Supplementary material

Specific Buffer Effects on the Formation of BSA Protein Corona Around Amino-Functionalized Mesoporous Silica Nanoparticles

Monica Mura,^[a] Cristina Carucci,^[a] Elena Caddeo,^[a] Šárka Sovová,^[b]Marco Piludu,^[a] Miloslav Pekař, ^[b] Barbara Jachimska^[c] Drew Parsons,^[a] and Andrea Salis^{*[a]}

- [a] Department of Chemical and Geological Sciences, University of Cagliari and CSGI,
 Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato (CA), Italy.
- [b] Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno,

Czechia.

[c] Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences,

Krakow, Poland

*Corresponding Author

email: asalis@unica.it

sample	$\mathbf{S}_{\mathrm{BET}}$	dвлн	Pore volume	Lattice parameter		
	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$	(nm)		
MSN-NH ₂	675	2.6	0.72	4.05		

Table S1. Physicochemical characterization of MSN-NH₂ through nitrogen physisorption and SAXS.

Table S2. Hydrodynamic size (d_H), polydispersity index (PdI) and zeta potential (ζ) of MSN samples in MilliQ water.

sample	d _H	PdI	ζ			
	(nm)		(mV)			
MSN-NH ₂	163 ± 16	0.255	$+16.6\pm0.3$			

Table S3. Buffer species used in the present work and their respective pKa values.

Buffer	Acid/base equilibrium	pKa
Tris	$ \begin{array}{c} $	8.06
BES	Ho HO HO HO HO HO HO HO HO HO HO	7.09
Cacodylate	$\begin{array}{c} O \\ As \\ OH \end{array} \xrightarrow{H_2O} \qquad O \\ As \\ O^- \end{array} + H_3O^+$	6.30
Phosphate	H_2^{O} H_2^{O} H_2^{O} H_3^{O} H_3^{O}	7.22
Citrate	0^{-0} 0	6.40

	ζ/mV								
Buffer	10 mM			50 mM			100 mM		
Tris	-13.4	±	0.6	-3.7	±	0.8	-5	± 1	
BES	-15.2	±	0.9	-5.4	±	0.6	-5.4	± 0.3	
Cacodylate	-20	±	2	-8.7	±	0.4	-6	± 1	
Phosphate	-22	±	1	-13	±	1	-6.2	± 0.5	
Citrate	-19	±	1	-11.3	±	0.8	-8.2	± 0.1	

Table S4. Zeta potentials (ζ) of BSA in buffer solutions at pH 7.15 and different concentrations (10, 50, 100 mM).

Table S5. Zeta potentials (ζ) of MSN-NH₂ in buffer solutions at pH 7.15 and different concentrations (10, 50, 100 mM).

	ζ / mV									
Buffer	10 mM			50 mM			100 mM			
Tris	17	±	1	10	±	1	9	±	1	
BES	9	±	0.6	-5.0	±	0.1	-4.6	±	0.2	
Cacodylate	9	±	1	-4.3	±	0.6	-5.5	±	0.2	
Phosphate	-1.7	±	0.4	-7.1	±	0.2	-9.9	±	0.8	
Citrate	-14	±	0.7	-14	±	2	-8.6	±	0.7	

Figure S1. FTIR spectra (A) and TGA analysis (B) of MSN and MSN-NH₂ samples

Figure S2. Ionic strength (A) and Debye length (B) for each buffer solution.

Figure S3. Interaction energies between BSA and MSN-NH₂ *vs* distance for 10 mM buffer concentration. van der Waals energy (E_{vdW}), electric double layer energy (E_{EDL}) and total energy (E_{TOT}).

Figure S4. Interaction energies between BSA and MSN-NH₂ *vs* distance for 50 mM buffer concentration. van der Waals energy (E_{vdW}), electric double layer energy (E_{EDL}) and total energy (E_{TOT}).

Figure S5. Interaction energies between BSA and MSN-NH₂ *vs* distance for 100 mM buffer concentration. van der Waals energy (E_{vdW}), electric double layer energy (E_{EDL}) and total energy (E_{TOT}).

Figure S6. Hydrodynamic size of the BSA corona adsorbed onto the MSN-NH₂, following the 24-hours long incubation step in (A) buffers and (B) MilliQ water with pH adjusted to 7.15.