
1 

 

 

 

This is the Author’s accepted manuscript version of the following 
contribution: 

[Matteo Demuru and Matteo Fraschini, EEG fingerprinting: subject-
specific signature based on the aperiodic component of power 
spectrum, Computers in Biology and Medicine, Volume 120, May 
2020, 103748] 

 
The publisher's version is available at: 
https://doi.org/10.1016/j.compbiomed.2020.103748 
 
When citing, please refer to the published version. 
 
 
© <2020>. This manuscript version is made available under the CC-
BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-
nd/4.0/ 
 
 
 

This full text was downloaded from UNICA IRIS https://iris.unica.it/  

 

 



2 

EEG fingerprinting: subject-specific signature based on the aperiodic component of 

power spectrum 
 

Matteo Demuru1 and Matteo Fraschini2 

 
1 Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands 
 2 Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy 

 

Corresponding author: Matteo Fraschini (e-mail: fraschin@unica.it). 

 

 

Abstract 
During the last few years, there has been growing interest in the effects induced by individual variability on 

activation patterns and brain connectivity. The practical implications of individual variability are of basic 

relevance for both group level and subject level studies. The Electroencephalogram (EEG), still represents one 

of the most used recording techniques to investigate a wide range of brain-related features. In this work, we aim 

to estimate the effect of individual variability on a set of very simple and easily interpretable features extracted 

from the EEG power spectra. In particular, in an identification scenario, we investigated how the aperiodic (1/f 

background) component of the EEG power spectra can accurately identify subjects from a large EEG dataset. 

The results of this study show that the aperiodic component of the EEG signal is characterized by strong 

subject-specific properties, that this feature is consistent across different experimental conditions (eyes-open and 

eyes-closed) and outperforms the canonically-defined frequency bands. These findings suggest that the simple 

features (slope and offset) extracted from the aperiodic component of the EEG signal are sensitive to individual 

traits and may help to characterize and make inferences at single subject-level.  
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Introduction 
 

The scalp electroencephalogram (EEG) represents the most common recording system to detect human brain 

activity. Despite that this technique dates back to more than a century ago, it remains a clear reference in all the 

neuroscience related fields (Lopes da Silva 2013). One of the most relevant advantages of EEG, compared to 

other well-known techniques as Magnetoencephalography (MEG) and functional magnetic resonance (fMRI), is 

represented by its relatively low-cost and its non-invasive properties that make it especially suitable for real-life 

applications. Thanks to these characteristics, more recently, scalp EEG has been extensively investigated as 

source of neurophysiological features to be used in the so-called cognitive biometric systems (Chan et al. 2018; 

Gui et al. 2019). To date, an impressive number of feature extraction techniques have been used to detect 

subject-specific traits from EEG recordings. Time, frequency, time-frequency -domain techniques, functional 

connectivity metrics, and the related derived network parameters have been extensively investigated into this 

specific research topic. Among these techniques, the most frequently used derive either from the use of power 

spectral density analysis at channels level (DelPozo-Banos et al. 2015; Rocca et al. 2014) or from functional 

connectivity between EEG channels (Barra et al. 2017; Crobe et al. 2016; Fraschini et al. 2015). All these 

approaches, from the most simple to the most sophisticated, are based on some sort of arbitrary choice, such as 

(i) the frequency band definition, (ii) the selection of a correlation metric for the connectivity and/or (iii) the 

application of a threshold to reconstruct the functional network. Interestingly, it has been shown that EEG brain 

activity exhibits a 1/f-like power spectrum (He 2014), defining an aperiodic component that may be 

characterized in terms of slope (i.e., the exponential decrease of power in a spectrogram as a function of 

frequency) and offset (i.e., offset of the broadband power of the signal). This arrhythmic brain activity has been 

associated with fluctuations of cognitive states (Podvalny et al. 2015), aging (Voytek et al. 2015), the firing rate 

of neural populations (Manning et al. 2009) and clinical conditions (Peterson et al. 2018; Robertson et al. 2019; 

Veerakumar et al. 2019). Despite the interest in this specific approach, to the best of our knowledge, it has not 

been investigated yet to what extent this aperiodic component depicts the individual variability in EEG brain 

activity. In this study, we quantified the aperiodic component of the power spectrum, estimating the spectral 

slope and the offset at channel level. Successively, we used these EEG characteristics as feature vector to 

identify subjects in a large EEG dataset. Finally, we compared the results obtained from the aperiodic 

component with those obtained from more classical power spectral features, namely the relative power extracted 

from the canonical EEG frequency bands (i.e., theta, alpha, beta and gamma bands). In order to investigate this 

question, we used resting-state traces from a large and publicly available EEG dataset consisting of several 

recordings from 109 different subjects using a 64 channel EEG equipment (Goldberger Ary L. et al. 2000; 

Schalk et al. 2004). 
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Material and methods 
 

Dataset 

To test our hypothesis we use a large and publicly available (https://physionet.org/content/eegmmidb/1.0.0/) 

EEG dataset consisting of several recordings from 109 different subjects using high-density EEG equipment 

(Goldberger Ary L. et al. 2000; Schalk et al. 2004). The EEG traces are provided in EDF+ format, containing 64 

EEG signals and sampled at 160 samples per second. In particular, since the possible effects on individual 

variability of different sessions and different tasks have already been investigated (Fraschini et al. 2019; Pani et 

al. 2019) and are out of the scope of the present work, we focused our analysis on the two (one minute long) 

resting-state recordings during eyes-closed and eyes-open conditions. 

 

Pre-processing 

The pre-processing procedure was organized into two main steps. The first step was to apply ADJUST (version 

1.1.1, https://www.nitrc.org/projects/adjust/), an automatic algorithm for artifact identification and removal 

(Mognon et al. 2011) based on Independent Component Analysis (ICA), with the aim to reduce the effects due 

to blinks, eye movements, and other generic discontinuities. The subjects that showed significant residual 

artifacts were excluded from the analysis; in particular, the reported results are based on 95 subjects for the 

eyes-open condition and 100 subjects for the eyes-closed condition. The second step was to segment each (one 

minute) resting-state EEG recordings into five non-overlapping epochs of 12 seconds (Fraschini et al. 2015; 

Fraschini et al. 2016).  

 

 
Figure 1. The original power spectrum (extracted from one subject – one channel, using real EEG data) with the associated FOOOF model 

fit which allowed to compute both the slope and the offset for the aperiodic component. 

 

Features extraction 

After the pre-processing steps, two different types of features were extracted from the epoched signals: (i) 

features characterizing the aperiodic component, namely the slope and the offset and (ii) features characterizing 

the periodic component, namely the relative power of theta [4-8 Hz], alpha [8-13 Hz], beta [13-30 Hz] and 

gamma [30-45 Hz] frequency bands. The slope and the offset were calculated using the Fitting Oscillations & 

One Over f (FOOOF) toolbox (Haller et al. 2018). The slope and offset are derived modelling the aperiodic 
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signal (L), see Figure 1, as L = b – log( k + F x ), where b is the offset, x the slope and k the so-called knee 

parameter (that controls the bend of the aperiodic component). F represents a 1-D vector containing the 

frequencies. The relative power for each frequency band has been computed as the ratio between the absolute 

band-specific power and absolute total power (between 1 and 45 Hz) using the Power Spectral Density estimate 

via Welch's method. Both approaches allowed to obtain, for each subject and each epoch, a features vector of 64 

entries (each one representing the corresponding slope, offset or relative power of a single EEG channel). 

 

Performance evaluation 

To assess the performance of the two approaches (periodic and aperiodic components of the power spectra) to 

capture subject-specific characteristics, we have tested the extracted features using a well-known paradigm 

generally used to evaluate biometric systems (Fraschini et al. 2015; Ross et al. 2006). In particular, genuine and 

impostor scores were computed based on the Euclidean distance between pairs of feature vectors. Later, a 

similarity score was computed as 1/(1+d), where d represents the Euclidean distance. Finally, the performance is 

derived from the false acceptance rate (FAR, the error that occurs when the system accepts an impostor) and the 

false rejection rate (FRR, the error that occurs when the system rejects a genuine match) at different thresholds. 

The area under the receiver operating characteristic (AUC) curves were evaluated together with the equal error 

rate (EER, the point where FAR equals FRR) and the correct recognition rate (CRR) and were reported to 

summarize the results. Low values of EER and AUC express high performance. All the analysis was performed 

using MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States, version 2017B) and EEGLAB 

(version 13) (Delorme and Makeig 2004). All the figures were realized using Jamovi (version 1.0.8.0) available 

from https://www.jamovi.org. 
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Results 
 

Eyes-open resting-state 

For the eyes-open resting-state condition, the best performance, in terms of EER and AUC, were obtained for 

the offset (EER = 0.079 and AUC = 0.025). The slope performed slightly worse, with EER = 0.090 and AUC = 

0.031. Figure 2 represents the similarity score distribution for the slope (left panel) and the offset (right panel). 

When the two feature vectors were concatenated, the performance was slightly better with EER = 0.063 and 

AUC = 0.019. The relative power feature vectors did not show comparable performance, with the best results 

obtained for beta (EER = 0.118 and AUC = 0.043) and gamma band (EER = 0.112 and AUC = 0.039). All the 

results for the eyes-open resting-state condition are summarized in Table 1. 

 

 
Figure 2. Similarity score distribution for the slope (left panel) and the offset (right panel) for eyes-open resting-state condition 

 

 

Feature EER CCR 

slope 0.090 0.962 

offset 0.079 0.960 

slope + offset 0.063 0.973 

theta relative power 0.182 0.719 

alpha relative power 0.256 0.762 

beta relative power 0.118 0.938 

gamma relative power 0.112 0.942 

all bands 0.101 0.966 

Table 1. A summary of the EER values for each feature vector for eyes-open resting-state condition. 
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Eyes-closed resting-state 

For the eyes-closed resting-state condition, the best performance, in terms of EER and AUC, were obtained for 

the offset (EER = 0.057 and AUC = 0.018). The slope performed slightly worse, with EER = 0.089 and AUC = 

0.035. Figure 3 represents the similarity score distribution for the slope (left panel) and the offset (right panel). 

In this case, when the two feature vectors were concatenated, the performance was slightly worse with EER = 

0.171 and AUC = 0.019. Again, the relative power feature vectors did not show comparable performance, with 

the best results obtained for beta (EER = 0.142 and AUC = 0.078) and gamma band (EER = 0.197 and AUC = 

0.124). All the results for the eyes-closed resting-state condition are summarized in Table 2. Finally, the 

distributions of slope and offset for two sample subjects (S002R02 and S003R02) during the eyes-closed resting 

state for all the 64 EEG channels are represented in Figure 4. 

 

 
Figure 3. Similarity score distribution for the slope (left panel) and the offset (right panel) for eyes-closed resting-state condition 

 

 

Feature EER CRR 

slope 0.089 0.940 

offset 0.057 0.960 

slope + offset 0.171 0.876 

theta relative power 0.238 0.630 

alpha relative power 0.181 0.813 

beta relative power 0.142 0.877 

gamma relative power 0.197 0.947 

all bands 0.119 0.940 

Table 2. A summary of the EER values for each feature vector for eyes-closed resting-state condition. 
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Figure 4. Left and right panels represent respectively the distributions of slope and offset for two sample subjects (S002R02 and S003R02) 

during eyes-closed resting state for all the 64 EEG channels.  
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Discussion 

 

In this study, a large and open EEG dataset is used to investigate inter-subject variability using a fast and easy 

approach that goes beyond the traditional frequency band analysis. Two simple characteristics (slope and offset 

of the broadband power spectrum) describing the aperiodic properties of the EEG signals were exploited as 

fingerprints to identify individuals. Our results show that the aperiodic component of the power spectrum (i) is 

characterized by strong subject-specific properties, (ii) is consistent across different experimental conditions 

(eyes-open and eyes-closed) and (iii) its identification performance outperforms those obtained using canonical 

spectral features as band-specific relative power.  

Overall, the best performance is obtained using the aperiodic offset in the eyes-closed resting-state condition. 

Nevertheless, there is not a marked difference in terms of performance between experimental conditions (eyes-

open versus eyes-closed resting-state) for any of the feature vectors tested. In line with previous studies (Crobe 

et al. 2016; Fraschini et al. 2015), for the periodic component, we observed an effect on the performance due to 

the high-frequency content, where for both conditions the lowest EER values (best performance) were obtained 

for beta and gamma frequency bands. It is interesting to notice that when combining the features derived from 

all the frequency bands, the results outperform those obtained considering the bands separately, but still, both 

the slope and offset remain the features showing the better performance. The fact that the aperiodic component 

of the power spectrum outperforms the traditional spectral features (i.e., band-specific relative power) is in line 

with the hypothesis that the a priori and arbitrary frequency bands definition and the averaging across these 

bands can mitigate individual variability (Haller et al. 2018). Furthermore, these results also support the 

hypothesis that this approach may help to better understand the role of oscillatory variability in explaining 

individual differences in cognitive functioning in health and disease (Haller et al. 2018).  

Moreover, the aperiodic component has been linked experimentally to neuronal processes at micro-scale level 

(Manning et al. 2009; Miller et al. 2012; Podvalny et al. 2015) and it is hypothesized that its physiological 

meaning might reflect the dynamic balance between excitation and inhibition of neural population (Gao et al. 

2017). In this work, we tried to make a bridge testing if properties reported at micro/mesoscale were reliable at 

the macroscale (i.e. EEG recordings). Similarly to our results, recent works at the macroscale level showed the 

reliability of individual functional brain connectivity profile (Finn et al. 2015) and its strong genetic dependence 

(Demuru et al. 2017). A clear limitation of the present study is that it is based on a single session scenario and it 

is not clear how these findings may be altered using different EEG recordings in a multi-session scenario. 

Nevertheless, it is relevant to notice that our work is especially focused on relative (and not absolute) 

performance since we present the results as a strict comparison between different characteristics of the EEG 

spectrum (namely, aperiodic and periodic components). Furthermore, the effects induced by different sessions 

on subject identification in EEG have been widely investigated and clarified (Gui et al. 2019) and are out of the 

scope of the present study. An important limitation of the present work is that we have not considered the 

possible effects induced by the reference used in the analysis. We think this point may deserve more attention in 

future studies. 
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Conclusions 

 

In conclusion, in this study, we have shown that an EEG individual’s profile, as defined by the aperiodic 

component of the power spectrum, is unique and it is possible to identify individuals (with very high accuracy) 

from a large EEG dataset. These findings suggest that these simple spectral features are sensitive to individual 

traits and may help to characterize and make inferences at single subject-level using EEG. 
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