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Abstract— We introduce a novel definition of monotonic-
ity, termed “type-K" in honor of Kamke, and study nonlinear
type-K monotone dynamical systems possessing the plus-
subhomogeneity property, which we call “K-subtopical"
systems after Gunawardena and Keane.

We show that type-K monotonicity, which is weaker than
strong monotonicity, is also equivalent to monotonicity for
smooth systems evolving in continuous-time, but not in
discrete-time. K-subtopical systems are proved to converge
toward equilibrium points, if any exists, generalizing the
result of Angeli and Sontag about convergence of topical
systems’ trajectories toward the unique equilibrium point
when strong monotonicity is considered.

The theory provides an new methodology to study
the consensus problem in nonlinear multi-agent systems
(MASs). Necessary and sufficient conditions on the local
interaction rule of the agents ensuring the K-subtopicality
of MASs are provided, and consensus is proven to be
achieved asymptotically by the agents under given con-
nectivity assumptions on directed graphs. Examples in
continuous-time and discrete-time corroborate the rele-
vance of our results in different applications.

Index Terms— Nonlinear, Monotone, Order-preserving,
Type-K, Plus-subhomogeneous, subtopical, Kamke, Con-
sensus, Multi-Agent, Networks.

I. INTRODUCTION

Dynamical systems whose trajectories preserve a partial
order have represented a fruitful topic of research in numerous
fields: such systems are usually called monotone [1]. Among
different classes of monotone systems, special attention has
been paid to those that are also plus-homogeneous. These
systems, called topical by Gunawardena and Keane [2], have
solutions or flows ϕ satisfying, for t > 0,

x ≤ z ⇒ ϕ(t, x) ≤ ϕ(t, z), ∀x, z ∈ Rn, (1)
ϕ(t, x+ α1) = ϕ(t, x) + α1, ∀x ∈ Rn, α ∈ R, (2)

where x, z are initial conditions. We refer to the property
in eq. (1) as monotonicity and to the property in eq. (2)
as plus-homogeneity. Topical dynamical systems have been
a subject of interest of two different yet close domains:
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monotone dynamical systems theory [3], [4], where plus-
homogeneity is referred to as “translation invariance", and
nonlinear Perron–Frobenius theory [5], where monotonicity is
referred to as “order-preservation".

In this paper, we introduce a variation of monotonicity,
called type-K monotonicity in honor of Kamke, satisfying
eq. (1) and also the following,

x ≤ y ∧ xi < zi ⇒ ϕi(t, x) < ϕi(t, z), ∀i = 1, . . . , n,

which will be shown to be an important bridging link between
the above-mentioned theories. We also consider the more
general property of plus-subhomogeneity given next

ϕ(t, x+ α1) ≤ ϕ(t, x) + α1, ∀x ∈ Rn, α ∈ R≥0.

Type-K monotone and plus-subhomogeneous systems, which
we call K-subtopical, are the object of study of this paper.

A. Main contributions
The main goal of this paper is to give a self-contained intro-

duction to smooth K-subtopical systems both in continuous-
time, where “smooth" denotes the continuous differentiability
of the vector field, and in discrete-time, where “smooth"
denotes the continuous differentiability of the map. Within this
goal, our first main result is the following:
• Trajectories of smooth K-subtopicalsystems are proved to

asymptotically converge toward an equilibrium point, if
any exists (Theorem 1).

A further contribution is the derivation of necessary and
sufficient conditions for type-K monotonicity:
• A smooth continuous-time system is type-K monotone if

and only if its Jacobian matrix is Metzler (Proposition 3);
• A smooth discrete-time system is type-K monotone if

and only if its Jacobian matrix is Metzler with a strictly
positive diagonal (Theorem 5).

A knowledgeable reader may recognize the similarity of these
conditions to the well-known Kamke condition for continuous-
time system [1], [6], which we have shown to be necessary
and sufficient for type-K monotonicity of smooth systems:
• Smooth monotone systems in continuous-time in

continuous-time are also type-K monotone (Theorem 3).
A second goal consists in exploiting the convergence result
and the characterization of K-subtopical systems presented
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above to solve the consensus problem in K-subtopical Multi-
Agent Systems (MASs). Most of the results for achieving
consensus in linear MAS have been derived by considering
row-substochastic matrices, for which the celebrated Perron-
Frobenius theory provides a thorough spectral characteriza-
tion [7]–[9]. Since subtopical maps generalize linear maps
defined by row-substochastic matrices, our results lay the
groundwork for a systematic analysis of general MAS with
nonlinear interaction rules among agents. Within this goal is
our last result:
• A K-subtopical MAS achieves consensus asymptotically

if the consensus states are equilibrium points and if the
graph contains a globally reachable node (Theorem 1 and
Corollary 6).

B. Literature review
In the theory of monotone dynamical systems, emphasis

is put on the class of continuous-time systems being strongly
monotone [4], i.e., whose flows possess the following property:

x ≤ z ∧ x 6= z ⇒ ϕ(t, x) < ϕ(t, z), ∀x, z ∈ Rn.

Pioneering work in this field was done by Hirsch, who first
showed that if solutions of continuous-time strongly monotone
dynamical systems exist and are bounded, then they converge
to a set of equilibrium points [10]. On the other hand, for
discrete-time strongly monotone dynamical systems, Polavcik
showed that their iterative behavior converges to periodic
points under appropriate additional conditions [11]. An ex-
tensive overview of these results was given by Hirsch and
Smith [1], [12]. Remarkably, generic convergence to equilibria
can be made global, as in the case of contractive systems with
a unique equilibrium point [13].

In contrast, in nonlinear Perron–Frobenius theory one usu-
ally considers discrete-time dynamical systems that are only
monotone [5]. However, the relaxation of the assumption of
strong monotonicity makes unenforceable most of the theory
of monotone systems which then requires some additional
assumptions. An interesting branch of research has focused on
monotone systems evolving on the positive orthant Rn+ with
the additional subhomogeneity property [14]–[20], given by,

ϕ(t, αx) ≤ αϕ(t, x), ∀x ∈ R+, α > 1,

as well as its extension to the multi-homogeneous sys-
tems [21], [22]: a unified framework has been recently pro-
vided by Gautier et. al. in [23]. Homogeneous systems on the
positive orthant Rn+ are in one-to-one relationship with plus-
subhomogeneous systems on the whole space Rn [5, Section
2.7], which we call subtopical systems, object of this paper.
Consequently, the results provided in this paper for subtopical
systems in Rn have equivalent multiplicative formulations, i.e.,
they apply to monotone and subhomogeneous systems in Rn+,
both in discrete-time [24] and continuous-time.

The pioneering work of Nussbaum [25] showed that topical
systems are nonexpansive under the sup-norm, contrary to the
strong monotonicity assumption which causes the system to be
contractive, thus ensuring the convergence of all trajectories
to an equilibrium point by a direct application of the Banach

fixed point theorem [13]. Indeed, when the system is merely
nonexpansive, such a nice global convergence result is lost and
one can only show that the trajectories converge to periodic
points and thus not necessarily to an equilibrium point. Nuss-
baum has also shown that the primitiveness of the Jacobian
matrix is a sufficient condition ensuring the convergence of a
differentiable discrete-time system to its positive eigenvector;
this result holds also for multi-homogeneous systems [23].

The control community has recently recognized the impor-
tance of bridging the two above-mentioned approaches. Angeli
and Sontag were the first to consider topical systems [3], [4]. In
particular, they have proved that every solution of continuous-
time topical systems possessing the strong monotonicity prop-
erty converges to an equilibrium point if the trajectory is
bounded. If one wishes to get a global convergence result
only assuming that the dynamical system is monotone without
a stronger assumption, one meets several difficulties when
applying any known methods used in the strongly monotone
case. Afterward, Hu and Jiang provided a similar result for
the restricted class of time-periodic systems while getting
rid of the strong monotonicity assumption [26]. Their proof
methodology is interesting: they provide a global convergence
result of discrete-time systems ruled by the Poincaré map asso-
ciated with a time-periodic topical system, which is, in turn, a
topical system possessing the property of type-K monotonicity.
The type-K monotonicity property, which encompasses strong
monotonicity, has been proposed for the first time by Jiang
in [27], and it has been recently exploited in the context of
multi-agent systems by us in [24], [28].

There are many authors currently investigating the con-
sensus problem over nonlinear monotone networks and
systems, which sometimes intrinsically possess the plus-
subhomogeneity property. Among them, Manfredi and Angeli
have studied the case of monotone networks with unilateral
interactions [29]. Como and Lovisari have considered mono-
tone dynamical flow networks [30], [31], a topic of interest
for Coogan and Arcak as well [32]. In particular, Coogan
has recently presented a tutorial paper on mixed monotonicity,
which extends the usual notion of monotonicity [33]. Worthy
of mention is also the line of research on eventually monotone
systems pursued by Altafini and Mauroy [34], [35], as well
as the framework of differentially positive systems drawn
up by Forni and Sepulchre [36], and also the operator-theoretic
perspective adopted by Belgioioso and Grammatico [37].
For insights on new advances and applications of monotone
systems, we refer the reader to the recent work of Smith [38].

C. Structure of the paper

Section II introduces the notation of the paper along with
some preliminary results. Section III provides a global con-
vergence result for K-subtopical systems. Section IV provides
necessary and sufficient conditions to verify K-subtopicality.
Section V study the consensus problem over K-subtopical
multi-agent systems. In Section VI some examples are dis-
cussed and in Section VII final remarks are given and potential
future directions are discussed.
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II. NOTATION AND PRELIMINARIES

The set of real and integer numbers are denoted by R and Z,
while their restriction to nonnegative values are denoted with
R≥0 and N, respectively. Matrices are denoted by uppercase
letters, vectors and scalars are denoted by lowercase letters,
while sets are denoted by uppercase calligraphic letters. We
denote by 0n and 1n the vector of zeros and ones of di-
mension n, respectively. The identity matrix of dimension n
is denoted by In. If clear from the context, subscripts are
omitted.

A. Dynamical systems
We consider autonomous dynamical systems with an eu-

clidean state space X ⊆ Rn and denote the state of the system
at a generic time t by x(t) ∈ X .

Assumption 1. The domain X ⊆ Rn is open and convex,
i.e., (1− α)x+ αy ∈ X for all x, y ∈ X .

When time is a continuous variable, t ∈ R, the system is
described by a set of ordinary differential equations arising
from,

ẋ(t) = f(x(t)), t ∈ R.

When time is a discrete variable, k ∈ Z, the system is
described by a set of difference equations,

x(k + 1) = f(x(k)), k ∈ Z.

Function f determines the evolution of the state in time:
in continuous-time, f : X → Rn is a vector field; in
discrete-time, f : X → X is a map. We limit our study to
smooth systems, which are systems satisfying the following
assumption.

Assumption 2. The function f is continuously differen-
tiable, i.e., of class C1, both in continuous- and discrete-time.

Since we consider both continuous-time and discrete-time
systems, it is convenient to describe a dynamical system in
terms of its flow. Such description applies to both frameworks
and allows us to use a general uniform notation throughout
the paper. To this aim, we denote the time domain T which
has to be intended as follows:
• T = R for continuous-time systems;
• T = Z for discrete-time systems;
To emphasize the dependence of the evolution x(t) on

the initial state x(0) = ξ, we denote the corresponding
evolution by ϕ(t, ξ), i.e.,

ϕ(t, ξ) = x(t), if x(0) = ξ.

The map ϕ(t, ξ) : T × X → X is called the flow of the
system at time t ∈ T starting at ξ. The sequence of all
consecutive states of the system is called the trajectory of
the system, and it is denoted by (ϕ(t, ξ))t≥0. A trajectory is
said to be bounded if there exists `, u ∈ X such that for all
x ∈ (ϕ(t, ξ))t≥0 it holds ` ≤ x ≤ u; otherwise it is said to be
unbounded.

A point ξ ∈ X is called periodic if there exists a
positive T such that ϕ(T, ξ) = ξ. The minimal such T

is called the period of ξ. If the relation holds for any
T ∈ R≥0, we call ξ an equilibrium point. We denote by
F(ϕ) = {ξ ∈ X : ϕ(t, ξ) = ξ,∀t ∈ T}, the set of equilibrium
points, or simply F when clear from the context. An equi-
librium point xe ∈ F(ϕ) is said to be stable if for every
ε > 0 there is δ > 0 such that ||ξ − xe|| < δ implies
||ϕ(t, ξ)− xe|| < ε for any ξ ∈ X and t ≥ 0, where ||·|| denotes
the norm of a vector.

B. Multi-agent systems
We consider Multi-Agent Systems (MASs) wherein the

n ∈ N agents are modeled as autonomous dynamical systems
with scalar state xi(t) ∈ R, for i = 1, . . . , n.

The interconnections among the agents are given by a
graph G = (V, E) where V = {1, . . . , n} is the set of
nodes representing the agents and E ⊆ V × V is a set of
directed edges. A directed edge (i, j) ∈ E exists if agent i
is influenced by agent j: in this case, agent j is said to be
a neighbor of agent i. The set of neighbors of the i-th node
is denoted by Ni = {j ∈ V : (i, j) ∈ E}. Each agent i ∈ V
updates its own state according to a local interaction protocol,
which, in continuous-time, takes the form

ẋi(t) = fi (xi(t), xj(t) : j ∈ Ni) , t ∈ R,

and, in discrete-time, it takes the form

xi(k + 1) = fi (xi(k), xj(k) : j ∈ Ni) , k ∈ Z.

A directed path between two nodes p and q in a graph is
a finite sequence of m edges ek = (jk, ik) ∈ E that joins
node p to node q, i.e., j1 = p, im = q and ik = jk+1 for
k = 1, . . . ,m − 1. The node i is said to be reachable from
node j if there exists a directed path from node i to node j.
A node is said to be globally reachable if it is reachable from
all nodes j ∈ V .

A MAS is said to achieve consensus asymptotically if the
agents’ states converge to the same constant value, called the
consensus state, i.e., there is c ∈ R such that

lim
t→∞

x(t) = c1, or lim
k→∞

x(k) = c1,

for any initial condition x(0) ∈ X . We denote the consensus
equilibrium set by

C = {c1 : c ∈ R}.

C. K-subtopical systems
Consider the Euclidean space Rn equipped with the stan-

dard partial order ≤. Given two vectors u, v ∈ Rn, we can
write the partial ordering relations as follows

u ≤ v ⇔ ui ≤ vi ∀i = 1, . . . , n,

u � v ⇔ u ≤ v and u 6= v,

u < v ⇔ ui < vi ∀i = 1, . . . , n.

Dynamical systems in (X ,≤), with X ⊆ Rn, whose flow
preserves such order are referred to as order-preserving or
monotone dynamical systems [5], [12], [39]; we use the
latter denomination. We formally define the monotonicity
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property in Definition 1, along with the type-K and strong
variations that have been considered in the current literature.
In particular, in this manuscript we propose the type-K mono-
tonicity as a more natural property to work with, instead of
strong monotonicity. Type-K monotonicity has been recently
introduced by us for dynamical systems in discrete-time [24],
[28], while here it is presented also for systems evolving in
continuous-time.

Definition 1 (Monotonicity, type-K, and strong). A dy-
namical system on X ⊆ Rn with flow ϕ : T×X → X is:
• “monotone" if for all ξ1, ξ2 ∈ X it holds

ξ1 ≤ ξ2 ⇒ ϕ(t, ξ1) ≤ ϕ(t, ξ2), ∀t ≥ 0,

• “type-K monotone" if it is monotone and if for all
ξ1, ξ2 ∈ X and for all i = 1, . . . , n it holds

ξ1 ≤ ξ2 ∧ ξ1,i < ξ2,i ⇒ ϕi(t, ξ1) < ϕi(t, ξ2), ∀t ≥ 0

• “strongly monotone" if for all ξ1, ξ2 ∈ X it holds

ξ1 � ξ2 ⇒ ϕ(t, ξ1) < ϕ(t, ξ2), ∀t ≥ 0,

where ξ1,i, ξ2,i and ϕi denote the i-th components. Cor-
respondingly, the map ϕ is said to be “monotone", “type-K
monotone", or “strongly monotone", respectively.

The properties in Definition 1 are related as follows.

Proposition 1. Strongly monotone ⇒ Type-K monotone ⇒
monotone. The reverse implications do not hold.

Proof: The fact that the implications hold follows from
Definiton 1. We prove the reverse implications do not hold by
means of counterexamples. For systems in continuous-time:
• f(x) = −sign(x): monotone but not type-K;
• f(x1, x2) =

[
x2 − x1 −x2

]>
: type-K but not strong;

For systems in discrete-time:

• f(x1, x2) =
[
x2 x1

]>
: monotone but not type-K;

• f(x1, x2) =
[

1
2 (x1 + x2) x2

]>
: type-K but not strong.

We consider type-K monotone systems that also satisfy the
property of plus-subhomogeneity1 as defined next [5], [12].

Definition 2 (Plus-(sub)homogeneity). A dynamical sys-
tem on X ∈ Rn is said to be “plus-subhomogeneous" if the
flow ϕ : T×X → X satisfies

ϕ(t, ξ + α1) ≤ ϕ(t, ξ) + α1, ∀α ∈ R≥0, ∀t ≥ 0

for all initial conditions ξ ∈ X . When the inequality holds
strictly, i.e.,

ϕ(t, ξ + α1) = ϕ(t, ξ) + α1, ∀α ∈ R, ∀t ≥ 0

then the system is said to be “plus-homogeneous". Corre-
spondingly, the map ϕ is said to be plus-(sub)homogeneous.

1The name plus-subhomogeneity comes from the fact that the homogeneity
is intended with respect to the addition operation, while simple subhomo-
geneity is usually intended with respect to the multiplication operation, i.e.,
ϕ(t, αξ) ≤ αϕ(t, ξ), cfr. [5]

Monotone systems satisfying also the plus-homogeneity
property are known in the literature as topical systems [5],
[40]–[42]. Since we consider the more general class of plus-
subhomogeneous systems but require the stricter type-K prop-
erty, we next define the class of K-subtopical systems.

Definition 3 (K-(sub)topicality). A dynamical system on
X ⊆ Rn is called “K-(sub)topical" if it is type-K mono-
tone and plus-(sub)homogeneous. Correspondingly, the map
ϕ : T×X → X is said to be K-(sub)topical.

A nice feature of K-subtopical systems is that they are non-
expansive w.r.t. the sup-norm; this property is widely known in
the discrete-time framework, see [5, Lemma 2.7.2] that builds
upon the former results of Crandall and Tartar [43], while in
Lemma 1 we prove it also for the continuous-time framework.

Definition 4 (Non-expansiveness). A dynamical system
on X ⊆ Rn is said to be “non-expansive" w.r.t. a metric
d : X × X → R≥0 if the flow ϕ satisfy

d(ϕ(t, ξ1), ϕ(t, ξ2)) ≤ d(ξ1, ξ2), ∀t ≥ 0

for all initial conditions ξ1, ξ2 ∈ X . Correspondingly, the map
ϕ : T×X → X is said to be non-expansive.

Lemma 1. K-subtopical systems on X ⊆ Rn are
“non-expansive" w.r.t. the sup-metric d∞ : X × X → R≥0 in-
duced by the sup-norm, i.e.,

d∞(ξ1, ξ2) = ||ξ1 − ξ2||∞, ∀ξ1, ξ2 ∈ X .

Proof: For each fixed t ≥ 0, we define a map
φt(x) = ϕ(t, x) : X → X . According to [5, Lemma 2.7.2],
each φt(ξ) is such that∣∣∣∣φt(ξ1)− φt(ξ2)

∣∣∣∣
∞ ≤ ||ξ1 − ξ2||∞, ∀t ≥ 0,

for any pair of initial conditions ξ1, ξ2 ∈ X . By replacing
φt(x) = ϕ(t, x), the proof is complete.

III. K-SUBTOPICAL DYNAMICAL SYSTEMS

The main result of this section, given in Theorem 1, is that
for smooth K-subtopical systems in continuous or discrete-
time, each trajectory converges to some stable equilibrium
point, if any exists. For the convenience of the reader, we state
here this result and postpone its proof to Section III-A, which
makes use of several intermediate results discussed next.

Theorem 1. Consider a K-subtopical dynamical system
on X ⊆ Rn under Assumptions 1-2. If the set of equilibrium
points F is not empty, then for any initial condition ξ ∈ X
there exists an equilibrium point xξ ∈ F such that

lim
t→∞

ϕ(t, ξ) = xξ. �

Topical systems have been considered for decades in
discrete-time,

x(k + 1) = f(x(k)), k ∈ Z. (3)

In this case, the properties of the flow ϕ directly translate
into properties of the map f since ϕ(k, ξ) = fk(ξ) for any
initial condition ξ ∈ X and time k ∈ Z. Thus, the asymptotic
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behavior of the system is studied by considering the iterative
behavior of the map ϕ(1, ξ) ≡ f(ξ).

On the other hand, less attention has been paid to
continuous-time systems,

ẋ(t) = f(x(t)), t ∈ R. (4)

We show in Lemma 3 that, similarly to the discrete-time case,
the asymptotic behavior of the continuous-time system can be
inferred from the iterative behavior of its flow ϕT for any time
discretization T ≥ 0, under the assumption of a continuously
differentiable vector field. To this aim, we first prove in the
next lemma that their flow is defined and unique at all times.

Lemma 2. Consider a continuous-time dynamical system
on X ⊆ Rn under Assumptions 1-2. If it is subtopical, then
for any initial condition ξ ∈ X the flow ϕ(t, ξ) exists for all
t ≥ 0 and it is unique.

Proof: Since f ∈ C1, then we have the following facts2:
(i) For any initial condition ξ ∈ X the flow ϕ(t, ξ) exists

and it is unique in an interval [0, T ] with T > 0;
(ii) the flow ϕ(t, ξ) is C1, i.e., its partial derivatives with

respect to time and initial conditions exists and are
continuous in the interval of existence [0, T ].

By subtopicality of the system, we can exploit the non-
expansiveness property given by Lemma 1 to ensure that
solutions exist for all t ≥ 0. For any initial condition ξ ∈ X
and any subsequent state ϕ(t∗, ξ) with t∗ > 0 it holds

||ϕ(t, ξ)− ϕ(t, ϕ(t∗, ξ))||∞ ≤ ||ξ − ϕ(t∗, ξ)||∞, ∀t ≥ 0.

i.e., solutions do not diverge in finite time. This, jointly with
fact (ii) that the flow is continuous and differentiable in the
interval of existence, ensures that the existence and uniqueness
of the solutions stated in (i) hold in the interval [0,∞), thus
completing the proof.

Lemma 3. Consider a subtopical continuous-time dynam-
ical system on X ⊆ Rn under Assumptions 1-2. Let ϕ be the
flow of the system and consider the family of discrete-time
dynamical systems defined by

yT (k + 1) = ϕ(T, yT (k)), ∀T > 0. (5)

If the initial states of the continuous-time and discrete-time
systems coincide, i.e., x(0) = yT (0), and if solutions yT (k)
admit a finite limit for all choices of T > 0, then also the
solution x(t) does, and moreover these limits coincide, i.e.,

lim
t→∞

x(t) = lim
k→∞

yT (k), ∀T > 0.

Proof: Having shown the existence and uniqueness of
flows in Lemma 2, the systems satisfies the so-called group
law (cfr. [44, Section 7.1]),

ϕ(q, ϕ(p, ξ)) = ϕ(p+ q, ξ)),

By selecting p = q = T > 0, we can write ϕ(T, ϕ(T, ξ)) =
ϕ(2T, ξ). Thus, considering the family of discrete-time sys-
tems in eq. (5) such that x(0) = yT (0) = ξ, we can write

x(kT ) = ϕ(kT, ξ) = ϕk(T, ξ) = yT (k), ∀T > 0, k ∈ N.
2The proof of these standard results can be found in Section 17.2 and

Section 17.6 of [44], respectively.

Now, if all yT (k) converges to a finite limit, then, by construc-
tion, these limits must all coincide since for all T > 0 trajecto-
ries (yT (k))k∈N are sampled from the trajectory (x(t))t∈R≥0

.
This, in turn, implies that also x(t) converges to the same
limit, completing the proof.

Due to Lemma 3, which can be generalized to arbitrary
dynamical systems for which global existence and uniqueness
of the solutions hold, regardless of whether the system under
consideration is continuous or discrete in time, one can equiv-
alently study its asymptotic behavior by means of the family
of discrete-time systems as in eq. (5). This enables us to prove
in the next Lemma 4 that each equilibrium point of subtopical
systems is stable and, consequently, to prove the main result
in Theorem 1 anticipated at the beginning of this section.

Lemma 4. Consider a dynamical system on X ⊆ Rn un-
der Assumptions 1-2. If it is subtopical, then every equilibrium
point xe ∈ F is stable.

Proof: Let xe ∈ F be an equilibrium point, then for any
neighborhood W of xe, one can find two points belonging to
this neighborhood a, b ∈ W such that a+ α1 = xe = b− α1
and [a, b] ⊂ W . By plus-subhomogeneity, for all t ≥ 0,

ϕ(t, a+ α1) ≤ ϕ(t, a) + α1

ϕ(t, xe) ≤ ϕ(t, a) + α1

xe − α1 ≤ ϕ(t, a)

a ≤ ϕ(t, a)

and also
ϕ(t, xe + α1) ≤ ϕ(t, xe) + α1

ϕ(t, b) ≤ xe + α1

ϕ(t, b) ≤ b

The proof is completed by exploiting the monotonicity prop-
erty, which implies that the set [a, b] is forward invariant,

a ≤ ϕ(t, a) ≤ ϕ(t, x) ≤ ϕ(t, b) ≤ b, ∀x ∈ [a, b], t ≥ 0. �

We now provide a simple example that shows the non-trivial
behavior of K-subtopical dynamical systems: one should be
aware that type-K monotonicity of a system does not imply
that the trajectories are either monotonically increasing, de-
creasing or constant, but may exhibit more complex behaviors.
Indeed, all variations of monotonicity in Definition 1 imply
that ϕ(t, ξ) is monotone in ξ but not necessarily in t.

Example 1. Consider a dynamical system in continuous-
time with state x(t) ∈ R4 and dynamics

ẋ(k) = atan
(
Ax(t)

)
, A =


−9 5 0 0
0 −2 2 0
0 0 −5 5
0 3 0 −3

 , (6)

where atan(·) denotes the arctangent function to be intended as
component-wise. Fig. 1 (in the next page) shows the trajectory
of the system for the initial condition x(0) =

[
0 1 2 3

]>
and reveals the non-trivial behavior of the trajectories of such
systems, indeed, the 3-rd component (solid blue curve) has a
non-monotonic behavior.
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Fig. 1. State trajectory of the K-subtopical linear system in eq. (6).

A. Proof of Theorem 1

Discrete-time: Let the system be x(k + 1) = f(x(k))
with x(k) ∈ Rn. The map f : Rn → Rn is subtopical by
assumption, and thus by Lemma 1 it is non-expansive under
the sup-norm. Trajectories of sup-norm non-expansive maps
have been proved either to be all unbounded or to converge to
a periodic point3: the trajectory (fk(ξ))k∈N starting at ξ ∈ X
is said to converge to the periodic point xξ if

lim
k→∞

fkp(ξ) = xξ,

where p ∈ N \ {0} is the period of xξ. Since by assumption
there exists at least one equilibrium point, i.e., F 6= ∅, then
for any point ξ ∈ X , there exists a periodic point xξ which
the trajectory through ξ converges to.

We now prove that for a discrete-time subtopical system
possessing the additional property of type-K monotonicity, all
periodic points are equilibrium points. In so doing, we make
use of the concept of limit set of a periodic point xξ with
period p, given by

Ω = {xξ, f(xξ), f
2(xξ), · · · , fp−1(xξ)}. (7)

Moreover, we consider the tightest lower bound ` to such limit
set, defined component-wise by

`i = min
y∈Ω

yi, ∀i = 1, . . . , n, (8)

which means that for all y ∈ Ω it holds ` ≤ y and that each
component `i of ` is also a component yi of some y ∈ Ω.
Finally, we also consider the furthest point y∗ ∈ Ω from `
w.r.t. the sup-norm, with i∗ being the component attaining
such maximum distance, i.e.,

y∗ = argmax
y∈Ω

||y − `||∞, i∗ = argmax
i=1,··· ,n

|y∗i − `i|. (9)

With this notation, proving that “all periodic points are equi-
librium points" is equivalent to proving Ω = {`}. The proof4

makes use of the following intermediate results:

3This was proved by Lemmens in [45] and can be found in his book [5].
4We thank an anonymous Reviewer that contributed to the technical

development of this proof.

(a) The trajectory (fk(`))k∈N is non-increasing w.r.t. k, i.e.,
fk+1(`) ≤ fk(`) for all k ≥ 0;

(b) The trajectory (fk(`))k∈N stays constant along the com-
ponent i∗ as in eq. (9), i.e., fki∗(`) = `i∗ for all k ≥ 0;

(c) The i∗-th component of y∗ and ` are the same, i.e.,
y∗i∗ = `i, where y∗ and i∗ are defined as in eq. (9);

We now show that (a)⇒ (b)⇒ (c), from which the final result
follows.

Proof of claim (a): By monotonicity of f , for any y ∈ Ω it
holds that ` ≤ y ⇒ f(`) ≤ f(y). Since f(y) ∈ Ω, then also
f(`) is a lowerbound to Ω. On the other hand, given that `
is the tightest lower bound, it holds f(`) ≤ `. Applying the
monotone map f to both sides of f(`) ≤ ` for k ≥ 0 times
yields fk+1(`) ≤ fk(`).

Proof of claim (b): As a particular case of claim (a), for any
component i and time k, it holds that fki (`) ≤ `i. Moreover,
by definition of ` in eq. (8) it holds that `i ≤ y∗i , which yields

fki (`) ≤ `i ≤ y∗i , ∀i, k ≥ 0. (10)

The following chain of inequalities holds

||y∗−`||∞
(i)

≤||y∗−fp(`)||∞
(ii)

≤ ||fp(y∗)−fp(`)||∞
(iii)

≤ ||y∗−`||∞

where (i) follows from eq. (10), (ii) follows from the
p-periodicity of y∗, and (iii) follows from non-expansiveness
of f w.r.t. ||·||∞. This shows that ||y∗ − `||∞ = ||y∗ − fp(`)||∞,
which, by eq. (10) and the definition of i∗ in eq. (9), implies
fpi∗(`) = `i∗ . By claim (a) follows that fki∗(`) = `i∗ for k ≥ 0.

Proof of claim (c): Since ` is the tightest lower bound of Ω
by definition in eq. (8), then

∀i, ∃k ≥ 0 : `i = fki (y∗). (11)

Assume by contradiction that `i∗ < y∗i∗ . By type-K mono-
tonicity of the map f , it holds ` ≤ y∗ ⇒ f(`) ≤ f(y∗)
with `i∗ < y∗i∗ ⇒ fi∗(`) < fi∗(y∗), and, by claim (b),
`i∗ < fi∗(y∗). Repeating this reasoning for all k ≥ 0 yields
`i∗ < fki∗(y∗), which means that it does not exist k ≥ 0 such
that `i∗ = fki∗(y∗), leading to a contradiction with eq. (11).
Therefore it must hold that y∗i∗ = `i∗ .

Conclusion: Since i∗ is the component attaining the max-
imum distance between ` and y∗ according to eq. (9), by
claim (c) it follows that ||y∗ − `||∞ = |y∗i∗ − `i∗ | = 0, i.e., `
and y∗ are the same point. Moreover, since y∗ is the furthest
point from ` w.r.t. the ||·||∞, it follows that the set Ω is a
singleton and contains only `, i.e., Ω = {`}. This leads to the
conclusion that the system always converges to an equilibrium
point, which is stable according to Lemma 4.

Continuous-time: We now apply Lemma 3 to infer the
same result for continuous-time systems ẋ(t) = f(x(t)).
Consider the family of discrete-time systems as in eq. (5) given
by yT (k + 1) = ϕ(T, yT (k)) for any choice of T > 0. Since
all maps ϕ(T, ·) are subtopical, from the previous derivations
we conclude that any solution yT (k) converges to a stable
equilibrium point. Moreover, by Lemma 3, all these solutions
converge to the same equilibrium point, to which also the
continuous-time solution x(t) converges, completing the proof.
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IV. HOW TO VERIFY K-SUBTOPICALITY

A. K-subtopicality in continuous-time
The next remark provides a way to verify plus-

subhomogeneity of a continuous-time system by only looking
at the function f , which is a direct generalization of the result
of Angeli and Sontag for plus-homogeneity [3, Lemma 3.1].

Remark 1. A continuous-time system as in eq. (4) on
X ∈ Rn is plus-subhomogeneous if and only if

f(ξ + α1) ≤ f(ξ), ∀α ∈ R≥0,∀ξ ∈ X ,

and it is plus-homogeneous if and only if

f(ξ + α1) = f(ξ), ∀α ∈ R,∀ξ ∈ X .

Examples 1-2 deal with plus-subhomogeneous systems
in continuous-time and discrete-time. The plus-homogeneity
property is usually assumed in networked systems when the
agents have not access to a common reference but to only
relative information depending on their state differences; see
Section VI-C.

On the other hand, verifying the monotonicity of a system
is not an easy task. For continuous-time dynamical systems
whose vector field is continuously differentiable, a necessary
and sufficient condition to ensure monotonicity is the well-
known Kamke condition, which dates back to the 30s and the
work of Kamke in [6], see Proposition 1.1 in [33]5.

Theorem 2 (Kamke condition). A continuous-time system
as in eq. (4) on X ∈ Rn is monotone if and only if for any
two points a, b ∈ X such that a ≤ b the following holds

∀i : ai = bi ⇒ fi(a) ≤ fi(b).

It should be noted that from the previous theorem it follows
that any scalar continuous-time system is monotone, since the
condition is satisfied trivially for n = 1.

Remark 2. Any scalar continuous-time system as in eq. (4)
on X ∈ R is monotone.

For continuous-time systems with a continuously differ-
entiable vector field, the Kamke condition turns out to be
equivalent to a specific sign structure of the Jacobian matrix.

Proposition 2. Consider a continuous-time system (4) on
X ⊆ Rn whose vector field f is C1. The system is monotone
if and only if Jacobian matrix is Metzler, i.e.,

∂fi(x)

∂xj
≥ 0, i 6= j, x ∈ X

Proof: See [1, Remark 1.1] and [33, Proposition 1].
In the following, we show that for a continuous-time system

whose vector field is continuously differentiable, monotonicity
is equivalent to type-K monotonicity, thus proving that the
same sign structure of the Jacobian matrix is also a necessary
and sufficient condition for type-K monotonicity.

5Note that in standard books, such as those of Smith [1] and Coppel [46],
“monotonicity" is referred to as “type-K", even if this notation has been lost
in the current literature. In this paper, we recover the notation “type-K" with
a different meaning.

Theorem 3. Consider a continuous-time system in X ⊆ Rn
with dynamics

ẋ(t) = f(x(t)), t ∈ R≥0. (12)

If the system is monotone and its vector field f is C1, then
the system is type-K monotone.

Proof: The monotonicity of the system implies that two
solutions x(t), z(t) of the system in eq. (12) are ordered
at all times t ≥ 0 if their initial conditions x(0), z(0)
are ordered, i.e., x(0) ≤ z(0) ⇒ x(t) ≤ z(t); if instead
x(0) 6≤ z(0) then nothing can be said about the order between
the two trajectories x(t) and z(t). Thus, consider the case
x(0) ≤ z(0) and let v ∈ Rn≥0 be the non-negative vector such
that z(0) = x(0) + v, and write the solutions as follows

x(t) = ϕ(t, x(0)), z(t) = ϕ(t, x(0) + v),

where ϕ is the flow of the monotone system in eq. (12).
Without loss of generality, assume that both solutions x(t)
and z(t) exists in an interval [0, T ∗] with T ∗ ∈ R>0.

The monotonicity of the system implies that the order be-
tween the initial conditions, x(0) ≤ z(0), must be preserved by
the solutions at all times, i.e.,

x(t) ≤ z(t), t ∈ [0, T ∗]. (13)

To prove the type-K monotonicity of the system, we need
to show that if there is a strict order in the i-th component,
i.e., xi(0) < zi(0), which is equivalent to vi > 0, then such
order is preserved at all times, i.e., for t ∈ [0, T ∗] it holds

vi > 0 ⇒ xi(t) < zi(t). (14)

At t = 0 eq. (14) holds because xi(0) < xi(0) + vi = zi(0).
Now, since f is C1, then both solutions x(t) and z(t) are also
C1, and thus there exists an interval of time [0, t∗) of positive
measure, i.e., 0 < t∗ ≤ T ∗, in which eq. (14) holds.

Finally, we aim to prove that eq. (14) holds for all t ∈
[0, T ∗] by contradicting the following

∃ T ∈ [t∗, T ∗] : xi(T ) = zi(T ). (15)

Denoting a−i ∈ Rn−1 the vector of (n − 1) elements
obtained from vector a ∈ Rn by removing the i-th component,
i.e., a−i = [a1, . . . , ai−1, ai+1, . . . , an]ᵀ, we can say that the
i-th component of x(t) is solution of the differential equation

ẋi(t) = fi(xi(t), x−i(t)). (16)

where x−i(t) is treated as an exogenous input. Similarly, the
i-th component of z(t) is solution of

żi(t) = fi(zi(t), z−i(t)).

Moreover, from the monotonicity of the system in
eq. (13), which implies z−i(t) ≥ x−i(t), and from Propo-
sition 2, which states that the map fi is a nondecreas-
ing function in all variables other than the i-th, i.e.,
fi(zi(t), z−i(t)) ≥ fi(zi(t), x−i(t)), it follows that zi(t) is
also a solution of the differential inequality

żi(t) ≥ fi(zi(t), x−i(t)). (17)
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We now operate a time reversal and a time shift by
letting τ = T − t. We denote xrevi (τ) = xi(T − τ) and
zrevi (τ) = zi(T − τ) the reversed solutions. By this change
of variables we compute

ẋrevi (τ) =
dxrevi (τ)

dτ
=
dxi(T − τ)

dτ
= −ẋi(T − τ),

and from eq. (16) we derive that xrevi (τ) is solution of

ẋrevi (τ) = −fi(xrevi (τ), xrev−i (τ)). (18)

With similar steps, from eq. (17) we derive that zrevi (τ) is
a solution of

żrevi (τ) ≤ −fi(zrevi (τ), xrev−i (τ)). (19)

Assuming that eq. (15) holds, at τ = 0 the two solutions
are equal, namely xrevi (0) = zrevi (0), in fact

xrevi (0) = xi(T ) = zi(T ) = zrevi (0),

and since zrevi (τ) is a solution of the differential inequal-
ity (19), while xrevi (τ) is solution of (18), then

zrevi (τ) ≤ xrevi (τ), τ ∈ [0, T ∗], (20)

which, at τ = T , leads to

zi(0) = zrevi (T ) ≤ xrevi (T ) = xi(0).

This leads to a contradiction since vi > 0 by eq. (14) and
therefore zi(0) = xi(0) + vi > xi(0). Therefore, eq. (15)
does not hold, and eq. (14) holds instead for all t ∈ [0, T ∗],
completing the proof of the theorem.

Remark 3. Proposition 1 and Theorem 3 lead to the fol-
lowing statements:

i) f is type-K monotone ⇒ f is monotone;
ii) f is type-K monotone 6⇐ f is monotone;

iii) If f is C1, then f is type-K monotone ⇔ f is monotone.

Remark 3 emphasizes the role of Theorem 3, which states
that if a monotone continuous-time system has a continuously
differentiable vector field, then it is type-K monotone. In other
words, under the assumption of a continuously differentiable
vector field, all monotone systems are also type-K monotone.
Consequently, all results provided in this paper for type-K
monotone systems apply to smooth monotone systems.

As a consequence of Theorem 3, we restate Proposition 2
in the particular case of type-K monotone systems with
continuously differentiable vector fields.

Proposition 3. Consider a continuous-time system (4) on
X ⊆ Rn whose vector field f is C1. The system is type-K
monotone if and only if Jacobian matrix is Metzler, i.e.,

∂fi(x)

∂xj
≥ 0, i 6= j, x ∈ X .

B. K-subtopicality in discrete-time
Verifying the plus-subhomogeneity of a discrete-time sys-

tem by only looking at the function f can be done by directly
applying Definition 2, as remarked next.

Remark 4. A discrete-time system as in eq. (3) on X ⊆ Rn
is plus-subhomogeneous if and only if

f(ξ + α1) ≤ f(ξ) + α1, ∀α ∈ R≥0,∀ξ ∈ X ,

and it is plus-homogeneous if and only if

f(ξ + α1) = f(ξ) + α1, ∀α ∈ R,∀ξ ∈ X .

As a counterpart to the Kamke condition given in Theo-
rem 2, we provide a necessary and sufficient condition for
type-K monotonicity in the case of discrete-time systems,
which we denote Kamke-like condition.

Theorem 4 (Kamke-like condition). A discrete-time sys-
tem as in eq. (4) on X ∈ Rn is monotone if and only if for
any two points a, b ∈ X the following holds

a ≤ b⇒ f(a) ≤ f(b), (21)

and it is type-K monotone if and only if it further satisfies

∀i : ai < bi ⇒ fi(a) < fi(b). (22)

Proof: The solution of a discrete-time system at time
k ∈ N is equal to the k-th composition of the map f , i.e.,
ϕ(k, ξ) = fk(ξ) for any ξ ∈ X . With this notion, the proof is
a consequence of Definition 1.

For discrete-time systems with a continuously differentiable
vector field, the Kamke-like condition turns out to be equiva-
lent to a specific sign structure of the Jacobian matrix, similar
to what happens in continuous-time. A preliminary sufficient
condition was given in [24, Proposition 9], while next, we
provide a necessary and sufficient condition.

Theorem 5. Consider a discrete-time system as in eq. (3)
on X ⊆ Rn whose map f is C1. The system is monotone if
and only if the Jacobian matrix is non-negative, i.e.,

∂fi(x)

∂xj
≥ 0, x ∈ X , (23)

and it is type-K monotone if and only if the Jacobian is non-
negative as in eq. (23) with a strictly positive diagonal almost
everywhere, i.e.,

∂fi(x)

∂xi
> 0 x ∈ X \ S, (24)

where S is a set of measure zero.

Proof: We rewrite monotonicity in eq. (21) as follows

fi(a) ≤ fi(a+ v), ∀a ∈ X , ∀v ≥ 0, ∀i. (25)

We start with the first part of the proof, i.e., (25) ⇔ (23).
Being f continuously differentiable, each directional derivative
∇vfi(a) can be computed by means of either the limit
definition or the partial derivatives,

∇vfi(a) = lim
ε→0

fi(a+ εv)− fi(a)

ε
=

n∑
j=1

∂fi(a)

∂xj
· vj
|v|
.
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When v is an arbitrary canonical vector v = ej with all zero
entries except for the j-th entry that is equal to one, then

lim
ε→0

fi(a+ εej)− fi(a)

ε
=
∂fi(a)

∂xj
, ∀i, j.

Therefore, (25) ⇒ (23) is proven by

fi(a) ≤ fi(a+ εej)⇒
∂fi(a)

∂xj
≥ 0, ∀i, j,

while (23) ⇒ (25) , given v ≥ 0, is proven by

∂fi(a)

∂x
≥ 0⇔

n∑
j=1

∂fi(a)

∂xj
· vj
|v|
≥ 0⇔ fi(a) ≤ fi(a+ v).

The second part of the proof is completed by noticing
that eq. (22) is equivalent to the fact that function fi is a
strictly increasing function with respect to xi, which in turn is
equivalent to the requirement that the partial derivative of fi
with respect to xi can be zero at most in a set S of measure
zero in X , cfr. [47, Section I.1].

V. K-SUBTOPICAL MULTI-AGENT SYSTEMS

We consider the consensus problem in Multi-Agent Systems
(MASs) composed of n ∈ N agents modeled as dynamical
systems with scalar state xi ∈ R, whose pattern of interaction
is described by a directed graph G = (V, E), and evolve either
in discrete-time,

xi(k + 1) = fi (xi(k), xj(k) : Ni) , k ∈ Z. (26)

or in continuous-time,

ẋi(t) = fi (xi(t), xj(t) : Ni) , t ∈ R, (27)

We first state our main result for discrete-time MASs in
Theorem 6, which provides necessary and sufficient conditions
on the local interaction rule fi of the single agent ensuring that
the overall MAS is a K-subtopical dynamical system. Due
to Theorem 1, K-subtopicality implies stability of the system
and convergence toward the equilibrium point set F 6= ∅ of
its state trajectories, while accounting for heterogeneous local
interaction rules. Moreover, we provide some extra sufficient
conditions ensuring that the equilibrium point set F coincides
with the so-called consensus set

C = {α1 : α ∈ R}, (28)

thus solving the consensus problem for nonlinear K-subtopical
MASs. The proposed sufficient condition is graph theoretical
and based on the graph G describing the pattern of interconnec-
tions among the agents: it requires that there exists a globally
reachable node in G and that consensus states are equilibrium
points.

We also provide the continuous-time counterpart of Theo-
rem 6 in Corollary 1. These results are particularly interesting
from a control perspective when addressing the problem of
steering a MAS toward specific equilibrium points, by only
relying on partial and relative information, without the inter-
vention of a central controller, as in the case of formation
control [48] or distributed optimization [49].

Theorem 6 (Discrete-time MAS). Consider a discrete-
time MAS as in eq. (26) on X ⊆ Rn whose map is continuously
differentiable. If the set of local interaction rules fi : X → R,
with i = 1, . . . , n, satisfies the next conditions:
(i) ∂fi/∂xi > 0 and ∂fi/∂xj ≥ 0 a.e. for i 6= j;

(ii) fi(x+ α1) ≤ fi(x) + α for any α ∈ R≥0;
then the MAS converges asymptotically to one of its equilib-
rium points, if any, for any initial state x(0) ∈ X .

If it further satisfies
(iii) fi(x) = xi if xi = xj for all j ∈ Ni;
(iv) The graph G has a globally reachable node;
then the MAS converges asymptotically to a consensus state
for any initial state x(0) ∈ X .

Proof: The MAS is a K-topical system: condition (i)
implies type-K monotonicity by Theorem 5 and condition
(ii) implies plus-subhomogeneity, as underlined in Remark 4.
When the system has at least one equilibrium point, we can
exploit the result in Theorem 1 to establish that for any
initial conditions x(0) ∈ X , the state trajectories of the MAS
converge to one of its equilibrium points in F , completing the
first part of the proof.

Condition (iii) implies that the consensus space contains
only equilibrium points, i.e., C ⊆ F . Now, we are going to
prove that condition (iv) further implies that there are no other
equilibrium points, i.e., C ≡ F . The graph G is aperiodic due
to condition (i) which ensures the presence of a self-loop at
each node, and it contains a globally reachable node due to
condition (iv). Since the Jacobian matrix Jf is row-stochastic
at any consensus point c1 with c ∈ R, indeed, by means of
the definition of directional derivative we can derive

Jf (c1)1 = lim
h→0

f(c1 + h1)− f(c1)

h

= lim
h→0

c1 + h1− c1
h

= lim
h→0

h1

h
= 1,

we can exploit the widely known Theorem 5.1 in [9] and
conclude that Jf (c1) has a simple unitary eigenvalue λ = 1
with corresponding eigenvector equal to v = 1, unique up to
a scaling factor.

Since K-topical systems are nonexpansive by Lemma 1, then
the set of equilibrium points F is either empty or closed and
convex by [50, Theorem 1]. Now, if there exists xe ∈ F \ C,
then F is not empty and all points c1 + hxe with h ∈ [0, 1]
and c ∈ R are also equilibrium points, and thus

Jf (c1)xe = lim
h→0

f(c1 + hxe)− f(c1)

h

= lim
h→0

c1 + hxe − c1
h

= lim
h→0

hxe
h

= xe,

This means that xe is a second eigenvector (other than v = 1)
of the unitary eigenvalue λ = 1 of Jacobian matrix J(c1),
which is a contradiction with respect to [9, Theorem 5.1].
Therefore, F ≡ C, completing the proof. Therefore, there does
not exist any point xe 6= c1, completing the second part of
the proof.

By means of Lemma 3, one can generalize the previous
result to continuous-time MASs, which is made explicit in the
next corollary of Theorem 6.
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Corollary 1 (Continuous-time MAS). Consider a
continuous-time MAS (27) on X ⊆ Rn whose vector field is
continuously differentiable. If the set of local interaction rules
fi : X → R, with i = 1, . . . , n, satisfies the next conditions:
(i) ∂fi/∂xj ≥ 0 for i 6= j;

(ii) fi(x+ α1) ≤ fi(x) for any α ∈ R≥0;
then the MAS converges asymptotically to one of its equilib-
rium points, if any, for any initial state x(0) ∈ X .

If it further satisfies
(iii) fi(x) = 0 if xi = xj for all j ∈ Ni;
(iv) The graph G has a globally reachable node;
then the MAS converges asymptotically to a consensus state
for any initial state x(0) ∈ X .

Corollary 1 represents a special case of Theorem 12 in [29],
where Manfredi and Angeli consider monotone continuous-
time system without the plus-subhomogeneity property. On
the other hand, it is interesting to notice that all the examples
discussed in [29] satisfy the plus-homogeneity property, thus
suggesting that it is a natural property to work with in
the context of MASs. Moreover, Theorem 6 constitutes the
most general result in the current literature for discrete-time
MASs, and it could be further generalized by relaxing the
plus-homogeneity property in (ii), while keeping the type-K
monotonicity property in (i) that seems to be key property to
generalize results in [29] to the discrete-time framework.

VI. EXAMPLES OF APPLICATION

A. Dynamical systems in continuous-time: chemical
reactions

An emblematic case of K-topical systems in continuous-
time is that of well-mixed and isothermal chemical reac-
tions [3], [4], [26].

Let s(t) ∈ Rn denote the vector specifying the concentra-
tions of n chemical species, h : Rn≥0 → Rm be a function
which provides the vector of m reaction rates for any given
vector of concentrations, Γ ∈ Rn×m be the stoichiometry
matrix, then the dynamics of the system is given by

ṡ(t) = Γh(s(t)).

Using the reaction coordinates x(t) such that s(t) = Γx(t),
the system dynamics becomes Γẋ(t) = Γh(Γx(t)), and one
can infer the stability of this system by studying the system

ẋ(t) = h(Γx(t)).

which is plus-homogeneous if Γ has zero row-sums (see
Remark 1) and type-K monotone if the Jacobian matrix of
function h is Metzler (see Proposition 3), and thus it is
K-topical. An example of this kind of systems is given in
Example 1 in Section III.

By relaxing the assumption of strong monotonicity to that
of type-K monotonicity, one can generalize the results in [3],
[4] by means of Theorem 1, proving the convergence of the
system’s trajectories to an equilibrium point (not necessarily
unique) for any initial condition. In other words, type-K
monotonicity allows one to study also the Michaelis-Menten
type of reactions that occur when some pairs of chemical
species do not appear in the reaction.

B. Dynamical systems in discrete-time: max-plus maps

Important examples of K-subtopical systems in discrete-
time are those ruled by max-plus maps. Applications of max-
plus maps arise in several fields, such as optimal control [51],
decentralized estimation [52], discrete event systems [53].

To introduce these maps let R∞ = R ∪ {−∞} denote the
max-plus semi-ring and let A = {aij} be a n×n matrix with
entries from R∞ and suppose that for each i there exists j
such that aij 6= −∞, and let u = [u1, . . . , u2] a vector with
entries ui ∈ R∞. A max-plus map f : Rn → Rn is defined by

fi(x) = max
j
{aij + xj , ui}, ∀x ∈ Rn, i = 1, . . . , n.

It is easy to verify that discrete-time max-plus systems are
monotone and plus-subhomogeneous, hence subtopical.

Remark 5. A smooth version of the max-function that not
only preserves monotonicity, but forces type-K monotonicity,
while not affecting plus-subhomogeneity, thus making the sys-
tem K-subtopical, can be obtained through the approximation
shown next, usually called “softmax" [54],

α- max(x) =

∑n
i=1 xie

αxi∑n
i=1 e

αxi
, α > 0,

and we define ∞- max(x) = max(x).

The following example shows how the type-K property pre-
vents the system from oscillating while forcing it to converge
to an equilibrium point.

Example 2. Consider the discrete-time dynamical system
with state x(k) ∈ R2 and dynamics

x1(k + 1) = α- max{x1(k)− 2, x2(k), 1}
x2(k + 1) = α- max{x2(k)− 2, x1(k), 4}

. (29)

For the initial condition x(0) = [5, 1]>, Fig. 2 shows the
evolution of the system when the max-function (left) and when
the softmax-function (right) are employed. It can be noticed
that when α =∞ and thus the max-function if employed, then
the system is not type-K monotone and the trajectory converges
to a periodic point. On the other hand, when α is finite and
the softmax-function is used instead of the max-function, the
system becomes type-K monotone according to Remark 5, and
the trajectory converges to an equilibrium point.
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Fig. 2. State trajectories of the system (29): (left) the system is not type-
K monotone for α = ∞ and (right) it is type-K monotone for α = 3.
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C. Multi-agent systems

The most common consensus algorithms for discrete and
continuous-time single-integrator multi-agent systems

ẋi(t) = ui, xi(k + 1) = xi(k) + εiui. (30)

with ε > 0 are given by the following control input

ui =
∑
j∈Ni

(xj − xi) . (31)

It can be verified that the standard consensus protocol
makes the system K-topical, thus known results with linear
interactions constitute a special case of the theory developed
in this paper. Indeed, the translation-invariance property is a
common assumption in MASs when there is not a common
reference point for all the agents, i.e., their interactions only
depend on state differences rather than on the explicit values of
their states. Many variations of eq. (31) have been proposed
in several applications, such as formation control in multi-
vehicle systems [55], the modeling of the emergent flocking
behavior [56], optimization algorithms [57], and many others.

It is remarkable that K-topicality is preserved if one con-
siders nonlinearities of the following type [58]6,

ui =
∑
j∈Ni

hij (xj − xi) , (32)

under some mild conditions discussed next. We point out that
the generality of our approach allows the local interaction rule
of the agents to be different from the others, thus enabling
the study of heterogeneous multi-agent systems, which is still
today a topic of great interest in our community [20], [60],
[61].

(Continuous-time) It has been proved that the system in
eq. (30) with the linear protocol in eq. (31) converges to a
consensus state if the graph G possesses a globally reachable
node [9, Theorem 7.4]. By means of Theorem 1 we directly
generalize this result by considering the nonlinear protocol in
eq. (32) couplings hij : R→ R satisfying

•
∂

∂xj
hij ≥ 0 for all j 6= i and i ∈ V;

• hij(0) = 0 for all i, j ∈ V .

A similar result is given in [62], where in addition the vector
field of the global system is required to meet an extra strict
sub-tangentiality condition. It is clear that if the maps are taken
as the identity map hij(x) = x, then protocol reduces to the
linear one in eq. (31).

(Discrete-time) The convergence properties of the system
in eq. (30) with the linear protocol in eq. (31) depend on
the parameter ε and the topological structure of G [9, Theo-
rem 5.1]. In particular, the system reaches consensus if the
graph possesses a globally reachable node belonging to an
aperiodic component, and if εi <

∣∣N−1
i

∣∣. The condition on ε
ensures that the state transition matrix is row-stochastic and
nonnegative. In a similar way, one can find a condition on ε

6Similar results hold also if the nonlinearity is applied after the summation
is operated, ui = hi

(∑
j∈Ni

(
xj − xi

))
, [59].

ensuring that the map f given the nonlinear protocol in eq. (32)
is plus-homogeneous and type-K monotone, given by

εi <

[
|Ni|

∂

∂xi
hij

]−1

.

Such property, jointly with the two presented in the previous
paragraph, allows to exploit Theorem 6 and prove convergence
to a consensus state of the system.

Bounded control inputs. As the first example of ap-
plication, consider the case wherein the control inputs are
constrained by a saturating effect [63]–[65]. The problem of
designing proper saturating functions hij in eq. (32) such that
the consensus protocols are yet qualifiable can be solved by
the use of the following function

hij(x) = si

(
1− e−mix

1 + e−mix

)
, ∀j ∈ Ni

with si,mi > 0, which is easily proved to be K-topical7.
Notably, the proposed function encompasses several well-

known saturating functions:

• hij(x) = tanh(x) if si = 1 and m = 2;
• hij(x) = sign(x) if si = 1 and m→∞;

Theorem 6 and Corollary 1 ensures that a multi-agent system
wherein the agents are subject to the above described saturated
control action achieves consensus if the underlying graph
contains a globally reachable node.

Oscillator Networks. The emergence of synchronization
or desynchronization in networks of coupled oscillators is
another interesting example [66], [67]. Here, we consider
a network of oscillators with the same natural frequency
whose angular velocities are coupled through their phase
differences according to a graph G and coupling functions
hij . Weakly-coupled identical limit-cycle oscillators can be
well approximated by this canonical model through a phase
reduction and averaging analysis, with appropriate coupling
functions hij that are closely related to the phase response
curve of the oscillators. Since the phase response curve is a
function computed on the periodic limit cycle, it is 2π-periodic
and so are the coupling functions hij .

Theorem 1 constitutes a new analysis tool for studying
synchronization in such networks, where the couplings can
be directed and heterogeneous, while they must met the next
condition,

d

dθ
hij(θ) =

{
> 0 θ ∈ (−α, α)

< 0 θ ∈ (−π,−α) ∪ (α, π)
, (33)

with α ∈ [0, π] and hij(0) = 0. It can be noticed that
letting a, b be any real numbers such that 0 ≤ b − a ≤ α,
then Theorem 1 holds for X = [a, b]n ⊂ Rn. In fact, X is
an invariant space wherein all conditions of the theorem are
satisfied if the graph is also assumed to contain a globally
reachable node.

7Note that for the discrete-time case it is further required that
εi < [0.5 ·mi · si|Ni|]−1.
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VII. FUTURE DIRECTIONS AND CONCLUDING REMARKS

In this work, we have introduced the property of type-
K monotonicity, which is weaker than strong monotonicity
and stronger than standard monotonicity. We have shown that
this property comes for free in continuously differentiable
continuous-time monotone systems (see Theorem 3), but this
is not the case in discrete-time (See Theorem 4). Moreover,
we have shown that type-K monotonicity can be verified by
the sign-structure of the Jacobian matrix (see Proposition 3
and Theorem 5). In our opinion, this suggests that many
of the generalizations for monotone systems may potentially
be considered for type-K monotonicity instead, which is a
future direction that the authors will investigate. For instance,
we believe that it could be possible to generalize the notion
of type-K monotonicity to general orderings (other than the
usual one induced by the positive orthant considered in this
manuscript), thus allowing for competitive interactions among
the state variables other than only cooperative effects, as in the
case of mixed-monotone systems which have recently attracted
much attention [68]–[71].

This manuscript provides a self-contained analysis of
smooth type-K monotone dynamical systems with the addi-
tional plus-subhomogeneity property. These systems, which
we have called them K-subtopical systems, have been proved
to have very nice behavior, avoiding periodic trajectories and
eventually converging to equilibrium points, if any exists (see
Theorem 1). These results provide a generalization of the
convergence result presented by Angeli and Sontag in [3] for
monotone and plus-homogeneous systems in continuous-time,
whose trajectories have been shown to converge to a unique
equilibrium point.

We have also investigated the application of these results in
the context of multi-agent systems (MASs) for this class: K-
subtopicality is often a direct consequence of local interaction
rules of the agents. Moreover, standard connectivity conditions
on the interaction graph have been proved to be sufficient to
solve the consensus problem in nonlinear K-subtopical MASs
(see Theorem 6 and Corollary 1). Thus, this manuscript paves
the way to a variety of lines of research in the context of
multi-agent systems which will retrace those investigated for
standard linear consensus.
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