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Abstract 

 

The Dow Jones Industrial Average 30 (DJIA30) Index was analyzed to show that 

models based on the Fractal Market Hypothesis (FMH) are preferable to those 

based on the Efficient Market Hypothesis (EMH). In a first step, Rescaled Range 

Analysis was applied to search for long term dependence between index returns. 

The Hurst coefficient was computed as a measure of persistence in the trend of the 

observed time series. A Monte Carlo simulation based on both Geometric 

Brownian Motion (GBM) and Fractional Brownian Motion (FBM) models was 

used in the second step to investigate the forecasting ability of each model in a 

situation where information about future prices is lacking. In the third step, the 

volatility of the index returns obtained from the simulated GBM and FBM was  
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considered together with that produced by a GARCH(1,1) model in order to 

determine the approach that minimizes the Value at Risk (VaR) and the 

Conditional Value at Risk (CVaR) of one asset portfolio where the DJIA30 index 

underlies an Exchange Traded Commodity (ETC). In the case observed returns 

could either follow a gaussian distribution or a Pareto distribution with a scale 

parameter equal to the inverse of the Hurst coefficient determined in the first step. 

 

Keywords: Fractal Analysis, Rescaled Range Analysis, Pareto distribution, Hurst 

coefficient, Geometric Brownian Motion, Fractional Brownian Motion, Value at 

Risk (VaR), Conditional Value at Risk (CVaR), Efficient Market Hypothesis, 

Fractal Market Hypothesis, Dow Jones Industrial Average Index. 

 
1 Introduction 
 

There is a substantial amount of literature concerning the analysis of financial data 

based on the Efficient Market Hypothesis (EMH), which presumably traces back 

to the contributions of E. Fama [Fama (1970)]. In this framework, the works of 

Engle (1982) and Bollerslev (1986) are considered as landmarks in the analysis of 

time series volatility. 

Since many modifications of the ARCH and GARCH models have been presented 

in the literature over the last 30 years, these approaches are based on EMH. The 

Efficient Market Hypothesis, EMH, is characterized by the fact that investors are 

considered rational and the market is deemed efficient. This means that price 

reflects true asset value. In other words, value comes from a large quantity of 

investor known information that ensures that it is fair. The EMH justifies the use 

of statistical instruments and probability distributions for its market analysis. It is 

usually assumed that observed returns and the error term of a specified model will 

follow a Gaussian distribution. 

The empirical analysis of asset returns highlights issues on which simplifying 

assumptions waste important features of the Data Generating Process (DGP), 

which is formulated according to EMH. In this paper, the financial data was 

analyzed using a different perspective. Following Sheikh and Qiao (2009), it was 

assumed here that the DGP of observed returns would be based on a non-Gaussian 

distribution. This hypothesis required that specified models attend to extreme 

values observed sporadically. 

Skewness, excess kurtosis, high tails, serial autocorrelation and heteroskedasticity 

are common problems that analysts are required to deal with these in these 

situations. This is the framework in which important contributions from 

Christoffersen et al. (1998), Nystrom and Skoglund (2006), Bacmann and Gawron 

(2004), Li, H et al. (2008), Jingzhi Huang, Li Xu (2014), Jingzhi Huang, Liuren 

Wu. (2004), Eraker, B et al. (2003) have been presented. Along the same lines, it 

is worth mentioning the work of Tversky (1990) on behavioral finance, where it is 

assumed that agents are not rational and that their behavior cannot be linked to the 

strong assumptions characterizing EMH. Last, this study reviews the concept of  
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“mean-reverting,” which is a stationary stochastic process typical of EMH and 

which focuses on non-stationary processes characterized by a long-term stochastic 

trend that influences the DGP in a persistent or non-persistent way.  

It was precisely this setting that was used in Mandelbrot and Van Ness (1968) to 

introduce fractal geometry in finance. They assumed that a time series 𝑋  is a 

fractal characterized by the important property of self-similarity, which implies 

that a time series 𝑋 is exactly or approximately similar to a part of itself and that 

random variables composing a sequence of 𝑘  self-similar time series 𝑋𝑖(𝑖 =
1, … , 𝑘) are similar in distribution. This approach recalls the specification of a 

“biased random walk” process (Hurst, 1951) characterized by a Long Term 

Dependence (LRD) level measured by the Hurst coefficient 𝐻 in the framework 

of the so-called “Rescaled Range Analysis” (𝑅 𝑆⁄ ) (see also Alvarez-Ramirez et 

al. 2002, Cristescu et al. 2012, Morales et al. 2012, Serinaldi 2010,Turvey 2007).  

Mandelbrot and Van Ness (1968) also introduced a slight but important change in 

the Geometric Brownian Motion (GBM) in order to obtain a biased distribution 

mimicking a stochastic process with jumps and a certain degree of cyclicality and 

long-term dependence. The resulting process has been called Fractal Brownian 

Motion (FBM) while a theory called “Fractal Market Hypothesis” (FMH) 

originated from this class of processes (see Peters, 1991). As well as being 

explained in Edgar Peters, 1991, FMH examines investor behavior throughout a 

market cycle including booms and busts. In this analysis, the most important 

problem is to decide the length of time to be examined: the basic element called 

“fractal”, which should be repeated in a market-leading projection. Investor 

behavior could be similar to a pattern that repeats itself on a daily, weekly, 

monthly, or even on a longer basis. 

The aim of this paper is to analyze Dow Jones Industrial Average 30 (DJIA30) 

Index returns to show that the FMH based approach is preferable to the Efficient 

Market Hypothesis (EMH) based approach since the former leads to more 

accurate estimations and predictions. Since it is commonly assumed, in this 

framework, that the distribution of observed returns is non-gaussian we 

conjecture, as suggested in Mandelbrot and van Ness (1968) and in Peters (1991), 

that returns are distributed according to a Pareto or a fractal distribution because 

in this way it would be possible to pay more attention to risks related to 

observations located on the tails of the empirical distribution of returns.  

In the first step, long term dependence among index returns was sought on the 

basis of the rescaled Range Statistics (𝑅 𝑆⁄ ) in order to assess the average length 

of the market cycle through the V-statistic. Next, the Hurst coefficient was 

computed as a measure of persistence in the trend of the observed time series. 

Then a Monte Carlo simulation based on both GBM and FBM models was used in 

the second step in order to investigate which model is more efficient in gauging 

the future path that the observed index will cover in a situation where information 

about future prices is lacking. In the third step, the volatility of the index returns 

obtained from the simulated GBM and FBM was considered together with that 

produced by a GARCH(1,1) model in order to determine the approach that 

minimizes the Value at Risk (VaR) and the Conditional Value at Risk (CVaR) of  
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one asset portfolio where the DJIA30 index underlies the Exchange Traded 

Commodity (ETC). In the case observed, alternatively, returns could either follow 

a gaussian distribution or a Pareto distribution with a scale parameter equal to the 

inverse of the Hurst coefficient determined in the first step. 

The remainder of the paper is developed as follows. Section 2 deals with rescaled 

range analysis (RRA) and presents the results from the application of RRS to the 

Dow Jones index returns, wherein the Hurst coefficient 𝐻  was obtained as a 

measure of long-term linear dependence in the data and as a stability test that was 

performed on it. Dow Jones index sample forecasts were computed in Section 3 

starting from classical GBM and FBM, based on the 𝐻 coefficient estimated in 

Section 2. Next, forecasts deriving from both models were compared with the 

original data and the most accurate model was determined based on some best-of-

fit measures. Section 4 compares VaR and CVaR measures when either a gaussian 

distribution or a Pareto distribution was applied. Then three alternative risk factors 

are considered: the volatility of returns simulated in Section 3 through GBM and 

FBM, and those deriving from a simulated GARCH(1,1) model. The best 

approach was found using backtesting. Section 5 ends the paper with some 

concluding remarks. 

 

2 Rescaled Range Analysis (RRA) 
 

2.1 Method 

Rescaled Range Analysis (RRA) is a statistical technique designed to assess the 

nature and magnitude of variability in data over time. In finance, RRA has been 

used to detect and evaluate the amount of persistence, randomness, or mean 

reversion in financial markets time series data. Insights into this kind of financial 

data naturally suggest investment strategies. The main steps of RRA, as presented 

in Peters (1994), can be summarized as follows: 
 

1. A time series composed of 𝑀 data points is converted into a time series of 

length 𝑁 = 𝑀 − 1 logarithmic rates: 

𝑁𝑖 = log (
𝑀𝑖+1

𝑀𝑖
)              with 𝑖 = 1, … , 𝑀 − 1 

 

2. The 𝑁  data points are divided into 𝐴  consecutive sub-sequences, each 

composed of 𝑛  observations ( 𝑛 ⋅ 𝐴 = 𝑁 ). Let 𝐼𝑎 = (𝑟1𝑎, … , 𝑟𝑛𝑎)  that are a 

generic sub-sequence (𝑎 = 1, … , 𝐴) on which the average is computed using 

𝑒𝑎 =
1

𝑛
∑ 𝑟𝑘𝑎

𝑛

𝑘=1

 

 

3. For each 𝐼𝑎, 𝑋𝑘𝑎 is computed as the cumulative sum of deviations from 𝑒𝑎: 

𝑋𝑘𝑎 = ∑(𝑟𝑖𝑎 − 𝑒𝑎),              (𝑘 = 0,1, … , 𝑛; 𝑎 = 1,2, … , 𝐴)

𝑘

𝑖=0

 

 together with the range 𝑅𝐼𝑎
 and the standard deviation 𝑆𝐼𝑎

: 
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𝑅𝐼𝑎
= max(𝑋𝑘𝑎) − min(𝑋𝑘𝑎)              𝑆𝐼𝑎

= √
1

𝑛
∑(𝑟𝑖𝑎 − 𝑒𝑎)2

𝑛

𝑘=1

 

 with 1 ≤ 𝑘 ≤ 𝑛 and 𝑎 = 1,2, … , 𝐴. 
 

4. The rescaled interval for a sub-period 𝐼𝑎  is set to the normalized range 

𝑅𝐼𝑎
 𝑆𝐼𝑎

 ⁄ . Since in 𝐴  consecutive sub-periods of length 𝑛  are observed, the 

average value (𝑅 𝑆⁄ )𝑛 is defined as: 

(𝑅 𝑆⁄ )𝑛 =
1

𝐴
∑ (

𝑅𝐼𝑎

𝑆𝐼𝑎

)

𝐴

𝑎=1

 

 

5. The length of the series 𝑛 is incremented to include its first and last values and 

steps 1 to 6 are repeated until 𝑛 = 𝑁 2⁄ . Once all the possible values of (𝑅 𝑆⁄ )𝑛 

have been found, the length of the market cycle of the process must be 

determined2. Hurst (1951) introduced the V-statistic in order to compute the 

length of a cycle: 

V𝑛 =
(𝑅 𝑆⁄ )𝑛

√𝑛
              with 𝑛 = 𝑁 𝐴⁄  

 The sequential investigation of the relationship between the V-statistic and 

log(𝑛)  helps to understand the basic features of the observed process. A 

graphical inspection of this relation in 2 dimensions could reveal, for example, 

a straight line with no slope connecting the single points. This corresponds to 

the case with 𝑅 𝑆⁄  statistics shifted to √𝑛 as a common random walk observed 

according to EMH. Alternatively, a straight line with a positive (negative) 

slope is evidence of a persistent (anti-persistent) process in which 𝑅 𝑆⁄  shifts to 

√𝑛 at a higher (lower) rate corresponding to a value of the Hurst coefficient 𝐻, 

which is higher (lower) than 0.5. Thus, the sequential investigation allows us to 

understand the periods characterized by a break in the process. These were 

observed when a change in slope of the V-statistic occurred: if a positive 

(negative) slope corresponding to a persistent (anti-persistent) process turns 

suddenly to zero (i.e., a non-slope or a flat line) this would be evidence that a 

long memory component in the data disappeared and a cycle component in the 

process is over. 
 

6. The investigation of the length of the market cycle is the core of the analysis 

since only the observations included in the market cycle were used to estimate 

the Hurst coefficient 𝐻, which is obtained from the following OLS regression 

model: 

log(𝑅/𝑆)𝑛 = log 𝑐 + 𝐻 log 𝑛       (1) 
 

 

 

 
 

 

 

                                                             
2 This cycle should correspond to the economic cycle and thus it should present a growth period 

followed by a period of recession. It should also be characterized by an initial state wherein the 

cycle turns back after a new state has been observed; these mutations can occur at regular (periodic 

cycle) or irregular (non-periodic cycle) time periods. 
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7. Once the 𝐻 coefficient has been estimated, it is possible to investigate it if its 

value changes over time in order to understand if the length of the market cycle 

is constant or not. This stability check is done starting from the original series 

of observed returns and by dividing it into disjointed sub-periods to which the 

𝑅 𝑆⁄  analysis as described in steps 1 to 6 above will be applied individually. 

For each estimated regression coefficient �̂�, the null hypothesis 𝐻 = 𝐸(𝐻) is 

tested against a two-tails alternative. 𝐸(𝐻) is obtained from a regression model 

equal to that specified in Eq.1 but replacing the observed values of (𝑅/𝑆)𝑛 

with the theoretical ones, defined by Peters (1994) as: 

𝐸[(𝑅/𝑆)𝑛] =
𝑛 − 0.5

𝑛
√

2

𝑛𝜋
∑ √

𝑛 − 1

𝑖

𝑛−1

𝑖=1

 

 It is assumed that the test statistic 𝐻 has a Gaussian distribution. Hence, its 

standardized counterpart 
𝐻−𝐸(𝐻)

√𝑉𝑎𝑟(𝐻)
 is a standardized normal distribution and the 

sample estimator of 𝑉𝑎𝑟(𝐻) is 
1

𝐴𝑛
. 

 When estimating the Hurst coefficient 𝐻, we follow Peters (1994) and consider 

the following scenarios for the values of 𝐻: 
 

a. 𝐻 = 1 2⁄  → the process is independent (past events are not correlated); 

b. 0 < 𝐻 < 1 2⁄ → the process is anti-persistent: it reverses to its trend more 

frequently than an independent process; 
 

c. 1 2⁄ < 𝐻 < 1 → the process is persistent and is characterized by LRD. 

 
 

Figure 1: The DJIA 30 prices (left panel) and returns (right panel) from January 

1, 1897, to January 1, 2014. 

 
 
 

2.2 Results of RRA 

Prices from the Dow Jones Industrial Average 30 (DJIA30) stock market index 

were downloaded from the economic data session of the website of the Federal 

Reserve of St. Louis3. These data are available on a daily basis from January 1, 

1897 to January 1, 2014 (31,910 observations) and refer to trading days only. 

 

                                                             
3 https://www.stlouisfed.org/ 
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The length of the observed time series is consistent with the approach suggested 

by Peters (1994), who recommends that long periods with a large number of 

subperiods, which are quite far one from one another, be considered and that a 

daily or weekly frequency be used in order to avoid problems leading to a biased 

estimation of the Hurst coefficient in the RRA. Usually, bias is due to: a) 

“undersampling”, which typically characterizes low frequency data observed over 

a long period or data collected for a period that is too short with respect to the goal 

of the analysis; b) “oversampling”, which refers to the situation of high frequency 

data observed over a short period. In this latter case, bias is caused by high serial 

correlation and high noise that typically lead to the Hurst coefficient being 

overestimated. 

To apply RRA, log returns were computed, and the series of observed returns was 

filtered to avoid bias in the estimates of the Hurst coefficient caused by short-term 

autocorrelation and heteroscedasticity. DJIA30 prices and returns are in Figure 1. 

RRA was then applied on the residuals of an ARMA-like model used to estimate 

the average level of observed returns plus a GARCH-like model capturing their 

volatility clustering structure (see Ruppert, 2011). In particular, MA(1)+ARCH(4) 

appeared as the most suitable specification of this class of models for the available 

data. In addition, the length of the residuals of the estimated model was reduced to 

31,900 by discarding the 8 most recent observations. (2) In order to determine the 

Hurst index, we considered a smaller number of dividends than the 31,900 daily 

observations: precisely these, (1, 2, 4, 5, 10, 20, 25, 50, 100). Then we formed an 

identical number of sequences from the returns composed of continuous and non-

overlapping observations with; (𝑛 = 31,900, 𝑛 = 15,950, 𝑛 = 7,975, 𝑛 = 6,380, 

𝑛 =  3,190, 𝑛 =  1,595, 𝑛 =  1276, 𝑛 =  638, 𝑛 =  319), respectively. This 

adjustment was necessary since RRA required the observed data to have a large, 

positive and finite number of factors that ensure robustness of the OLS estimates. 

 
 

Figure 2: V-statistics for the DJIA 30 index from January 1, 1897, to January 1, 

2014. 

 
 

Notes: 𝑉𝑆𝑇𝐴𝑇 is the V-statistic; 𝐿𝑂𝐺𝑁  is the logarithm of the length of each sub-

sequence 𝐼𝑎  as defined in Section 2.1. 
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Steps 1 to 6 described in Section 2.1 were applied to the observed data. The 

results provide evidence that the features of the observed time series are far from 

being consistent with EMH. In particular, the estimated 𝐻 for the DJIA30 returns 

equaled 0.5658. As for the V-statistics, Figure 2 shows that its maximum value 

was reached when log(𝑛) = 3.1613, which indicates that the average length of the 

market cycle for the 117 year period is equal to 4 years + 6 months corresponding 

to 103.1613 = 1,450 trading days. 

When applying the OLS regression specified in Eq.1 to the whole series, 

observations related to the first 6 factors were discarded since the corresponding 

size of the data points included in a sub-period was too small (𝑛 < 20). Including 

these observations would have caused high variance of the V-statistics leading to 

overestimation of the Hurst coefficient. In view of that, the regression model was 

applied to only 23 observations. The estimated Hurst coefficient was equal to 

0.5658. This value indicates that returns of the DJIA30 are not independent but 

are characterized by a long-term dependence that implies that positive returns 

observed in a period tend to be followed by other positive returns observed in 

another period, which is extremely far from the first one. Equivalently, the series 

is persistent (0.5 ≤ 𝐻 ≤ 1) and thus it cannot be described by a standard random 

walk process. The reciprocal 1 − 𝐻 = 0.4342 refers to the coefficient obtainable 

by applying the same analysis on the series of observed volatilities which, as 

expected, is antipersistent. 

Then, the stability test, described in step 7 of Section 2.1, was applied to 5 sub-

periods each composed of 6,382 days. To obtain a consistent number of factors, 

the number of cases for each period was reduced to 6,370. After this adjustment, 

23 factors were considered for each sub-period (i.e., 1,2,4,...,6,370) leading to 

consecutive but disjointed groups of size equal to 6,370, 3,185, 1,274, ..., 1, 

respectively. Consistent with the procedure used to estimate the Hurst coefficient 

on the whole series, for each sub-period observed, returns were filtered and the 

RRA was applied to the residuals of an ARMA(p,q)+GARCH(p,q) model, and an 

OLS regression was carried out on the individual sub-periods, each including at 

most 1,450 trading days. Again, periods associated with factors lower than 20 

were discarded.  

Results are summarized in Table 1. It is worth noting that the length of the 

different sub-periods differs consistently and thus the degree of anti-persistence is 

not constant. This was probably due to different reasons ascribable to different 

economic policies, social tensions, natural disasters, wars, economic boosts, etc. 

The first sub-period (𝐻 = 0.59) lasted about 4 years whereas in the second (𝐻 = 

0.58), the length of the market cycle was about 9 years. The latter included events 

related to the Great Depression of 1929 up to World War II. 
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Table 1: Testing the mean of the Hurst coefficients for the returns of the DJIA30 

 

 
The third sub-period (𝐻 =0.56) again lasted about 4 years but was characterized 

by a large number of structural breaks. The fourth period (𝐻 = 0.55) was the 

closest to the random walk hypothesis since it was characterized by a cyclic nature 

that is not completely captured by the V-statistic. The last sub-period (𝐻 = 0.51) 

still presented a well-defined length of the market cycle (4.5 years). Summarizing, 

if we fix a significance level at 5% (or 10%) results reported in Table 1 suggest 

that the assumption of Gaussian distribution for the 𝐻  coefficient would be 

rejected in all periods except in those from Feb. 1940 to July 1963 and from July 

1963 to Feb. 1988, although in these periods the p-value was about 0.13. 

 

3 Basic facts about Pareto distributions and estimation of the 𝜶 

parameter 
 

Results obtained from the 𝑅 𝑆⁄  analysis of DJIA30 returns highlight two main 

issues. First, the Hurst coefficient for the whole period was 0.5658 and thus the 

stochastic process could not be considered as a random walk but was 

characterized by a long-period trend component. Second, because the returns 

process was not Gaussian distributed it was necessary to assess a suitable 

theoretical distribution for it. Many solutions have been proposed for similar 

problems in the literature. For example, the approach of Sheikh and Qiao (2009) 

based on a combination of distributions aimed at mixing extreme value 

distributions for tails (to account for rare events) with other (more standard) 

distributions. In this paper, we resorted to the family of distributions used within 

the framework of fractal analysis, originally introduced by the Italian economist 

Vilfredo Pareto and used in finance by Mandelbrot (1968) and Peters (1994). 

Pareto distributions are characterized by four parameters: 

• the characteristic parameter 𝛼 ∈ (0,2] controlling for kurtosis (𝛼 = 2 in the 

case of a standard normal distribution); 𝛽 ∈ [−1,1] controlling for skewness; 

• 𝛽 ∈ [−1,1] controlling for skewness; 

• the dispersion parameter 𝛾 ∈ (0, +∞) measuring self-similarity of distributions 

and their riskiness; 

• the location parameter 𝛿 ∈ (−∞, +∞). 

This choice of the Pareto distribution for the DJIA30 returns series is motivated 

by the consideration that observed data seems consistent with the three most 

important characteristics of the Pareto (𝛼-stable) distribution, namely: 
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• Self-similarity: the possibility to rescale the distribution based on the value 

specified for 𝛾. This means that the probability distribution is stable when 𝛼 

and 𝛽  are kept fixed while 𝛾 and 𝛿  can vary because of the stability or the 

“invariance in sum” property, which causes the characteristic function to be 

infinitely divisible. In view of that, Pareto distributions are also known as 

fractal. In other words, self-similarity and stability ensure that the distributions 

retain their shape (up to scale and shift) under addition. 

• Noah effect: Mandelbrot (1968) refers to this effect for a stochastic process in 

which heavy tails in a fractal distribution depend on unexpected jumps 

characterizing the process. Despite the Gaussian distribution where a relevant 

structural change in the process derives from many small variations, in the case 

of the Pareto distribution such a structural change derives from a restricted 

number of large variations. 

• Infinite variance and asymptotic bias: infinite variance means that sampling 

variance will not converge with the population variance, not even 

asymptotically. This lack of convergence implies the presence of a long 

memory effect in Pareto distributions arising when 𝛼 <  2. A similar 

characteristic is typical of the mean of a Pareto distribution when 𝛼 < 1: in this 

case the sample mean will never converge with the population mean, not even 

asymptotically. 

Formally, stable Pareto distributions can be expressed by their characteristic 

function Φ(𝑢) = 𝐸[exp(𝑖𝜇𝑋)] = ∫ exp(𝑖𝜇𝑋)𝑑𝐹(𝑋)
+∞

−∞
and the most common 

parameterization is that introduced by Mandelbrot (1968): 

Φ(𝑡) = exp𝑖𝛿𝑋−|𝛾𝑡|𝛼∙[1+𝑖𝛽∙𝑠𝑔𝑛(𝑡)∙𝜔(𝑡,𝑎)]       (2) 
or, in logarithmic form 

lnΦ(𝑡) =  𝑖𝛿𝑋 − |𝛾𝑡|𝛼 ∙ [1 + 𝑖𝛽 ∙ 𝑠𝑔𝑛(𝑡) ∙ 𝜔(𝑡, 𝑎)]       (3) 
where 

𝑖 = √−1         𝑠𝑔𝑛(𝑡) =
|𝑡|

𝑡
         𝜔(𝑡, 𝑎) = {

tan
𝛼𝜋

2
     if α ≠ 1

2

𝜋
log|𝑡|     if α = 1  

 

Many methods have been used to estimate Pareto distribution parameters: among 

these, the Maximum Likelihood, the Fourier Transform and the Fast Fourier 

Transform (see Khindanova et al. 2001 for an overview) are worth mentioning. 

Although it is important to estimate all four parameters of the Pareto distribution, 

estimation of 𝛼 has a primary role due to the unimodality of the distribution. The 

smaller 𝛼 is, the stronger will be the leptokurtic feature of the distribution (the 

peak of the density becomes higher and the tails heavier), and vice versa. The two 

most reliable methods for estimating 𝛼  are spectral analysis and 𝑅 𝑆⁄  analysis. 

Consistent with the approach used for the estimation of the Hurst coefficient 𝐻, 

𝑅 𝑆⁄  is also used to estimate 𝛼 for the distribution of the DJIA30 returns. Since 

fractals are self-similar and, consequently, scale-invariant under summation the 

scale parameter 𝛾 is the only one that can vary. Mandelbrot (1968) showed that 𝛼 

identifies the fractal dimension of the observed probability distribution and that  
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the sum of stable distributions is 𝑛(1 𝛼⁄ )  times the original distributions, with 𝑛 

denoting sample size. Denoting with 𝑅𝑛 the sum of stable distributions and with 

𝑅1 its first element the following relation holds: 

𝑅𝑛 = 𝑅1 ∙ 𝑛
1
𝛼        (4) 

Computing the logarithm of both members in Eq. 4 and solving for 𝛼 we get: 

𝛼 =
log 𝑛

log(𝑅𝑛) − log(𝑅1)
 

If log(𝑅𝑛 − 𝑅1) ≈ 𝑅1 ∙ 𝑛
1

𝛼 then it is possible to derive 𝛼 from the Hurst coefficient 

𝐻: 

𝛼 =
1

𝐻
 

To enforce the reliability of the estimation method described above, it is important 

to depurate the observed time series from its short memory component to avoid a 

possible bias in the estimated value of 𝛼. 

 

4 Simulation of DJIA30 prices through Brownian Motion 
 

 

In the following, results obtained for the estimation of the Hurst coefficient 

through 𝑅 𝑆⁄  analysis were used to simulate a stochastic process, the so-called 

fractional Brownian motion (fBm), mimicking the most probable path for DIJA30 

prices. The same process was compared with the realization of a simulated 

geometric Brownian motion (gBm) process. Observed returns were predicted by 

the two processes to assess the one providing the best fit. 

The gBm originated from the stochastic process 𝑆𝑡  satisfying the stochastic 

differential equation: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑧       (7) 

with 𝑆𝑡  denoting the returns of an asset 𝐴 , with 𝜇  and 𝜎  being constants that 

identify drift and volatility, and 𝑑𝑧 being variations in 𝑆𝑡  deriving from a Wiener 

process. Therefore, the analytic solution for Eq.7 obtained under Itô’s 

interpretation is 

𝑆𝑡 = 𝑆𝑡−1 ∙ 𝑒[(𝜇−𝜎2/2)𝑡+𝜎(𝑊𝑡−𝑊𝑡−1)] = 𝑆𝑡−1 ∙ 𝑒[(𝜇−𝜎2/2)𝑡+𝜎𝜖√1],   𝑡 =  … , 𝑇        (8) 

In Eq.8, 𝑆𝑡  is the price of the asset 𝐴 at time 𝑡 while 𝜇 and 𝜎 are the (constant) 

mean and standard deviation of observed returns 𝑆𝑡 . The differences (𝑊𝑡 −

𝑊𝑡−1) = 𝜎𝜖√1  are the increments of the Wiener process obtained by multiplying 

a realization of a standard Gaussian distribution by the square root of the time lag. 

To simulate expected returns of the asset 𝐴, we need to fix the time horizon 𝑇 and 

decompose it into sub-intervals of generic length Δ𝑡 in order to generalize the 

second term of Eq.8 w.r.t. ( Δ𝑡  is the last term on the right in Eq.8). This 

specification is possible because ln (𝑆𝑡 𝑆𝑡−1)~𝑁(𝜇 − 𝜎2/2𝑡, 𝜎2𝑡)⁄ . 

The second simulated process is similar to a distorted random walk corresponding 

to a process with a long-memory component that alters the typical path followed 

by a standard random walk. A particular specification of such a process is the  
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fractional Brownian motion (fBm) introduced by Manderlbrot and Van Ness 

(1968) and used, among others, in Dieker (2004) and in Kroeser and Botev (2013) 

𝐵𝐻(𝑡) = 𝐵𝐻(0) +
1

Γ (𝐻 +
1
2)

×

× {∫ [(𝑡 − 𝑠)𝐻−
1
2 − (−𝑠)𝐻−

1
2] 𝑑𝐵(𝑠) + ∫ (𝑡 − 𝑠)𝐻−

1
2𝑑𝐵(𝑠)

𝑡

0

0

−∞

} 

                                                                                                                               (9) 

𝐵𝐻  at time 𝑡  and 𝐻  is the Hurst coefficient. 𝐵𝐻(0) = 0 indicates the first 

realization of the process. The main difference between fBm and regular 

Brownian motion is that while the increments in Brownian Motion are 

independent, increments for fBm are not. If 𝐻 > 1 2⁄ , then there is a positive 

autocorrelation. If there is an increasing pattern in the previous steps, then it is 

likely that the current step will be increasing as well. If 𝐻 < 1 2⁄ , then the 

autocorrelation will be negative. In view of that, 𝐵𝐻  is a continuous-time Gaussian 

process with the autocovariance function  
1

2
(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻). The fBm 

process has important properties that are considered in this study, namely: 

• Self-similarity. For any constant 𝑎  and a Gaussian process 

𝐵𝐻:  𝐵𝐻(𝑎, 𝑡)~|𝑎|𝐻𝐵𝐻(𝑡).  

• Stationary increments: 𝐵𝐻(𝑡) − 𝐵𝐻(𝑠) = 𝐵𝐻(𝑡 − 𝑠). 
• Long range dependence. If 𝐻 > 1 2:  ⁄ ∑ 𝐸{𝐵𝐻(1)[𝐵𝐻(𝑛 + 1) − 𝐵𝐻(𝑛)]} =∞

𝑛

∞. 

• Integration: it is possible to define stochastic integrals for a fBm. 
 

4.1 Simulating a gBm process for the DJIA30 

To simulate the gBm we should consider the historical data concerning prices and 

returns of DJIA30 in the period between 1 January 1987 - 31 December 2000 and 

the simulation period covering the period between 1 January 2001 - 1 January 

2014. To apply Eq.8 it is necessary to consider pseudo-random numbers extracted 

as realizations of a standard normal distribution. In particular, 330,200 (3,302 × 

100) random numbers were generated since 3,302 is the number of trading days in 

the simulation period 𝑇. The sub-interval ∆𝑡 is fixed at 1/240 = 0.0042 since 240 

is the number of trading days in a year. The parameters 𝜇 and 𝜎 are equal to the 

expected mean and the standard deviation of DJIA30 returns, respectively. With 

these parameters, prices and returns of the DJIA30 were obtained for the 

simulation period by applying Eq.8 and averaging over the 100 simulations 

obtained for the 3,302 days to identify the most probable path the index is 

expected to follow. 
 

4.2 Simulating a fBm process for the DJIA30 

Moreover, asset returns are usually simulated through stable distributions with 

1 < 𝛼 <  2. Thus, in the specific case of DJIA30, it is possible to use the 𝑅 𝑆⁄  

outcomes and set 𝛼 =
1

𝐻
=

1

0.5658
=1.7674. As previously specified, the dispersion 

parameter 𝛾 measures the volatility of asset returns, which is such that a generic 

random variable 𝑋 can be expressed as 𝑋 = 𝛾𝑋0, where 𝑋0 has a unit scale  
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parameter (𝛾 = 1) but with the same values of 𝑋 for the parameters 𝛼 and 𝛽. For 

the specific case of the Pareto distribution, 𝛾 corresponds to the standard deviation 

while the variance is defined as 𝑣𝛼 = 𝛾𝛼. In this framework, if we consider a set 

of 𝑛  stable and independent random variables 𝑅1, 𝑅2, … , 𝑅𝑛  such that 

𝑅𝑖~𝑆𝛼(𝛽𝑖, 𝛾𝑖, 𝛿𝑖), the random variable 𝑆𝑛 = ∑ 𝜔𝑖𝑅𝑖
𝑛
𝑖=1  is also stable with: 

𝛼 > 1;     𝛾 = √∑(|𝜔𝑖|𝛾𝑖)𝛼

𝑛

𝑖=1

𝛼

;      𝛽 =
∑ sgn(𝜔𝑖)𝛽𝑖(|𝜔𝑖|𝛾𝑖)

𝛼𝑛
𝑖=1

∑ (|𝜔𝑖|𝛾𝑖)𝛼𝑛
𝑖=1

;     𝛿 = ∑ 𝜔𝑖𝛿𝑖

𝑛

𝑖=1

 

It is worth noticing that the elicitation of the scale parameter is 𝛾 = 𝑑𝑡
1

𝛼 = 𝑑𝑡𝐻 . 

Within this framework, the continuous process of stable random variables was 

simulated assuming that: 𝛼 =1.7674; 𝛽 = 𝛿 = 0 and 𝛾 = 1. These assumptions 

led to the following values for the parameter of the Pareto distribution describing 

the returns of DJIA30 in the simulation period, obtained using the STABLE 

software implemented by Nolan ref: 𝛼 =1.7853; 𝛽 = −0.1233; 𝛾 = 0.0053 and 

𝛿 = 0.0059. 
 

4.3 Simulation results 

We considered the results obtained by simulating both an fBm and a gBm in the 

period 1 January 2001 - 1 January 2014. The comparison was carried out by 

assessing the extent to which simulated processes were able to mimic the 

observed series. 

The similarity between simulated and real data was at first evaluated graphically 

in Figure 3, which is a time series plot matrix that shows the observed prices, 

returns and volatility in the first column and the same data obtained through the 

simulation of an fBm (gBm) as described in Section 4.1 (4.2) in the second (third) 

column. 

Plots in the first column of Figure 3 compare observed and simulated prices. It is 

worth noticing that gBm prices are increasing exponentially coherently with the 

mathematical properties of their DGP moving from 10,000 points to about 35,000 

points. This representation is rather far from reality since it completely ignores 

periodic shocks causing trend inversions like those observed during the financial 

crises period (2007-2009) instead. Contrariwise, fBm simulated prices were more 

coherent with real prices due to the scale factor 𝑓𝑖 used in the second step of the 

DGP (see Section 4.2). The simulated process was able to completely capture the 

shock caused by the financial crises in the 2007-2009 period (and partially capture 

the shock of the 2002-2004 period) as well as the subsequent trend inversions, 

although it was not able to properly describe the increasing trend observed in the 

2012-2014 period. 

The second and third column of the plot refer to returns and volatility. Returns 

generated from gBm were the result of a white noise process and reflect the EMH 

but the plot of the gBm simulated returns shows that gBm leads to less dispersed 

returns and is not able to detect any volatility clustering effect. Opposed 

conclusions can be drawn when inspecting the plots of fBm returns and volatility  
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since, in this case, volatility clustering effects and volatility shocks were generally 

well captured by the process. 

Besides the graphical representation of the observed and simulated processes, 

some of the forecasting ability of gBm and fBm was also evaluated through 

certain accuracy indexes. In particular, denoting with 𝑦𝑖  the observed value, with 

�̂�𝑖 the predicted value, the following measures were considered for the simulation 

period composed of 𝑁 time occasions: 

𝑀𝑃𝐸 =
∑ (𝑦𝑖 − �̂�𝑖)

𝑁
𝑖=1

𝑦𝑖
∙

100

𝑁
                           𝑀𝐴𝑃𝐸 = ∑ |

(𝑦𝑖 − �̂�𝑖)

𝑦𝑖
| ∙

100

𝑁

𝑁

𝑖=1

      

𝑈1 =
√∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁

√∑ 𝑦𝑖
2𝑁

𝑖=1

𝑁  + √∑ �̂�𝑖
2𝑁

𝑖=1

𝑁

                         𝑈2 =

√1
𝑁 (

∑ (�̂�𝑖+1 − 𝑦𝑖+1)2𝑁−1
𝑖=1

𝑦𝑖
)

√
1
𝑁 (∑ (

𝑦𝑖+1 − 𝑦𝑖

𝑦𝑖
)

2
𝑁−1
𝑖=1 )

 

The Mean Absolute Percentage Error (MAPE) is the average of the absolute 

percentage errors (Makridakis, Wheelwright et al. 1999). As such, it is derived 

from the more rudimentary and less robust Mean Percentage Error (MPE). For 

both indexes, a value close to zero expresses a good forecasting accuracy of the 

process. 

 
 

Figure 3: Observed and simulated time series for DJIA30 prices, returns and 

volatility from January 1, 2001 to January 1, 2014 
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Figure 3 (continued): Observed and simulated time series for DJIA30 prices, 

returns and volatility from January 1, 2001 to January 1, 2014 

 

 
 

The measures 𝑈1 and 𝑈2 are Theil’s 𝑈 coefficients (Theil, 1966). 𝑈1 measures how 

much actual values and forecasts are closer to each other and is bounded between 

0 and 1: values closer to 0 indicate greater forecasting accuracy. 𝑈2  evaluates 

whether forecasts produced by a model perform better than the naïve forecasts, in  
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this case represented by the ability of 𝑦𝑖  in predicting 𝑦𝑖+1, which takes the value 

1 under the naïve forecasting method. The more 𝑈2 > 1, the better the forecasting 

accuracy of the simulated process w.r.t. the naïve forecasts will be, and vice versa 

if 𝑈2 < 1. 

Results about forecasting accuracy of gBm and fBm are reported in Table 2. They 

show that, for all the forecasting indexes, fBm considerably outperformed gBm. 

 
 

Table 2: Forecasting accuracy of gBm and fBm in the simulation period (1 

January 2001 – 1 January 2014) 

 
 

5 Risk assessment of gBm and fBm portfolios 
 

It is common opinion that the standard deviation is not the best measure of 

volatility and risk for financial asset portfolios. Following its definition, it could 

happen that positive deviations from the mean values lead to the illogical 

conclusion that a portfolio is very risky. To avoid this inconsistency, alternative 

(asymmetric) measures of risk defining a threshold value as an indicator of 

possible loss have been introduced in the literature. Among these there are Value 

at Risk (VaR) (Linsmeier and Person 2000) and Conditional Value at Risk 

(CVaR), (Rockafellar and Uryasev 2000), which are the most prominent 

examples. 

VaR is the maximum expected loss for an asset (a portfolio) in a specific holding 

period. For its measurement, the elements that need to be considered are the 

holding period, the (estimated) risk factor, the time horizon, and the confidence 

level (usually 95% or 99%). If 𝐿  is a random variable indicating a loss with 

cumulative distribution function 𝐹𝐿  and 𝑙𝑖  is one of its possible realizations, for a 

given confidence level 𝛼  VaR is defined as VaR𝛼(𝐿) = min{𝑙𝑖|𝐹𝐿(𝑙𝑖) ≥ 𝛼} for 

𝛼 ∈ ]0,1[. The difficulties with controlling and optimizing VaR in non-normal 

portfolios have forced the search for similar percentile risk measures, which 

would also quantify downside risks and at the same time could be efficiently 

controlled and optimized. From this viewpoint, CVaR is a perfect candidate for 

conducting a VaR-style portfolio management. CVaR is defined as an average 

(expectation) of high losses residing in the 𝛼 -tail of the loss distribution, or, 

equivalently, as a conditional expectation of losses exceeding the 𝛼-VaR level. 

The latter definition could be notationally indicated as: CVaR𝛼(𝐿) =
𝐸[𝐿|𝐿 ≥ VaR𝛼(𝐿)]. 
In the following, a comparison between different models leading to measures of 

VaR and CVaR was carried out. Basically, outcomes obtained when assuming a  
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normal distribution of DJIA30 returns were compared with those obtained 

assuming a Pareto distribution of returns. 
 

5.1 VaR and CVaR estimation 

We initially assumed that the DJIA30 index could be bought through an asset that 

passively replicates the index, such as an ETF, with no transaction or tax costs. To 

compute VaR, the nonparametric historical simulation method and the stochastic 

Monte Carlo based simulation method were used. The crucial step in the VaR 

estimation process is the simulation of the risk factor, which, in the specific case 

of DJIA30, was the volatility of index returns in the period between 1 January 

2001 - 1 January 2014. To simulate volatility, three different scenarios for the 

DGP were used: 

• GARCH(1,1): this scenario assumes that returns are normally distributed in 

accordance with EMH. The GARCH(1,1) model was simulated 100 times for 

the period between 1 January 1987 - 31 December 2000, which is composed of 

3,303 time occasions and the values of estimated volatility were those obtained 

by averaging values obtained from each individual simulation. 

• gBm: this scenario still assumed the normality of returns and made use of the 

standard deviation of returns simulated through the Geometric Brownian 

motion described in Section 4.1. 

• fBm: this scenario relied on the fractal market hypothesis and, consequently, 

on the Pareto distribution of index returns. In this case, the volatility was 

measured through a rescaled standard deviation obtained from the simulation 

of an fBm process. 

Next, we assumed that one share of the portfolio was built along the simulation 

period and that the equivalent value of the portfolio was 1,000,000 USD. VaR was 

computed as the inverse of the cumulative distribution of the loss function under 

either the Gaussian or the Pareto DGP once a confidence level was set. We 

focused on 90%, 95% and 99% as possible confidence levels, which, in the case 

of a Gaussian (Pareto) distribution led to –1.282 (–2.058), –1.645 (–2.939) and     

–2.326 (–6.669) as reference quantiles, respectively. For the specific case of the 

Pareto distribution, we assumed that the distribution describing the returns of the 

DJIA30 index would be specified by the parameters 𝛼 = 1.60 and 𝛽 = 0.10 only. 

Each time, the VaR-based theoretical loss was compared with the real (observed) 

loss. Exceptions were recorded when the real loss was greater than the theoretical 

loss. The total number of exceptions in comparison with the chosen confidence 

level allowed us to understand if the VaR was a realistic measure of potential 

losses. Next, the CVaR was computed as the expected number of exceptions. 
 

5.2 Results 

Comparing the various methods, we discovered remarkable differences that 

proved how, by choosing a Pareto probability distribution, a better impact, in the 

risk analysis, was given to us with respect to other distributions. In the following 

table, we indicate the different methods. The first column concerns the 

distribution types assumed for the yields: the Normal distribution (N) and the 

Pareto  (P)  distribution  (with  the  confidence  levels  of  90%,  95%,  and  99%, 
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respectively). The critical values are in brackets. For each of these, we listed the 

exception numbers coming from the distributions and the VAR back-testing (with 

their respective confidence level). For a standard normal distribution, the GARCH 

case (1.1) provides a good risk estimate (in fact in the VAR case, 90% of the 

times we had 263 exceptions against the maximum value allowed, which was 

330). Assuming the Normality distribution hypothesis for the data, for an 

acceptable number of the 95% VaR loss, we had several exceptions equal to 165% 

against a maximum of 165.15%. The exceptions allowed this confidence level to 

be considered as a reliable risk measure. Under the same normality assumption, 

raising the acceptance number of the VaR from 95% to 99%, the situation was 

drastically reversed because we had a much lower number of exceptions, at 71%, 

than the maximum number allowed at 330.3%. Under the Pareto distribution 

hypothesis, we found the most important result of the research, which was that for 

all confidence levels, the GARCH(1.1), either 95% or 99%, can be considered a 

valid model to simulate the evolution of the return volatility of the DJIA30 index. 

As shown from the data, the volatility obtained by the MBG, did not seem to be 

capable of simulating such portfolio losses as to be considered a good predictor of 

the negative fluctuations of the market index. In fact, the number of exceptions 

was greater than 10%, 5 % and 1% out of 330.3, i.e., the number of days in which 

we were simulating the losses. 

So, looking at the volatility obtained from the simulation of yields, through 

fractional Brownian motion, we got a smaller number of exceptions than MBG, in 

all cases and for all chosen confidence levels. However, on the other hand, we 

obtained worse results than we achieved when using the GARCH(1,1) model, 

which confirmed the quality of the model. 

 
 

 

Table 3: Number of exceptions obtained from VaR in the simulation period (1 

January 2001 - 1 January 2014) 
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Table 4: Average daily values of VaR for a replicant of DJIA30 with an 

equivalent value of 1,000,000 USD (1 January 2001 - 1 January 2014) 

 

 
 

 

Table 5: Average daily values of CVaR for a replication of DJIA30 with an 

equivalent value of 1,000,000 USD (1 January 2001 - 1 January 2014) 

 

 
 

 

 

From tables 4 and 5 the following considerations can be garnered: in table 4 the 

simulated volatility through MBG, was severely underestimated. This because it 

did not allow an average negative oscillation over 1% to be predicted in either 

VaR or CVaR. In table 5 this underestimation was confirmed by the very high 

number of exceptions between expected loss and actual loss. The MBG assumed a 

Normality of returns and all that follows. The result did not change if the VaR and 

the CVaR were calculated also using the critical values of the Pareto distribution. 
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- The second remark concerns the fact that the volatility simulated through the 

GARCH(1.1) provided much more realistic values of VaR and CVaR. The worst 

expected average daily loss was around –2.01. 

However, if we consider the CVaR, which is the average of all those exceptional 

losses, while recording higher values for exceptional losses, they remained too 

close to those of VaR. This result is very different from the average values of VaR 

and CvaR estimated for US Large Cap equity of –7.75 and –9.95 respectively. 

- For all confidence levels and for any type of hypothetical distribution in both 

the case of GARCH(1,1) and in the MBG, the average value of the VaR was 

lower than the average value of the CVaR. This was a positive figure since the 

average losses in the worst 10% of cases must have necessarily been higher than 

those relating to the central distribution area. This has a particular meaning in the 

Normal distribution hypothesis. 

- Still, with reference to the MBF, we can observe that the exceptional average 

losses, expressed by the CVaR, contrary to the GARCH(1.1) and the MBG, were 

lower than those provided by the VaR. But it was also true that the probability that 

these might occur was much lower, so much so that the number of exceptions for 

the MBF was very low compared to the other two methods. 

- From a risk management point of view, the above observations indicate that a 

forecast given by fractional Brownian motion of the risk factor volatility provided 

a much more reliable estimate concerning the GARCH(1,1) and the MBG 

methods. In fact, at first, we had a very small number of exceptions. Then, second, 

comparing the average VaR for the US Large Cap stocks (–7.75%) with that 

obtained for the DJIA 30 through MBF (–4.66%) we saw that this method was the 

only one that provided us with such a close estimate of similar assets in terms of 

characteristics and capitalization. Third, the fact that a lower CVaR compared to 

the VaR was obtained, again with reference to the MBF, was not such a bad thing. 

On the contrary, this meant that a large part of the risk was in the tail. It was the 

endogenies in the central part of the probability distribution both for the Normal 

distribution and even more in the case of the Pareto distribution, which allowed 

many less relevant, sudden, and unexpected real losses to be incurred. 

 

6 Concluding remarks 
 

The idea for this paper was born reading a study conducted by the J.P. Morgan 

and Chase Bank Asset Management departments on the non-normality of returns 

for financial assets. They simulated the price evolution of the 30 Dow Jones 

Industrial stock index as a stochastic process known as Brownian motion. In our 

formulations, we compared the Index values of DJIA30 such as prices, yields, and 

volatility, respectively found using the classic geometric Brownian motion and the 

fractional Brownian motion with the index prices of the real market to understand 

which one would be the best evaluation method. The data showed that the fractal 

Brownian motion gives a better estimation of the index price in contrast with the 

geometric Brownian Motion. It also showed that the hypothesis of the normal 

probability distribution is overcome by a Pareto distribution.  
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Our work confirms the thesis that the volatility concept deserves to be studied 

alone through fractal analysis and that the VAR estimation would be more precise 

if it were done using different risk factors. In conclusion, we believe that future 

research would be interesting if it were to adopt the same procedures mentioned 

above, utilizing more assets. In other words, the study should be applied to a 

portfolio of securities, to understand what consequences might be generated 

through the application of the geometric Brownian motion against the fractional 

Brownian motion. A better estimation of these indexes could be expressed 

through the application of both probability distributions: a Pareto distribution for 

the tails and a geometric Brownian Motion for the core. Furthermore, finding an 

efficient statistical method within the Pareto distribution regarding the analysis of 

a portfolio of securities would be interesting. Since we are discussing the context 

of an infinite variance, it is impossible to deal with the correlation among 

securities as an index for the creation of a portfolio containing diverse securities. 

For further modifications of the fractional Brownian model, we considered a new 

simulation Ex-Ante related to the timeline between 2014-2020, which showed the 

same robustness of the previously studied estimate. Specifically, DJIA30 reversal 

points were forecasted with high reliability. 
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