the separation train are shown in Figure 4.3. 

  

(a) (b) 

 

(c) 

Figure 4.3 Deethanizer temperature column profile (a), Depropanizer temperature column profile (b), Debutanizer 

temperature column profile (c). The red arrow indicates the position of the feed tray. 

The temperature profiles obtained for deethanizer (Figure 4.3a), depropanizer (Figure 4.3b) 

and debutanizer (Figure 4.3c) depict similar results. As it is possible to observe, the three 

profiles show a distributed variability across the column, highlighting the fact that the 

separation of the components occurs more continuously along the entire columns. However, it 

is possible to observe that in correspondence with the column enrichment sections, the gradient 

obtained for the temperature profiles is less pronounced, with a higher gradient occurring 
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around the feed plates. The area of the three columns where the most rapid temperature changes 

are located is registered around the 21st and 24th tray for the deethanizer column, around the 

22nd and the 27th for the depropanizer column and around the 27th and the 32nd tray for the 

debutanizer column. 

 

4.2. Composition profile analysis 

When dealing with multi-component separation, as there is no univocal relationship between 

temperature and concentration, it is necessary to study the composition profiles within the 

column. This section analyses the column composition profiles obtained by the Aspen 

HYSYS® simulations in steady state conditions for the distillation columns considered. First, 

an analysis of the composition profiles across the columns implemented in the different 

separation schemes considered was conducted. To visualize the results obtained, the 

composition profiles along the demethanizer column of the Conventional unit and the GSP unit 

are shown in Figure 4.4 and Figure 4.5 respectively. 

 

Figure 4.4: Conventional separation unit: Components composition column profile. The red arrows indicate the position of 

the feed trays. 

The analysis of column composition profiles confirms the observations made from analyzing 

column temperature profiles in both the demethanizer columns of conventional and GSP 

schemes. It is noteworthy that in the conventional unit, the drop in methane composition is 

concentrated in the last few trays, starting from the 26th tray down to the tray just above the 
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reboiler. In contrast, the graph of the column concentration profiles obtained for the GSP unit 

shows significant variations in the composition profiles of both the first trays of the enrichment 

section and the last trays of the stripping section. The composition profiles remain relatively 

flat in the middle part of the column. Similar results are obtained for the composition column 

profiles in the CRR unit to those obtained with the GSP separation scheme. The decrease in 

methane composition and increase of other components principally take place at the end of the 

stripping section. The opposite occurs in the enrichment section while in the middle part of the 

column, there are almost no variations. 

The steady state column composition profiles obtained for the deethanizer, depropanizer and 

debutanizer columns are reported in Figure 4.6. 

 

Figure 4.5: GSP separation unit: Components composition column profile. The red arrows indicate the position of the feed 

trays. 

In line with what was obtained for the column temperature profiles of the distillation columns 

in the separation train, Figure 4.6 depicts a distributed variability in the composition profiles 

of key components along the columns. The drops in concentration of the light-key 

components—ethane in the deethanizer (Figure 4.6a), propane in the depropanizer (Figure 

4.6b), n-butane in the debutanizer (Figure 4.6c)—are distributed homogeneously from the top 

of the column to the last tray above the reboiler. The same remark can be made for the 

increasing concentration of the columns’ heavy-key components—propane in the deethanizer 

(Figure 4.6a), sun of butanes in the depropanizer (Figure 4.6b), i-pentane in the debutanizer 
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(Figure 4.6c)—which display quite uniform behaviors proceeding from the bottom to the top 

of the column. Nevertheless, it can be seen in Figure 4.6 that the profiles obtained for non-key 

components also undergo significant variations throughout the column, thus largely 

influencing the temperature gradients in the column. 

  

(a) (b) 

 

(c) 

Figure 4.6: Deethanizer composition column profiles (a); Depropanizer composition column profiles (b); Debutanizer 

composition column profiles (c). The red arrow indicates the position of the feed tray. 
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4.3. Per component temperature gradient contribution analysis 

As mentioned above, the analysis of temperature gradients is necessary because, as this 

quantity is easily and usually measured in columns, it can be used to control or monitor 

separation operations. Since there is a bi-univocal correspondence between temperature and 

composition in a bicomponent distillation column, product quality control is usually achieved 

with indirect concentration controllers utilizing column temperature controllers. This 

biunivocal bond is no longer present in multicomponent distillation columns, where the same 

temperature may be associated with a different composition in a considered tray. For this 

reason, alongside the examination of temperature gradients, it is also necessary to study the 

influences of component variations on the temperature gradient. In a multicomponent column, 

the best position to place a temperature sensor is in the section where the sensitivity of 

temperature to composition changes is higher. To establish a better position of the temperature 

sensors to control the tray temperature in the considered columns and to relate the influence of 

components variation on the temperature gradient inside the column the analysis of the 

temperature gradient with a per-component contribution diagram (Porru et al., 2013) has been 

performed. In the analysis, the bubble point calculation was performed with data taken from 

the Aspen Properties® simulator and assuming an ideal behavior for the components inside the 

column. 

 

4.3.1. Demethanizer column 

The effects of the component compositions change on the temperature profile in the 

demethanizer column of the considered separation units have been evaluated with the use of 

the temperature gradient with per-component contribution diagram analysis. The results 

obtained for the demethanizer columns in the conventional and GSP separation unit are 

reported in Figure 4.7 and Figure 4.8 respectively, along with the methane composition 

gradient in the columns.  

The temperature gradient with the per-component contribution diagram obtained for the 

conventional unit is depicted in Figure 4.7a. Here the bars show the contributions of the various 

components to the actual temperature gradient, indicated by the black line. As it is possible to 

visualize the analysis conducted is useful for obtaining a qualitative measure of the 

components' influence on the temperature gradient. Indeed, although the magnitude of the 
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gradients obtained does not reflect the actual recorded values of the temperature gradient in the 

column, the trends obtained are congruent with the actual one. The deviations obtained are due 

to the presence of methane under supercritical conditions. This required an approximate 

calculation of Henry's constant for the mixture when calculating the bubble point function.  

 

  

(a) (b) 

Figure 4.7: Conventional unit demethanizer per component diagram (a) and methane composition column gradient (b). The 

red arrows indicate the position of the feed trays. 

Analyzing the bar graph obtained, it is evident that the temperature variation depends mostly 

on the methane variation inside the column. The peaks around the 8th and the 26th trays depend 

on the methane concentration increase due to the multiple feeds to the column. In the last trays, 

we can observe that the contribution of this component to the temperature gradient becomes 

very high. After the 29th stage, this component is over the critical temperature. Its presence is 

due to the solubility in the liquid mixture. This fact has two effects on tray temperature: its 

presence has a negative contribution due to the reduction of the perceived pressure, but the 

magnitude of the methane concentration drop brings to the significant increment of the heavy 

components fraction that leads to the high increase of temperature. 

The best position for the sensor must be as far as possible from the feeds that have a significant 

influence on the temperature profile and from the last tray. Based on this consideration, the 

choice of tray location for the sensor is between the 27th and the 29th plate. Considering that 

there is no maximum on the temperature gradient and the variation is almost entirely due to the 

methane variations, an adjunctive analysis was conducted to establish which of these plates, 
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was related to the higher variability in methane concentration. The result of this investigation 

is depicted in Figure 4.7b. Here it is observable that between trays 28-29, the methane has the 

concentration drop, the most appropriate location for the sensor was thus selected on the 28th 

tray which is the furthest from the end of the column.  

 
 

(a) (b) 

Figure 4.8: GSP unit demethaizer per component diagram (a) and methane composition column gradient (b). The red arrows 

indicate the position of the feed trays. 

In Figure 4.8a, the temperature gradient with the per-component contribution diagram obtained 

for the GSP unit is reported. It is possible to notice some differences from the diagram obtained 

for the conventional scheme. Even though also in this case the component that most influences 

the temperature gradient is again methane, it is evident that the ethane variations in the last part 

of the column depletion section also affect the temperature variations. Along with the peaks 

obtained around the positions of the feeds at the 8th and 26th trays, the temperature gradient in 

the trays immediately below the column head is also mainly due to methane variations. In this 

region, a minor contribution is also given by ethane variations. Again, in the last trays, due to 

the supercritical conditions of methane, the variations of this component lead to an extremely 

high increase in the temperature gradient. For this reason, no peak is observed in the 

temperature gradient obtained and the choice of the tray in which to locate the thermocouples 

is again made by analyzing the methane gradient in the column, thus the component whose 

variations most influence the temperature gradient. The methane gradient along the 

demethanizer of the GSP scheme is depicted in Figure 4.8b. Here it can be noticed in the 

stripping section of the column that the highest methane variation is again located between the 
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28th and 29th trays. With the need to distance the sensor location from locations that may affect 

temperature gradients, such as feed trays and column ends, the choice of sensor placement once 

again landed on the 28th tray. Again, similar results were obtained with the CRR separation 

unit for which the same temperature sensor location was selected. 

 

4.3.2. Deethanizer column 

To highlight temperature variations caused by changes in key component concentrations in the 

deethanizer column and also consider the effects on the temperature gradient of non-key 

components, a temperature gradient analysis was performed using component contribution 

diagrams. The resulting diagrams are shown in Figure 4.9. 

 

Figure 4.9: Deethanizer per component diagram. The red arrow indicates the position of the feed tray. 

In the diagram in Figure 4.9 except for the temperature variation around the feed plate, located 

in the 12th tray, the per-component analysis can describe the influence of composition 

variations in the temperature gradient inside the column. As it is possible to visualize, in the 

rectifying section the variations of the heavy key component (propane) produce a negligible 

impact on the temperature profile. According to this result, the placement of a thermocouple in 

this section would be ineffective, as the detected temperature variations would be less 

informative about propane variations in this part of the column. Therefore, also the 

implementation of a temperature controller to maintain the propane concentration in the top 
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product is not recommended. Only a reflux ratio controller may be implemented to mitigate 

the effect of feed disturbances on the heavy-key component in the top product. On the other 

hand, in the stripping section light key component (ethane) variations have a high impact on 

the temperature profile, reaching a peak located in the 21st tray. The most appropriate location 

for the sensor was thus selected on this tray. 

 

4.3.3. Depropanizer column 

The per-component contribution diagram obtained for the depropanizer column to examine the 

influence on the column temperature gradient due to the variation in key and non-key 

components is displayed in Figure 4.10. 

 

Figure 4.10: Depropanizer per component diagram. The red arrow indicates the position of the feed tray. 

As depicted in Figure 4.10, in the rectifying section of the depropanizer the influence of the 

sum of i-butane and n-butane variation leads to a region of trays (from the 10th to the 13th) 

where the temperature gradient is practically constant. As result, also in this case the process 

would not be beneficial from the installation of a thermocouple in this column section as it 

would not give significant information about the changes in the heavy key components. By 

observing the region of the graph corresponding to the stripping section of the column, it is 

possible to notice that the effect of the light key component (propane) variations, has a high 
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influence on the column temperature gradient. This influence is highest around the 30th, thus 

this was selected as the most appropriate location for the temperature sensor placement. 

 

4.3.4. Debutanizer column 

Figure 4.11 depict the results of the per-component temperature gradient analysis conducted 

on the debutanizer column to link the changes in the column temperature gradient with the 

component concentrations gradients along the column. 

 

Figure 4.11: Debutanizer per component diagram. The red arrow indicates the position of the feed tray. 

The per-component analysis conducted on the debutanizer columns (Figure 4.11) yielded 

analogue results. In the rectifying section of the column, the variations in the heavy key 

component (i-pentane) have a small effect on the temperature gradient. Thus, also in this case 

the placement of a thermocouple in this section would be ineffective, and only a reflux ratio 

controller may be implemented to mitigate the effect of feed disturbances on the heavy-key 

component in the top product. In contrast, in the stripping section of the debutanizer, changes 

in the light key component (n-butane) had a large effect on the temperature gradient. As a 

result, the best position for the thermocouple would be the tray where the influence of this 

component on the temperature gradient is higher, thus the 26th tray. 
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4.4. Conclusion of the Chapter 

The analysis of the temperature and composition profiles of the distillation columns considered 

in the case study has been conducted for a better column operation understanding. The results 

showed that the modifications in the GSP scheme led to a more distributed separation along 

the demethanizer column, compared to the conventional separation unit, for which the column 

temperature profiles appear almost flat except in the last stages above the reboiler. As opposed, 

the temperature profiles for the other columns depicted temperature variability distributed 

across the columns, highlighting the fact that the separation of the components occurs along 

the entire column. The analysis of the composition profiles confirms what was inferred from 

the temperature profiles. Indeed, in the GSP scheme, the separation of key components also 

occurs in the first tray of the demethanizer column, while the separation occurs regularly 

throughout the subsequent columns of the separation train. The analysis of temperature 

gradients is crucial for controlling and monitoring distillation operations in columns, especially 

in multicomponent columns where variations of components need to be examined for their 

impact on the temperature gradient. In this chapter, a temperature gradient per-component 

contribution diagram analysis was conducted to determine the best location for the temperature 

sensors and to study the impact of variations in key and non-key component concentrations on 

the temperature gradient of all the columns considered in the case study. The results for the 

demethanizer columns of conventional and GSP separation units show that the temperature 

variation depends mostly on the methane variation and the 28th tray resulted in the most 

appropriate location for the thermocouple positioning. The results obtained for the remaining 

columns of the train showed that variations in heavy key components had little effect on the 

rectifying section temperature gradient for all three columns. Therefore, the placement of a 

thermocouple in this section would not be effective. As result, to mitigate the effect of feed 

disturbances on the heavy-key component in the top product the use of a reflux ratio controller 

was suggested. In contrast, it was observed that light key component variations have a high 

effect on the stripping section temperature gradient of the columns. Here the best position for 

the thermocouple was found to be on the 21st tray for the deethanizer, in the 30th tray for the 

depropanizer and 26th tray for the debutanizer.  
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Chapter 5 

 

5. NGL recovery process Control  
 

This chapter focuses on the control problem of the NGL extraction CRR process under 

typical disturbances, with the goal of first, maximizing the recovery of ethane and 

minimizing methane impurity levels in the bottom of the demethanizer, and second, meeting 

the required product purity in the other distillation column of the train. Different control 

structures by the knowledge of online temperature measurements were considered including 

firstly direct temperature control and cascade control schemes. These configurations have 

been analyzed to determine their response in the presence of typical disturbances and their 

ability to achieve the main control objectives. The results obtained were then compared with 

the action of a hybrid cascade control that uses offline and delayed concentration 

measurements to update the controller setpoint at each sampling period. The last part of the 

chapter analyzes the effect on product quality control in the separation train using the control 

strategy defined for the demethanizer column under feed flowrate disturbances. 
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5.1. Control structures 

The fractionation of NGL is an energy-demanding process, often conducted with a separation 

train that includes cryogenic distillation columns. The demethanizer column is the critical unit 

of the separation plant as the methane separation requires a cryogenic separation and it provides 

the feed to the subsequent distillation train to improve the control strategy for the NGL recovery 

plants. Therefore, optimizing this process is crucial from an economic and environmental 

standpoint. The demethanizer unit quality control problem has been addressed, starting from 

the control structure proposed by Chebeir et al. (2019). The control system proposed was 

modified considering the possibility to attain the composition goals without the implementation 

of composition analyzers. Considering that the typical disturbances for the considered process 

are variations in the plant feed flowrate and composition, the disturbances applied to the plant 

were variations of 10% in the plant feed nominal value of 4980 
𝑘𝑚𝑜𝑙

ℎ
 (chosen following the feed 

changes used by Chebeir et al. (2019), and variations of 40% on the ethane inlet composition 

nominal value of 0.03, changing accordingly the composition of methane in the raw gas. The 

control strategies proposed for the demethanizer column quality control have been analyzed 

and compared with the typical control strategy used in real industrial plants. The comparison 

confronts the ability of the control structure developed on limiting the effect of the applied 

disturbances on the plant. The control solution showing the best performances is then 

implemented in the full plant to analyze its influence in the control of the product quality of 

the demethanizer, depropanizer and debutanizer columns for which only indirect composition 

controllers were considered. 

 

5.1.1. Demethanizer column control strategies 

To optimize the bottom product quality in the demethanizer column of the three considered 

separation units, different control strategies were compared with the main objective to achieve 

a methane composition of 1 mol% in the bottom product stream, while maintaining recovery 

of ethane at 84 %. Only the control loops developed for product quality control were addressed 

in this work, the other control loops implemented (depicted in Figure 3.1, Figure 3.2 and Figure 

3.3 with the schematic representation of the three considered separation units) are described as 

follows. 

In the CRR unit: 
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1) The inlet feed flowrate variations are realized by manipulating the opening of the valve 

FCV-100 upstream the flash tank TK-100. 

2) The column pressure is controlled by manipulating the power of the compressor K-101 

used to recompress the methane product stream. 

3) The flash tank (TK-100) level is controlled by manipulating the liquid stream leaving the 

separator through the valve LCV-100. 

4) The liquid level in the reboiler E-103 is controlled by manipulating the flow of the bottom 

product through the valve LCV-102. 

5) The ratio between the gas feed streams to the column is controlled by manipulating the 

flow through the turbo expander TE-100. 

6) The reflux ratio is controlled by manipulating the power to the cryogenic compressor. 

In the GSP unit: 

1) The inlet feed flowrate variations are realized by manipulating the opening of the valve 

FCV-100 upstream the flash tank TK-100. 

2) The column pressure is controlled by manipulating the power of the compressor K-101 

used to recompress the methane product stream. 

3) The flash tank (TK-100) level is controlled by manipulating the liquid stream leaving the 

separator through the valve LCV-100. 

4) The liquid level in the reboiler E-103 is controlled by manipulating the flow of the bottom 

product through the valve LCV-102. 

5) The ratio between the gas feed streams to the column is controlled by manipulating the 

flow through the expander TE-100. 

In the conventional unit: 

1) The inlet feed flowrate variations are realized by manipulating the power of the expander 

TE-100. 

2) The column pressure is controlled by manipulating the power of the compressor K-101 

used to recompress the methane product stream. 
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3) The levels of the flash tank TK-100 and flash tank TK-101 are controlled by manipulating 

the liquid streams leaving the separators through the valves LCV-102. 

4) The liquid level in the reboiler E-103 is controlled by manipulating the flow of the bottom 

product through the valve LCV-102. 

 

Indirect composition control through temperature control 

To modify the control structure proposed by Chebeir et al. (2019), by realizing a control system 

without the use of composition analyzers, thus without the knowledge of composition 

measurements, the possibility of removing the ethane recovery controller and the methane 

impurity level controller was studied. Two indirect composition controllers have been realized 

thanks to the availability of online temperature measurements in the flash tank (TK-100) and 

the demethanizer column, this control structure will be referred to as CS1 and is schematize in 

Figure 5.1.  

a) 

 

b) 

 

Figure 5.1: Demethanizer bottom product quality indirect control: direct flash-tank temperature control loop (a) and direct 

column tray temperature control loop (b) implemented in the CS1 control strategy. 
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In this control strategy, the first control loop is represented by the flash tank (TK-100) 

temperature control, as this variable is directly connected with the recovery of ethane, while 

the manipulated variable is given by the heat loss in the chiller E101. In the second control 

loop, the controlled variable is represented by the tray temperature at stage 28 related to the 

concentration of methane. This tray is chosen following the gradient temperature analysis 

performed and reported in the previous chapter. The manipulated variable is represented by the 

reboiler duty. This is a control structure widely used in the industry as it is associated with a 

reduced cost, due to the absence of composition analyzers. Furthermore, in a binary distillation 

column, direct temperature control is sufficient to obtain the desired product quality as the link 

between temperature and composition is biunivocal. This is not verified in the case of 

multicomponent columns, additionally, the last stages of the demethanizer column are 

associated with the higher variability in the column temperature gradient with variations around 

60°C. This makes the bottom product quality control of the column more complicated and 

chooses a simple temperature controller insufficient for limiting disturbances entering the 

system requiring the design of new control strategies. 

For a clearer reader understanding, the control structures presented in this subsection are 

summarized in Table 5.1, along with the control structures designed to improve the quality 

control of the demethanizer column bottom product that will be presented and described in the 

following subsections. 

Table 5.1: Control structure developed for demethanizer column bottom product quality control 

  CS1 CS2 CS3 CS4 CS5 

Manipulated 

variables 

Chiller heat loss ✓  ✓  ✓  ✓  ✓  

Column reboiler duty  ✓  ✓  ✓  ✓  ✓ 

Controlled 

variables 

Flash tank temperature ✓        ✓  

Pressure compensated 

temperature (PCT) 
  ✓  ✓  ✓    

Column tray temperature  ✓  ✓  ✓  ✓  ✓ 

Approximated ratio flow      ✓  ✓   

Methane composition        ✓  ✓ 
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Improvements in Ethane recovery indirect control 

Since the indirect control of ethane recovery, thus the control of the flash tank temperature is 

located upstream of the column, this was the first control loop addressed in the work. The 

improvement of the ethane recovery indirect control scheme was realized starting from the 

analysis and knowledge of the plant operation in the considered schemes. In the GSP and CRR 

schemes, the inlet flowrate variations are realized by manipulating the pipeline’s pressure 

through the valve FCV-100 upstream of the flash tank TK-100 (see Figures 3.2-3.3), while in 

the conventional process scheme, the flowrate variations are performed by changing the 

pipeline’s pressure by manipulating the action of the turboexpander (equipment TE-100 in 

Figure 3.1). This implies that changes in the feed gas flowrate affect the pressure variations in 

the flash tank TK-100. With the flash tank (TK-100) temperature held constant by the control 

action, flash tank (TK-100) pressure changes affect the thermodynamic equilibrium resulting 

in changes in the separator outflow composition. Since the outflow of the flash tank (TK-100) 

represents the feeds of the demethanizer column this implies that variation in the column feed 

composition occurs influencing the ethane recovery. With the purpose of improving the flash 

tank (TK-100) direct temperature control, and consequently ethane recovery, a pressure 

compensator is placed in this unit and a new control variable has been considered within the 

loop instead of the separator temperature. This new variable is represented by a fictitious 

temperature, calculated on basis of Antoine’s law. This is a pressure compensated temperature 

(PCT) given the Equation 5.1 (Brambilla, 2014): 

 𝑃𝐶𝑇 = 𝑇𝑚 − 𝐶 ln
𝑃

𝑃𝑟𝑖𝑓
                 5.1) 

Where 𝑇𝑚 is the flash tank (TK-100) temperature, 𝑃 is the flash tank pressure; 𝑃𝑟𝑖𝑓is the flash 

tank pressure nominal value and 𝐶 is the compensation coefficient obtained from temperature 

data recorded during the imposition of pressure variations at constant composition with the 

Aspen HYSYS®. 

The resulting control strategy in which the process variable is given by the flash tank (TK-100) 

PCT, schematize in Figure 5.2, will be referred to as CS2. By compensating for the pressure 

changes in the flash tank (TK-100), it is possible to link the temperature variations to the flash 

tank pressure changes and mitigate the resulting concentration disturbances. The setpoint 

selected for the TIC-102 corresponds to the direct control of the flash tank (TK-100) 

temperature setpoint, as the PCT only acts in the presence of pressure variations and under 
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nominal conditions, this fictitious variable coincides with the actual temperature. The use of a 

PCT control instead of temperature control is addressed to overcome the pressure changes 

induced in the flash tank (TK-100) by inlet flowrate variations to the plant, thus this is an 

important aspect when feed flow disturbances are present. 

 

Improvements in Methane impurity level control 

The implementation of the pressure compensator in the flash tank (TK-100) has a positive 

influence also in the control of the methane impurity level in the bottom of the demethanizer 

column. To further enhance this improvement different control strategies were developed to 

mitigate the effect of the disturbances in presence of both feed and composition variations and 

at the same time obtain a fast control action. 

 

Figure 5.2: Inferential PCT control loop implemented in the CS2 control strategy for the indirect control of ethane recovery. 

 

Approximate boilup to bottom product ratio flow control 

Considering that maintaining constant ratios between internal and external column flows 

ensures constant product composition, to limit the effects of inlet feed disturbances, the 

introduction of a ratio controller at the bottom of the demethanizer column has been evaluated. 

Thus, the possibility to control the ratio between the vapor leaving the reboiler and the column 

bottom product has been investigated. For the realization of this control loop, there is thus the 

necessity of bottom product flow and boilup flow measures, and the latter is not generally 

measured in real plants. To overcome this drawback, assuming to have only common 

measurement data available in real industrial plants, it is possible to substitute the boilup 

measure with an estimation. Since not enough information was available for boilup calculations 
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a boilup approximation is obtained by the process information available and based on a balance 

around the reboiler, as expressed by: 

 𝜆𝑉 + 𝑐𝑝(𝑇𝐵 − 𝑇𝐿)(𝑉 + 𝐵) = 𝑄                 5.2) 

Here, 𝐵 is the bottom product stream; 𝑉 is the actual boilup; 𝑄 is the reboiler duty; 𝜆 is the 

latent heat of vaporization of the mixture; 𝑐𝑝 is the specific heat capacity at constant pressure; 

𝑇𝐵 and 𝑇𝐿 are the temperature of the stream 𝐵 and the temperature of the liquid stream entering 

the reboiler, respectively. Considering different values of inlet flowrate, the open-loop response 

of 𝑉, 𝐵, 𝑇𝐿, and 𝑇𝐵 are registered by using the model testing function of Aspen HYSYS® on 

the reboiler duty with an amplitude of 2%. These data are used to perform a multi-linear 

regression considering the following regression model: 

 𝑉̂ = 𝑝0 + 𝑝1𝐵 + 𝑝2𝑇𝐵 + 𝑝3𝑇𝐿                 5.3) 

where 𝑉̂ is the boilup estimation. The regressors considered are the registered data of 𝐵, 𝑇𝐿, and 

𝑇𝐵  while 𝑝𝑖, 𝑖 = 0,… 3 are the model parameters. The reboiler duty is not considered in the 

regression since it is the manipulated variable that depends on the control action. The boilup 

estimation was implemented in a flow controller, where the setpoint was obtained by 

multiplying the desired bottom product ratio by the bottom product measure.   

 

Two loops cascade control 

Considering that temperature control is necessary for feed composition changes (Shinskey, 

1996), to speed up the responses obtained by the direct column tray temperature controller the 

estimated boilup to bottom product ratio flow controller has been implemented in a cascade 

controller with the temperature controller. The resulting control structure, referred to as CS3, 

is a cascade control configuration in which the primary controller is a temperature controller 

that gives the setpoint to the ratio flow controller between the approximate boilup flowrate and 

bottom product stream, which in turn manipulates the reboiler duty (Figure 5.3). This control 

structure considers the use of PCT as the process variable for ethane recovery indirect control. 
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Figure 5.3: Cascade control scheme with boil-up approximation implemented in the CS3 control strategy for the indirect 

control of methane impurity level in the demethanizer bottom product. 

 

Three loops cascade control 

The presented CS3 control strategy may be useful to reject the disturbances derived from 

variations in the inlet feed to the plant. However, in presence of column inlet composition 

disturbances, it is not sufficient. As observed previously, in the NGL separation process 

considered, inlet feed disturbances, causing flash tank (TK-100) pressure and thus 

thermodynamic equilibrium variation in the flash tank, turns into collateral column inlet 

composition disturbances. The influence of these composition disturbances on the 

demethanizer product quality is limited but not eliminated by the PCT control. This means that 

the CS3 control will significantly reduce the steady state offset in the presence of inlet feed 

variations, nevertheless it won't be able to eliminate it. A possible solution that allows the 

elimination of the methane composition offset is represented by the introduction of a 

composition analyzer in the plant and thus a composition controller. The analyzer is assumed 

to analyse the product composition of all the distillation units downstream of the demethanizer 

present in the column of the train which is a common practice in industrial plants. For this 

reason, a sampling time of 30 minutes has been assumed, considering the time needed by the 

measuring apparatus to complete a measuring cycle in the entire plant, and a measurement 

delay of 10 minutes related to the measurement time for this type of mixture. This implies that 

only discrete and delayed methane measurements are available for the methane composition 

controller which is added in cascade with the cascade configuration of CS3. In particular, the 
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discrete methane composition controller acts only at every delayed sampling time to adjust the 

temperature controller setpoint. The three loops cascade control scheme is illustrated in Figure 

5.4b. The resulting control structure will be referred to as CS4. To compare the performances 

of the CS4 structure with the control strategies proposed by Luyben (2013b, 2013a) and 

Chebeir et al. (2019), the use of the gas chromatograph is considered and implemented in the 

CS1 control structure.  The new control structure referred to as CS5 is obtained with the 

realization of a cascade control structure where the master control is given by the composition 

controller and the slave was the column tray temperature controller of CS1 configuration 

(Figure 5.4a). Again, CS5 considers the knowledge of delayed and discontinuous composition 

measurements resulting from the typical delay of online analysers, which were not considered 

in the above-mentioned contributions. 

 

 

(a) (b) 

Figure 5.4: Direct methane impurity level control: two loops cascade control scheme with the composition controller as the 

primary loop and the direct column tray temperature controller as the secondary, implemented in the CS5 control strategy 

(a).; three loops cascade control scheme with boil-up approximation implemented in the CS4 control strategies (b). 

 

Demethanizer product quality control tuning parameters 

The tuning of the control loops employed in the five control structures developed for the bottom 

product quality control of the demethanizer, summarized in Table 5.1, was conducted through 

step test model identification. The responses of process variable and controller output were 

registered by using the model testing function of Aspen HYSYS®. The model identification 

was conducted utilizing the System Identification Tool available in the MATLAB® System 

Identification Toolbox (The MathWorks Inc, 2019). After the identification, the tuning 
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parameters were obtained by applying the IMC approximate model rules (Rivera et al., 1986). 

The tuning parameters obtained for the different structures with the three considered separation 

units are reported in Table 5.2- Table 5.4.  

Table 5.2: Conventional separation unit: control structures tuning parameters 

Controlled variables Control structures 𝑲𝒄 𝝉𝑰[min] 

Flash tank (TK-100) temperature CS1 - CS2 1.5 5 

Column (T-100) tray temperature 
CS1 - CS2 - CS5 1.95 17.30 

CS3 - CS4 10.70 4.05 

Approximated ratio flow CS3 - CS4 0.56 14.30 

Methane composition 
CS4 0.30 9 

CS5 0.18 9 

 

Table 5.3: GSP separation unit: control structures tuning parameters 

Controlled variables Control structures 𝑲𝒄 𝝉𝑰[min] 

Flash tank (TK-100) temperature CS1 - CS2 1.5 5 

Column (T-100) tray temperature 
CS1 - CS2 - CS5 1.6 13.8 

CS3 - CS4 10.4 10.5 

Approximated ratio flow CS3 - CS4 0.75 12.5 

Methane composition 
CS4 0.30 9 

CS5 0.18 9 
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Table 5.4: CRR separation unit: control structures tuning parameters 

Controlled variables Control structures 𝑲𝒄 𝝉𝑰[min] 

Flash tank (TK-100) temperature CS1 - CS2 1.5 5 

Column (T-100) tray temperature 
CS1 - CS2 - CS5 1.55 13.8 

CS3 - CS4 9.72 10.5 

Approximated ratio flow CS3 - CS4 0.78 12.3 

Methane composition 
CS4 0.30 9 

CS5 0.18 9 

 

 

5.1.2. Deethanizer column control structure 

In the deethanizer column, responsible for separating the ethane from the stream leaving the 

demethanizer, the control strategy aims to maintain the process specification concerning a 

propane concentration at 1 mol% in the top product and impurity of ethane at the value of 0.34 

mol% in the bottom product. To reach the desired quality in the bottom product the indirect 

control of ethane composition in the column bottom product was realized by controlling the 

temperature of the 21st tray and manipulating the reboiler duty. The location of the temperature 

sensor in the column is chosen following the deethanizer gradient temperature analysis 

performed and reported in the previous chapter. The remaining control loops implemented in 

the plant are indicated as follows:  

1) The column pressure is controlled by manipulating the duty to the condenser E-105. 

1) The level of liquid in the reflux drum is controlled by manipulating the flow of the distilled 

product through the valves LCV-103. 

2) The liquid level in the reboiler E-106 is controlled by manipulating the flow of the bottom 

product through the valves LCV-104.  

3) The composition of the impurity in the top is controlled with a ratio flow controller between 

the reflux stream and the distillate, which manipulates the reflux stream valve V-101.  
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5.1.3. Depropanizer column control structure 

The depropanizer column is used for the propane separation from the bottom product of the 

deethanizer column, with the control objectives of maintaining the process specification 

concerning impurity level values of 0.6 mol% for the sum of the concentrations of isobutane 

and n-butane in the top product, and 0.1 mol% for the propane concentration in the bottom 

product. To keep the desired propane impurity in the bottom product an indirect composition 

controller was realized by controlling the temperature of the 30th tray and manipulating the 

reboiler duty. Also in this case, the location for the temperature sensor in the column was 

selected considering the gradient temperature analysis reported in the previous chapter. The 

remaining control loops implemented in the plant are indicated as follows:  

2) The column pressure is controlled by manipulating the duty to the condenser E-107. 

3) The level of liquid in the reflux drum is controlled by manipulating distillate flow through 

the valves LCV-105. 

4) The liquid level in the reboiler E-108 is controlled by manipulating the flow of the bottom 

product through the valves LCV-106. 

5) The composition of the impurity at the top product is indirectly controlled with a ratio flow 

controller between the reflux stream and the distillate, which manipulates the reflux stream 

valve V-102. 

 

5.1.4. Debutanizer column control structure 

The purpose of the debutanizer column is the separation of iso-butane and n-butane from the 

remaining heavier hydrocarbon mixture. The control goal consists in holding constant the 

impurity of iso-pentane of 0.2 mol% in the top product and the impurity of n-butane of 0.2 

mol% in the bottom product. To maintain the concentration impurity target in the column 

bottom product, the n-butane composition is indirectly controlled by controlling the 

temperature of the 26th tray by manipulating the reboiler duty. Again, the tray in which locate 

the temperature sensor was selected considering the gradient temperature analysis reported in 

the previous chapter. The remaining control loops implemented in the plant are indicated as 

follows: 

1) The column pressure is controlled by manipulating the duty to the condenser E-109. 
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2) The level of liquid in the reflux drum is controlled by manipulating the distillate flow 

through the valves LCV-107. 

3) The liquid level in the reboiler E-110 is controlled by manipulating the flow of the bottom 

product through the valves LCV-108. 

6) The composition of the impurity of the top product is controlled with a ratio flow controller 

between the reflux stream and the distillate, which manipulates the reflux stream valve V-

103. 

 

5.2. Evaluation of the control structures performances  

In this section, the dynamic responses obtained with the Aspen HYSYS® simulations, 

considering ramp changes over 30 minutes in the feed flowrate and step changes in the inlet 

ethane composition, have been analyzed. Figure 5.5 and Figure 5.6 depict the disturbance 

applied respectively in the inlet feed to the plant and the ethane inlet composition to the plant, 

for which realization the inlet methane composition was changed accordingly. 

  

Figure 5.5: Decreasing and increasing ramp variations over 30 minutes of 10% amplitude in the plant feed flowrate nominal 

value of 4980 
𝑘𝑚𝑜𝑙

ℎ
, considered as inlet feed flowrate disturbances in the NGL recovery process. 

Firstly, the ability of the control structure of disturbances rejection is evaluated considering the 

control goal of keeping an ethane recovery of 84% and a methane composition of 1 mol% in 

the bottom of the demethanizer column. Subsequently, the effect of the proposed indirect 

composition control configuration on the separation operations of the subsequent columns of 

the train was evaluated in presence of flow disturbances only. 
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Figure 5.6: Decreasing and increasing step variations of 40% amplitude in the plant ethane inlet composition and methane 

inlet composition variation in accordance, considered as inlet composition disturbances in the NGL recovery process. 

 

5.2.1. Demethanizer control structures performances 

Indirect composition control through temperature control 

The results obtained with the implementation of the flash temperature controller for the ethane 

recovery indirect control and of the column tray temperature control for the methane impurity 

level indirect control, thus the CS1 configuration, in the three considered separation schemes 

are depicted in Figure 5.7-Figure 5.10.   

In Figure 5.7 and Figure 5.8 the responses obtained to the applied disturbance in the inlet feed 

of 10% to the three plant schemes are depicted. Figure 5.7 shows the results obtained for the 

indirect control of ethane recovery (Figure 5.7a) and methane impurity level (Figure 5.7c) 

corresponding to a decreasing variation in the feed flowrate while Figure 5.8 shows the results 

obtained by increasing the flowrate to the plant of the same percentage (Figure 5.8a and Figure 

5.8c respectively). As it is possible to visualize, in both cases the implementation of the CS1 

control configuration is not able to guarantee the required product specifications in the 

considered separation units. Larger ethane recovery offsets at the new steady state condition 

are obtained with GSP and CRR process schemes compared to the conventional, with a higher 

initial variation in the GSP in which the CS1 also present a slower speed of response and a 

higher initial deviation. High new steady state methane composition offsets are obtained with 

all the process schemes considered, confirming that this basic control configuration is not the 
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best control choice for the separation processes under examination, and it is inadequate for 

efficiently rejecting feed flowrate disturbances entering the system. 

  

Figure 5.7: Responses obtained for the conventional unit (continuous red lines), GSP unit (dashed blue lines), and CRR 

recovery unit (dash-dotted black lines) by the CS1 scheme under the presence of a 10% decrease in the plant feed flowrate 

nominal value. The green dotted lines depict the control target values. 

 
 

Figure 5.8: : Responses obtained for the conventional unit (continuous red lines), GSP unit (dashed blue lines), and CRR 

recovery unit (dash-dotted black lines) by the CS1 scheme under the presence of a 10% increase in the plant feed flowrate. 

The green dotted lines depict the control target values. 

To have a complete view of the performances obtainable with the CS1 configuration, also the 

action of this control structure under the effect of the composition disturbances considered has 

been examined. Figure 5.9 and Figure 5.10 depict the responses obtained by the three 

separation schemes to the applied disturbance in the inlet ethane composition of 40%. 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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Figure 5.9: Responses obtained for the conventional unit (continuous red lines), GSP unit (dashed blue lines), and CRR 

recovery unit (dash-dotted black lines) by the CS1 scheme under the presence of a 40% decreasing in the ethane inlet 

composition of the raw gas. The green dotted lines depict the control target values.  

  

Figure 5.10: Responses obtained for the conventional unit (continuous red lines), GSP unit (dashed blue lines), and CRR 

recovery unit (dash-dotted black lines) by the CS1 scheme under the presence of a 40% increase in the plant inlet ethane 

composition. The green dotted lines depict the control target values. 

Figure 5.9 shows the results obtained for the indirect control of ethane recovery (Figure 5.9a) 

and methane impurity level (Figure 5.9c) corresponding to a decreasing variation in the ethane 

inlet composition while Figure 5.10 shows the results obtained with a decreasing variation of 

the same amplitude in the ethane inlet composition to the plant for the ethane recovery and the 

methane concentration (Figure 5.10a and Figure 5.10c respectively). 

(a) (c) 

(a) 

(b) 

(c) 

(d) 

(b) (d) 
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Analysing the profiles obtained for ethane recovery under the two considered variations in the 

ethane inlet composition produces in the three schemes a very high initial variation. In both 

cases, after about half an hour the profiles approach the new steady state values with offsets of 

around 5.6% with the CRR unit, 4.9% with the GSP and 0.9% with the conventional unit in 

presence of the decreasing variation in the ethane inlet composition and of around 2.6% with 

the CRR unit, 2.1% with the GSP and 0.5% with the conventional unit in presence of the 

increasing inlet ethane composition. Considering the results obtained for the indirect control of 

methane composition in the bottom of the demethanizer column also in this case the CS1 

control scheme is not able to meet the methane impurity level specification. In particular, very 

high offsets are registered for the conventional separation schemes, for a decreasing variation 

of 40% in the ethane inlet composition, with a value of 0.58%, while a deviation of 5.6% is 

registered after 5 hours from the application of the increasing ethane inlet composition 

disturbance. After this time, as it is possible to visualize from Figure 5.9c, the methane 

composition profile has not reached the new steady state conditions yet. 

 

Pressure compensated control 

As stated, the feed flow variations induce pressure variations in the flash tank (TK-100), in 

which the temperature is kept constant by the temperature controller of CS1. To limit the impact 

of these pressure variations on the recovery of ethane, the control of the temperature 

compensated in pressure on the flash tank has been evaluated. The results obtained with the 

applications of the CS1 control schemes are compared with the modification proposed in the 

CS2 control structure, the direct PCT control in the flash tank (TK-100) and shown in Figure 

5.11 and Figure 5.12. For sake of brevity, only the results obtained with the GSP control scheme 

are reported since as depicted in Figure 5.7a and Figure 5.8a the CS1 control showed the worst 

performances: although the offset obtained is slightly lower than the one obtained with the 

CRR process scheme, in the GSP the action of the CS1 configuration shows a lower speed of 

response and a higher initial variation.  

The right panel of Figure 5.11 depicts the comparison of the transient profiles obtained under 

a 10% decreasing variation in the inlet feed to the plant with the CS1 and CS2 control 

structures. In Figure 5.11a the temperature transient profiles are depicted, here it is possible to 

visualize that both the control structures under comparison can bring the process variables to 

the setpoint value after approximately 80 min with the CS2 and 95 min with the CS1. The 

profile obtained with the temperature actual flash tank (TK-100) temperature, indicated by the 
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dash-dotted cyan line with the CS2 and with the dashed red line with CS1 displays different 

behaviors, indeed with the use of the PCT the actual flash tank temperature varies following 

the flash tank pressure variations. 

 

 

Figure 5.11: Responses obtained for the demethanizer column of the GSP unit by the CS1 scheme (dashed red lines) and the 

CS2 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and increasing of the 

same amplitude in the nominal feed to the plant (right panel graphs). The green dotted lines depict the control targets and 

setpoint values. 

Figure 5.11b depicts the action of the manipulated variable, the chiller heat loss. As shown 

with the implementation of the CS2 the manipulated variable has a lower initial variation and 

a lower variability at the new steady state conditions. Thus, with the use of the CS2 scheme, 

not only the flash tank (TK-100) temperature compensates for the flash tank pressure 

variations, but this control structure is associated with more energy-efficient operations. Figure 

5.11c depicts the transient profiles of ethane recovery, the reported results show that none of 

the two control structures can meet the ethane recovery specification. The new steady state 

values for the ethane recovery are 76% with the CS1, and 85% with the CS2 scheme. 

Nevertheless, the ethane recovery profile obtained with PCT control shows a lower initial 

deviation, a faster speed of response and a lower offset at the new steady states, demonstrating 

that concentration disturbances due to the feed variations are reduced and thanks to the 

implementation of the PCT control, even without an ethane composition controller, it was 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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possible to drastically reduce the new steady state offset. Analogue results are obtained with 

an increase of 10% in the feed flowrate, shown in the left panel of Figure 5.11. As depicted in 

Figure 5.11e also in this case with the CS2 control the manipulated variable shows a lower 

variability, allowing better control of ethane recovery with less refrigerant consumption. As it 

is possible to visualize in Figure 5.11f, using the separator temperature controller, thus with 

the CS1 configuration, also under the increasing variation of inlet flowrate, the process is not 

able to maintain the recovery target, reaching the new steady state value of 89.2% with an offset 

of 5.2%. On the other hand, with the PCT control, the new steady state offset is reduced to the 

value of 1.3%, bringing the ethane recovery to the value of 82.7%. 

 

 

Figure 5.12: Responses obtained for the demethanizer column of the GSP unit by the CS1 scheme (dashed red lines) and the 

CS2 scheme (continuous blue lines) for a for a 40% increasing (left panel graphs) and for a 40% decreasing of the ethane 

inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets and setpoint values. 

Figure 5.12 displayed the transient profiles obtained by using the CS1 and the CS2 control 

structure in the GSP scheme, under the imposition of the 40% increase variation (left panel) 

and decrease variation (right panel) in the ethane inlet composition. In presence of both the 

applied disturbances, the same results are obtained. As it is possible to visualize in Figure 5.12a 

and Figure 5.12d, depicting the flash tank (TK-100) temperature profiles, both the control 

structures keep the process variable at the desired setpoint value. Here when controlling the 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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PCT in the flash tank (TK-100) the new steady state value of the actual flash tank temperature 

differs by around 1°C from the nominal conditions. In Figure 5.12b and Figure 5.12e, the 

profiles obtained for the manipulated variables depict a lower variability as well in case of feed 

disturbances to the plant. By looking at the ethane recovery behaviours displayed in Figure 

5.12c and Figure 5.12f, it is possible to observe that also in this case the two control strategies 

are unable to reach the desired ethane recovery value. The controlled variables reach the steady 

state value of 80.4% with the CS2 and value of 81.9% with the CS1 control under the increasing 

variation in the considered disturbance and a new steady state value of 90.6% with the CS2 and 

88.8% with CS1 control with the decreasing variation. Hence, the improvement obtained in 

case of feed disturbances is not registered in case of variations in inlet ethane concentration. 

Nevertheless, the distance between the value obtained with the PCT control is 1.5%, with a 

final offset of 3.6% for the increasing variation, and 1.8% with a final offset of 6.6% for the 

decreasing variation. 

Overall, with pressure compensation temperature control, it is possible to obtain faster 

responses to the application of flowrate and ethane input concentration disturbances. With feed 

disturbances, the offset values of ethane recovery are drastically reduced. This improvement is 

not observed in the other case since the pressure compensator was developed without 

considering input composition variations. However, the distance of the new steady state values 

obtained in comparison with the direct temperature control is not excessively large. This is 

since minor pressure variations compared to the ones associated with inlet flowrate 

disturbances, are still present in the flash tank (TK-100) due to the composition changes and 

are responsible for the deviations registered in the new steady state value of the actual flash 

tank temperature with the PCT control. 

 

Effect of Pressure compensated control on methane impurity level control 

After having observed the improvements obtained with the use of the PCT control over the 

ethane recovery indirect control, the influence of its implementation on the methane impurity 

level indirect control is evaluated. With this purpose, the performances of the CS1 and CS2 on 

the methane composition impurity control in the demethanizer column of the Conventional unit 

are depicted in Figure 5.13 and Figure 5.14 respectively under the presence of both inlet feed 

and composition disturbances. This process scheme was chosen considering that for the 

conventional separation unit the CS1 depicts the worse performances under the presence of the 
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composition disturbances (Figure 5.9c and Figure 5.10c) and the increasing variation in the 

inlet flowrate to the plant (Figure 5.7c). 

 

 

 

Figure 5.13: Responses obtained for the demethanizer column of the conventional unit by the CS1 scheme (dashed red lines) 

and the CS2 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and increasing 

of the same amplitude in the nominal feed to the plant (right panel graphs). The green dotted lines depict the control targets 

and setpoint values. 

In the left panel of Figure 5.13, the effect of the implementation of the CS2 scheme over the 

methane impurity level under a 10% increasing variation of the nominal value of the plant feed 

is depicted. Figure 5.13a displays the column 28th tray temperature profiles which are 

controlled by the direct temperature controller that manipulates the reboiler duty. Here under 

the action of both the compared control structures the temperature controller brings back the 

temperature to the setpoint value. A larger initial variation registered with the CS2 of 1.32°C, 

while the CS1 produce an initial variation lower than 0.30°C. By considering the manipulated 

variable which is depicted in Figure 5.13b, here with the use of the CS2 control the variability 

of the reboiler duty is higher than the one obtained with the CS1, with an increase of about 

382.80%. 
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The same results are obtained under the effect of a decreasing variation in the feed to the plant 

and are depicted in the right panel of Figure 5.13. The influence of the PCT control brings a 

higher initial variation in the column tray temperature (Figure 5.13d) and a slower response.  

By looking at the manipulated variable (Figure 5.13e) also in this case it is registered a higher 

variability with the CS2 control with an increase compared to the CS1 value of about 141.40%. 

By considering the methane bottom impurity profiles (Figure 5.13f) even if the response 

obtained with the CS2 is slower, the obtained new steady state offset is reduced from the value 

of 0.23% with the CS1 to the value of 0.06% with the CS2.  

 

 

Figure 5.14: Responses obtained for the demethanizer column of the conventional unit by the CS1 scheme (dashed red lines) 

and the CS2 scheme (continuous blue lines) for a for a 40% increasing (left panel graphs) and for a 40% decreasing of the 

ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets and setpoint 

values. 

The results obtained under the effect of a variation of 40% in the inlet ethane composition are 

shown in the panels of Figure 5.14. By looking at the results obtained under the increasing 

variation (left panel) and decreasing variation (right panel), in the conventional separation 

scheme the use of the PCT control over the methane impurity indirect control has no influence. 

The performances obtained are comparable probably because of the presence of the second 

flash tank (TK-100) in the conventional unit whose outlets supply the higher methane content 

to the column. 
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To obtain a quantitative comparison of CS1 and CS2 control performances, the Integral 

Absolute Error (IAE) of controlled and target variables has been calculated and Reported in 

Table 5.5 and Table 5.6. 

Table 5.5: Integral Absolute Error (IAE) obtained for CS1 and CS2 under the considered decreasing variation in the plant 

inlet flowrate 

  Conventional GSP CRR 

Controlled outputs 

Tray 

Temperature 

CS1 26.78 318.64 162.68 

CS2 64.03 107.46 127.14 

Methane 

Concentration 

CS1 0.77 3.51 2.86 

CS2 0.33 0.20 0.35 

Ethane 

Recovery 

CS1 6.70 37.70 22.44 

CS2 10.24 22.69 16.61 

Flash Tank 

Temperature 
CS1 5.11 29.42 29.58 

PCT CS2 1.78 3.89 1.20 

 

Table 5.6: Integral Absolute Error (IAE) obtained for CS1 and CS2 under the considered decreasing variation in the plant 

inlet ethane composition 

  Conventional GSP CRR 

Controlled outputs 

Tray 

Temperature 

CS1 42.03 78.73 75.23 

CS2 41.58 59.95 64.60 

Methane 

Concentration 

CS1 1.85 0.63 0.69 

CS2 1.84 0.98 1.07 

Ethane 

Recovery 

CS1 3.12 7.00 7.68 

CS2 3.31 5.28 5.43 

Flash Tank 

Temperature 
CS1 5.87 20.51 22.96 

PCT CS2 5.76 26.69 26.69 

 

Table 5.5 report the IAE values for controlled and target variables obtained with the CS1 and 

CS2 under the decreasing ramp variation in the plant inlet flowrate nominal value. As it is 
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possible to visualize the results agree with what was found from the obtained profiles' 

qualitative analysis. In the GSP and CRR process schemes, the use of the CS2 control strategy 

leads to improved control performances concerning methane impurity (IAE reduction of 94,3% 

and 87,7% respectively) and ethane recovery (IAE reduction of  39.8% and 26,0% respectively) 

at the bottom of the demethanizer. Improved control performances are also observed for all the 

controlled variables. Concerning the conventional process scheme, the use of the CS2 control 

configuration leads to an improvement in methane impurity level (IAE reduction of 57,1%), 

while it is shown a negative effect on the recovery of ethane with an IAE increase of 52,8%, 

which is probably due to the influence of the flash tank (TK-102) present in the plant.  

Table 5.6 shows the IAE values obtained with the CS1 and CS2 under the decreasing variation 

of the inlet ethane composition to the plant. As it is possible to notice the use of the CS2 control 

scheme instead of CS1 has no registered effects on the control performances associated with 

the conventional process scheme while exhibiting adverse effects on the performances related 

to the GSP and CRR schemes. Nevertheless, in those cases, the IAE values obtained for ethane 

recovery and methane impurity levels still appear to be lower than the ones obtained with the 

CS1 under feed disturbances. 

 

Boilup to bottom product ratio control 

Therefore, it was observed that the introduction of PCT control leads to a sensible reduction in 

the methane impurity levels obtained in the bottom of the demethanizer column in presence of 

feed flowrate disturbances. This improvement was however achieved at the expense of the 

control system's speed of response and the energy efficiency of the plant. To overcome this 

drawback, the introduction of an approximate boilup to bottom product ratio flow controller 

was tested. To compare the approximations obtained during the transient time, the action of the 

actual ratio controller, thus considering that the actual boilup measurement is known, and the 

approximated ratio controller has been tested considering a fixed setpoint determined based on 

an optimal analysis around the operative conditions. In this section the results obtained for the 

realization of the demethanizer boilup approximation for the three considered separation units 

are shown in Figure 5.15- Figure 5.18 under the imposition of the decreasing considered 

variation in the inlet feed and composition disturbances. 

The tuning of the ratio control loops was conducted through step test model identification and 

using the IMC approximate model rules, as described above for model identification and 

control parameters tuning of the structures compared in the chapter. The tuning parameters 
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obtained for the two ratio flow controllers with the three considered separation units are 

reported in Table 5.7. 

Table 5.7 Ideal and approximated ratio flow controller tuning parameters 

Controllers Unit Kc τi [min] 

Ideal ratio flow 

Conventional 0.54 12.3 

GSP 0.75 10.5 

CRR 0.75 10.5 

Approximate ratio flow 

Conventional 0.56 14.3 

GSP 0.75 12.5 

CRR 0.75 12.3 

 

  

Figure 5.15: Responses obtained for the demethanizer column of the conventional unit by the ideal ratio flow controller 

(dashed red lines) and the approximated ratio flow controller (continuous blue lines) for a 10% decrease in the plant feed 

flowrate (left panel graphs) and for a 40% decrease in the ethane inlet composition to the plant (right panel graphs). The 

green dotted lines depict the setpoint values and the cyan dash dotted line depicts the actual boilup when the approximated 

boilup is controlled. 

In the left panel of Figure 5.15, the comparison between the control of the actual boilup to 

bottom product ratio and the approximated ratio control in presence of a variation of 10% in 

the feed to the conventional recovery unit is depicted. As it is possible to observe in Figure 

5.15a, under nominal conditions the boilup approximation and the corresponding real boilup 

measure (dash-dotted cyan line) are perfectly overlaid, after the imposition of the feed 

(a) 

(b) 

(c) 

(d) 
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disturbance the approximated boilup under the action of the control action depicts an initial 

inverse response of the duration of 6 min. After this period, it approximates the actual boilup 

trend with a maximum error of 1 
𝑘𝑚𝑜𝑙

ℎ
. Figure 5.15b depicts the action of the manipulated 

variable, the reboiler duty, which depicts a comparable behaviour for the actual and the 

approximated ratio controllers.  The results obtained for the manipulated variable express the 

fact that, although there are detectable differences in the profiles of the actual boilup and its 

approximation, these are not sufficient to affect the control of the considered variable in the 

presence of the composition disturbance considered. 

Similar results are obtained under the imposition of a decrease of 40% in the ethane inlet 

composition, as observable in the results reported in the right panel of Figure 5.15. In Figure 

5.15c, it is possible to notice that the approximation fails to correctly represent the actual trend 

of the boilup in the transient time, and an offset of 0.36 
𝑘𝑚𝑜𝑙

ℎ
 is achieved. Nevertheless, the 

actual and the approximated profiles have a comparable speed of responses and by looking at 

the comparison of the manipulated variable actions depicted in Figure 5.15d even if the general 

transient trends depict a different behaviour, also in this case, the reboiler duty actions are 

overall comparable.  

  

Figure 5.16: Responses obtained for the demethanizer column of the CRR unit by the ideal ratio flow controller (dashed red 

lines) and the approximated ratio flow controller (continuous blue lines) for a 10% decrease in the plant feed flowrate (left 

panel graphs) and for a 40% decrease in the ethane inlet composition to the plant (right panel graphs). The green dotted lines 

depict the setpoint values and the cyan dash dotted line depicts the actual boilup when the approximated boilup is controlled. 

The comparison between the action of the approximated and the actual ratio flow controller for 

the CRR separation scheme under the action of a decreasing variation in the inlet plant flowrate 

(a) 

(b) 

(c) 

(d) 
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is depicted in the left panel of Figure 5.16. In Figure 5.16a, by comparing the action of the 

actual and approximate flow controllers it is possible to observe that also in this case the 

approximated boilup profile presents an inverse response in the first 5 min, and a lower initial 

deviation compared to the actual boilup profile (dash-dotted cyan line), with a maximum error 

of 1 
𝑘𝑚𝑜𝑙

ℎ
. After 90 min the approximation converges to the real profile with no significant 

deviation in the new steady state value. By comparing the action of the reboiler duty (Figure 

5.16b) in the two cases, the manipulated variables present similar behaviours during the 

transient arriving at the same new steady state value. Overall, the approximation obtained 

results in a valid alternative to the actual boil-up as process variables for the ratio flow 

controller under the presence of inlet feed disturbances in the CRR scheme. The right panel of 

Figure 5.16 presents the results obtained with the CRR separation unit under the presence of 

the decreasing variation in the inlet ethane composition. Here the boilup profiles (Figure 5.16c) 

obtained through the action of the ratio flow controllers, present different behaviours. The 

approximation shows a higher deviation compared to the actual boilup with a final deviation 

in the new steady state of about 2 
𝑘𝑚𝑜𝑙

ℎ
.  Nevertheless, the transient behaviours obtained for the 

approximated and actual boilup have a comparable speed of response. Considering the action 

of the manipulated variables depicted in Figure 5.16d, the action obtained with the 

approximation shows a higher variability with an increase at the new steady state of 2.5%. The 

approximation obtained for the CRR scheme does not provide a proper estimation of the actual 

boilup under ethane inlet composition variations. Considering that the estimation has a 

comparable speed of response with the actual boilup, the approximation obtained can still be 

useful as a secondary loop in a cascade arrangement, where the setpoint value changes 

following the action of the primary controller.  

The results inherent to the boilup estimation in the GSP unit under the 10% decreasing variation 

in the feed plant nominal value are shown in the left panel of Figure 5.17. Here the boilup 

approximation obtained displays similar results to the ones obtained for the CRR separation 

unit. As observable in Figure 5.17a, the boilup approximation depicts a similar profile to that 

obtained for the actual profile, converging to the same value after about 95 min. Also, the 

manipulated actions obtained with the actual and the approximated ratio flow control are 

similar during the transient time and converge to the same value when the new steady state is 

reached. Considering the GSP results under the imposition of the considered ethane inlet 

composition decreasing variation, depicted in the right panel of Figure 5.17, also in this case 
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the performance obtained by the boilup approximation is similar to the ones obtained for the 

CRR separation unit. The boilup profiles are reported in Figure 5.17c, also in this case through 

the action of the ratio flow controller the approximated boilup profile presents a higher initial 

variation and a deviation of 1.8 
𝑘𝑚𝑜𝑙

ℎ
 from the actual profile in the new steady state conditions. 

Again, even if the boilup approximation shows to not be able to correctly estimate the actual 

boilup, with the action of the approximated ratio flow controller the two profiles have a 

comparable speed of response, suggesting the possibility to use the boilup approximation as 

the controlled variable in the secondary loop of a cascade control scheme. 

 

 

Figure 5.17: Responses obtained for the demethanizer column of the GSP unit by the ideal ratio flow controller (dashed red 

lines) and the approximated ratio flow controller (continuous blue lines) for a 10% decrease in the plant feed flowrate (left 

panel graphs) and for a 40% decrease in the ethane inlet composition to the plant (right panel graphs). The green dotted lines 

depict the setpoint values and the cyan dash dotted line depicts the actual boilup when the approximated boilup is controlled.  

 

Two loops cascade control 

As stated in the previous subsection the implementation of the ratio flow controller in the 

separation units is only able to reject the disturbances in the case of the presence of flow 

disturbances alone. As seen previously in the considered NGL separation units, the flow 

disturbances are always coupled with collateral composition disturbances. These are reduced 

using the pressure compensator and thus the control of the PCT in the flash tank (TK-100), but 

not removed. Also, the approximation obtained for the boilup fails to approximate the actual 

boilup in the presence of the composition disturbances considered, necessitating a master 

controller to adjust the shot of the ratio controller. For these reasons as well as to speed up the 

(a) 

(b) 

(c) 

(d) 
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action of the column tray temperature controller, the performances of the cascade arrangement 

in the CS3 are here compared with the basic CS1scheme. The results of this comparison for 

the three considered recovery units under the considered disturbances decreasing variation are 

depicted in Figure 5.18- Figure 5.20. 

 

 

Figure 5.18: Responses obtained for the demethanizer column of the conventional unit by the CS1 scheme (dashed red lines) 

and the CS3 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and for a 40% 

decrease in the ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets 

and setpoint values.  

The results obtained for the conventional separation scheme under the decreasing disturbance 

in the inlet feed flowrate are reported in the left panel of Figure 5.18. In Figure 5.18a, the 

profiles obtained for the column tray temperature with the two compared control structures are 

shown. As it is possible to observe with the CS3 the process variable shows a lower initial 

variability and a faster response, with registered maximum variations lower than 0.1°C 

compared to the 0.6°C obtained with the CS1. Thus, CS3 allows a better disturbance rejection, 

but at the expense of energy efficiency, indeed, as observable in Figure 5.18b the reboiler duty 

exploits a higher variability with the CS3 scheme. In Figure 5.18c are depicted the profiles 

obtained for methane composition indirect control. As it is possible to observe, with the CS3 it 

is possible to obtain a profile with a lower initial variability, with a maximum distance from 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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the target of 0.32% for the CS1 and of 0.15% for the CS3 control strategy. Furthermore, the 

steady state offset is significantly reduced, a reduction of 78.40% is indeed registered through 

the employment of the CS3 strategy, which also depicts a higher speed of response, arriving at 

the new steady states around 40 min earlier. 

In the right panel of Figure 5.18 are depicted the results obtained with the conventional process 

scheme under the imposition of the decreasing inlet ethane composition disturbance. By 

observing the tray column temperature profile (Figure 5.18d) also in this case the 

implementation of the CS3 control led to a better disturbance rejection. Indeed, it is possible to 

observe that the temperature profile obtained with this control structure displays a lower 

variability and a faster speed of response, confirming also the benefit deriving from the 

introduction of the approximated ratio flow controller. Nevertheless, by considering the 

methane composition profiles depicted in Figure 5.18f none of the compared control strategies 

can meet the requested methane impurity level at the bottom of the demethanizer, reaching a 

new steady state value of 0.43%, with an offset of 0.57%. 

 

 

Figure 5.19: Responses obtained for the demethanizer column of the GSP unit by the CS1 scheme (dashed red lines) and the 

CS3 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and for a 40% decrease 

in the ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets and setpoint 

values.  
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The dynamic evolution of the profiles obtained with the GSP separation unit under the 

considered decreasing inlet feed disturbances is depicted in the left panel of Figure 5.19. As it 

is possible to observe, the column tray temperature profiles (Figure 5.19a) with the CS3 

configuration depict a lower initial variation (1°C compared with around 8°C of CS1) and a 

faster speed of response, arriving at the new steady state value around 70 min earlier. Figure 

5.19b depicts the manipulated variable actions, and here, in contrast to what is observed for the 

conventional separation scheme, the responses obtained with the CS3 strategy show a lower 

variability, with a reduction in the new steady state condition of 53.5%. For what concern the 

results obtained for the methane impurity level indirect control, the correspondent profiles are 

depicted in Figure 5.19c. Here with CS1, the methane composition profiles depict higher 

deviations from the targets than what is registered for the conventional process with the same 

control scheme. With the CS3, the initial deviation from the target as well as the response time 

is reduced. Moreover, the offsets exhibit a reduction of 96.4%, with a final offset of about 

0.04%.  

In the right panel of Figure 5.19, the results obtained with the decreasing inlet ethane 

composition variation for the GSP separation unit are shown. Comparing the profiles obtained 

for the column tray temperature profiles (Figure 5.19d) with the CS3 the initial deviation from 

the setpoint value is reduced but a lower speed of response is registered. In Figure 5.19e are 

depicted the obtained manipulated variables profiles, and here with the CS3 control a lower 

variability is obtained, with a reduction of 42.7%. Nevertheless, by observing the methane 

composition profiles (Figure 5.19f) also in this case, none of the compared control strategies 

can bring back the methane impurity at the target value, with the CS3 structure showing the 

worse performances: lower speed of response and a higher offset at the new steady state 

conditions. An offset value of 0.18% is obtained with the CS1 scheme while an offset of 0.3% 

is obtained with the CS3. 

The results obtained for the CRR separation scheme under the decrease of 10% of the plant 

feed are shown in the left panel of Figure 5.20. By observing the results obtained for the column 

temperature profiles (Figure 5.20a), accordingly to what was found for the conventional and 

the GSP recovery schemes, with the CS3 control configuration the initial variation is reduced, 

with a maximum deviation value of 0.7°C compared to the value of about 4°C obtained with 

the CS1. By looking at the reboiler duty profiles reported in Figure 5.20b, it is also observable 

that with the CS3 control, the manipulated variable has a lower variability, with a reduction of 

47.7%, allowing the disturbance rejection with a lower power consumption. Nevertheless, also 



NGL recovery process Control       75 

 

Monitoring and control for NGL recovery plant 

in this case, even if the controllers bring the controlled variables at the setpoint value, none of 

the two configurations can keep the methane impurity (Figure 5.20c) at the desired target value. 

The implementation of the CS3 control strategy results in a lower deviation from the targets 

and smaller offsets, with a reduction of 91.4% compared to the steady state deviations achieved 

by CS1. Furthermore, the CS3 led to a faster response of the methane composition arriving at 

the new steady state conditions about 25 min earlier compared to the CS1.  

 
 

Figure 5.20: Responses obtained for the demethanizer column of the CRR unit by the CS1 scheme (dashed red lines) and the 

CS3 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and for a 40% decrease 

in the ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets and setpoint 

values.  

The results obtained with the CRR for a decreasing variation in the considered composition 

disturbances are reported in the right panel of Figure 5.20. The obtained results are similar to 

the ones obtained for the GSP unit under the same disturbances. With the action of the CS3 

control the initial deviation of the column tray temperature (Figure 5.20d) is reduced from a 

value of around 6°C with the CS1 to a value of around 2°C with the CS3, although with this 

control strategy, a lower speed of response is registered. As well as for the GSP unit the 

obtained manipulated variable (Figure 5.20e) has a lower variability with a reduction of 48.9% 

with the CS3. By comparing the effects of the two control structures in the methane 

composition transient profiles (Figure 5.20f), neither configuration can eliminate the effect of 
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disturbance on the bottom product methane composition. None of the compared control 

strategies can meet the methane impurity requirements at the new steady state conditions, with 

the CS3 structure showing worse control performances. 

From the comparison between the responses obtained with the CS3 and the CS1 control 

schemes for ramp changes in the inlet feed flowrate in all the considered separation schemes, 

it is possible to conclude that the approximate configuration has the best control performances. 

As expected, the implementation of the approximated ratio flow controller as a secondary loop 

in the cascade configuration improves the convergence speed of the control system. Indeed, 

this controller has the highest convergence velocity, contrary to CS2 whose response speed in 

the presence of input flow disturbances was lower than that obtained with CS1. By considering 

the effects of the CS3 control structure, thus the implementation of the PCT control in the flash 

tank (TK-100) and the cascade control of the demethanizer tray temperature, on the methane 

composition, the registered offset is drastically reduced but not eliminated, due to the presence 

of the collateral composition disturbance. Nevertheless, the registered improvements are not 

observed in presence of composition disturbances, where the offsets obtained with the CS1 

control, under the considered inlet ethane variations, are even lower for the GSP and CRR 

separation schemes. To eliminate the offset still present in the case of input flow disturbances 

and to improve the control system performances in presence of input composition disturbances, 

it is, therefore, necessary to have information regarding the composition of methane in the 

demethanizer bottom product. With this purpose, the effect of introducing a composition 

analyzer in the plant was considered. 

A quantitative comparison of CS1 and CS3 control performances is given by the calculation of 

the Integral Absolute Error (IAE). The IAE calculated values of controlled and target variables 

are reported in Table 5.8 and Table 5.9. 
 

Table 5.8: Integral Absolute Error (IAE) obtained for CS1 and CS3 under the considered decreasing variation in the plant 

inlet flowrate. 

  Conventional GSP CRR 

Controlled outputs 

Tray 

Temperature 

CS1 26.78 318.64 162.68 

CS3 2.78 30.73 30.11 

Methane 

Concentration 

CS1 0.77 3.51 2.86 

CS3 0.22 0.17 0.32 
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Table 5.8 reports the IAE values obtained with the CS1 and CS2 control structures for the three 

process schemes, under the decreasing ramp variation in the plant inlet flowrate nominal value. 

As it is possible to observe the use of the CS3 leads to improved performances in both the 

controlled variables and methane impurity levels in all the considered separation units. IAE 

reductions of 71.4%, 95,2% and 88.8% are obtained in the methane concentration respectively 

for the conventional, the GSP and the CRR units. 

 

Table 5.9: Integral Absolute Error (IAE) obtained for CS1 and CS3 under the considered decreasing variation in the plant 

inlet ethane composition. 

  Conventional GSP CRR 

Controlled outputs 

Tray 

Temperature 

CS1 42.03 78.73 75.23 

CS3 16.63 52.19 60.85 

Methane 

Concentration 

CS1 1.85 0.63 0.69 

CS3 1.85 0.93 1.01 

 

The IAE results corresponding to the action of CS1 and CS3 under the decreasing variation of 

the inlet ethane composition are shown in Table 5.9. Here it is possible to observe that, even if 

the IAE of the controlled variable, the column tray temperature shows enhanced control 

performances with the CS3, depicting lower values of IAE, the IAE value obtained for methane 

impurity level shows no variation for the conventional unit and these are higher for GSP and 

CRR units. Again, the IAE values obtained for methane impurity under the considered 

composition disturbance remain lower than the ones obtained with the CS1 under feed 

disturbances, proving that, in any case, the use of CS3 is recommended and generally leads to 

better control performances.  

 

Three loops cascade control results 

As previously stated in the presence of both incoming flowrate disturbances and composition 

disturbances to eliminate the methane impurity level offset at the new steady state conditions, 

it is required to have information on the methane composition in the demethanizer bottom 

product. To test the performances obtained with the introduction of the composition analyser 

in the plant in this subsection the results of the comparison obtained with CS4 (the three loop 

cascade control) and CS5 (methane composition controller in cascade with the direct 
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temperature controller), both using discrete methane composition measurements as the process 

variable in the composition controllers, will be presented. The results of this comparison for 

the three considered separation schemes are depicted in Figure 5.21-Figure 5.23 under the 

imposition of the decreasing variation in the inlet feed and ethane composition disturbances.  

 

 

Figure 5.21: Responses obtained for the demethanizer column of the conventional unit by the CS5 scheme (dashed red lines) 

and the CS4 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and for a 40% 

decrease in the ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets. 

The dash-dotted cyan and the dotted orange lines depict the tray temperature setpoint and the methane composition 

measurements respectively for the CS4 and CS5 control schemes. 

The left panel of Figure 5.21 depicts the trajectories obtained with the CS4 and CS5 control 

schemes for the conventional recovery unit under the presence of the decreasing variation in 

the plant feed flowrate. Considering the column tray temperature profiles reported in Figure 

5.21a, with the CS4 configuration the temperature can follow the corresponding setpoint 

without considerable deviations during the transient time, arriving at the new steady state value 

faster than the profile obtained with the CS5 control, for which a maximum deviation of about 

0.5°C is registered. The improvement obtained with the CS4 control is achieved with higher 

power consumption as it is observable from the comparison of the manipulated variable actions 

(Figure 5.21b), for which the CS4 strategy led to a higher reboiler duty variability. Considering 

the responses obtained for the methane concentration, also in this case the CS4 depicts the best 

control performances, with reduced initial variability and a faster response. However, thanks 
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to the presence of the methane concentration controllers both the control strategies can meet 

the target specification in the new steady state conditions but the CS4 control relates to a better 

disturbance rejection.  

The results obtained for the same unit under the decreasing variation of the ethane inlet 

composition are depicted in the right panel of Figure 5.21. With the use of the CS4 

configuration the column tray temperature profile (Figure 5.21d), after 35 min from the 

application of the disturbance, is perfectly able to follow the related setpoint variable, 30 min 

earlier than the profile obtained with the CS5, and with a maximum variation registered of 

1.2°C. By considering the manipulated variable (Figure 5.21e), with the two control structures, 

it depicts a comparable action, however, a higher initial deviation is registered with the CS4, 

which is also associated with lower variability. From the analysis of the profiles obtained for 

the methane composition (Figure 5.21f), it is possible to observe that with the CS4 control the 

methane composition depicts an oscillatory behaviour, that leads to a lower transient deviation 

from the setpoint value. The tuning of the composition controller is therefore more aggressive 

than the one used in CS5 and would require a detuning for a better control performance 

comparison.  

Under the presence of the decreasing variation in the plant feed flowrate, similar results are 

obtained from the comparison of the CS4 and CS5 control structures in the GSP and CRR 

recovery units depicted respectively in the left panels of Figure 5.22 and Figure 5.23. As 

observed in Figure 5.22a and Figure 5.23a the tray temperature profiles obtained with the CS4 

have a lower initial deviation converging in less time to the related setpoint variables, with a 

maximum deviation of 1°C with the GSP and 0.7°C with the CRR scheme. While the 

temperature profiles obtained with the CS5 depict a maximum deviation of 7.8°C with the GSP 

and 5.4°C with the CRR scheme, following the related setpoint variables after respectively 165 

min and 175 min. in Figure 5.22b and Figure 5.23b depicts the action of the manipulated 

variables, which depict a lower variability and thus, a lower power consumption with the CS4 

scheme. Further, by considering the profiles obtained for methane concentration (Figure 5.22c 

and Figure 5.23c) with the CS4 not only it is possible to obtain a faster control speed of 

response, but the deviation from the setpoint value during the transient is drastically reduced, 

with a reduction respectively of 88.9% and 77.8% in the maximum deviation obtained with the 

GSP and CRR schemes. 
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Figure 5.22: Responses obtained for the demethanizer column of the GSP unit by the CS5 scheme (dashed red lines) and the 

CS4 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and for a 40% decrease 

in the ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets. The dash-

dotted cyan and the dotted orange lines depict the tray temperature setpoint and the methane composition measurements 

respectively for the CS4 and CS5 control schemes.  

Similar results are also obtained with the GSP and CRR recovery units under the decreasing 

disturbance of the ethane inlet composition which respectively depicted in the right panels of 

Figure 5.22 and Figure 5.23. In the tray temperature profile the results, shown in Figure 5.22d 

and Figure 5.23d, it is possible to observe that also in case of composition disturbances, the 

initial variation from the setpoint variable is reduced with the CS4 control scheme, although 

with CS5 the temperature can trace the setpoint earlier in time. Also, with CS4 it is possible to 

obtain less variability in the action of the manipulated variables (Figure 5.22e and Figure 

5.23e).  By considering the methane impurity profiles reported in Figure 5.22f and Figure 5.23f, 

it is possible to observe that the CS5 control depicts a higher initial variation. Regarding the 

speed of response, the two control schemes are overall comparable, but the one obtained with 

CS4 appears to be faster, despite what was found in the work of  Mandis et al. (2021), where 

the CS5 control showed a higher speed of convergence. However, the results shown further 

corroborate the results obtained in the cited work, as the higher response speed obtained with 

the C5 control was due to the initial error of the composition controller in the CS5 
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configuration, which led to a more aggressive initial control action. Again, the initial error of 

the CS5 composition controller is higher, but due to the different sampling position, it is lower 

than the error reported from Mandis et al., this time allowing observation that CS4 correlates 

with a higher response speed. 

  

Figure 5.23: Responses obtained for the demethanizer column of the CRR unit by the CS5 scheme (dashed red lines) and the 

CS4 scheme (continuous blue lines) for a 10% decrease in the plant feed flowrate (left panel graphs) and for a 40% decrease 

in the ethane inlet composition to the plant (right panel graphs). The green dotted lines depict the control targets. The dash-

dotted cyan and the dotted orange lines depict the tray temperature setpoint and the methane composition measurements 

respectively for the CS4 and CS5 control schemes.  

As observed in this section the use of an offline methane concentration controller as a setpoint 

controller in the cascade temperature controller allows for the elimination of the steady state 

offsets for all applied disturbances. Additionally, the proposed control scheme demonstrated 

that CS4 not only provides the best control performance for the composition of interest but also 

enhances overall column operation in the CRR and GSP separation units, leading to more 

exergy-efficient disturbance rejection along the column. The superiority of CS4 over CS5 

further demonstrates the benefits of introducing enhancements such as control of PCT and the 

cascade control where the approximated ratio flow controller acted as the slave of the tray 

temperature controller necessary to assure the required bottom methane composition in case of 

changes in feed composition. 
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Also in this case, to have a quantitative measure of the control performances comparison of 

CS4 and CS5 for conventional, GSP and CRR process schemes the IAE associated with 

controlled and target variables has been calculated and reported in Table 5.10 and Table 5.11. 

Table 5.10: Integral Absolute Error (IAE) obtained for CS4 and CS5 under the considered decreasing variation in the plant 

inlet flowrate 

  Conventional GSP CRR 

Controlled outputs 

Tray 

Temperature 

CS5 31.38 373.94 274.96 

CS4 2.43 33.71 33.57 

Methane 

Concentration 

CS5 0.20 1.12 0.90 

CS4 0.06 0.11 0.16 

 

Table 5.11: Integral Absolute Error (IAE) obtained for CS4 and CS5 under the considered decreasing variation in the plant 

inlet ethane composition 

  Conventional GSP CRR 

Controlled outputs 

Tray 

Temperature 

CS5 50.29 86.84 84.54 

CS4 29.65 58.25 69.08 

Methane 

Concentration 

CS5 0.72 0.28 0.30 

CS4 0.49 0.32 0.36 

 

The IAE values reported in Table 5.10 are inherent to the CS4 and CS5 control schemes under 

the decreasing inlet feed disturbance inlet to the plant for the three considered separation units. 

As it is possible to observe the use of the CS4 scheme allows for better control performances 

in the column tray temperature control, and it also improves the methane impurity level indirect 

control in the three units. Methane composition IAE reduction of 70.0%, 90.2% and 82.2% are 

obtained with this control structure respectively for the conventional, the GSP and the CRR 

units. Table 5.11 shows the IAE values obtained under the decreasing variation of the inlet 

ethane composition for CS4 and CS5. Also, in this case, the implementation of the CS4 control 

strategy allows better control performances in the controlled variables for all the separation 

units. For the conventional separation scheme also the methane composition shows better 

control performances, with a reduction of 31,9%. While higher IAE values are found for this 

target variable for the GSP and CRR units. Nevertheless, the increase registered is not 
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excessively large and could be still due to the higher initial error of the methane composition 

controller registered for the CS5. 

5.2.2. Effects of the controlled structures on the separation train 

This section is intended to verify the influence of the control strategies developed to optimize 

the achievement of the demethanizer column production targets on the other distillation column 

of the train. Considering the results obtained for the quality control of the demethanizer column 

bottom product, it was chosen to compare the effects of the CS1 and the CS3 control structures 

in presence of feed flowrate disturbances. With this purpose, the dynamics profiles obtained 

for impurity composition levels and reboiler duty of the deethanizer, depropanizer and 

debutanizer columns are evaluated under the presence of the inlet feed disturbances in the NGL 

recovery plant incorporating a CRR unit. 

 

Deethanizer column results 

The composition and the reboiler duty dynamic profiles obtained for the deethanizer column 

with the conventional and the proposed control structure, in presence of the considered 

decreasing and increasing variation in the plant feed, are depicted in Figure 5.24.  

Here, it is possible to assert that, by increasing and decreasing the plant inlet flowrate with an 

amplitude of 10%, with the proposed configuration, the propane composition profiles (Figure 

5.24a) show a lower initial variation and a higher speed of response. Additionally, for 

decreasing variation in the feed flowrate, the propane concentration profile exhibits, with the 

CS1 control, a much higher offset in the new steady state conditions when compared with the 

CS3. Nevertheless, under the considered increase of the feed flowrate, the propane composition 

profile obtained with the CS1 depicts a slightly lower offset that can be negligible considering 

the small entities of the variations. In presence of both the considered plant feed variations, the 

ethane composition profiles (Figure 5.24b) obtained with the CS3 depicted an improvement in 

the control performance. Indeed, lower initial variations, higher speed of response and a lower 

offset at the new steady states are registered with this control structure. Under opposite 

variations of the same amplitude in the feed flowrate, propane and ethane concentration profiles 

achieved with CS3 show symmetric behaviors. Thus, with the use of the cascade structure with 

PCT control, it is possible to obtain more linear behaviors for the deethanizer product targets. 

Moreover, by considering the action of the reboiler duty (Figure 5.24c) with the CS3 control, 

it shows a lower variability, with registered reductions of 22% and 28%, respectively under the 
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decreasing and increasing variation in the inlet feed to the plant. This allows for reaching the 

product target with lower power consumption. 

 

Figure 5.24: Responses obtained with the deethanizer column by the CS1 scheme (red lines) and the CS3 scheme (blue lines) 

for a 10% increase (dash and dash-dotted lines) and a 10% decrease (continuous lines and dotted) in the plant feed flowrate. 

The green dotted lines depict the control targets. 

 

Depropanizer column results 

The depropanizer dynamic profiles obtained for impurity concentration and reboiler duty with 

the CS1 and the CS3 control structures under the increasing and decreasing variation of 10% 

in the inlet feed flowrate to the plant are depicted in Figure 5.25. By looking at the graphs 

obtained it is possible to assert that the impurity in the top product of the depropanizer (sum of 

the concentrations of isobutane and n-butane depicted in Figure 5.25a) exhibits different 

behaviors. The impurity concentration profile shows, with the CS1, a slightly higher initial 

variation, and a lower offset under the effect of an increase in the feed flowrate to the plant. In 

contrast, under the worst-case variation, represented by a decrease in the feed flowrate, the top 

product impurity shows a lower initial variation and a lower offset with the CS3.  

(a) 

(b) 

(c) 
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Figure 5.25: Responses obtained with the depropanizer column by the CS1 scheme (red lines) and the CS3 scheme (blue 

lines)  for a 10% increase (dash and dash-dotted lines) and a 10% decrease (continuous lines and dotted) in the plant feed 

flowrate . The green dotted lines depict the control targets. 

Under the effect of both the applied disturbances, the same behaviors are observed for the 

propane concentration profiles (Figure 5.25c). Nevertheless, for meeting the control objective 

in the depropanizer outflows top and bottom impurities levels, with the CS3, it is possible to 

mitigate the effects of the worst variation, the decreasing of the feed flowrate to the plant. 

Additionally, with the CS3, the impurity concentration profiles in the top and bottom products 

depict more linear behaviors, in response to opposite variations of the same aptitude in the 

disturbance applied. Also, with this configuration, the actions of the reboiler duty (Figure 

5.25c) show a lower initial variation but in general, the actions obtained with the conventional 

and proposed control structure are comparable for both the variations applied. 

 

Debutanizer column results 

The results of the comparison between the transient profiles, achieved with the CS1 and CS3 

control strategies, of bottom and top product quality targets and the action of the reboiler duty, 

(a) 

(b) 

(c) 
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obtained for the debutanizer column under a 10% increase and decrease in the plant feed 

flowrate, are depicted in Figure 5.26. 

5.  

Figure 5.26: Responses obtained with the debutanizer column by the CS1 scheme (red lines) and the CS3 scheme (blue 

lines) for a 10% increase (dash and dash-dotted lines) and a 10% decrease (continuous lines and dotted) in the plant feed 

flowrate. The green dotted lines depict the control targets. 

By looking at the profiles depicted in Figure 5.26, it is possible to assert that, considering the 

little composition variations, the iso-pentane impurity level profiles in the top product of the 

debutanizer (Figure 5.26a) show similar behavior with both control configurations. 

Nevertheless, with the CS1 the deviation from the target value appears to be lower during the 

transient. Under the effect of the two disturbances applied, by considering the n-butane profiles 

(Figure 5.26b) obtained with the CS3, it is possible to observe a lower initial variation and a 

higher speed of response. By considering the actions of the reboiler duty (Figure 5.26c), using 

the CS3, depicts a lower initial variation, but also in this case, generally the profiles obtained 

with the two control structures are comparable under both the considered disturbances. 

A qualitative comparison of the influence in the indirect product quality control performances 

for deethanizer, depropanizer and debutanizer due to the implementation of CS1 and CS3 

(a) 

(b) 

(c) 
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control for demethanizer column product quality control is given in Table 5.12. Here are 

reported the IAE values for top and bottom impurity levels of the three columns under the 

presence of the considered ramp variations in the plant inlet flowrate.  

Table 5.12:  Integral Absolute Error (IAE) obtained for the deethanizer, depropanizer and debutanizer product quality 

control with CS1 and CS3 under the considered decreasing and increasing variation in the plant inlet flowrate 

   Deethanizer Depropanizer Debutanizer 

Controlled outputs 

Top product 

impurity 

Increasing 

variation 

CS1 0.55 0.08 0.07 

CS3 0.64 0.12 0.08 

Decreasing 

variation 

CS1 1.78 0.20 0.07 

CS3 0.54 0.10 0.08 

Bottom product 

impurity 

Increasing 

variation 

CS1 0.12 0.04 0.17 

CS3 0.11 0.05 0.17 

Decreasing 

variation 

CS1 0.17 0.05 0.15 

CS3 0.08 0.04 0.15 

 

The IAE results reported in Table 5.12 agree with the qualitative analysis reported in this 

section. It is possible to observe that the effect of using the CS2 instead of the CS1, for 

demethanizer quality control, mostly affects the product quality control performances of the 

deethanizer column. Considering the use of the CS3, in presence of the decreasing variation in 

the plant feed flow rate, the IAE value related to the top product impurity indirect control 

(propane concentration in the distillate) is reduced by 69.7%. In the same situation, the IAE 

value associated with the bottom product impurity indirect control (ethane concentration in the 

residue) shows a reduction of 52,9%. The improvement was not registered under the increasing 

variation in the plant feed flow rate: the top product impurity is associated with a minor increase 

of about 16.4%, while in the bottom product impurity, only a reduction of 8.3% was obtained.  
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5.3. Conclusion of the Chapter 

The control of methane composition and ethane recovery is a critical aspect of the whole NGL 

recovery process operation, as it impacts the overall efficiency and the performances of the 

whole separation process since the bottom product of the demethanizer column represents the 

feed stream to the downstream separation train. For this reason, in this chapter initially, several 

control strategies were compared with the main objective of achieving the methane 

composition of 1 mol% while maintaining ethane recovery at 84% in the demethanizer column 

bottom product. The results obtained showed that indirect composition controllers through 

temperature controllers were not effective in rejecting the flow and composition disturbances 

considered as input to the plant. This highlighted the need to design alternative control 

strategies.  

The indirect control of ethane recovery was improved by compensating for pressure variations 

in the flash tank (TK-100) by controlling the PCT in this unit. This allowed the reduction of 

ethane recovery offset registered in presence of flow disturbances. The PCT control 

demonstrated under the same disturbance to have a positive effect also in the indirect control 

of the methane composition. However, those improvements were not observed under inlet 

composition disturbances, as the realization of pressure compensation did not consider the plant 

inlet change in composition, and its influence slows down the action of the direct tray 

temperature controller. To speed up the action of the column tray temperature controller a 

cascade control configuration (CS3) was realized. For this purpose, a ratio flow controller was 

implemented to maintain a constant ratio between a boilup approximation and the column 

bottom product. The ratio flow controller, manipulating the reboiler duty, acted as a slave for 

the column tray temperature controller, which was necessary to assure the required bottom 

methane composition in case of changes in feed composition. The CS3 configuration shows 

the fastest response and maximum speed of convergence for controlling the tray temperature 

and methane composition in the demethanizer bottom product. It was shown that this control 

scheme also improves the overall operation of the column, allowing for better disturbance 

rejection along the column, and lower power consumption in the CRR and GSP units.  

Due to changes in the column inlet composition, the implementation of the ratio controller as 

a cascaded secondary loop was not able to maintain the methane composition at the target value 

of 1 mol%. To eliminate the methane composition offset, the use of a methane concentration 

controller, using offline and delayed composition measurements, as a third control loop in the 
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cascade control strategy (CS4 control structure) was considered. This allowed for the 

elimination of methane composition steady state offset for all applied disturbances. The 

obtained control strategy was effective in controlling the methane composition in the column, 

while also improving the overall operation of the column in the CRR and GSP units and 

achieving a faster response and maximum convergence speed.  

To examine the impact on the production targets of the deethanizer, depropanizer, and 

debutanizer columns of the optimized control structure developed for the control of the 

demethanizer column, the whole NGL separation process, including a CRR unit, was simulated 

under the effect of plant inlet flow disturbances. With this aim, the effects of the CS1 and CS3 

control structures on the separation train have been compared. It was demonstrated that the use 

of the CS3 control, given by the cascade and PCT control, not only can improve the control 

performance achieved on the demethanizer column and the corresponding energy consumption 

but has also positive effects on the rest of the plant. Furthermore, this control strategy proves 

to be able to guarantee a more linear dynamic behavior of the impurity concentrations, allowing 

for a more efficient and stable operation of the whole NGL recovery process. 
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Chapter 6 
 

6. State estimation 
 

With the perspective of improving the control strategy developed for the achievement of 

the desired product quality in the demethanizer column of the NGL separation process 

without the use of online analyzers, artificial neural networks (ANNs) with a data-driven 

approach have been employed for real-time estimation of critical variables. Due to their 

simple structure and fast learning rate, feed forward neural networks (FNNs) have been 

used for the realization of soft sensors for methane concentration, ethane recovery and 

column boilup flowrate. The performances of the soft sensors developed were evaluated 

offline and after their implementation in the control strategy.  
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6.1. Feedforward neural networks 

Feedforward neural networks are a type of artificial neural network in which data flows through 

the network in only one direction. The input is passed through multiple layers of nodes 

(neurons). Each neuron receives input from the previous layer, performs a computation on it, 

and then passes the result to the next layer. The computation performed by each neuron is 

typically a linear combination of its input, followed by a nonlinear activation function. In this 

way, the network can learn complex relationships between the input and output data. The 

number of layers and the number of neurons in each layer determine the capacity of the 

network. The more layers and neurons, the more complex relationships the network can learn. 

The selection of a proper number of layers and neurons is necessary to avoid overfitting 

problems. A general scheme of a Feedforward neural network is reported in Figure 6.1.  

                       

 

Figure 6.1: Feedforward neural structure. The image is taken from (What are Neural Networks? - United Kingdom | IBM, 

s.d.). 

 

6.2. Development of the FNNs based soft sensor  

FNNs have been utilized to develop three different models to infer in real-time boilup, methane 

concentration and ethane recovery in the demethanizer column. With this purpose the input 

data for each network was chosen with a knowledge-based approach supported by statistical 

tools, considering easily measurable variables in real plants that were the most informative and 

most affecting the target outputs. Table 6.1 shows the input variables selected for the three 

developed neural models.  
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The network architecture consisted of only one hidden layer with hyperbolic tangent activation 

function and a number of hidden neurons selected by considering firstly a model with only one 

hidden unit and adding one more neuron until a significant change in the model performance 

had been observed (Spigno & Tronci, 2015; Tronci et al., 2019). An extra neuron was 

introduced to the input and hidden layers, the bias, which provides a constant output signal 

equal to one. The selection of the best neural network model has been carried out by utilizing 

the determination coefficient (R2) and mean squared error (MSE) as performance indexes. The 

training script was implemented in the MATLAB® computing environment and updates the 

weight and bias values according to the Levenberg-Marquardt optimisation available in the 

Neural Network Toolbox. 
 

Table 6.1: Selected input variables for boilup methane composition and ethane recovery soft sensors 

Outputs Inputs 

Boilup 

Column (T-100) temperature difference between tray 28 and 

bottom; column (T-100) bottom temperature; column (T-

100) bottom product flowrate and temperature. 

Methane composition 

Column (T-100) temperature difference between tray 28 and 

bottom; column (T-100) bottom product flowrate; flash tank 

(TK-100) temperature and pressure. 

Ethane recovery 

Column (T-100) temperature difference between tray 28 and 

bottom; column (T-100) bottom product flowrate; flash tank 

(TK-100) temperature; flash tank (TK-100) pressure; flash 

tank (TK-100) liquid product flow and level. 
 

 

Data collected for training and testing the neural networks have been obtained by varying the 

feed flowrate and inlet composition in the CRR unit simulated in the process simulator Aspen 

HYSYS®. To simulate the actual variability of natural gas processed daily, which is due to the 

variation in the corresponding daily demand, sinusoidal variations of the raw gas inlet to the 

plant have been considered, with a range of variation between 4500 and 5500 kmol/h. The 

changes in extraction basin characteristics were mimicked by considering step variations of 

ethane inlet composition and changing accordingly the inlet methane composition (range of 

variation for methane: 0.92-0.94; range of variation for ethane: 0.02-0.04%). To obtain a more 

realistic representation of real plant data, the measured data collected include noise normally 
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distributed with zero-mean. Standard deviation equal to 20kPA and 0.04 °C has been used for 

pressure and temperature measurements, respectively. Since dealing with a cryogenic process 

the standard deviation considered for temperature measurement is chosen considering the use 

of a high accuracy temperature sensor. Variations of ±1% have been considered for flowrate 

measurements, ±0.2% for level measurements and ±2% for composition measurements.  

 

6.3. Soft sensors estimation and control performances  

The estimation performances of the software sensors realised using FNN are reported and 

analysed in this section. The developed soft sensors have been implemented in the control 

structures replacing the actual measurement of column boilup and methane concentration used 

as process variables. Since the soft sensors developed are implemented in the methane impurity 

level control structure, and the ethane soft sensor is employed only for monitoring purposes, 

the results are obtained considering the implementation of the direct control of temperature in 

the flash tank (TK-100).  
 

Table 6.2: Control structure and data-driven control structure developed for demethanizer bottom product methane impurity 

level control 

  CS1 CS6 CS7 CS8 

Manipulated 

variables 

Chiller heat loss ✓  ✓  ✓  ✓  

Column reboiler duty  ✓  ✓  ✓  ✓ 

Controlled variables 

Flash tank temperature ✓  ✓  ✓  ✓  

Column tray 

temperature 
 ✓  ✓  ✓  ✓ 

Approximated ratio flow      ✓   

Methane composition      ✓   

Methane soft sensor        ✓ 

 Boilup soft sensor    ✓    ✓ 
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The control structure considered, which are summarized in Table 6.2, comprehend: (i) the 

CS1 scheme  (direct temperature control in the flash tank (TK-100) and demethanizer 

column), (ii) two loops cascade with boil-up estimated with the neural network (referred to 

as CS6), (iii) three loops cascade with delayed methane measurements (referred to as CS7) 

and (iv) three loops cascade with methane estimated with the neural network (referred to 

as CS8). 

 

6.3.1. Soft sensors validation  

The results obtained in the training and structure optimization of the feedforward neural models 

for the estimation of boilup, methane and ethane optimization are reported in Table 6.3 along 

with the statistical performance indexes.  
 

Table 6.3: Soft sensors training and test results 

Outputs Hidden neurons R2 Train MSE Train R2 TEST MSE TEST 

Boilup 6 0.997 3.88E-02 0.990 3.59E-02 

Methane conc. 3 0.985 2.55E-07 0.953 1.59E-07 

Ethane rec. 3 0.941 1.34E-04 0.807 1.37E-04 

 

To validate the estimation capabilities of the developed soft sensors, they were implemented 

in the Aspen HYSYS® simulation and compared with the actual values of the target variables 

by varying the input flowrate with ramp changes of different amplitudes and duration. The 

results of this comparison are reported in Figure 6.2.  

The transient profiles obtained in the validation campaign, reported in Figure 6.2, shows that 

the software sensors for boilup (Figure 6.2a) and methane composition (Figure 6.2b) can 

reproduce the trend of the actual variables quite accurately. The two models developed can 

predict not only the general trend of the profiles over time but also the peaks of variation 

following the applied inlet flowrate changes. Some inaccuracies still occur, but overall, the 

models prove to be suitable to be used as boilup and methane soft sensors. Figure 6.2c depict 

the comparison obtained with the ethane recovery neural model and the actual measurement. 

Here the soft sensor for ethane recovery shows poorer performance compared to the others, 

indeed as it is possible to visualize it is not able to detect the peaks but only the average trend. 
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It is nevertheless useful for monitoring this production index if no other information is available 

in the plant. 

  

Figure 6.2: Validation campaign results: comparison of actual boilup and boilup soft-sensor measurements (a); comparison 

of actual methane concentration and methane soft-sensor measurements (b); comparison of actual ethane recovery end 

ethane recovery soft-sensor measurements (c). The actual profiles are indicated by the continuous red lines, while the 

estimations are depicted by the dashed blue lines. 

 

6.3.2. Soft sensors control performances 

The process conducted in the CRR unit was simulated under feed disturbances considering 

ramp variations in the inlet flowrate of ±10%. The performances of the data-driven control 

structures have been evaluated in their ability to keep a methane composition of 1 mol% in the 

bottom product of the demethanizer column and an ethane recovery of 84% under inlet feed 

disturbances. The results obtained with the CS6 are compared to the profiles obtained with the 

CS1 control structure, given by the direct temperature control in the flash tank (TK-100) and 

the demethanizer column. While the profiles obtained with the CS8 were compared with the 

ones obtained with the CS7, the three loops cascade with delayed methane measurements. The 

software sensor developed for the estimation of ethane recovery was implemented in the plant, 

to further test its performance and as a tool for monitoring production targets. For sake of 

brevity, only the results obtained in presence of an increase in the plant inlet flowrate are 

reported and shown in Figure 6.3 and Figure 6.4. 

(a) (b) (c) 
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Figure 6.3: Profiles obtained with CS1 (continuous red lines) and CS6 (dashed blue lines) for methane impurity level (on the 

left panel) and for ethane recovery (right panel) for a 10% increase on the inlet flowrate.  

The comparison of the profiles obtained with the CS1 and CS6 control schemes is depicted in 

Figure 6.3 for a 10% increase in the inlet flowrate to the plant. None of the configurations under 

consideration involve the use of a composition controller. In this case, only the estimation 

performance of the soft sensor for the boilup flowrate is analyzed. The left panel depicts the 

results obtained for the indirect control of the methane impurity while the right panel depicts 

the profiles obtained in the indirect control of ethane recovery. Considering the temperature 

profile of the column tray (Figure 6.3a), it is possible to observe that the CS6 control drastically 

reduces the initial variation compared to the CS1 control. Consequently, the initial deviation 

of the methane impurity (Figure 6.3c) is considerably reduced. Furthermore, this control 

strategy allows the achievement of a faster response of the control system arriving at the steady 

state with the same offset value of 0.3% much earlier than with CS1. The implementation of 

the soft sensor for ethane recovery (Figure 6.3f), can reduce the impact of noise in the 

measurement and provide a proper reconstruction of ethane recovery behavior. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 6.4: Profiles obtained with CS7 (continuous red lines) and CS8 (dashed blue lines) for methane impurity level (on the 

left panel) and for ethane recovery (right panel) for a 10% increase on the inlet flowrate.  

Figure 6.4 depicts the comparison of the profiles obtained with the CS7 and CS8 control 

schemes in response to a 10% increase in the inlet flowrate. As mentioned in the previous 

chapter, using the composition analyzer makes only discrete and delayed measurements 

available. The methane soft sensor is instead used as an online analyzer with the availability 

therefore of a continuous estimation of the methane concentration to be used as a controlled 

variable in the composition controller. As a result, the methane composition profiles (Figure 

6.4c) with the CS7 control show a higher initial deviation and slower response. With the CS8, 

thus with estimation available in real-time, the performance of the controlled system shows a 

smaller initial deviation and a faster response. Nevertheless, due to the estimation error of the 

soft sensor, the use of the methane soft sensors was not able to eliminate the registered offset 

at the new steady state conditions. A small offset is indeed still present when using the 

inferential control. For what concerns the implementation of the soft sensor for ethane recovery 

(Figure 6.4f) it shows good abilities in filtering the measurement noise and gives an adequate 

reconstruction of the ethane response. 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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6.4. Conclusion of the Chapter 

In the chapter, the obtained results showed that the developed feedforward soft sensors of the 

boilup and the methane concentration in the bottom product of the demethanizer column were 

able to effectively reconstruct the dynamic behavior of the actual variables. The obtained neural 

models were successfully used as controlled variables in two different control configurations 

to guarantee the required target for feed flowrate inlet variations. It was shown that as a 

composition analyzer takes time to perform the analysis, an accurate real-time estimation of 

such variables can indeed improve control performances by speeding up the action of the 

controller. The same data-driven approach was also applied to estimate the recovery of ethane 

recovery obtaining a valuable tool for monitoring the process in real-time when the analyzer 

has a long delay or is not present. However, the use of these software sensors in the control 

structure was not able to eliminate the offset obtained under the new steady state conditions. 

Since estimation errors are bound to exist between the actual value and the soft sensor estimated 

values, one way to apply a correction is to use both the estimate and the composition 

measurements, when available, employing filters. For instance, in the study conducted by 

Randek & Mandenius (2018) various types of Kalman filters were utilized to correct soft sensor 

errors. 
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Chapter 7 
 

7. Digital twin  
 

This section focuses on the formulation and development of a digital twin for a 

demethanizer column, providing a useful tool for optimization, monitoring and quality 

control of the NGL recovery process. Deep learning methods for the development of 

Recurrent neural networks (RNNs) were used to build the demethanizer data-driven 

model. The choice of working with RNNs is based on the necessity of obtaining an 

adaptive neural model capable of detecting the temporal dependencies between data.  
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7.1. Long Short-Term Memory neural networks 

Thanks to their ability to detect the time dependencies between input and output data, as well 

as the fact that they were developed to overcome the vanishing gradient problem, LSTM neural 

networks were used to obtain real-time estimations more accurately than what is achievable 

with FNNs. The recurrent structure of an LSTM neural network and the single unit, the 

LSTMcell, are shown in Figure 7.1. 

 

Figure 7.1. Recurrent LSTM network and LSTMcell structure. Image readapted from (Understanding LSTM Networks -- 

colah’s blog, s.d.). 

The calculation of the outputs, referred to as hidden states, is performed in the single LSTM 

cell by three gates: the forget gate, the input gate, and the output gate. Those gates determine 

what information should be remembered by the network and used for hidden state calculation 

by considering the input information stored in the current internal cell state, which represents 

the long-term memory of the network, in the hidden state at the previous time and in the input 

data at the current time. The operation applied by those gates is defined by the relationships 

reported in Equations 7.1-7.4. 

 𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓) 7.1) 

 𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖) 7.2) 

 𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜) 7.3) 

 𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 +𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔) 7.4) 
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Where 𝜎 and 𝑡𝑎𝑛ℎ are respectively the sigmoid and hyperbolic tangent activation functions; 𝑓𝑡 

indicates the forget gate that defines what information in the internal cell state should be 

forgotten; 𝑖𝑡 indicates the input gate that determines what information stored in 𝑐̃𝑡, the new 

candidate vector for the internal cell states, are worthily memorized; 𝑜𝑡 denotes the output gate 

that determines what information stored in the actual internal cell state should be considered in 

the currently hidden state calculation; 𝑊𝑖𝑗 and 𝑏𝑖𝑗 are the weights and biases related to the 

current inputs 𝑥𝑡, with 𝑗 identifying the considered gate, while 𝑊𝑜𝑗 and 𝑏𝑜𝑗 are the weights and 

biases related to the previous hidden states ℎ𝑡−1. The calculations performed by the presented 

gates to obtain the internal cell state and hidden state in each time instant are expressed by the 

relations reported in Equations 7.5 and 7.6. 

Where 𝑐𝑡−1 is the internal cell state calculated at the previous time while 𝑐𝑡 and ℎ𝑡 are the 

calculated internal cell states and hidden states at the current time. 

 

7.2. Digital twin structure 

To obtain a digital surrogate of the column with shorter calculation times than the simulator, 

which can be used for both control and optimization of the process, the demethanizer column 

was modelled by decomposing the problem into three main tasks. The first tasks concern the 

estimation of the column's top and bottom compositions and the column's internal and external 

flows. Two different LSTM neural models were designed and developed for this purpose. 

Subsequently to estimate the internal separation operations in column three different neural 

model architectures were developed and compared to establish the best structure in terms of 

estimation performances. These two models were then integrated with the best architecture for 

the development of the digital column model for the demethanizer column employs only easily 

and economically available variable measurements as input data, the demethanizer digital twin 

will be referred to as demethanizer digital twin (DDT). The architectures of the neural models 

employed for the digital twin realization are described in the following subsections. 

 

 𝑐𝑡 = 𝑓𝑡 ∙ 𝑐𝑡−1 + 𝑖𝑡 ∙ 𝑐̃𝑡 7.5) 

   

 ℎ𝑡 = 𝑜𝑡 ∙ 𝑡𝑎𝑛ℎ⁡(𝑐𝑡) 7.6) 
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7.2.1. Product composition estimation LSTM neural networks 

To estimate the demethanizer top and bottom product compositions, LSTM neural networks 

were employed for the realization of a neural model that will be referred to as NMPC (Neural 

Model for product composition estimation). The NMPC architecture, which is schematized in 

Figure 7.2, involves the use of two LSTM cells, each of which is responsible for calculating 

the compositions in one of the two product streams.  The cells used are independent of each 

other and have as common input data the pressure and temperature of all column feed streams 

and top and bottom product streams, reboiler duty, power of the cryogenic compressor and 

flash tank (TK-100) pressure and temperature.  The input data selected for each network was 

chosen with a knowledge-based approach, thus considering the variables mostly correlated 

with the desired outputs and by considering easily measurable variables in real plants. 

 

Figure 7.2: Schematic representation of the NMPC recurrent structure. 

 

7.2.2. Column flows LSTM neural networks 

To estimate the top and bottom product streams as well as the reflux and the boilup streams, a 

neural model, referred to as NMCF (Neural Model for Column Flow estimation), was 

developed. The architecture of the NMCF, schematized in Figure 7.3, involves the use of three 

interacting LSTM cells. The first cell is responsible for calculating the material balance around 

the cryogenic compressor, and, as shown in Figure 7.3, has the goal of estimating the reflux 

stream. The second cell is responsible for calculating the total column material balance and 

gives as outputs the flows of the top and bottom column products. The third cell is responsible 

for estimating the material balance around the reboiler and is responsible for the estimation of 

boilup flow. The input data considered in the model was chosen with a knowledge-based 

approach and differed from cell to cell. The cells' outputs are also provided as input in the other 
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cells to simulate the behavior of flows in the column. The first cell receives as input the reflux 

ratio in addition to the estimation of boilup and distillate. The second cell receives as input the 

measurement of the input flowrates and reflux and boilup streams estimations. The third cell 

receives as input column bottom temperature and bottom product temperature and bottom 

product and reflux streams estimations. 

 

 

Figure 7.3: Schematic representation of the NMCF recurrent structure. 

 

7.2.3. Column Neural model proposed architectures   

Different neural model architectures were developed and compared to achieve accurate 

estimations for the temperature, pressure and compositions of all column trays and reboiler of 

the demethanizer column. Those models differ in the way the information is exchanged 

between the single LSTM units and had the purpose to estimate the separation operation 

occurring in all trays of the column. Thus, the hidden states calculated by every cell of the 

networks were the temperature, pressure, and compositions of the corresponding demethanizer 

tray. These models share a common base layout that involves the utilization of a dedicated 

LSTM cell to mimic the operations of each stage of the distillation column and the reboiler, 

allowing the dynamics inherent in the separation process occurring in each column stage to be 

captured in the model. Also, bidirectional connections have been considered to account for the 

interactions between adjacent stages, mimicking the action of internal flows within the 

distillation column. The described layout is the core body of the models, estimating the 
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demethanizer operation at a certain instant of time and representing the recursive part of the 

model. As common inputs to every cell of the networks, the following variables were 

considered: pressure and temperature of all column feed streams, reboiler duty, power of the 

cryogenic compressor and flash tank (TK-100) pressure and temperature. In the following, the 

characteristics of the different architectures are presented. 

 

Neural Model 1 

The first developed model referred to as neural model 1 (NM1), is designed to obtain a single 

model capable of detecting and simulating the separation operations occurring in the distillation 

column. Developing individual neural models for each column stage using a dedicated LSTM 

network, and from these creating a single model representing the operations of the entire 

column, the interconnections between the utilized LSTM networks have been modified at the 

expense of the temporal connection between cells.  To better visualize the structure of the 

resulting model, a schematic representation of the NM1 layout is reported in Figure 7.4 while 

a schematic of the corresponding inner LSTM cell is depicted in Figure 7.5. 

 

Figure 7.4: Schematic representation of the NM1 recurrent structure. 

As can be seen in Figure 7.5, where the considered cell is referred to by the subscript 𝑠, the 

previous states for the cell are given by the hidden states and internal cell states calculated by 

the adjacent LSTM cells (indicated with subscripts 𝑠 − 1 and 𝑠 + 1) at the current time. As can 
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be seen from the layout in Figure 7.4, the usual LSTM time connection is only considered in 

the terminal LSTM cells of the network. For inner cells, the dependence on the states calculated 

by the same cell in previous instants is dropped and the only temporal dependencies are given 

by the information stored in the hidden cell state. Regarding the time-dependent input tensor, 

this retains the same information for each cell of the network.  

 

Figure 7.5: Schematic representation of an inner LSTM cell for NM1. 

 Neural Model 2 

The second neural model, referred to as neural model 2 (NM2), has been developed to account 

for the neglected time dependence in the inner cells of NM1. With this purpose the previous 

model layout has been modified while maintaining the preexisting connection that mimics the 

progression of the internal flows in the column. The modification applied are observable in 

Figure 7.6 and Figure 7.7 where respectively, a schematic representation of the NM2 layout 

and a specific inner LSTM cell are depicted.  

As can be seen in Figure 7.7, in the considered cell (also in this case referred to by the subscript 

𝑠), the previous states for the cell are provided by combining the actual previous hidden states 

and internal cell states (ℎ𝑡−1,𝑠 and 𝑐𝑡−1,𝑠) with the hidden states and internal cell states 

calculated by the adjacent LSTM cells (indicated with subscripts 𝑠 − 1 and 𝑠 + 1) in the current 

time. In addition, for the connections of the network terminal cells mimicking the column top 

tray and the reboiler, the calculated hidden states from the missing adjacent cell (ℎ𝑡,0 and ℎ𝑡,32) 

are replaced by the actual measurement of the corresponding variables of the reflux and the 

liquid stream entering the reboiler respectively for the first and the last cell of the network. 
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Figure 7.6: Schematic representation of the NM2 recurrent structure. 

 

Figure 7.7: Schematic representation of an inner LSTM cell for NM2. 

 Neural Model 3 

The third presented model for the demethanizer column, referred to as neural model 3 (NM3), 

is a modification of the NM2. In this case, the connection between a cell and the corresponding 

adjacent cells is realized by providing the calculated hidden states of cells-1 and cells+1 as inputs 

for the cells in addition to the time dependent common input vector. The temporal connection 

between the cells corresponds to the conventional LSTM cell connection, considering as 

previous outputs the hidden and internal cell states calculated in the previous instant of time by 

the same cell. The described cell structure is schematically represented in Figure 7.9, while the 
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described model layout, responsible to approximate the demethanizer operation at a certain 

instant of time is depicted in Figure 7.8. In this model, the actual measurement of the 

corresponding variables of the reflux and the liquid stream entering the reboiler are provided 

in inputs respectively for the first and the last cell of the network instead of the calculated 

hidden states from the missing adjacent cell. 

 

Figure 7.8: Schematic representation of the NM3 recurrent structure. 

 

Figure 7.9: Schematic representation of an inner LSTMcell for NM3. 
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7.3. Neural models development 

All the presented neural models have been implemented and trained in the Python 

programming environment by using the functions available in the open-source library PyTorch 

(Paszke et al., 2019). The data used for training, testing, and validating the models are described 

in the following, along with the functions used for training the different models. 

7.3.1. Datasets 

The datasets employed for training and testing of the developed neural models were simulated 

by considering two months of plant operation of the CRR separation unit simulated in the 

process simulator Aspen HYSYS®. To generate these sets of data, ramp changes of varying 

amplitude and duration in the plant feed flowrate were applied in the process simulator. Those 

variations were used to emulate the daily demand for natural gas, which exhibits an increasing 

trend during daylight hours and a decreasing trend during night hours (with variation peaks of 

10% of the plant feed nominal value). Of all recorded datasets, 80% were used for network 

training, while the remaining 20% were used for the testing campaign. To validate the 

performance of presented neural models, 2 days of plant operation were simulated by applying 

ramp variations of 5% in the plant feed flowrate nominal value. All the datasets used were 

registered by considering a sampling time of 20 seconds and without measurement delays, as 

the data were treated as historical plant data. To provide a more realistic situation measurement 

noise was applied, using the standard deviations reported in Table 7.1.  

Table 7.1: Values of maximum measurement noise considered for input and output data in train, test, and validation datasets 

 
Duty Temperatures Pressures Flows Concentrations 

maximum 

measurement noise 
1.3%* 0.1 [◦C] 1%* 1%* 2%* 

* Referred to the maximum value of the considered variable for the given column stage. 

 

 

7.3.2. Model Training 

The loss function considered in the training optimization problem is given by the Mean Square 

Error (MSE) defined as reported in Equation 7.7.  

 𝑀𝑆𝐸 =
1

𝑁𝑏
∑∑ ∑(𝑦̂𝑗,𝑛,𝑚 − 𝑦𝑗,𝑛,𝑚)

2

𝑀

𝑚=1

𝑁

𝑛=1

𝑂

𝑗=1

                 7.7) 
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where: 𝑁𝑏corresponds to the number of observations in the current iteration; 𝑂 is the number 

of considered outputs in a given cell, while the general output is denoted by 𝑗; 𝑁 represent the 

length of the selected time sequence; 𝑀 is the number of cells employed by the different 

models;and 𝑦̂ and 𝑦 denote a general hidden state calculated by the considered model and the  

corresponding actual value, respectively.  

The loss function is calculated at each iteration in which the Backpropagation through time 

algorithm is used to calculate the associated gradient with respect to weights and biases. The 

obtained gradient is then used for the parameter updating performed by the Adaptive Moment 

Estimation optimizer (ADAM) (Kingma & Ba, 2017). The network hyperparameters were 

obtained by multiobjective optimization using the NSGA-II algorithm available in the pymoo 

package (Blank & Deb, 2020). The hyperparameters that were optimized include batch size, 

which determines the number of time-sequential data series processed by the network in each 

iteration; sequence length, which corresponds to the length of the time sequence considered 

and determines the number of cells performing calculations in each iteration; hidden size, 

which determines the number of cell states considered by the network cells; and learning rate, 

which determines the step size used by the optimization algorithm in the learning process. The 

resulting hyperparameters used are shown in Table 7.2. 

Table 7.2: Neural Models' optimized hyperparameters 

 NMPC NMCF NM1 NM2 NM3 

Batch size 16 5 11 26 17 

Sequence length 11 10 12 7 29 

Hidden size 18 6 14 15 16 

Learning rate 10-2 10-2 10-1,51 10-1,54 10-1,53 

 

 

7.4. Demethanizer digital twin estimation performances 

This section first reports the results obtained in the validation campaign for the NMPC and 

NMCF models, together with a comparison of the estimation performance of the NM1, NM2 

and NM3 models. After that, the results obtained for DDT are compared with those obtained 

using only the model for estimating the separation operations in the column plates that showed 

the best performance.   
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7.4.1. NMPC estimation performances 

The results of the control performance achieved in the validation campaign from the NMPC 

neural model are depicted in Figure 7.10 and Figure 7.11, respectively for the estimation of the 

distillate composition and bottom product compositions. The results are obtained considering 

the imposition of inlet feed flowrate variations realized with increasing and decreasing ramp 

variation with an amplitude of 5% in the CRR process unit. 

  
         (a)      (d) 

  
        (c)       (d) 

Figure 7.10: Comparison of the estimated transient profiles (blue lines) obtained by for top product compositions with the 

actual (green lines) and measure profiles (red lines) during the validation campaign. 

Figure 7.10a and Figure 7.10b depict the comparison of the measured and the actual profiles 

respectively of nitrogen and methane composition, with the estimated profiles obtained with 
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the NMPC. Here it is possible to observe that even though the measurement noise considered 

is so large, compared to the actual concentration changes, such that the two measured 

composition profiles appear to be constant, the model can perfectly filter out the considered 

measurement noise. The obtained estimations accurately approximate the actual transient trend 

in nitrogen and methane concentrations, as well as the new steady state conditions reached in 

the column top product. The comparison of the measured, actual and estimated profiles of 

ethane concentration is depicted in Figure 7.10c. Again, the estimation obtained by the 

developed model shows good capabilities in filtering the considered measurement noise and 

the ethane estimate is perfectly capable of reconstructing the transient evolution of ethane in 

the top product of the demethanizer. Figure 7.10d depicts the validation campaign results 

obtained for the propane composition in the demethanizer distillate. 
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Figure 7.11: Comparison of the estimated transient profiles (blue lines) obtained by for bottom product compositions with 

the actual (green lines) and measure profiles (red lines) during the validation campaign. 

Also in this case, the model manages to filter out the measurement noise, providing a more 

accurate estimate of the actual profile both in the steady state and in the transient time following 

the application of the increasing flowrate disturbance to the plant. Nevertheless, we can observe 

that in the presence of the decreasing flow disturbance, the model failed to properly estimate 

the composition of the propane with an error higher than the considered measurement noise. 

The performance of the model in estimating the concentrations in the top product deteriorates 

as heavier components are considered and thus as the concentrations of the compounds 

considered in the estimation approach zero.Regarding the estimation results obtained by the 

model during the validation campaign for the composition estimations in the bottom product 

of the demethanizer column depicted in Figure 7.11, similar results were obtained. The NMPC 

model was able to successfully and accurately reconstruct the transient profiles obtained for all 
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the compositions in the bottom product of the demethanizer column except nitrogen whose 

presence is, however, negligible. 

 

7.4.2. NMCF estimation performances 

The validation campaign results obtained with the NMCF model for the reconstruction of the 

dynamic profiles of the top and bottom product flowrates as well as the reflux and boilup 

flowrates are depicted in Figure 7.12. 

  

  
Figure 7.12: Comparison of the estimated transient profiles (blue lines)  obtained by for distilate, bottom product, reflux and 

boilup streams with the actual (green lines) and measure profiles (red lines) during the validation campaign. 

The results obtained with this neural model depict similar results to those obtained for the 

model for the estimation of product compositions. Again, it can be observed that, for all the 

considered estimation outputs, the model demonstrates good filtering capabilities with 
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estimated profiles with estimated errors lower than the measurement noise considered. The 

obtained estimates prove to be very accurate and able to follow the actual output profiles. 

 

7.4.3. Selection of column neural model architecture  

The performances of the three models developed to select the best architectures to estimate the 

column's internal behaviour are evaluated considering the Loss function as well as comparing 

the temperature and concentration profiles obtained in steady state and during transients for the 

validation campaign. For the sake of brevity, only the results obtained in the presence of the 

decreasing flow disturbances are shown.  

The values obtained for the Loss functions during training, test, and validation campaign for 

the considered models, are reported and confronted in Table 7.4. 

Table 7.3: Loss function evaluated for the three neural models test and validation campaign 

 NM1 NM2 NM3 

Training loss 1.518E-03 1.324E-03 1.368E-03 

Test loss 1.636E-03 1.324E-03 1.366E-03 

Validation loss 2.273E-03 2.125E-03 2.133E-03 

 

As it is possible to visualize considering the loss function values obtained at the end of the 

training campaign the NM2 model registers a smaller error, followed by the NM3 model, while 

the highest value is obtained for NM1. The same results are obtained with the loss function 

values obtained during the test and validation campaign. This suggests that the changes applied 

to the NM1 model for maintaining the temporal connection between cells led to an 

improvement in the column model. Considering that the NM2 show the lowest loss function 

values in all the campaigns this may be the best model among those proposed to approximate 

the operations of the demethanizer column.  

 

Model comparison 

The ability of NM1, NM2 and NM3 in the reconstruction of temperature and key-component 

profiles are evaluated under the worst-case variation represented by a decrease in the feed plant 

nominal value.  

The results achieved during the validation campaign are depicted in Figure 7.13-Figure 7.15. 
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Figure 7.13 illustrates the predicted temperature steady state column profiles, along with the 

related predicted transient profiles in the trays where the deviation from the true steady state 

value is maximum.  

Considering the column temperature steady state profiles depicted in Figure 7.13a, it is possible 

to visualize that all three models are generally able to reconstruct the actual column temperature 

profile. However, in the last two stages of the column, the estimation performed deviates from 

the trend, with a major deviation registered for NM1.  

  
                 (a) (b) 

  
               (c) (d) 

Figure 7.13: Column temperature profiles at the new steady state (a). Transient profiles of 28th stage temperature (b), 29th 

stage temperature (c), 30th stage temperature (d) obtained in the validation campaign for NM1 (red lines), NM2 (green lines) 

and NM3 (black lines) under decreasing variation of 5% in the plant feed nominal value.  

It is worth noting that most of the column temperature variation is concentrated in the latter 

three stages of the column, with about 80°C of variation due to the presence of methane in the 
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gas phase. Furthermore, the temperature in the 28th stage has been controlled, and as a result 

of these, temperature data are not enough informative to obtain an accurate estimation.  

To analyze further the temperature estimation obtained in this column region the time evolution 

of the temperature in the 28th, 29th and 30th column trays are reported in Figure 7.13b, Figure 

7.13c and Figure 7.13d respectively.  As it is observed in those Figures none of the presented 

models can reconstruct the temperature profile in the tray with an error lower than the 

measurement noise. In particular, the NM1 estimation not only presents a noisier estimation 

but also deviates from the actual profile with a maximum deviation of around 2 °C in the 28th 

tray, 5.5°C in the 29th tray and 4 °C in the 30th tray. The deviations registered for NM2 are 

generally lower than NM3 estimations, except in the 28th tray where the maximum deviation 

obtained with NM3 is around 0.7 °C while the one obtained with NM2 is around 0.8 °C. 

Furthermore, the prediction obtained in this region with NM2 always has an error lower than 

1°C except in the 29th tray where the maximum error reaches the value of 1.8°C. The prediction 

error obtained with NM3 exceeds the value of 1°C in the 29th tray with a maximum deviation 

of 2 °C and in the 30th tray with a maximum deviation of 1.5 °C.    

Figure 7.14 illustrates the predicted methane composition steady state column profiles, along 

with the predicted transient profiles obtained in the trays where the deviation from the true 

steady state value is maximum. In these trays, the methane fraction is over its critical 

temperature, thus in the gas phase and due to this fact, the methane gradient in this column 

region is the highest.  

Figure 7.14a depicts the steady state methane composition column profile reached after the 

imposed disturbance in the plant feed. Here the NM2 and NM3 can reconstruct the profile for 

all the column trays. Although NM1 succeeds in correctly approximating the measurement of 

most of the stages, it fails to approximate the methane concentration in the 29th and 30th trays. 

Indeed, by considering the transient profiles in the 28th tray depicted in Figure 7.14b it is 

possible to visualize that here all the models well approximate the new steady state values with 

an error lower than the assumed measurement error, with a resulting estimation noise that is 

higher for NM1 while it is comparable for the estimations performed by NM2 and NM3. It is 

also shown that the NM1 estimation deviates from the measured profiles during the transient 

with a maximum deviation of 0.022. Figure 7.14c and Figure 7.14b depict the methane 

composition transient profiles respectively in the 29th and 30th trays. Here the predictions 

obtained with NM2 and NM3 show to be able to predict not only the general trend but also the 
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transient peaks with comparable estimation noise in the 29th tray and a less noisy estimation 

with NM2 in the 30th tray. For what concerns the prediction obtained with NM1 it is confirmed 

that in both the 29th and 30th tray the model fails to reconstruct the time evolution of methane 

concentration profiles and results in noisier responses compared with the other two models.  

  
             (a) (b) 

  
           (c) (d) 

Figure 7.14: Column methane composition profiles at the new steady state (a). Transient methane composition profiles of 

28th stage (b), 29th stage (c), 30th stage (d) obtained in the validation campaign for NM1 (red lines), NM2 (green lines) and 

NM3 (black lines) under decreasing variation of 5% in the plant feed nominal value. 

Figure 7.15 shows the results of the estimation performed by the three presented models on 

ethane composition steady state column profiles, and transient profiles obtained in the trays 

where the registered deviations from the actual profiles are maximum. As it is possible to 

visualize in Figure 7.15a, again, models NM2 and NM3 are perfectly able to accurately 
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reconstruct the column concentration steady state profiles, however, model NM1 shows to 

provide a poorer prediction in the 29th and 30th trays.  

  
             (a)   (b) 

  
                (c)      (d) 

Figure 7.15: Column ethane composition profiles at the new steady state (a). Transient ethane composition profiles of 28th 

stage (b), 29th stage (c), 30th stage (d) obtained in the validation campaign for NM1 (red lines), NM2 (green lines) and NM3 

(black lines) under decreasing variation of 5% in the plant feed nominal value. 

Observing the transient profiles obtained for the 28th tray (Figure 7.15b), it appears that all the 

models can predict the trend of the ethane concentration. Nevertheless, NM1 shows poorer 

estimation performances when compared with the other models that can more accurately 

predict and filter the concentration profiles. Indeed, the prediction obtained with NM2 and 

NM3 has lower noisy profiles compared with NM1. It is also possible to observe that NM3 

cannot well approximate the transient peaks of the measured profile and NM1 has a slightly 

offset in the nominal conditions, even if, thanks to the model's ability to reduce the 
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measurement noise, the prediction lies under the measurement profiles. Analyzing the transient 

profiles correspondent to the ethane concentration profiles in the 29th and 30th tray of the 

column (Figure 7.15c and Figure 7.15d respectively), model NM1 prediction shows an error 

greater than the considered measurement error, while the other two models can obtain an 

estimation that remains within the measurement range with a less noisy response compared to 

NM1.  

In the present results, the NM1 turns out to have the worst prediction performance when 

considering most of the estimation target variables. This is probably due to the reduced 

temporal dependency in the structure of this model, as well as the impossibility of benefiting 

from the presence of the actual measures of the output variables used by the end cells of NM2 

and NM3. On the other hand, the NM2 seems to be a more suitable neural model since it can 

adequately represent and predict the dynamic behavior of the whole column, except for the 

temperature profile in the 29th tray. Therefore, this model architecture may represent a viable 

candidate for the demethanizer column digital twin development. 

 

Validation transient profiles 

The results reported in the above section identify the NM2 as the model with the best 

architecture for the prediction of the demethanizer separation operations. To examinate the 

prediction obtained in the validation campaign by this model, the estimated transient profiles 

and the actual column pressure, temperature and concentration profiles are depicted in Figure 

7.16. For the sake of brevity, only the transient composition profiles of column key components 

are included in the discussion. 

 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

  
(g) (h) 

Figure 7.16: Transient column profiles obtained with the NM2 under a decreasing variation of 5% in the plant feed nominal 

value for: actual pressure (a) and estimated pressure (b); actual temperature (c) and estimated temperature (d); actual 

methane composition (e) and estimated methane composition (f); actual ethane composition (g) and estimated ethane 

composition (h). 

As shown in Figure 7.16, the profile obtained by the NM2 model, for the estimation of the 

actual column pressure transient profile (Figure 7.16a), which is depicted in Figure 7.16b 
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shows that the model is perfectly able to accurately reconstruct the actual profiles with a profile 

whose noise is lower than the considered measured error. The real-time predictions obtained 

with the NM2 for the column temperature profile (Figure 7.16d) provide accurate estimation 

with no detectable deviations from the actual column temperature profiles (Figure 7.16b). As 

it is possible to visualize, the neural model proves to be able to predict not only the steady state 

condition but also reconstruct the time evolution of the profiles. The same results are obtained 

for the estimated methane concentration (Figure 7.16f) and ethane concentration (Figure 7.16h) 

profiles in the column estimation. In both cases, the model can accurately reconstruct the trend 

of the actual profiles (Figure 7.16e and Figure 7.16g) of key components, also related to the 

quality indexes of the column. Analogue results are obtained for the non-key component 

prediction. Table 7.4 shows the MSE and the maximum deviation, obtained by considering the 

predictions for non-key components of the transient composition profiles and the actual profiles 

in all column trays. The NM2 model can accurately reconstruct all the composition transient 

column profiles, with extremely low values obtained for MSE and maximum estimation error. 

The latter always results under the assumed measurement error, confirming the model's ability 

to filter the measurement noise. 

Table 7.4: Mean square error and max error obtained for the non-key components in the validation campaign of NM2 under 

a decreasing variation of 5% in the plant feed nominal value 

 Propane Butanes Pentanes Hexane 

MSE 3.17e-07 1.89e-07 2.53e-07 6.27e-06 

Max Error 3.31e-05 1.96e-05 3.30e-05 5.69e-04 

 

Remarks on neural model comparison  

The results of the comparison showed that the NM2 model has the best estimation performance. 

This model had an enhanced ability to approximate the trends of the actual target variable 

profiles and to filter out measurement noise. Furthermore, NM2 was able to predict the actual 

trend of temperature transient profiles quite accurately for most of the column trays, while it 

allows the monitoring of the temperature in the final stages of the column and the reboiler. The 

predictions obtained for column temperatures may be improved by using datasets involving the 

use of different control strategies to increase data insights in the later stages of the column. 

 



Digital twin       122 

 

Monitoring and control for NGL recovery plant 

7.4.4. DDT estimation performances 

As NM2 showed the best estimation performances of the target variables, this model 

architecture was thus selected for the development of the demethanizer digital twin (DDT). 

The DDT integrates the structure of the NM2 model with NMPC and NMCF models. In 

particular, the estimation of reflux and boilup flows obtained with the NMCF were given as 

model inputs and the composition estimations obtained by the NMPC model were employed 

instead of the composition measurements required in the NM2 architecture, eliminating the 

dependence of the NM2 architecture on the presence of composition analyzers. In this way, it 

was possible to obtain a complete model of the column, whereby it was possible to estimate 

the demethanizer column operations employing only readily available measurements. In this 

section, to evaluate the performance of the DTT and to show how information about the 

terminal compositions of the column is necessary to obtain adequate target estimations, the 

results obtained by comparing the estimation performances of the DDT with the NM2 and with 

a modified version of the NM2 model not depending on concentration measurements, referred 

to as NM2mod, are reported in Figure 7.17. Subsequently, the column transient profiles of 

pressure, temperature, and composition of the key components in the column estimated with 

the DDT are compared with the actual profiles in Figure 7.18. To quantify the magnitude of 

the prediction errors, the transient error profiles are shown in Figure 7.19. 

Model comparison 

For comparing the results obtained by the DDT, NM2 and NM2mod, the profiles obtained in 

the column's most critical area, i.e. the end of the column and the reboiler, were analyzed. In 

Figure 7.17 the measured methane and temperature profiles are compared with the profiles 

estimated from the 27th and 29th trays of the column and in the reboiler. For the sake of brevity, 

only the profiles obtained in the validation campaign in response to the 5% decrease in the 

plant inlet flowrate are reported. 

The graphs shown in Figure 7.17 are intended to show the trend in the estimates obtained for 

methane and temperature as moving towards the bottom of the column. The graphs on the left 

show the results obtained for the methane composition in the liquid phase of the considered 

tray, while the graphs on the right show the results obtained in estimating the temperature in 

the same trays. In the profiles estimated in the 27th plate, it is observable that all three models 

considered can estimate the methane concentration (Figure 7.17a) with good accuracy.  
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          (a)                                        (b) 

  
       (c)                                     (d) 

  
          (e) (f) 

Figure 7.17: Comparison of transient profiles of methane composition and tray temperature of 27th stage (a and b 

respectively), 29th stage (c and d respectively), reboiler (e and f respectively) obtained in the validation campaign for NM2 

(green line), NM2mod (red line), and DDT (black line) under a decreasing variation of 5% in the plant feed nominal value. 

The light blue line depicts the measured profiles. 
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The same results are obtained for the temperature profiles (Figure 7.17b) where the maximum 

estimation error obtained with the models is about 0.15°C. Methane composition and 

temperature profiles, in the 29th tray, are depicted in Figure 7.17c and Figure 7.17d respectively. 

Here it is possible to observe a deterioration in the estimation performance obtained by 

NM2mod. Although the methane composition profiles estimated by this model managed to 

remain within the measurement error considered, the average estimated profile starts to deviate 

from the actual profile at the new steady state conditions. For what concerns the NM2mod 

temperature profile a maximum deviation of about 2.8°C from the mean value of the measured 

temperature profile is registered. Also, it is possible to observe a deviation from the mean value 

of the measured profiles in the new steady state conditions. The estimation obtained with the 

other models can well approximate the methane and temperature profiles with an estimation 

error of less than 0.5°C.  

From the comparison of the profiles obtained for the column reboiler the lack of information 

in the NM2mod model, it is evident from the fact that it cannot estimate either methane 

composition (Figure 7.17e) or temperature profiles (Figure 7.17f). The estimated methane 

composition profile obtained by this model shows an estimation error greater than the 

considered measurement error during the transient and the new steady state conditions. For 

what concerns the estimated profiles obtained for the reboiler temperature, here the MN2mod 

model does not follow the trend of the actual measurement, with a maximum estimation error 

of around 1°C. By comparing the performances of the other models, the NM2 shows to provide 

more noisy estimations for both methane and temperature profiles compared to the estimated 

profiles obtained with the DDT. This is due to the use of the NMPC concentration estimations, 

which, as stated previously, demonstrated excellent measurement noise reduction abilities. 

 

Validation transient profiles 

To have a complete overview of the results obtained by the DDT model, developed for the 

prediction of demethanizer column operations, the comparison of the transient profiles 

obtained for column pressure, temperature and key components composition and the actual 

transient profiles is depicted in Figure 7.18. 

As shown in Figure 7.18, the estimated transient profiles obtained by the DDT show similar 

results to the ones obtained with the NM2 model (Figure 7.16). As it is possible to visualize, 

the model can predict not only the steady state condition but also accurately reconstruct the 

time evolution of the profiles with no detectable deviations from the actual column profiles. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 
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(g) (h) 

Figure 7.18: Transient column profiles obtained under a decreasing variation of 5% in the plant feed nominal value for: 

actual pressure (a) and estimated pressure (b); actual temperature (c) and estimated temperature (d); actual methane 

composition (e) and estimated methane composition (f); actual ethane composition (g) and estimated ethane composition (h). 

The model is also able to predict the time evolution of the other components in the column. 

Thus, from a qualitative point of view, the model developed correctly approximates the target 

variables. It succeeds in extrapolating the information contained in the inputs provided, and 

those provided by the outputs of the adjacent cells of the model, to produce a mathematical 

model that succeeds in estimating the separation that occurs in each column tray.  

 

By considering the estimation error of the transient profiles obtained by the DDT in the 

validation campaign for pressure, temperature, and key components composition, the goodness 

of the derived model was analyzed quantitatively in Figure 7.19. The performances obtained 

in the estimation of the transient profiles of non-key components are analysed in terms of Mean 

square error (MSE). Also, in this case for the sake of brevity, only the results obtained under 

the worst-case variation represented by the application of a 5% decrease in the feed plant 

nominal value.  

As it is possible to visualize from the estimation error of the column pressure profile, which is 

depicted in Figure 7.19a, the DDT is perfectly able to predict the pressure time evolution in all 

column trays, with a maximum error below 3kPa, way below the maximum assumed 

measurement deviation of 16kPa. The model is thus not only able to accurately predict the 

column pressure profiles, but it also can filter the measurement error.  

Figure 7.19b illustrates the estimation error obtained for the column temperature profile during 

the considered transient time. Here, it is possible to observe that the temperature profile 

obtained with the DDT always predicts the actual general trend of the transient column 

temperature profile. The model can perform an accurate transient prediction for the trays 
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between the 2nd to 23rd with an estimation error below 0.1 °C. While a higher error but still 

lower than 0.2°C is registered in the first tray. As moving to the ends of the column, starting 

from the 28th tray the estimation error increases remaining below 1°C. Most of the column 

temperature variation is concentrated in the latter three stages, with about 80°C of variation 

due to the presence of methane in the gas phase. Furthermore, since the temperature in the 28th 

stage has been controlled, the resulting temperature data are not enough informative to obtain 

an accurate estimation. 

  
(a) (b) 

  
(c) (d) 

Figure 7.19: Error transient profiles obtained in the validation campaign under the decreasing variation of plant feed nominal 

value for pressure (a), temperature (b), methane (c) and ethane (d) composition. 

For what concerns the key components, the estimation error of the column transient profiles of 

methane and ethane composition are shown in Figure 7.19a and Figure 7.19b respectively. 

Here, is it shown that for both components, the DDT can accurately predict the actual 

composition transient profiles for all the column trays. The estimation errors increase in 

correspondence to the column region where most of the variations for the considered 

component occur. Indeed, the estimation error for methane increases around the column feed 
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trays, and for both the components it is higher in the column terminal regions, where most of 

the separation takes place. For both the key components the deviations of the predicted transient 

column profiles from the actual profiles are always lower than the maximum assumed 

measurement error, leading to the achievement of estimates more accurate than the measures 

achievable with measurement sensors considering the standard deviations reported in Table 

7.1. Analogue results are obtained for the non-key components prediction. Table 7.5 shows the 

MSE and the maximum deviation, obtained by considering the predictions of the transient 

composition profiles in all column trays and the actual profiles, for non-key components in the 

validation campaign. The proposed neural model was able to accurately reconstruct the all the 

composition transient column profiles, with extremely low values of MSE and maximum 

estimation error. The latter always results under the assumed measurement error, confirming 

the model's ability to filter the measurement noise.  

Table 7.5: Mean square error and max error obtained for the non-key components in the validation campaign of the DTT 

under a decreasing variation of 5% in the plant feed nominal value 

 
Propane Butanes Pentanes Hexane 

MSE 7.24E-8 1.22E-8 1.49E-9 2.57E-9 

Max Error 0.0011 7.62E-4 2.60E-4 2.64E-4 

 

Calculation time comparison 

As stated in the motivation of this work, the development of the Demethanizer column digital 

twin is linked to the necessity to obtain a tool suitable for controlling and monitoring the 

process in real time. To assess the fulfilment of this goal, a calculation times comparison 

between the Aspen HYSYS® simulation and the DDT was performed. To meet a more realistic 

situation, the use of the interactive platform SimWiz (PSE research group, LSU, s.d.) is also 

considered in this analysis. The use of this platform gives us a measure of how much 

computation time is required in Aspen HYSYS® for simulated data to be exchanged in real-

time by other software avoiding loss of data. Indeed, SimWiz is a powerful tool developed by 

the PSE research group of Louisiana State University (LSU) that emulates a DCS environment. 

The use of this platform allows the simulated data generated by the Aspen HYSYS® simulation 

to be shared in a Python environment and allows the easy collection and analysis of simulated 

data. The presented analysis has been performed by simulating two datasets, one with Aspen 

HYSYS® and the other with SimWiz, under the presence of the inlet disturbances considered 
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in the registration of the dataset used in the neural networks’ validation reported in section 

7.3.1. The DDT calculation time has been recorded in the Python environment during the 

validation campaign. Thus, the calculation times obtained by the three considered tools are 

associated with the same plant operations, the result of this comparison is depicted in Figure 

7.20. 

 

Figure 7.20: Calculation times comparison between the Aspen HYSYS® simulation, the DDT and SimWiz. 

In Figure 7.20 it is possible to observe the comparison computational time of the DDT SimWiz 

and Aspen HYSYS®. The results reported for SimWiz and Aspen HYSYS® are referred to as 

average calculation times, since in the Aspen HYSYS® environment the actual timing 

recording is not possible, and therefore the registration of the actual computation times was not 

practicable. In the case of the Aspen HYSYS® simulation, the average computation time was 

calculated by dividing the actual timing accounted for performing the simulation by the number 

of samplings considered for each variable. As showed in Figure 7.20 the average computation 

time obtained for the Aspen HYSYS® simulation was found to be equal to 0.3 s. In the case of 

SimWiz, on the other hand, a fixed calculation time of 4 s was used, as found to be the lowest 

calculation time allowing for no data loss in the connection between Python and Aspen 

HYSYS® determined based on trial-and-error tests. For the DDT both the computation time 

and the average computation time (black dotted line) are depicted in Figure 7.20, in particular 
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the latter was found to be equal to 0.0183 s. To the DDT is thus associated a reduction in the 

calculation time of  99.54% compared to SimWiz and of 93.9% compared to Aspen HYSYS®.  

The DDT was able to perform around 48 hours of plant operation estimation in about 2.7 

minutes, while the Aspen HYSYS® simulation required about 43 minutes and SimWiz 

required 9.62 hours.  
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7.5. Conclusion of the Chapter 

This chapter has exploited the possibility of using a data-driven approach and neural networks 

to model a demethanizer column of a simulated CRR unit, intending to use the developed 

model as a demethanizer digital twin (DDT), allowing for more efficient and accurate 

monitoring and control of the column's performance. The DDT was realized by integrating 

three different neural models: one for column material balance approximation (NMCF), 

another for column product composition estimation (NMPC), and a model that estimates the 

demethanizer separation occurring in all the trays and the reboiler. To select the most suitable 

network architecture capable of estimating separation operations in all column trays, several 

neural network models, differing in the interconnections between the network cells, were 

compared. The NM2 model has proved to have the best estimation performance and its 

architecture was employed for the DDT realization. The estimation of reflux and boilup flows 

obtained with the NMCF were given as model inputs to the DDT, while the NMPC estimations 

were used in the DDT replacing the NM2 required the compositions at column ends. As a 

result, the developed digital twin employs only easy and economical to-measure variables, 

making it more feasible to use in real plants. Furthermore, the need for composition data as 

input to the surrogate model was confirmed by the comparison of it with an NM2mod model 

realized by modifying the structure of the NM2 model to remove the dependency of 

composition data. The developed demethanizer digital twin was able to predict the actual trend 

of the considered output quite accurately with also a great ability to filter the measurement 

noise. Thus, it was found to be a possibly useful tool for estimating the dynamic behavior of 

the demethanizer column and for optimizing, monitoring, and controlling the NGL recovery 

process. 
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Chapter 8 
 

Conclusions 
 

In this Thesis, the research work concerning the control and estimation problems of an NGL 

recovery process was presented. With this purpose, three plant schemes largely used in the 

industry, using cryogenic distillation for methane separation, were considered in the work. The 

conventional, GSP, and CRR separation units were, in turn, simulated in the Aspen HYSYS® 

process simulator, each representing the first part of the plant for NGL separation. The 

remaining columns required for NGL recovery were designed and dynamically simulated in 

the same simulation environment. The full plant obtained, thus, consists in a train of distillation 

columns where the demethanizer column for methane separation is followed by the 

deethanizer, depropanizer, and debutanizer column for the heavier hydrocarbon separation. 

This is an energy-intensive process subject to typical input disturbances, such as changes in the 

inlet flowrate and composition which have a large influence on the product quality attained in 

the distillate and residue of the multicomponent distillation columns considered in the plant.  

The main equipment of the plant is the demethanizer column, which provides the NGL liquid 

stream supplied to the subsequent distillation train for further separation. In this separation unit, 

the cryogenic operations and the presence of methane in supercritical conditions solved in the 

liquid mixtures in the last stages of the column require attention over the power consumption 

used for the separation. Due to the unconventional separation operations performed by this 

unit, the low performances of temperature control for the indirect control of product quality 

would require the use of expensive composition analyzers to attain the product specification 

targets, mitigate the effects of disturbances in the other column of the plant as well as reducing 

the power consumption of the plant. However, the use of direct control of composition is less 

attractive due to the high cost of purchasing and maintenance of composition analyzers. 

Furthermore, also the associated long measurement delays contribute to making them less 

reliable for estimation and control purposes. To find a control strategy that combined the cost-

effectiveness of temperature controllers with the achievement of optimum control 

performances, several indirect composition control strategies were developed in this research 
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work to mitigate the effects of disturbances while retaining the desired product specifications 

and enhancing the plant's energy efficiency. 

To select and design the indirect composition controllers for the considered column, firstly an 

analysis of temperature gradients, with a per-component contribution diagram, was carried out 

to determine the most suitable location for temperature sensors. The results indicated that the 

temperature variation in the demethanizer columns was mostly dependent on the methane 

composition changes. The influence of the variations of this component increases significantly 

at the bottom of the column due to its solubility in the mixture. The variations in light key 

components had a significant impact on the temperature gradient in the stripping section of the 

other columns leading to the selection of the temperature sensor location where this was the 

maximum. The analysis also recommended implementing a reflux ratio controller to mitigate 

the effect of feed disturbances on the heavy-key components in the top product, as the variation 

of this component has a negligible impact on the temperature gradient in this column section. 

Based on these considerations, control strategies for indirect purity control of the products of 

the various columns were developed.  

Different control schemes were proposed to keep a methane composition of 1 mol% and an 

ethane recovery of 84% in the bottom product of the demethanizer column under the presence 

of feed and composition disturbances. The initial control strategy (CS1) using only indirect 

composition controllers was found to be insufficient in managing flow and composition 

disturbances. Alternative control strategies were developed, including CS2, where the control 

of the pressure-compensated flash tank (TK-100) temperature was introduced, and CS3 which 

utilized a cascade control configuration to speed the controller of the column tray temperature, 

introducing as slave loop a ratio flow controller between a boilup approximation and the 

demethanizer bottom product. From the analysis of the control structures presented, the CS3 

gave the best control performances also improving the overall operation of the column and 

reducing the plant power consumption, although this was unable to meet the methane 

composition target. The offset was eliminated only with the introduction of a methane 

composition controller as a third control loop in the cascade (CS4).  

To overcome the need for concentration measures, and thus composition analyzers, to achieve 

the required production targets, deep learning techniques were applied, for the development of 

composition soft sensors for methane composition, ethane recovery and demethanizer boilup. 

The results demonstrated that methane composition and boilup feedforward soft sensors were 
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capable of accurately reproducing the dynamic behavior of the actual variables and were 

successful in enhancing the performances of the control strategy in terms of response speed, 

although offset elimination under new steady state conditions was not achieved. In addition, 

the realized ethane recovery soft sensor proved to be a useful tool for real-time process 

monitoring.  

The final part of the presented research work was focused on the development of a data-driven 

digital twin for a simulated demethanizer column of a CRR unit. The goal was the achievement 

of an efficient tool for monitoring, controlling, and optimizing the plant that would benefit 

from a reduced estimation time compared to the commercial simulator. To achieve this goal, 

LSTM recurrent neural networks were employed with a data-driven approach for surrogate 

model development. Different neural network architectures were designed to approximate, as 

far as possible, the separation operation performed in the column. The developed architecture 

differs in the organization of the modified LSTM cells, in particular, the interconnections 

between the cells of the networks and the information flow attempted to recreate the internal 

behaviour of a distillation column. Three architectures were compared in their capability to 

estimate the thermodynamic equilibrium established in the column trays, as temperature 

pressure and composition of all column trays were the desired output of the network. The result 

of the comparison shows that the NM2 architecture proved to be the best approximation for the 

internal behavior of the column. This structure combines the presence of a temporal link 

between cells with the possibility of determining which information calculated from the 

adjacent cells and received by a given NM2 cell is useful for calculating the desired output. 

The NM2 architecture was then employed in the column digital twin development, by 

integrating it with the LSTM models for column material balance and column product 

composition estimation. The introduction of those models made possible the use of only easily 

accessible and inexpensive measure variables, leading to the realization of a surrogate model 

attractive for use in real plants. The resulting demethanizer digital twin could predict the actual 

output trend with accuracy and filtering measurement noise, making it a valuable tool for 

monitoring and controlling the NGL recovery process and estimating the dynamic behavior of 

the demethanizer column. 
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Index of acronyms 
 

 

ANN  Artificial neural network  

ANNs   Artificial neural networks 

ADAM  Adaptive Moment Estimation optimizer 

CRR   Cold residue reflux separation scheme 

CNG   Compressed natural gas  

CS1  Control structure with Flash tank (TK-101) temperature control and direct 

control of column (T-101) tray temperature 

CS2  Control structure with Flash tank (TK-101) PCT control and direct control of 

column (T-101) tray temperature 

CS3  Control structure with the two loops cascade with column tray temperature 

controller and ratio controller and Flash tank (TK-101) PCT control 

CS4  Control structure with the three loops cascade and Flash tank (TK-101) PCT 

control 

CS5  Control structure with the two loops cascade with composition controller and 

column tray temperature controller and direct control of column (T-101) tray 

temperature 

CS6  Control structure with the two loops cascade with column tray temperature 

controller and ratio controller with boil-up soft sensor estimation and Flash tank 

(TK-101) temperature control  

CS7  Control structure with the three loops cascade with delayed methane 

measurements and Flash tank (TK-101) temperature control  

CS8  Control structure with the three loops cascade with methane soft sensor 

estimation and Flash tank (TK-101) temperature control  

DDT   Demethanizer column digital twin 

EKF   Extended Kalman Filter  

EOS   Equations of state  

FNN   Feedforward neural network  

FNNs   Feedforward neural networks 

GE   Geometric Estimator  

GSP   Gas Subcooled Process separation scheme 
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IAE   Integral Absolute Error  

MSE   Mean squared error 

NGL, NGLs  Natural gas liquids 

NMPC  Neural Model for product composition estimation 

NMCF  Neural Model for Column Flow estimation  

NM1   Neural model 1 

NM2   Neural model 2 

NM3   Neural model 3 

PCR   Partial component regression 

PLS   Partial least square 

PCT   Pressure compensated temperature 

RNN   Recurrent neural network 

RNNs   Recurrent neural networks 

SVD   Singular value decomposition  
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