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The gravitational induced interference is here studied in the framework of Teleparallel Gravity.
We derive the gravitational phase difference and we apply the result to the case of a Kerr spacetime.
Afterwards, we compute the fringe shifts in an interference experiment of particles and discuss how
to increase their values by changing the given parameters that include: the area in between the
paths, the energy of the particles, the distance from the black hole, the mass and the spin of the
black hole. It turns out that it is more difficult to detect the fringe shifts for massless particles than
for massive particles. As a further application, we show how the mass of the black hole and its
angular momentum can be obtained from the measurement of the fringe shifts. Finally, we compare
the phase difference derived in Teleparallel Gravity with a previous work in General Relativity.
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1. INTRODUCTION

In the year 1959, Aharonov and Bohm proposed an observable effect due to electromagnetic potentials in the
quantum domain [1]. They showed that, contrary to the conclusions of classical mechanics, in quantum mechanics
there are effects of electromagnetic potentials on charged particles, even in the region where all the fields vanish. In
their model, two electron beams go through two cylindrical tubes within two different time-dependent potentials, to
finally interfere in a region outside the tubes. In particular, they proved that the interference depends on the time
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integrals of the potentials. The same two authors proposed also another experiment that we summarize as follows.
In the region outside an infinite cylindrical solenoid (in which a magnetic field is confined), an electron beam is split
in two, one travels to the right while the other to the left of the solenoid and then they interfere. It turns out that
the interference of the two beams depends on the contour integral of the vector potential. These thought experiments
prove that even in regions where the fields are absent, the electromagnetic potential can affect the observations.

To clarity, we write the wave function in the presence of the potential as [1]

Ψ = Ψ1
0e−

i
h̄S1 +Ψ2

0e−
i
h̄S2 , (1)

where Ψ1
0 and Ψ2

0 denote the free wave functions. It turns out that the interference depends on the difference
between of the two phase factors in (1). In general, the phase difference is given by [2]

− 1

h̄
(S1 − S2) =

e

h̄c

∮
Aµdx

µ, (2)

where the closed integral is unshrinkable. In the second thought experiment mentioned above, the right hand side of
(2) is proportional to the magnetic flux through the cross section of the solenoid. The Aharonov-Bohm effect (AB
effect) caused by a magnetic field was experimentally observed by Chambers [3]. Since then, more observations for
the AB effect were performed (see Ref. [4] for a review of them).

As a route to connect general relativity with quantum mechanics, it is appealing to image a phase induced by
the gravitational field in analogy with the one by the electromagnetic field. The effect of the gravity induced phase,
analogous to the AB effect in electromagnetism, is usually referred to as Gravitational Aharonov-Bohm effect [5–7].
In gravity, the interference of particles moving in a flat spacetime region may be affected by a non vanishing Riemann
tensor localized far from the particles. In Ref. [8], Stodolsky argued that such phase is given by

mc

h̄

∫
ds (3)

for a massive particle (in the case of a semiclassical limit in which particles travel along the classical path). An
interesting feature of this expression is its property under coordinate transformations. As Stodolsky showed, the above
phase is gauge invariant under coordinate transformations, as opposite to the gauge variance of the electromagnetic
phase under U(1) transformations of the potential. This discovery reveals the difference between the symmetry
properties of the gravitational and the electromagnetic field in the quantum domain.

Concerning our work, we will evaluate the phase in the theory of Teleparallel Gravity (TG). This theory is also
known as the Teleparallel Equivalent of General Relativity [9]. In TG, the phase (mc/h̄)

∫
ds can be separated into

three parts [9]: the first part represents the free particle, while the second part stands for the inertial effects of the
frame, which can be eliminated by choosing an inertial frame, the third part is the one we really have to take care of.
Indeed, it represents the gravitational interaction given by the integral of a gauge potential for gravity. Our study is
based on this formulation.

Before getting to the heart of our contribution, it deserves to be mentioned the experimental work on the gravita-
tional phase. In 1974, Overhauser and Colella proposed an experiment to detect the gravitational quantum interfer-
ence [10]. In their proposal, a neutrons’ beam is split into two parts and recombined afterwords. The trajectories of
the neutrons approximately form a vertical parallelogram with its base parallel to the surface of the earth. They found
that the phase difference between the two beams is related to the gravitational acceleration. In the next year, Colella
et al. implemented such idea experimentally [11]. They rotated the interferometer to change the angle between the
parallelogram and the surface of the earth, and detected the corresponding counting rates of the interfering beams.
With these results they determined the number of the fringes caused by the gravity. Although the influence of the
gravitational field of the earth has been found, the gravitational interference caused by small masses is still a difficult
task. On this subject, Hohensee et al. proposed an experiment in which matter waves are in a gravitational potential
of a pair of masses with vanishing net gravitational force [12]. This thought experiment has not been realized because
it requires the optical lattice to be perfect (see the comment in Ref. [13]). Recently the gravitational interference
caused by small masses has been detected by Overstreet et al. experimentally [14] 1, using laser pulses to split and
recombine two atoms vertically at different times. The upper atom goes closer to a ring mass than the lower atom,
which leads to a gravity induced phase difference between these atoms.

Now that the gravitational quantum interference has been observed in laboratories, it is essentially to explore more
about its theoretical aspects, especially the applications in astronomy. As mentioned above, in TG we can separate

1 In Ref. [14] the authors claim they have observed the gravitational Aharonov-Bohm effect. Such result is extremely interesting, but
we should notice that the observed effect is not exactly the one in Refs. [5–7] because the atoms move in a region where the Riemann
curvature does not vanish.
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the phase (mc/h̄)
∫
ds into three parts with the third term standing for the gravitational interaction. This term called

gravitational phase is exactly given by

mc

h̄

∫
uaB

a
µdx

µ, (4)

where Ba
µ is a gauge potential associated to gravity [9]. As Aldrovandi et al. showed [15], in the weak field limit

this term gives the same result as the one in the experiment [11] for the interference of neutrons on the earth. This
coincidence inspired us to apply this expression and its generalization to other scenes, especially the gravitational
quantum interference in the Kerr spacetime, to give a prediction for future observations.

The structure of this paper is arranged as it follows. In Sec. 2, we make a brief introduction to the concept of tetrad
in TG. In Sec. 3, we present a method to calculate the gravitational phase. Its integral expression is derived in the
inertial frames and applied to the Kerr spacetime. Therefore, we use this expression for an interference experiment
in Sec. 4. Finally in Sec. 5, we summarize the results and present the potential extensions.

Throughout this article, we use the units c = G = 1 and the metric signature (+,−,−,−), unless we explicitly
specify.

2. A BRIEF INTRODUCTION TO TELEPARALLEL GRAVITY

2.1. Tetrad in Teleparallel Gravity

All the formulas in this section are taken from the book [9], which gives a full introduction to TG. We will not show
all the details of this theory, but only introduce the core concepts relevant to our study. Let us start with the tetrad,
namely

ha = ha
µ∂µ, ha = haµdx

µ, (5)

a basis which connects the spacetime metric gµν to the Minkowski’s metric in the tangent space,

ηab = diag(1,−1,−1,−1). (6)

At each point:

gµν = ηabh
a
µh

b
ν , ηab = gµνha

µhb
ν , (7)

where the Greek letters are used to denote the coordinates in spacetime, while the Latin letters denote the coordinates
in the tangent-space. The components of the tetrad satisfy the equations:

haµha
ν = δνµ, haµhb

µ = δab . (8)

Finally, the tetrad relates the spacetime tensors with the tangent-space tensors:

V µ = ha
µV a, Va = haµV

µ. (9)

The components of the tetrad in the presence of gravity are given by:

haµ = ∂µx
a + Ȧa

bµx
b +Ba

µ, (10)

where Ȧa
bµ = Λa

d(x)∂µΛb
d(x) is the Lorentz connection with Λa

d(x) a local Lorentz transformation from an inertial
reference frame to a general frame, and Ba

µ is a gauge potential corresponding to a translational transformation
δxa(x) = εa(x) on the tangent space. In TG, gravity is generated from the group of the latter transformations under
which the tetrad haµ is invariant, while the potential Ba

µ transforms according to

δBa
µ = −∂µεa − Ȧa

bµε
b. (11)

In Eq. (10) we see that the expression of the tetrad contains three terms. The first one corresponds to a coordinates’
transformation from the spacetime to its tangent-space. As shown in [9], the second one corresponds to the inertia.
And the last one corresponds to the gravitational interaction. The expression of the tetrad is obtained by combining
(10) with (5), namely

ha = dxa + Ȧa
bµx

bdxµ +Ba
µdx

µ. (12)
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Opposite to general relativity, in TG, the curvature vanishes while the torsion is non-vanishing, namely

Ṙa
bµν = ∂µȦ

a
bν − ∂νȦ

a
bµ + Ȧa

cµȦ
c
bν − Ȧa

cνȦ
c
bµ = 0, (13)

Ṫ a
µν = ∂µh

a
ν − ∂νh

a
µ + Ȧa

cµh
c
ν − Ȧa

cνh
c
µ = ḊµB

a
ν − ḊνB

a
µ ̸= 0, (14)

where the derivative operator Ḋµ only acts on the indices in the tangent space and it is defined by:

Ḋµϕ
a = ∂µϕ

a + Ȧa
bµϕ

b. (15)

The curvature and the torsion can also be expressed in terms of spacetime indices, i.e.

Ṙρ
λνµ = ∂ν Γ̇

ρ
λµ − ∂µΓ̇

ρ
λν + Γ̇ρ

ην Γ̇
η
λµ − Γ̇ρ

ηµΓ̇
η
λν , (16)

Ṫ ρ
νµ = Γ̇ρ

µν − Γ̇ρ
νµ, (17)

where Γ̇µ
ρν is the Weitzenböck connection defined by:

Γ̇µ
ρν = ha

µḊνh
a
ρ. (18)

In TG, the torsion is regarded as a field strength, and from (14) we see that Ba
µ plays a role analogous to the gauge

potential in electromagnetism. The torsion is gauge invariant [9] because it can be written in the following form,

Ṫ a
µν = Ḋµh

a
ν − Ḋνh

a
µ, (19)

while the tetrad is invariant under the gauge transformation (11). The action for gravity is constructed by means of
the torsion tensor, which coincides with the Einstein-Hilbert action, and the field equation in TG is equivalent to the
Einstein equation (all the details can be found in the book [9]).

2.2. The role of the gauge potential

As mentioned above, the gravitational phase is given by (4) where the gauge potential Ba
µ appears in the integrand.

This is reasonable because gravity is represented by the gauge potential, as stated in Ref. [9]. This potential not only
appears in the field equation, but also plays an important role in the equation of motion, which is equivalent to the
geodesic equation, of a particle in the gravitational field. We now prove the latter claim and finally show that Ba

µ

appears in the gravitational phase by an analogy with electromagnetism.
Let us remind the geodesic equation in general relativity, namely

duµ

ds
+ Γµ

ρνu
ρuν = 0. (20)

In TG, the Levi-Civita connection can be written as [9]

Γµ
ρν = Γ̇µ

ρν − K̇µ
ρν , (21)

where Γ̇µ
ρν is defined in (18), and K̇µ

ρν is the contortion

K̇µ
ρν =

1

2
(Ṫν

µ
ρ + Ṫρ

µ
ν − Ṫµ

ρν), (22)

of the Weitzenböck torsion

Ṫµ
ρν = ha

µṪ a
ρν = ha

µ(ḊρB
a
ν − ḊνB

a
ρ), (23)

where (14) has been used. Recalling (10), the tetrad depends on Ba
µ. Therefore, both Γ̇µ

ρν in (18) and K̇µ
ρν in (22)

depend on the gauge potential.
According to the above expressions, we can prove that the geodesic equation (20) depends on the potential Ba

µ.
Indeed, we can rewrite the geodesic equation in TG using (21),

duµ

ds
+ (Γ̇µ

ρν − K̇µ
ρν)u

ρuν = 0. (24)
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For the last term, according to (22), we get

K̇µ
ρνu

ρuν =
1

2
(Ṫν

µ
ρ + Ṫρ

µ
ν − Ṫµ

ρν)u
ρuν = Ṫρ

µ
νu

ρuν , (25)

where the last step follows from the anti-symmetry of Ṫµ
ρν in the last two indices (see (23)), and by re-labeling the

indices of the first term. Furthermore, we rewrite (25) as:

K̇µ
ρνu

ρuν = gραg
µβṪα

βνu
ρuν

= (ηcdh
c
ρh

d
α)(η

efhe
µhf

β)ha
α(ḊβB

a
ν − ḊνB

a
β)u

ρuν

= ha
µ(ηceh

c
ρ)(η

afhf
β)(ḊβB

e
ν − ḊνB

e
β)u

ρuν , (26)

where (7) and (23) have been used in the second step and (8) has been used in the last step. Then plugging (18) and
(26) into (24), we get the equation of motion for a point-like particle:

duµ

ds
+ ha

µ
[
Ḋνh

a
ρ − (ηceh

c
ρ)(η

afhf
β)(ḊβB

e
ν − ḊνB

e
β)
]
uρuν = 0, (27)

which is equivalent to the geodesic equation (20).
We now show by contradiction that in presence of gravity the gauge potential can not be eliminated from the

equation (27). We first replace (10) in (27) and afterwards assume the gauge potential to vanish. Hence, we rewrite

(27) in cartesian coordinates of an inertial frame in which the Lorentz connection Ȧa
bµ vanishes and the tetrad

components take the form haρ = δaρ (see Ref. [9]). Therefore, the equation (27) simplifies to:

duµ

ds
+ ha

µ(∂νδ
a
ρ)u

ρuν = 0 =⇒ duµ

ds
= 0, (28)

where we used the definition (15) and ∂νδ
a
ρ = 0. Therefore, in cartesian coordinates of an inertial frame and assuming

that (27) does not depend on the gauge potential, equation (27) reduces to the equation of a free particle. On the
other hand, we know that in the presence of gravity (27) does not reduce to the equation of a free particle because
it is equivalent to the geodesic equation (20). Therefore, in the presence of gravity we can not eliminate the gauge
potential from the equation (27) and the gauge potential Ba

µ represents the effect of gravity on the motion of a
point-like particle.

We would also emphasize the role of the Lorentz connection Ȧa
bµ. As stated in Ref. [9], this connection is due

to the inertial effects and it appears in the tetrad when a general reference is chosen. Hence, in this case, it also
appears in the equation of motion. However, if we take an inertial frame, this connection vanishes. Indeed, such
connection is constructed with the local Lorentz transformation Λa

d(x) from an inertial frame to a general frame,

namely Ȧa
bµ = Λa

d(x)∂µΛb
d(x). In particular, since the Lorentz transformation from an inertial frame to another

inertial frame is a global transformation, Ȧa
bµ vanishes in the inertial frames.

Therefore, based on the above discussions, generally, the motion of the particle is governed by both the Lorentz
connection Ȧa

bµ and the gauge potential Ba
µ. If an inertial frame is chosen, the motion is only governed by the

later. These two quantities together plays a role similar to the Levi-Civita connection in general relativity. Indeed, in
general relativity, the motion of the particle is governed by the Levi-Civita connection, as the equation (20) shows.

Finally, let us show that the gauge potential Ba
µ appears in the gravitational phase, though we have proved that

it affects the equation of motion of the particle. As shown in the Ref. [9], the equation of motion (24) can be derived
directly from the following action principle,

S = −m
∫ q

p

(uadx
a + uaȦ

a
bµx

bdxµ + uaB
a
µdx

µ), (29)

where the first term stands for the free particle, the second term relates to the inertial effects, and the last term
represents the gravitational interaction. Here ua = ηabu

b and ub is a four-velocity defined in the tangent space (see
(33)). In presence of the electromagnetic potential Aµ, the action (29), for a charged particle of charge q, should
be modified by adding the term (q/m)Aµdx

µ under the integral in (29) [9]. In special relativity, the action of a
particle in presence of the electromagnetic field is just the combination of a free term and the interaction term with
the electromagnetic potential. Correspondingly, the electromagnetic phase factor for an Aharonov-Bohm effect [1] is

given by e
i
h̄

∫
qAµdx

µ

. Thus, for a gravitational field, in strict analogy with the electromagnetism, the last two terms
in (29) contribute to the gravitational phase factor [9]. Especially, if we choose an inertial frame, the second term in
(29) vanishes and only the last term contributes to the gravitational phase factor. In this frame, the gauge potential
Ba

µ dominates the gravitational phase. Indeed, as we see from the definition of the field strength (14), the role of the
potential Ba

µ in gravity is similar to the role of the gauge potential in electromagnetism. It deserves to be mentioned
that a similar discussion of the gravitational phase can be found in Ref. [15].
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3. GRAVITATIONAL PHASE

In this section we first provide the general formula for the gravitational phase and afterwards we evaluate it explicitly
for the case of the Kerr spacetime.

3.1. Gravitational phase in inertial references

The gravitational phase factor for a massive particle in a generic frame is [9, 15]:

Φg = exp
(
− i

h̄
Sg

)
, (30)

where

Sg = −m
∫ q

p

ua(Ȧ
a
bµx

bdxµ +Ba
µdx

µ) (31)

is the interaction part of the action

S = −m
∫ q

p

ds, (32)

and the four-velocities in spacetime and tangent-space are defined respectively as follows,

uµ =
dxµ

ds
, ua =

ha

ds
. (33)

For simplicity, we choose an inertial coordinate system K in which Ȧa
bµ = 0. Hence, according to (31), the

interaction action reads:

Sg = −m
∫ q

p

uaB
a
βdx

β = −m
∫ q

p

gµνu
µBν

βdx
β , (34)

where the second equation in (9) is used and the function Bν
β is defined as

Bν
β = ha

νBa
β = (hTB)νβ . (35)

Here hT is the transpose matrix of ha
ν , and B is the matrix Ba

β . Therefore, if we have the expressions for gµν , u
µ

and Bν
β , we can evaluate Sg. Plugging (34) into (30), we get the gravitational phase factor for a massive particle:

Φg = exp
( i
h̄
m

∫ q

p

gµνu
µBν

βdx
β
)
. (36)

For massless particles, let us consider the light firstly. For a light, its phase factor can be written as:

Φ = exp(iψ) = exp
( i
h̄

∫ q

p

Pµdx
µ
)
, (37)

where Pµ = h̄kµ is the four-momentum of the photon, and kµ is the wave vector. In Ref. [8], the optical interferometry
is based on (37), but for a weak gravitational field. Unlike in the Ref. [8], we extract the gravitational part from the
phase factor in the framework of TG, without need of the weak field approximation. According to (37), we have:

dψ = kµdx
µ = kah

a = ka(dx
a + Ȧa

bµx
bdxµ +Ba

µdx
µ) , (38)

where Eqs. (9), (7), (8), and (12) have been used. Since we only need the interaction part, for the gravitational phase
ϕg we have:

dϕg = ka(Ȧ
a
bµx

bdxµ +Ba
µdx

µ). (39)
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Moreover, if we choose an inertial frame for which Ȧa
bµ = 0, the gravitational phase simplifies to:

ϕg =

∫ q

p

kaB
a
µdx

µ =

∫ q

p

kνB
ν
µdx

µ, (40)

where (9) is used and Bν
β is defined in (35). Finally, the gravitational phase factor for light is:

ΦL = exp(iϕg) = exp
( i
h̄

∫ q

p

gµνP
µBν

βdx
β
)
. (41)

Although (41) has been derived for photons, we assume it also applicable for other massless particles. Of course, this
hypothesis needs a rigorous proof.

In summary, the gravitational phase for a particle (massive or massless) in an inertial frame is given by:

ϕg =
1

h̄

∫ q

p

Sβdx
β , (42)

where the function Sβ is defined as

Sβ = gµνP
µBν

β , (43)

and Pµ is the four-momentum. The gravitational phase factor is given by Φg = exp(iϕg).
To calculate Sβ , we need to know Bν

β firstly. According to (35), the expression of Bν
β is given by ha

ν and Ba
β .

Thus in addition to ha
ν , we need to seek the expression for Ba

β . Before proceeding, let us consider the cartesian
coordinate system K ′ in in which ∂µ′xa = δaµ′ holds [9]. Therefore, according to Eq. (10), in the coordinate K ′ the
gauge potential can be written as:

Ba
µ′ = haµ′ − δaµ′ . (44)

Moreover, the components of the tetrad in the generic coordinate K can be expressed as [16]:

haρ = haν′
∂xν

′

∂xρ
, (45)

which can be derived directly by writing the second equation of (5) as:

ha = haν′dxν
′
= haν′

∂xν
′

∂xρ
dxρ = haρdx

ρ . (46)

Now we come back to the expression for Ba
µ. We write the gravitational phase in the coordinate K:

ϕg =
1

h̄

∫ q

p

gµνP
µBν

βdx
β =

1

h̄

∫ q

p

PaB
a
βdx

β , (47)

where (9) and (8) are used. On the other hand, we write it in the cartesian coordinate K ′:

ϕg =
1

h̄

∫ q

p

PaB
a
µ′dxµ

′
=

1

h̄

∫ q

p

Pa(h
a
σ
∂xσ

∂xµ′ − δaµ′)dxµ
′
, (48)

where (44) and (45) are used. Furthermore, we write (48) as:

ϕg =
1

h̄

∫ q

p

Pa(h
a
σ
∂xσ

∂xµ′ − δaµ′)
∂xµ

′

∂xβ
dxβ =

1

h̄

∫ q

p

Pa(h
a
β − δaµ′

∂xµ
′

∂xβ
)dxβ . (49)

Comparing (47) and (49), we finally obtain:

Ba
β = haβ − δaµ′

∂xµ
′

∂xβ
. (50)

Summarizing. We choose an inertial coordinate system K. Then we find the expression for the components of the
tetrad haβ , and the transformation between the coordinate K and the cartesian coordinate K ′. Plugging the tetrad
into (50), we get the expression of Ba

β . Hence, inserting the latter into (35), we get Bν
β . Pugging the expressions

of Bν
β and Pµ into (43), we get Sβ . According to it, we calculate the integral in (42) to finally get the gravitational

phase.
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3.2. Gravitational phase in the Kerr spacetime

Using Boyer-Lindquist coordinates K(t, r, θ, φ) in the Kerr spacetime, the matrix form of the metric is [17]:

(gµν) =

g00 g03
g11

g22
g30 g33

 =

 1− rgr/ρ
2 0 0 argr(sθ)

2/ρ2

0 −ρ2/∆ 0 0
0 0 −ρ2 0

argr(sθ)
2/ρ2 0 0 −[r2 + a2 + a2rgr(sθ)

2/ρ2](sθ)2

 , (51)

and for the inverse:

(gµν) =

g
00 g03

g11

g22

g30 g33

 =

 Σ2/(ρ2∆) 0 0 argr/(ρ
2∆)

0 −∆/ρ2 0 0
0 0 −1/ρ2 0

argr/(ρ
2∆) 0 0 −[∆− a2(sθ)2]/[ρ2(sθ)2∆]

 , (52)

where

rg = 2M, ρ2 = r2 + a2(cθ)2, ∆ = r2 − rgr + a2, Σ2 = (r2 + a2)2 − a2(sθ)2∆. (53)

The parameter M is the mass of the black hole, and a is its angular momentum per unit of mass in the units c = 1.
(In the SI units it is a = J/(Mc), where J is the angular momentum of the black hole [18].) Here the symbols sθ, cθ,
sφ and cφ denote sin(θ), cos(θ), sin(φ) and cos(φ) respectively.
We will calculate the gravitational phase in the Kerr spacetime by using the last expression in (34), but before that,

we derive the expression of Ba
β according to Eq. (50). The coordinate transformation from K ′ to K is [18]:

t′ = t,

x′ =
√
r2 + a2 sθcφ,

y′ =
√
r2 + a2 sθsφ,

z′ = r cθ.

(54)

From Eq. (54) we can get the Jacobi matrix:

(∂xµ′

∂xβ

)
=


1 0 0 0
0 r

ρ0
sθcφ ρ0cθcφ −ρ0sθsφ

0 r
ρ0
sθsφ ρ0cθsφ ρ0sθcφ

0 cθ −rsθ 0

 , (55)

where ρ0 =
√
r2 + a2. The tetrad in the Kerr spacetime is [9, 16]:

(haβ) =

γ00 0 0 η
0 γ11sθcφ γ22cθcφ −ζsφ
0 γ11sθsφ γ22cθsφ ζcφ
0 γ11cθ −γ22sθ 0

 , (56)

where2

η = g03/γ00, ζ =
√
η2 − g33, γ00 =

√
g00, γjj =

√
−gjj . (57)

Inserting Eqs. (56) and (55) into (50), we get the gauge potential in the Kerr spacetime:

(Ba
β) =


γ00 − 1 0 0 η

0 (γ11 − r
ρ0
)sθcφ (γ22 − ρ0)cθcφ (ρ0sθ − ζ)sφ

0 (γ11 − r
ρ0
)sθsφ (γ22 − ρ0)cθsφ (ζ − ρ0sθ)cφ

0 (γ11 − 1)cθ (r − γ22)sθ 0

 . (58)

2 In Ref. [16] the authors only give the expression ζ2 = η2 − g33. We believe ζ =
√

η2 − g33 also holds, which is in accordance with the
tetrad in Schwardschild space time (see (29) in Ref. [16]).
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It is easy to check that Ba
β = 0 in flat spacetime, namely for a = 0 and M = 0. The matrix form for the inverse of

the tetrad is3:

(ha
ν) =


γ−1
00 0 0 0

ζg03sφ γ−1
11 sθcφ γ−1

22 cθcφ −ζ−1sφ
−ζg03cφ γ−1

11 sθsφ γ−1
22 cθsφ ζ−1cφ

0 γ−1
11 cθ −γ−1

22 sθ 0

 . (59)

One can check that (56) and (59) indeed satisfy gµν = ηabh
a
µh

b
ν , ηab = gµνha

µhb
ν and haµhb

µ = δab . Inserting
Eqs. (58) and (59) into (35), we obtain

(Bν
β) =


1− γ−1

00 0 0 ηγ−1
00 + (ρ0sθ − ζ)ζg03

0 1− γ−1
11 [rρ−1

0 (sθ)2 + (cθ)2] γ−1
11 sθcθ(r − ρ0) 0

0 γ−1
22 sθcθ(1− r/ρ0) 1− γ−1

22 [r(sθ)2 + ρ0(cθ)
2] 0

0 0 0 1− ζ−1ρ0sθ

 . (60)

In terms of Eq. (43), the first expression in Eq. (51), and Eq. (60), the matrix Sβ can be written as:

(Sβ) = (PµgµνB
ν
β) =


(1− γ−1

00 )(P 0g00 + P 3g30)
P 1g11{1− γ−1

11 [rρ−1
0 (sθ)2 + (cθ)2]}+ P 2g22γ

−1
22 sθcθ(1− r/ρ0)

P 1g11γ
−1
11 sθcθ(r − ρ0) + P 2g22{1− γ−1

22 [r(sθ)2 + ρ0(cθ)
2]}

(P 0g00 + P 3g30)[ηγ
−1
00 + (ρ0sθ − ζ)ζg03] + (P 0g03 + P 3g33)(1− ζ−1ρ0sθ)

 . (61)

The latter result can be further simplified by using the following conserved quantities in the Kerr spacetime [17],

E =
(
1− rgr

ρ2

) dt

dξ
+
argr(sθ)

2

ρ2
dφ

dξ
= u0g00 + u3g30,

−L =
argr(sθ)

2

ρ2
dt

dξ
−
[
r2 + a2 +

rgr

ρ2
a2(sθ)2

]
(sθ)2

dφ

dξ
= u0g03 + u3g33, (62)

where ξ is an affine parameter (for massive particles it is the proper time), and E and L are defined as

E =

{
Em−1, for massive particles,

E , for massless particles,
L =

{
Lm−1, for massive particles,

L, for massless particles.
(63)

Notice that for massive particles we have Pµ = muµ, while for massless particles we have Pµ = uµ. Here the quantity
E has the meaning of energy, while the quantity L has the meaning of angular momentum along the spin of the black
hole. Plugging (62) into (61), we get

(Sβ) =


(1− γ−1

00 )E
P 1g11{1− γ−1

11 [rρ−1
0 (sθ)2 + (cθ)2]}+ P 2g22γ

−1
22 sθcθ(1− r/ρ0)

P 1g11γ
−1
11 sθcθ(r − ρ0) + P 2g22{1− γ−1

22 [r(sθ)2 + ρ0(cθ)
2]}

E [ηγ−1
00 + (ρ0sθ − ζ)ζg03]− L(1− ζ−1ρ0sθ)

 . (64)

Finally, recalling (42), the gravitational phase in the Kerr spacetime is given by:

ϕ =
1

h̄

∫ q

p

Sβdx
β . (65)

4. PARTICLES INTERFERENCE EXPERIMENT

4.1. Theoretical prediction

We will study an interference experiment in the region r ≫ rg with the size of the setup much smaller than its
distance from the black hole. Let us start with a review of the Colella-Overhauser-Werner (COW) experiment on the

3 We think that these are some typos in equation (14.37) in [9]. This equation should be modified as (59).
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earth [11]. The principle of this experiment is shown in FIG. 1, where the parallelogram is vertical and its base AB
is parallel to the surface of the earth. A beam of neutrons is split into two beams along the paths ABC and ADC
respectively, and, afterwards they interfere. Since of the presence of gravity, the phase accumulated along the path
ABC is different from the phase accumulated along ADC. The theoretical predictions for this experiment were given
in Ref. [10], in which the gravitational phase difference between these two paths was found to be:

δϕ =
m2glλd

2πh̄2
s, (66)

where m is the mass of the neutron, λd = 2πh̄/(mv) is its de Broglie wavelength, g is the gravitational acceleration,
l is the height of the parallelogram, and s is the length of AB.

A B

D C

s

l

FIG. 1. Schematic figure for the COW experiment. A beam of neutrons is split into two beams along the sides of a parallelogram
which is vertical to the surface of the earth, and, afterwards they interfere.

Let us now to place the parallelogram in the region of the Kerr spacetime for r ≫ rg. The particles are not limited
to be neutrons and the devise is shown in Fig 2. For simplicity, we assume:
(a) The size of the parallelogram to be much smaller than its distance from the black hole, so that the coordinates r
and θ are approximately constant along the paths AB and DC;
(b) The energy E of the particle is conserved even when the particle turns direction at the points B and D (The
quantity L changes at these points, but it is conserved on the paths AB, BC, AD and DC), such that the magnitude
of its velocity (defined in (B14)) does not change at such points.

r1

C
D

BA
γ

r2

z

θ1
θ2

l

FIG. 2. The interference experiment in the region r ≫ rg of the Kerr spacetime. The particles are split into two beams
along the paths ABC and ADC respectively to afterward interfere. In r ≫ rg, we can use the Schwarzschild coordinates to
approximate the Boyer-Lindquist coordinates. The axis z of the black hole and the vectors r⃗1 and r⃗2 are in the same plane,
which is perpendicular to the base AB. The angle between r⃗1 and the plane of the parallelogram ABCD is γ. The length of
AB is s, and the height of the parallelogram is l.
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Combining the assumption (a) with (65), we write the accumulated gravitational phase along the path AB as

ϕAB ≈ 1

h̄

(∫
S0dt+

∫
S3dφ

)
=

1

h̄
(S0tAB + S3φAB)

=
1

h̄
E(1− γ−1

00 )tAB +
1

h̄

{
E [ηγ−1

00 + (ρ0sθ − ζ)ζg03]− LAB(1− ζ−1ρ0sθ)
}
φAB , (67)

where tAB = tB − tA and φAB = φB − φA are defined. We only consider the case a < M ,4 so that a/r1 < rg/r1
holds. For convenience, we assume

O
( a
r1

)
∼ O

(rg
r1

)
. (68)

Therefore, expanding (67) at the third order in the two quantities (68), we get:

ϕAB ≈ 1

h̄
EtAB

[
− rg
2r1

−
3r2g
8r21

−
5r3g
16r31

+
a2rg
2r31

cos2(θ1)
]
+

1

h̄
φAB sin2(θ1)

(
E arg
r1

− 1

2
LAB

a2rg
r31

+ E
ar2g
r21

)
, (69)

where we regard (rg/r1)
i(a/r1)

j as a term of the order (i+ j). The quantity L is given by (see Appendix A)

L =
E
g00

(−g03 + vφΓ33
√
g00), (70)

where vj is the three-dimensional velocity and Γij is the three-dimensional metric tenor defined by [18]5

vk =
dxk

√
g00(dx0 +

g0i
g00

dxi)
, Γij = −gij +

g0ig0j
g00

. (71)

For the gravitational phases ϕBC , ϕAD, and ϕDC , the derivation is similar to ϕAB . Combining these phases, we can
get the phase difference between the paths ADC and ABC. Hence, with the following relations (see Appendix A):

r2 ≈ r1 +
l cos(γ)√
−g11(r1, θ1)

, θ2 ≈
∣∣∣θ1 − l sin(γ)√

−g22(r1, θ1)

∣∣∣, (72)

we can expand the phase difference in the neighborhoods of r1 and θ1, and for simplicity we only keep the first order
terms of l/r1. Then relate the time, the angle, and the energy with the observations (Appendix A):

tAB ≈ s
( 1

v
√
g00

− g03

g00
√
Γ33

)
, φAB ≈ s√

Γ33

, (73)

E =

{
m(1− v2)−1/2√g00, for massive particles,

h̄ω
√
g00, for massless particles.

(74)

With the above steps, we derive the phase difference between the paths ADC and ABC as follows (see Appendix B
for more details)

δϕ ≈ E0ls
h̄r1

{1

v

[
cos(γ)

( rg
2r1

+
r2g
2r21

+
r3g
2r31

+
a2rg
4r31

(
1− 7 cos2(θ1)

))
+ sin(2θ1) sin(γ)

a2rg
2r31

]
+
a2rg
r31

sin(θ1)
[
v
(
cos(γ) sin(θ1) +

3

2
sin(γ) cos(θ1)

)
+

1

2
sin(θ1 − γ)

(
v −

√
v2 − (vr)2 − (r1vθ)2

)]
−arg
r21

(
2 cos(θ1) sin(γ) + cos(γ) sin(θ1)

)
−
ar2g
r31

(
cos(θ1) sin(γ) +

3

2
cos(γ) sin(θ1)

)}
, (75)

4 We do not consider the case a > M and a = M because the former leads to a naked singularity and the latter is unstable [19].
5 To distinguish the three-velocity (71) from the four-velocity, we emphasize that the velocity v (given by (B14)), which appears in the
phase differences, is the ratio between the proper length and the observer’s proper time, namely v = dL/dτ . The first equation in (71)
is actually equivalent to the definition vk = dxk/dτ (see Sec. 88 in Ref. [18]). Pay attention that here the metric is not diagonal.
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where vr and vθ (defind in (71)) are the velocity components at the point B corresponding to the path BC, and E0 is
defined by

E0 =

{
m(1− v2)−1/2, for massive particles,

h̄ω, for massless particles.
(76)

By the way, the expression
√
v2 − (vr)2 − (r1vθ)2 in (75) can be replaced by |v cos(ζ)|, where ζ is a base angle of the

parallelogram6. In particular, for γ = 0 and γ = π/2, the gravitational phase differences are respectively:

δϕ|γ=0 ≈ E0ls
h̄r1

{1

v

[ rg
2r1

+
r2g
2r21

+
r3g
2r31

+
a2rg
4r31

(
1− 7 cos2(θ1)

)]
+
a2rg
r31

sin(θ1)
[
v sin(θ1) +

1

2
sin(θ1)

(
v −

√
v2 − (vr)2 − (r1vθ)2

)]
−arg
r21

sin(θ1)−
3ar2g
2r31

sin(θ1)
}
, (77)

δϕ|γ=π
2

≈ E0ls
h̄r1

{1

v
sin(2θ1)

a2rg
2r31

+
a2rg
r31

sin(θ1)
[3
2
v cos(θ1)−

1

2
cos(θ1)

(
v −

√
v2 − (vr)2 − (r1vθ)2

)]
−2arg

r21
cos(θ1)−

ar2g
r31

cos(θ1)
}
. (78)

The prediction (75) can be tested experimentally by measuring the fringe shift as a function of γ. As for the non-
relativistic particles, (75) is reduced to

δϕNR ≈ mls

h̄r1

{(1
v
+
v

2

)[
cos(γ)

( rg
2r1

+
r2g
2r21

+
r3g
2r31

+
a2rg
4r31

(
1− 7 cos2(θ1)

))
+ sin(2θ1) sin(γ)

a2rg
2r31

]
+
a2rg
r31

sin(θ1)
[
v
(
cos(γ) sin(θ1) +

3

2
sin(γ) cos(θ1)

)
+

1

2
sin(θ1 − γ)

(
v −

√
v2 − (vr)2 − (r1vθ)2

)]
−arg
r21

(
2 cos(θ1) sin(γ) + cos(γ) sin(θ1)

)
−
ar2g
r31

(
cos(θ1) sin(γ) +

3

2
cos(γ) sin(θ1)

)}
, (79)

where we have neglected the terms of O(v2) and higher orders.
From (75) we can find that the quantity a only appears in the second and higher order terms. We can also find

that in the Newtonian limit the equation (75) reproduces the result (66) on the earth. Indeed, in such limit we have
v ≪ 1 and the phase difference is dominated by the first term in (75), namely

δϕmass ≈
mrgs

2h̄r21v
l cos(γ) =

m2sl cos(γ)λd

2πh̄2
rg
2r21

. (80)

On the other hand, since rg/(2r
2
1) = g, (80) is equivalent to (66) by setting γ = 0. Equation (80) can also be derived

from the gravitational phase directly evaluated in the Newtonian limit:

ϕ ≈ 1

h̄

∫
S0dt, (81)

by expanding the result in the ratios rg/r and a/r and only keeping the first order term.
Notice that (75) holds only when the condition s ≪

√
Γ33 is satisfied (recall the second equation in (73)). If the

latter condition is violated, the equation (75) should be modified. Take θ1 = 0 and θ1 = π as examples, then the
second equation in (73) should be replaced by the equation φAB = π. Correspondingly, (75) should be replaced by

6 Because this expression only appears in the third order terms in (75), at the point B corresponding to the path BC we have√
v2 − (vr)2 − (r1vθ)2 ≈ r1 sin(θ1)v

φ = r1 sin(θ1)
dφ

dτ
= r1 sin(θ1)

dl

dτ

dLφ

dl

dφ

dLφ
= r1 sin(θ1)v |cos(ζ)|

√
Γ−1
33 ≈ |v cos(ζ)|,

where (B15) and (A3) have been used in the first and the last second steps respectively.
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the following expression (see the last paragraph in the Appendix B)

δϕ|θ1=0,π = ≈ E0ls
h̄r1

{1

v

[
cos(γ)

( rg
2r1

+
r2g
2r21

+
r3g
2r31

+
a2rg
4r31

(
1− 7 cos2(θ1)

))
+ sin(2θ1) sin(γ)

a2rg
2r31

]
−
ar2g
2r31

cos(γ) sin(θ1)
}
+
πE0l
h̄

{a2rg
r31

v sin2(θ1)
(
cos(γ) sin(θ1) +

3

2
sin(γ) cos(θ1)

)
−arg
r21

sin(θ1)
(
cos(θ1) sin(γ) + sin(θ1 + γ)

)
−
ar2g
r31

sin(θ1) sin(θ1 + γ)
}
. (82)

4.2. Impact of the angular momentum of the black hole

We here discuss the contribution coming from the spin of the black hole. According to (69) the quantity a only
appears in the second and higher order terms (we remind that that the order of (rg/r1)

i(a/r1)
j is (i+j).) Furthermore,

we claim that in the region r ≫ rg the quantity a does not appear at the first order term in the local gravitational
phase (here local means that the path is short enough so that hold

∫
Sβdx

β ≈ Sβδx
β , where δxβ are coordinates’

differences). Indeed, we can expand the function Sβ in (64) respect to the parameters κg and κa, where κg = rg/r
and κa = a/r. Hence, we get:

(Sβ) ≈


E
(
− 1

2κg −
3
8κ

2
g − 5

16κ
3
g +

1
2 cos

2(θ)κ2aκg

)
− 1

2P
1κg − 1

4P
2r sin(2θ)κ2a − 5

8P
1κ2g − 11

16P
1κ3g − 1

4P
1[cos(2θ)− 3]κ2aκg

1
8P

1r sin(2θ)(2κ2a + κ2aκg)

sin2(θ)
(
Erκaκg − 1

2Lκ
2
aκg + Erκaκ2g

)
 , (83)

where P 1 and P 2 are given by the following equations [17],

(u1)2 = E2R(r)

ρ4
, (u2)2 = E2Θ(θ)

ρ4
, (84)

and R(r) and Θ(θ) are defined as7

R(r) = r4 + r2(a2 − λ2 − η0) + 2Mr[(a− λ)2 + η0]− a2η0 − δ1
r2∆

E2
, (85)

Θ(θ) = η0 + a2 cos2 θ − λ2 cot2 θ − δ1
a2 cos2 θ

E2
, (86)

and the parameter δ1 is defined by

δ1 =

{
1, for massive particles,

0, for massless particles,
(87)

λ = L/E, η0 = L /E2, and L is a separation constant in the equations of motion. Then expanding P 1 and P 2, and
plugging them into (83), we can find that κa only appears in the second and higher order terms of Sβ . On the other
hand, the local gravitational phase can be written as ϕ ≈ Sβδx

β . Therefore, the quantity a does not appear in the
first order terms of the local gravitational phase.

This conclusion is also true for the gravitational phase difference, as (75) shows. Therefore, the contribution of the
quantity a can be regarded as a small modification to the case of the Schwarzschild spacetime. Theoretically, we can
measure the fringe shift between different values of the angle θ1 to detect the contribution of a. However, this is not
an economic way because we need to move the setup significantly. An alternative way is to rotate the parallelogram
along the axis l shown in FIG. 2. For simplicity, we flip it so that the positions of A and B swap. Correspondingly,
the second equation in (73) should be changed to

φAB ≈ − s√
Γ33

, (88)

7 Note that the forms of R(r) and Θ(θ) in (84) are different from those in (185) and (186) of Chapter 7 of Ref. [17].
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while the expression for tAB is not changed. Besides, we need to make the change φDC → −φDC and reverse the
angular momentum such that L → −L. Plugging these changes into (B10), (B11) and (B12) in the Appendix B, we
can derive a new phase difference. Let us denote it as (δφ)2, then the fringe shift for the rotation is

n =

∣∣∣∣ (δϕ)2 − δϕ

2π

∣∣∣∣
=

∣∣∣∣ E0lsπh̄r1

[arg
r21

(
2 sin(γ) cos(θ1) + cos(γ) sin(θ1)

)
+
ar2g
r31

sin(γ + θ1)
]∣∣∣∣, (89)

where δϕ is given in (75) and E0 is defined in (76). The quantity n shows the impact of the angular momentum of
the black hole on the interference. In (89) we can find that the fringe shifts vanish for a = 0. This is not surprising
because flipping the parallelogram along the axis l does not affect the result of the interference in a Schwarzschild
spacetime due to spherical symmetry.

4.3. Numerical results and discussion

For simplicity, we here assume γ = 0, we restore the SI units, and use the spin parameter

a∗ =
ac2

GM
=

2a

rg
. (90)

As we showed in (75) and (B23), the shape of the parallelogram only makes difference at the third order and higher
orders in δϕ. Therefore, in the case γ = 0, for simplicity we assume that the path BC is along the radius, such that
vr = v and vθ = 0 hold in the phase difference (75).

1. Massive particles

In the case of non-relativistic massive particles, the phase difference (79) is:

δϕmass(γ = 0) ≈ δϕ1 + δϕ2 + δϕ3, (91)

where δϕ1, δϕ2, and δϕ3 are the first, second, and third order terms respectively, namely

δϕ1 =
mcls

2h̄r1

(mcλd
2πh̄

+
πh̄

mcλd

)rg
r1
, δϕ2 =

mcls

2h̄r1

[(mcλd
2πh̄

+
πh̄

mcλd

)
− a∗ sin(θ1)

]r2g
r21
, (92)

δϕ3 =
mcls

2h̄r1

{(mcλd
2πh̄

+
πh̄

mcλd

)
− 3

2
a∗ sin(θ1) +

1

2
a2∗

[1
4

(
1− 7 cos2(θ1)

)(mcλd
2πh̄

+
πh̄

mcλd

)
+

3πh̄

mcλd
sin2(θ1)

]}r3g
r31
. (93)

We can find that the phase difference is proportional to the area of the parallelogram. The fringe shift (89), corre-
sponding to flipping the parallelogram along the axis l, is:

nmass ≈
∣∣∣∣ mcls2πh̄r1

a∗ sin(θ1)
(r2g
r21

+
r3g
r31

)∣∣∣∣, (94)

where we have let γ = 0 and neglected the second and higher order terms in v/c, and we remind that the Schwarzschild
radius is given by rg = 2GM/c2. From (75) we can find δϕ(γ = π) = −δϕ(γ = 0). Therefore, if we change the angle
γ from 0 to π, we get a fringe shift

Nmass =
∣∣∣δϕmass(γ = π)− δϕmass(γ = 0)

2π

∣∣∣ = ∣∣∣δϕmass(γ = 0)

π

∣∣∣. (95)

In the following we discuss two examples in which the particles that interfere are neutrons.
(I) The earth as the gravitational source. In this example, we neglect the spin of the earth so that a∗ ≈ 0. For the

parameter r1, we assume the equatorial radius of the earth. For the setup of the experiment, we take the parameters
in [10], i.e.

ls = 6× 10−4m2, λd = 1.42× 10−10m. (96)
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And for the constants in (92) and (93), we use the values given in [20]. Therefore, we get the results:8

δϕ1 = 33.502, δϕ2 = 4.660× 10−8, δϕ3 = 6.482× 10−17. (97)

We can find that the second and the third order terms are much smaller than the first order term. As for the fringe
according to (94) we get:

nmass = 0 (98)

because of a∗ ≈ 0. Combining (97), (91), and (95), we get:

Nmass = 10.664. (99)

The value (99) is nearly the same as the result in [10], which agrees with the claim that the equation (75) produces
the result (66) on the earth in the Newtonian limit.

(II) The black hole in Cygnus X-1 as the gravitational source. We take the distance between the black hole and
the earth to be the value of r1. The parameters are given by [21, 22]9

M = 21.2M⊙, a∗ > 0.9985, r1 = 2.22kpc, θ1 = 27.51◦, (100)

where M⊙ is the mass of the sun. For simplicity, we assume the value a∗ = 0.9985. For the area of the parallelogram
and the wavelength of the neutron, we still use the parameters (96). Thus we get:

δϕ1 = 2.049× 10−18, δϕ2 = 1.873× 10−33, δϕ3 = 7.506× 10−49. (101)

The gravitational phase difference is totally dominated by the first order term. For the fringe shift we get:

nmass = 2.557× 10−39, (102)

when the parallelogram is flipped along the axis l. Similar to (99), we get the fringe shift

Nmass = 6.524× 10−19, (103)

corresponding to changing the angle γ from 0 to π, which is much smaller than the fringe shift in the example (I).

2. Massless particles

Similar to (91), according to (75) for massless particles we have:

δϕmassless(γ = 0) ≈ δϕ1 + δϕ2 + δϕ3, (104)

where

δϕ1 =
πls

λ0r1

rg
r1
, δϕ2 =

πls

λ0r1

(
1− a∗ sin(θ1)

)r2g
r21
, δϕ3 =

πls

λ0r1

[
1− 3

2
a∗ sin(θ1) +

a2∗
16

(
1− 13 cos(2θ1)

)]r3g
r31
. (105)

And the equation (89) is simplified to

nmassless =

∣∣∣∣ ls

λ0r1
sin(θ1)a∗

(r2g
r21

+
r3g
r31

)∣∣∣∣. (106)

From (105) we can find the phase difference is proportional to the area of the parallelogram and inversely proportional
to the wavelength λ0 of the particles. As an example, we consider gamma rays and adopt the parameters

ls = 6× 10−4m2, λ0 = 10−12m. (107)

8 Equations (92) and (93) are used here even though (68) is violated, because (69) still holds for the case a = 0.
9 Here we do not consider the uncertainties shown in the references [21, 22]. Moreover, in such papers the authors do not give the angle
θ1 directly, but give the binary orbital inclination i = 27.51◦. However, as stated in Ref. [22], the spin axis of the black hole is assumed
to be aligned with the orbital angular momentum. Therefore, the angle θ1 is equal to the inclination i.



16

Then we repeat the computations in (I) and (II).
For the example (I) we get:

δϕ1 = 4.111× 10−7, δϕ2 = 5.719× 10−16, δϕ3 = 7.955× 10−25,

nmassless = 0, Nmassless = 1.309× 10−7. (108)

Note that the definition for the fringe shift Nmassless is similar to (95).
For the example (II) we get:

δϕ1 = 2.515× 10−26, δϕ2 = 1.239× 10−41, δϕ3 = −1.973× 10−57,

nmassless = 3.375× 10−42, Nmassless = 8.005× 10−27. (109)

3. Discussion

Comparing the results in the example (I) with those in the example (II), we find that NI ≫ NII holds for both
massive and massless particles, where the subscripts denote the two examples. Such inequality is explained by N ≈
|δϕ1/π| ∝ rg/r

2
1 and (rg/r

2
1)I ≫ (rg/r

2
1)II. Therefore, if we want to increase the fringe shiftN , we can increase the ratio

rg/r
2
1. For example, to let Nmass ≈ 1 in (II), we can decrease the distance to be r1 ≈ 5.533×1010m ≈ 1.793×10−9kpc

which is much less than the distance 2.22kpc in (100) but still satisfies the condition r1 ≫ rg ≈ 6.262 × 104m. In
order to increase N we can also increase the area of the parallelogram, according to (92) and (105). Moreover, for
this purpose, in the massive case we can use more massive or slower particles. While for the massless case we can use
more energetic particles to increase N . As for n, to increase its value, we can increase the ratio r2g/r

3
1, the area of the

parallelogram, the spin parameter, or the quantity sin(θ1), according to (94) and (106). For example, in (II) we can
decrease the distance to be r1 ≈ 9.368 × 106m to let nmass ≈ 1. Furthermore, we can use more massive particles or
more energetic massless particles to increase n.

Now we compare the massive case with the massless case. Comparing the values of N in (99) and (103) with those
in (108) and (109) respectively, we can find that Nmass is much greater than Nmassless, although a very small value
for λ0 is chosen. Moreover, comparing the value of n in (102) with its value in (109), we can find nmass ≫ nmassless.
Therefore, we conclude that it is more difficult to detect the fringe shifts for massless particles in comparison with
the massive case.

Finally, comparing nmass with Nmass and comparing nmassless with Nmassless in these examples, we find n ≪ N for
both cases. This is because N ≈ |δϕ1/π| is dominated by the first order terms according to (95), while all the terms
of n have orders higher than one according to (94) and (106). Therefore, it is easier to detect N than to detect n.
Additionally, according to (92) and (105), the phase difference δϕ1 depends on rg, and, according to (94) and (106),
the fringe shift n depends on both a∗ and rg. Therefore, inversely we can determine the mass of the black hole and
its spin parameter according to the measured fringe shifts, following the following steps: First we should measure the
fringe shift N to determine the mass M . For massive particles it is determined by

M =
2π2r21h̄

2c2λd

Gls(m2c2λ2d + 2π2h̄2)
Nmass, (110)

while for massless particles it is determined by

M =
c2λ0r

2
1

2Gls
Nmassless, (111)

then we should measure the fringe shift n, from which, given the mass M , one can determine the spin parameter a∗
as follows. For simplicity we only keep up to second order terms in (94) and (106). Hence, plugging (110) and (111)
into these equations, we can determine the spin parameter a∗. For massive particles it is:

a∗ =
ls(m2c2λ2d + 2π2h̄2)2

8π3h̄3 sin(θ1)r1mcλ2d

nmass

N2
mass

, (112)

while for massless particles it is:

a∗ =
ls

sin(θ1)λ0r1

nmassless

N2
massless

. (113)
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5. CONCLUSION

The gravitational phase difference has been expressed as the integral of a function Sβ defined by the product of the
four-momentum, the metric, and the gauge gravitational potential, which is expressed by the tetrad. This is the way
to calculate the gravitational phase for a general given spacetime. However, as an explicit example, in this paper we
considered the case of the Kerr spacetime and we studied a particles’ interference experiment (FIG. 2) analogous to
the COW experiment, but in the Kerr spacetime.

We calculated the phase difference for massive and massless particles respectively. We found that the angular
momentum of the black hole only appears in the second or higher order terms in the phase difference. As a gen-
eralization, we have proved that the angular momentum density a does not appear in the first order terms of the
local gravitational phase at large distance respect to the Schwarzschild radius, namely for r ≫ rg. Then we have
evaluated the fringe shifts for several examples, compared the results, and discussed how to increase the fringe shifts.
Concretely, in order to increase the fringe shifts, we should take a larger black hole’s mass, decrease the distance from
it, or increase the area of the parallelogram. For this purpose, we could also choose more massive and slower particles
or more energetic massless particles. According to the numerical results, we found that it is more difficult to measure
the fringe shifts for massless particles than those for massive particles. In the end, we showed how to determine the
mass of the black hole and its spin parameter by the measurement of the fringe shifts.

We here propose some potential extensions of our work. Besides the interference with paths along a parallelogram
we could consider other configurations, or, in addition to the asymptotically flat region, we could consider the region
closer to the black hole gravitational radius. Additionally, the numerical examples should not be limited to the black
hole in Cygnus X-1, but other examples should be discussed in the future. Finally, considering the universality of
the gravitational phase (42), we could apply it to other spacetimes. For example, we could consider other compact
objects such as binary black holes, neutron stars, and rotating galaxies or black holes beyond Einstein’s theory of
gravity [23–26].

Finally, recalling that the phases derived in this paper are based on Teleparallel Gravity, it is essential to compare
our results with those in general relativity. Even though the equation of motion in the former is equivalent to the one
in the latter (see Sec. 2 2.2), the quantum aspects of these theories are not necessary the same. Now let us compare the
non-relativistic phase difference (79) with the one obtained in general relativity. In Ref. [27], the authors calculated
the phase difference of a quantum interferometer experiments on the earth, with the rotation of the earth taken into
account. In the weak field limit and up to the first order in the post-Newtonian approximation, they found

δϕPN =
m2gAλ

2πh̄2
sinµ+

2m

h̄
ω⃗ · A⃗+

2m

5h̄

rg
R

[
ω⃗ − 3

( R⃗
R

· ω⃗
) R⃗
R

]
· A⃗

−1

2

rg
R

(m2gAλ

2πh̄2
sinµ

)
+

3

2

(λC
λ

)2(m2gAλ

2πh̄2
sinµ

)
, (114)

where g is the gravitational acceleration, A⃗ is the area vector enclosed by the interferometry loop, µ is the angle

between A⃗ and the position vector R⃗ of the interferometer, R is the radius of the earth, λ and λC are the de Broglie
wavelength and the Compton wavelength respectively, and ω⃗ is the angular velocity vector of the earth with its
magnitude related with the Kerr parameter by a = 2R2ω/5. For simplicity, we use δαj to denote the jth term in
(114), where j = 1, 2, ..., 5. According to Ref. [27], these terms are interpreted as follows: The first term δα1 is just
the result predicted in Ref. [10], verified by the COW experiment [11]; the term δα2 due to Sagnac effect [28, 29] is
caused by the rotation of the interferometer (recall that this experiment is on the earth); the term δα3 is due to the
Lense-Thirring effect [30]; finally, the terms δα4 and δα5 correspond to the redshift corrections to the potential energy
and the kinetic energy respectively. To compare the result (79) with (114), we need to rewrite the latter according to
the parameters in our result. Notice that the second term in (114) is absent here, namely δα2 = 0, because in FIG. 2
the interferometer is assumed to be not rotating. Then according to the relation between a and ω, and the equations:

g =
rg
2R2

, µ =
π

2
− γ′, R⃗ · ω⃗ = Rω cos θ′, R⃗ · A⃗ = RA cos(µ), ω⃗ · A⃗ = ωA cos(θ′ + µ), (115)

where γ′ is the angle between R⃗ and the plane of the interferometry, we can rewrite the remaining terms in (114) as
follows:

δα1 =
mA cos(γ′)

2h̄R

1

v

rg
R
, δα3 = −mA

h̄R

(
2 cos(θ′) sin(γ′) + cos(γ′) sin(θ′)

)arg
R2

,

δα4 = −mA cos(γ′)

4h̄R

1

v

r2g
R2

, δα5 =
3mA cos(γ′)

4h̄R

rgv

R
, (116)
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where the units c = 1 has been used. To compare our result with (116), we neglect the terms of the third order such
that the phase difference (79) reduces to

δϕNR =
mls cos(γ)

2h̄r1

1

v

rg
r1

− mls

h̄r1

(
2 cos(θ1) sin(γ) + cos(γ) sin(θ1)

)arg
r21

+
mls cos(γ)

2h̄r1

1

v

r2g
r21

+
mls cos(γ)

4h̄r1

rgv

r1
+
mls cos(γ)

4h̄r1

1

v

r2gv
2

r21
. (117)

The first two terms in (117) coincide with those in (116), while the third and fourth terms are different from those of
(116) only in the coefficients, and the last term in (117) can be neglected compared with other terms because (rgv/r1)

2

is very small. We notice that the area A in Ref. [27] is defined in flat space (see (3.20) in Ref. [27]), while in this
paper the area is defined by the length in curved spacetime (see (A3)). However, even using the later, the form of the
phase differences in (116) are not changed (see the last paragraph in Appendix A), such that the above conclusions
do not change. Finally, we mention that the first two terms in (117) also coincide with the result in Ref. [31], where
the authors study the same experiment on the earth. They use an approximation to the first order of M and a, and
neglect the terms of O(v2).
Therefore, in the weak field limit, the non-relativistic phase difference (79) based on the theory of Teleparallel

Gravity, reproduces partly the result of post-Newtonian approximation in general relativity. In particular, reproduces
the result in the COW experiment and the term of the Lense-Thirring effect. It looks a little strange that the
predictions from Teleparallel Gravity in the interference experiment are not exactly the same as those from general
relativity. Indeed, consider that the equation of motions for a particle in Teleparallel Gravity is identical to the
geodesic equation in general relativity (as mentioned in Sec. 2 2.2). We have to admit that we do not know how to
explain such difference, and we simply notice that the derivations for the phase in this paper and in Ref. [27] are
different. In Ref. [27], the phase is found by constructing the quantum Hamiltonian of a non-relativistic particle in
the weak gravitational field up to the first order of the post-Newtonian approximation, and plugging the Hamiltonian
into the Schrödinger equation. While in our paper, following Ref. [9], the phase is constructed by separating a gauge
potential Ba

µ analogous to the electromagnetic potential from the Lagrangian of the particle (see the last paragraph
in Sec. 2 2.2). Given that we have not provided a wave equation satisfied by (4), this phase is a conjecture to some
extent. In spite of this, we think that it is reasonable in the perspective of the analogy with electromagnetism,
and since it successfully reproduces the result of COW experiment. However, the gravitational phase in Teleparallel
Gravity deserves more investigations before to be able to help us revealing the differences between Teleparall Gravity
and general relativity in such quantum aspects10.
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Appendix A: Derivations for some formulas

In this appendix we derive some equations used in Sec. 4. Let us prove (70) firstly. According to (62) and recalling
g30 = g03 in Kerr spacetime, we get

L = −E
(
g03

dt

dφ
+ g33

)(
g00

dt

dφ
+ g03

)−1

. (A1)

The expression for dt/dφ is found by letting k = 3 in the definition of the velocity (71), namely

dt

dφ
=

1

vφ
√
g00

− g03
g00

. (A2)

Hence, replacing (A2) into (A1), we prove (70).

10 As suggested by the referee of this paper, if the Aharonov-Bohm effect is sensitive to the potential Ba
µ, it could provide a possi-

ble way to distinguish general relativity from Teleparallel Gravity.
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Now we derive (72). As shown in [18], in a spacetime with its metric independent on the time coordinate, a distance
L is defined as the integral of the distance element dL given by:

dL2 = Γijdx
idxj , (A3)

where the three-dimensional metric tensor Γij is defined in (71). Applying (A3) to the radial component of l and the
component perpendicular to the radius (see FIG. 2), we find:

l cos(γ) =
√
Γ11dr ≈

√
−g11(r2 − r1), (A4)

l sin(γ) =
∣∣√Γ22dθ

∣∣ ≈

√
−g22(θ1 − θ2), when l sin(γ)

√
−g−1

22 ≤ θ1,
√
−g22(θ1 + θ2) when l sin(γ)

√
−g−1

22 > θ1,
(A5)

which imply the two equations in (72) respectively.
Now we show how to derive (73). We know that dr ≈ 0 and dθ ≈ 0 on the path AB (assumption (a) in Sec. 4 4.1),

therefore, using (A3) to this path, we have the following relation:

dφ ≈ dL√
Γ33

. (A6)

Hence, combining (A6) with (A2), we find the relation between time coordinate and length, i.e.,

dt ≈
( 1

vφ
√
g00

− g03
g00

) dL√
Γ33

. (A7)

Integrating (A6) and (A7), and taking (B16) into account, we derive the two equations in (73).
As for the energy of a massive particle in (74), we take directly the result from Ref. [18] (see Sec. 88 in [18] ). While

for a massless particle, its energy reads [19]:

E = V h̄ω, (A8)

where ω is its frequency measured by a static observer, while V is the redshift factor given by:11

V =
√
KµKµ, (A9)

where Kµ is the Killing vector related to the time-translation invariance. Here by a static observer we mean that the
four-velocity of the observer is proportional to the Killing vector [19]. Inserting the Killing vector Kµ = (1, 0, 0, 0)
into (A9), we obtain V =

√
g00. Finally, plugging this result into (A8), we obtain the second expression in (74).

Now we prove the statement in Sec. 5 that the forms of the terms in (116) do not change when we use the area
defined in the Kerr spacetime to re-express them. Firstly, the metric (2.1) in Ref. [27] can be rewritten as12

ds2 =
[
1+ 2Φ+2Φ2 −

(rga
r′2

)2

sin2(θ′)
]
dt′2 +

2rga

r′
sin2(θ′)dφ′dt′ − (1− 2Φ)

(
dr′2 + r′2dθ′2 + r′2 sin2(θ′)dφ′2), (A10)

where Φ = −rg/(2r′) is the Newtonian potential, and the coordinates (t′, r′, θ′, φ′) relate with the asymptotically
static coordinates (t, x′, y′, z′) by

t′ = t, x′ = r′ sin(θ′) cos(φ′), y′ = r′ sin(θ′) sin(φ′), z′ = r′ cos(θ′). (A11)

The terms in (116) are derived by the following integral [27]

δαj = − 1

h̄

∮
Hjdt, (A12)

where the loop encloses the interferometer, and Hj are defined by

H1 = mΦ, H3 =
2rgR

2

5r′3
ω⃗ · J⃗ , H4 =

m

2
Φ2, H5 =

3Φp⃗ 2

2m
, (A13)

11 In the metric signature (−,+,+,+) the redshift factor is replaced by V =
√

−KµKµ.
12 We believe that there is a typo in the last term of g00 in (2.1) of Ref. [27]. Here we have made a modification.
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where J⃗ = r⃗ × p⃗ is the angular momentum defined in flat space, and p⃗ = mv⃗. For simplicity, assume that the loop of
the interferometer is a parallelogram. As we mentioned in Sec. 5, the area A in (116) is defined in flat space [27]. If
we take a new area defined by the length in the Kerr spacetime (see (A3)), the term δα1 now reads

δα1 = −mrg
2h̄

( 1

r′2
− 1

r′1

)
tAB = −mrg

2h̄

( 1

r′1 + l cos(γ)/
√
−g11

− 1

r′1

)
s
( 1

v
√
g00

− g03

g00
√
Γ33

)
≈ mls cos(γ)

2h̄r′1

1

v

rg
r′1
, (A14)

where we have used (72) and (73) (they still hold in the coordinates (t′, r′, θ′, φ′)), and have neglected the third order
and higher orders terms of rg and a. Here the product ls is the area of the interferometry loop, and l and s are lengths
defined in the Kerr spacetime. Similar calculations lead to

δα4 ≈ −mls cos(γ)
4h̄r′1

1

v

r2g

r′1
2 , δα5 ≈ 3mls cos(γ)

4h̄r′1

rgv

r′1
. (A15)

As for δα3, it is still given by the result of Ref. [27],

δα3 = −mA
h̄r′1

(
2 cos(θ′1) sin(γ

′) + cos(γ′) sin(θ′1)
)arg
r′1

2 , (A16)

where A = l′s′ is the area defined in flat space. We need to re-express δα3 according to the area ls. For this purpose,
applying (A3) to the parallelogram in the radial direction, we obtain

l cos(γ) = Lr′ ≈
√
Γ11 l

′ cos(γ′), ⇒ l′ cos(γ′) ≈ l cos(γ)√
Γ11

. (A17)

Similarly, in the direction of θ′ and φ′ we get respectively

l′ sin(γ′) ≈ r′1√
Γ22

l sin(γ), s′ ≈ r′1 sin(θ
′
1)√

Γ33

s. (A18)

Replacing (A17) and (A18) into (A16), expanding the expression, and neglecting the third order and higher order
terms, we get

δα3 ≈ −mls
h̄r′1

(
2 cos(θ′1) sin(γ) + cos(γ) sin(θ′1)

)arg
r′1

2 . (A19)

Finally, comparing (A14), (A15) and (A19) with (116), we can see that the forms of δαj are not changed.

Appendix B: Derivations for the phase difference

In this appendix, we show how to derive the phase difference (75) between the paths ADC and ABC in FIG. 2.
Lest us start writing the coordinates of the points A, B, C, and D as follows:

A(tA, r1, θ1, φA), B(tA + tAB , r1, θ1, φA + φAB), C(tD + tDC , r2, θ2, φD + φDC), D(tD, r2, θ2, φD), (B1)

where we defined tAB = tB − tA, φAB = φB − φA, tDC = tC − tD, and φDC = φC − φD.
Hence, we write down the phases of each path in the following way. As we mentioned in the assumption (a) in

Sec. 4 4.1, we have dr ≈ 0 and dθ ≈ 0 on the paths AB and DC. Moreover, according to (64), we know that all the
components Sβ are independent on t and φ.13 Therefore, (65) simplifies to:

ϕAB ≈ 1

h̄
(SA

0 tAB + SA
3 φAB)AB , (B2)

ϕDC ≈ 1

h̄
(SD

0 tDC + SD
3 φDC)DC , (B3)

13 As for P 1 and P 2 which appear in the expressions of S1 and S2, they are also independent of t and φ (see (84)).
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where the superscripts A and D denote the positions, and the subscripts AB and DC denote the paths. As for the
path AD, we have

ϕAD =
1

h̄

(∫
Sβdx

β
)
AD

=
1

h̄

[
S0(r⃗a)tAD + S1(r⃗b)rAD + S2(r⃗c)θAD + S3(r⃗d)φAD

]
AD

=
1

h̄

{[
S0(r⃗a)−SA

0 +SA
0

]
tAD +

[
S1(r⃗b)−SA

1 +SA
1

]
rAD +

[
S2(r⃗c)−SA

2 +SA
2

]
θAD +

[
S3(r⃗d)−SA

3 +SA
3

]
φAD

}
AD

≈ 1

h̄

[
SA
0 (tD − tA) + SA

1 (r2 − r1) + SA
2 (θ2 − θ1) + SA

3 (φD − φA)
]
AD

, (B4)

where we have used the mean value theorem for integrals in the second step, and r⃗a, r⃗b, r⃗c and r⃗d, are points on AD.

The last step in (B4) holds because both (Sβ(r⃗p)− SA
β )AD and xβAD are smaller than or equal to O(l/r1).

14 (Recall

the sentence after (72).) Similar to (B4), we can derive

ϕBC ≈ 1

h̄

[
SB
0 (tD − tA + tDC − tAB) + SB

1 (r2 − r1) + SB
2 (θ2 − θ1) + SB

3 (φD − φA + φDC − φAB)
]
BC

, (B5)

where we have used (B1). In order to simplify the expression for (ϕAD − ϕBC) we have to show the equality
(SA

β )AD = (SB
β )BC . We know that (gAµν)AD = (gBµν)

A
BC holds because the metric is independent of t and φ. Therefore,

taking into account the latter conclusion and the expression of Sβ in (64), we have to prove the following equalities,

(EA)AD = (EB)BC , (LA)AD = (LB)BC , (P 1)AAD = (P 1)BBC , (P 2)AAD = (P 2)BBC . (B6)

The first equation in (B6) holds because of the assumption (b) in Sec. 4 4.1. This assumption also implies (v⃗A)AD =
(v⃗B)BC for a the particle on the parallelogram. Thus combining this conclusion with the expression (70), the second
equation in (B6) is proved. Finally, according to (84), the last two equations in (B6) also hold. Since we have proved
(B6), the relation (SA

β )AD = (SB
β )BC holds. The latter equality together with (B4) and (B5) implies:

ϕAD − ϕBC = − 1

h̄

[
SB
0 (tDC − tAB) + SB

3 (φDC − φAB)
]
BC

. (B7)

Merging together (B7), (B2), and (B3), the phase difference between the paths ADC and ABC reads:

δϕ = ϕADC − ϕABC

= ϕDC − ϕAB + ϕAD − ϕBC

=
1

h̄

{[
(SD

0 )DC − (SA
0 )AB

]
tAB +

[
(SD

3 )DC − (SA
3 )AB

]
φAB

+
[
(SD

0 )DC − (SB
0 )BC

]
(tDC − tAB) +

[
(SD

3 )DC − (SB
3 )BC

]
(φDC − φAB)

}
. (B8)

Recalling the expression of Sβ in (64), we find that S0 does not depend on L, such that S0 keeps its value when the
probe particle turns direction at B and D. Hence, we have (SB

0 )BC = (SB
0 )AB = (SA

0 )AB . Therefore, taking (B2) into
account, we can rewrite (B8) as:

δϕ = δϕa + δϕb + δϕc, (B9)

14 For any point p on the path AD, we have |rp − r1| ≤ |r2 − r1| and |θp − θ1| ≤ |θ2 − θ1|. Therefore, expanding (Sβ(r⃗p)− SA
β )AD in the

neighborhoods of r1 and θ1, we can find it is smaller than or equal to O(l/r1). As for xβ
AD, both rAD and θAD are O(l/r1), according

to (72). Finally, for tAD and φAD, the geodesic equations in Kerr spacetime imply [17]

t =

∫
T1(r)dr +

∫
T2(θ)dθ, φ =

∫
Φ1(r)dr +

∫
Φ2(θ)dθ,

where

T1(r) =
r2(r2 + a2) + 2Mar(a− λ)

∆
√

R(r)
, T2(θ) =

a2 cos2 θ√
Θ(θ)

, Φ1(r) =
a(r2 + a2 − aλ)

∆
√

R(r)
, Φ2(θ) =

λcosec2(θ)− a√
Θ(θ)

,

with R(r) and Θ(θ) defined in (85) and (86). Hence, from the mean value theorem for integrals we have:

tAD = T1(re)rAD + T2(θf )θAD, φAD = Φ1(rg)rAD +Φ2(θh)θAD,

where the subscript e, f , g, and h denote points on AD. Therefore, tAD and φAD are also O(l/r1).
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where

δϕa =
1

h̄

[
(SD

0 )DCtAB + (SD
3 )DCφAB

]
− ϕAB , (B10)

δϕb =
1

h̄

[
(SD

0 )DC − (SA
0 )AB

]
(tDC − tAB), (B11)

δϕc =
1

h̄

[
(SD

3 )DC − (SB
3 )BC

]
(φDC − φAB). (B12)

In the following, we compute explicitly the above phase differences. We remind that the phase ϕAB was obtained in
(69). For the first term in (B10), comparing it with (B2), we only need to replace r1 with r2, θ1 with θ2, and LAB

with LDC in (69). Therefore, (B10) is equivalent to:

δϕa = ϕAB(r1 → r2, θ1 → θ2,LAB → LDC)− ϕAB(r1, θ1,LAB). (B13)

Now we focus on the expression of LAB . According to (70), we need to find the expression for vφ. By means of the
equation [18]:

v2 = Γijv
ivj , (B14)

in Kerr spacetime we find:

|vφ| =

√
v2 + g11(vr)2 + g22(vθ)2

Γ33
. (B15)

On the path AB we have vφ > 0, vr = 0, and vθ = 0, therefore, (B15) simplifies to:

vφ =

√
v2

Γ33
. (B16)

Replacing (B16) into (70), we obtain:

LAB =
E
g00

(
−g03 +

√
g00Γ33v2

)
≈ Er1 sin(θ1)ϵ, (B17)

where ϵ is given by:

ϵ =

{√
1− m2

E2 , for massive particles,

1, for massless particles.
(B18)

We have neglected the terms of rg and a in the last expression of (B17) because, according to (69), LAB only appears
in the third order and higher order terms of ϕAB . Moreover, we have used (74) and expression (51) in the last step of
(B17). As for LDC , we only need to replace r1 with r2, and θ1 with θ2 in (B17). As for (B13), using (72) we expand
δϕa in the neighborhoods of r1 and θ1 up to the first order. Finally, we get:

δϕa ≈ El
h̄r1

{
tAB

[
cos(γ)

( rg
2r1

+
r2g
2r21

+
r3g
2r31

+
a2rg
4r31

(
1− 7 cos2(θ1)

))
+ sin(2θ1) sin(γ)

a2rg
2r31

]
+φAB

[
ϵ
a2rg
r21

sin(θ1)
(
cos(γ) sin2(θ1) +

3

4
sin(γ) sin(2θ1)

)
−
(
cos(γ) sin2(θ1)

(arg
r1

+
3ar2g
2r21

)
+ sin(γ) sin(2θ1)

(arg
r1

+
ar2g
r21

))]}
. (B19)

Plugging (B18), (73), and (74) into (B19), and expanding the resulting expression, we get:

δϕa ≈ E0ls
h̄r1

{1

v

[
cos(γ)

( rg
2r1

+
r2g
2r21

+
r3g
2r31

+
a2rg
4r31

(
1− 7 cos2(θ1)

))
+ sin(2θ1) sin(γ)

a2rg
2r31

]
+v

a2rg
r31

sin(θ1)
(
cos(γ) sin(θ1) +

3

2
sin(γ) cos(θ1)

)
−arg
r21

(
2 cos(θ1) sin(γ) + cos(γ) sin(θ1)

)
−
ar2g
r31

(
cos(θ1) sin(γ) +

3

2
cos(γ) sin(θ1)

)}
, (B20)
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where E0 is defined by:

E0 =

{
m(1− v2)−1/2, for massive particles,

h̄ω, for massless particles.
(B21)

As for δϕb in (B11), it is O(l2/r21) and higher orders because both [(SD
0 )DC − (SA

0 )AB ] and (tDC − tAB) are of the
order of O(l/r1) and higher orders, according to (72). Therefore, in our approximation (we remind the reader the
sentence after (72)), this phase difference is negligible:

δϕb ≈ 0. (B22)

As for δϕc in (B12), repeating the above calculations, we find:

δϕc ≈
E0ls
2h̄r1

a2rg
r31

sin(θ1) sin(θ1 − γ)
(
v −

√
v2 − (vr)2 − (r1vθ)2

)
, (B23)

where vr and vθ are the components of the velocity at the point B corresponding to the path BC (see the defini-
tion (71)). In (B23) we can find that the phase difference δϕc is sensible to the direction of the velocity at B along
the path BC, therefore, δϕc depends on the shape of the parallelogram.

According to the above results, δϕb and δϕc are much smaller than δϕa. This is what we expected because according
to (B11) and (B12), δϕb and δϕc are due to the differences between tAB and tDC , and φAB and φDC respectively.
These differences are very small compared with tAB and φAB , thus, δϕb and δϕc can be regarded as small modifications
to the phase difference. Merging together (B20), (B22), and (B23), we finally obtain the phase difference (75).

Now we show briefly how (82) is derived for θ1 = 0 and θ1 = π. As for δϕa, we only need to insert ϕAB = π into
(B19), and to repeat the above calculations. Hence, δϕb ≈ 0 still holds. Finally, δϕc can be also neglected, because
when θ1 = 0 or θ1 = π hold, plugging (83) into (B12), it results:

δϕc ≈
1

h̄
sin2(θ2)

(
E arg
r2

− 1

2
LDC

a2rg
r32

+ E
ar2g
r22

)
(φDC − φAB). (B24)

Here sin2(θ2) is of the order of O(l2/r21) and higher orders, hence δϕc is negligible. Based on above results, we can
derive (82).
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