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Abstract: Methanol, naturally present in small quantities in the distillation of alcoholic beverages,
can lead to serious health problems. When it exceeds a certain concentration, it causes blindness,
organ failure, and even death if not recognized in time. Analytical techniques such as
chromatography are used to detect dangerous concentrations of methanol, which are very accurate
but also expensive, cumbersome, and time-consuming. Therefore, a gas sensor that is inexpensive
and portable and capable of distinguishing methanol from ethanol would be very useful. Here, we
present a resistive gas sensor, based on tin oxide nanowires, that works in a thermal gradient. By
combining responses at various temperatures and using machine learning algorithms (PCA, SVM,
LDA), the device can distinguish methanol from ethanol in a wide range of concentrations (1-100
ppm) in both dry air and under different humidity conditions (25-75% RH). The proposed sensor,
which is small and inexpensive, demonstrates the ability to distinguish methanol from ethanol at
different concentrations and could be developed both to detect the adulteration of alcoholic
beverages and to quickly recognize methanol poisoning.

Keywords: metal oxide; tin oxide; gas sensor; resistive sensor; nanowires; methanol; ethanol

1. Introduction

Methanol, alcohol produced naturally (in minimal quantities) in the distillation and
production of alcoholic and even non-alcoholic beverages, can be highly toxic to human
health. Methanol poisoning, which usually occurs by ingestion, can lead to irreversible
tissue damage, especially to the eyes and nervous system, or even death [1]. This happens
because methanol is metabolized by the body to form formic acid, formate, and
formaldehyde [2], which are very toxic [3]. Outbreaks of methanol poisoning occur
frequently in many countries, with hundreds of deaths due to adulterated alcohol [4].
Examples include the 959 cases in Iran (October 2018) [5], 237 in Cambodia (May 2018)
[6], 45 deaths in Malaysia (October 2018) [7], and more than 250 deaths in India (February
2019) [8,9]. Furthermore, methanol is often used as a solvent or chemical raw material in
chemical laboratories and plants [10], which creates a risk of intoxication even by
inhalation or absorption from the skin [11].

Methanol intoxication is usually detected in the blood by analytical techniques such
as gas-liquid chromatography and blood gas analysis [12], which require qualified
personnel and are costly in terms of both time and money. For these reasons, they are not
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readily available, especially in non-urban areas and in developing countries, where
outbreaks are more frequent [13]. Levels of methanol intoxication can also be determined
non-invasively in exhaled breath [14], such as what is performed daily by law enforcement
with ethanol [15]. Although the average concentration of methanol in the breath of healthy
people is less than 1 ppm, concentrations up to 10 ppm may be found in some cases [14],
while concentrations above 150 ppm are considered a symptom of severe intoxication [1].
The recommended airborne exposure limit (REL) by the American National Institute for
Occupational Safety (NIOSH), Occupational Safety and Health Administration (OSHA),
and American Conference of Governmental Industrial Hygienists (ACGIH) is 200 ppm
averaged over a 10-h work shift [16].

The challenge is therefore to distinguish methanol from ethanol and quantitatively
estimate their amount with a small, inexpensive, and portable device. Similarly, such a
device would also be important for screening alcoholic beverages in order to prevent
methanol poisoning.

Gas chemosensors are ideal candidates for this application, as they are simple to make
and use, inexpensive, and miniaturizable [17]. Chemoresistive sensors based on metal oxide
nanostructures have been shown to detect various analytes at concentrations below parts
per million (ppm) in a very short time [18]. Unfortunately, these materials are not very
selective even if their morphology and structure are optimized to increase porosity and
reactivity [19]. Due to this poor selectivity, it is difficult to distinguish two similar molecules
such as ethanol and methanol. Although SnO: is one of the metal oxides with the best
properties and therefore most used for gas sensors, even the finest nanostructures such as
cross-linked porous nanosheets [20] and hollow nanoparticles [21] exhibit very similar
responses to these two gases, making them difficult to distinguish. Therefore,
chemoresistors are usually joined in arrays called electronic noses, which exploit different
materials to obtain good selectivity [22,23]. The interest in electronic noses leads to the study
of the most innovative materials, such as graphene and graphene oxide, and the use of
algorithms such as the support vector machine (SVM) allows one to obtain good
quantitative results [24]. Most resistive electronic noses use different metal oxides (SnO,
ZnO, WOs) and different surface decorations with metal nanoparticles (Ag, Pt, Pd) to obtain
good performance also in the detection of ethanol and methanol [25]. Being composed of
different sensors based on different materials (metal oxides, polymers, small conjugated
molecules, and others) that require different working conditions, heaters, and electrodes for
individual signal acquisition, current electronic noses are still rather complex and expensive.

Here we describe a gas sensor, based on tin oxide (SnO2) nanowires, that aims at
selectivity, not using different materials but rather different operating temperatures. The
detection mechanism is based on the chemical reactions that take place on the surface of
the nanowires, where the volatile molecules react by releasing or absorbing electrons,
changing the resistance of the sensor. The material response changes with both the
temperature and volatile compound concentration. This produces a “thermal/chemical
fingerprint” which can be the basis of an electronic nose [26].

This approach has already been demonstrated on agrifood products by evaluating the
freshness of meat and fish [27,28]. In practice, we join the responses at different temperatures
(as if they came from different sensors) and combine them in multidimensional points.
Analyzing them with machine learning algorithms and multivariate statistical analysis
techniques (principal component analysis, support vector machine, linear discriminant
analysis), we demonstrate that the sensor is not only able to distinguish ethanol and
methanol, but also to estimate their concentration. Considering the aforementioned hazard
and intoxication thresholds, the sensor was tested in a concentration range of 1 to 100 ppm.
The sensor has been tested with different concentrations of ethanol and methanol under
more realistic and difficult conditions (relative humidity of 25 to 75%) and proved to be able
to distinguish the two alcohols under any conditions. This performance makes the
nanowire-based sensor an excellent candidate for rapid and inexpensive screening for the
presence of methanol in both intoxicated patients and potentially adulterated beverages.
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2. Materials and Methods
2.1. Synthesis of SnO2 Nanowires

A forest of tin oxide nanowires was initially grown by chemical vapor deposition
(CVD). An alumina boat filled with pure tin monoxide was placed as an evaporation source
in the center of an oven (Lindberg Blue M, Thermo Fisher Scientific, Waltham, MA, USA)
where the temperature is highest. Close to it (1 cm), a silicon substrate of approximately 1 x
2 cm? was placed, on which a thin gold film (thickness of approximately 5 nm) acted as a
catalyst. The quartz tube was then pumped down to 102 mbar and purged with high-purity
argon (99.999%), repeating these two steps three times, and finally, the system was pumped
down to 8 x 10 mbar. While the system was in a vacuum, the temperature was increased
from room temperature (23 °C) up to 800 °C at a rate of 25 °C/min and then the oven was
held at 800 °C for five minutes. At this point, an oxygen flow of 0.35 standard cubic
centimeters (sccm) was injected into the system in order to start the growth of the nanowires.
The growth of the nanostructures, which follows the gold-catalyzed solid liquid vapor
(VLS) mechanism [29], lasted 30 min, after which the system was shut down and allowed to
cool. At the end of the growth process, the sample surface showed a homogeneous white
film.

2.2. Nanowires Characterization

The morphology of the SnO: nanowires was studied by secondary electron
microscopy (SEM) with a Hitachi S-4800 (Tokyo, Japan). The structure of the nanowires
was investigated by X-ray diffraction (XRD) using a Philips Xpert Pro diffractometer
(Malvern Panalytical, Malvern, UK) working at 40 kV with CuKa radiation.

2.3. Sensor Fabrication

The nanowires were transferred to another substrate via sonication and drop-coating.
The sample with the nanowire forest obtained from the CVD was ultrasonicated in
dimethylformamide for ten seconds to obtain a dispersion of nanowires. A few drops of
this dispersion were deposited on a piece of silicon wafer with a 300 nm layer of thermally
grown oxide. Two interdigitated Ti/Pt electrodes were then deposited via sputtering and
UV lithography on top of the nanowires, so that they formed a chemiresistor. The device
was subjected to eight-hour thermal annealing at 500 °C in nitrogen in order to stabilize
the structure and electrical characteristics [18].

2.4. Gas Sensor Measurements

The chemoresistive sensor was placed on a heatable sample holder in a vacuum
chamber connected to high-purity gas cylinders through mass flow controllers and a
mixing chamber. Two microprobes were connected to the metal electrodes in order to read
the resistance of the nanowires with a multimeter (Keithely 2410, Cleveland, OH, USA)
controlled by data acquisition software (LabView, National Instruments, Austin, TX,
USA). The sensor was tested at five different temperatures (180-300 °C) over a
concentration range of ethanol and methanol ranging from 1 to 100 ppm. The sensor
response was defined as S = Rair/Rgas, where Rair and Rgas are the resistance of the sensor in
the air and in the presence of gas, respectively. The measurements on the liquid mixtures
were carried out by placing the sensor approximately 1 cm above the vessel with the
alcohol mixture in the measurement chamber, letting the system reach equilibrium.

2.5. Machine Learning Techniques

Since a resistive sensor provides a one-dimensional response (a single pure number,
a ratio between two electrical values), it is inherently non-selective. For this reason, the
sensor responses at five different working temperatures (180, 210, 240, 270, and 300 °C)
were combined to create 5-dimensional points to be processed with multivariate statistical
analysis techniques [26]. The 5D points obtained were analyzed with different techniques
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in order to evaluate different aspects of the sensor performance. Principal component
analysis (PCA) was used to graphically visualize the relationships between gas
measurements, as it reduces the dimensions (from five to two) while maintaining as much
information as possible. Linear discriminant analysis (LDA) was used to quantitatively
evaluate the sensor’s ability to distinguish the two gases, as it maximizes the separation
between classes (in our case the two gases at different concentrations). To confirm the
classification of the LDA, a Euclidean UPGMA clustering was also used. The support vec-
tor machine (SVM) was used to obtain an estimate of the gas concentration through linear
regression. SVM regression measurements were performed using concentrations 1, 3, 5,
10, 20, 50, and 100 ppm as the training set and 2, 4, 8, 15, 30, and 80 ppm as the test set.
The classification of the measurements with LDA in humidity and the measurements of
alcoholic mixtures were carried out with cross-validation, using all the possible permuta-
tions of training and test data.

3. Results and Discussion
3.1. Nanowires Characterization

The nanowires that made up the white layer obtained from CVD were initially stud-
ied by secondary electron microscopy to study the morphology of the nanomaterial. Fig-
ure la confirms that the material is a forest composed of long, thin nanowires arranged
chaotically. The nanowires are several microns long and have constant and rather homo-
geneous diameters of approximately 40-70 nm. Figure 1a is blurred because of the accu-
mulated charge due to the very high electrical resistance of the nanowires.
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Figure 1. (a) SEM image and (b) XRD pattern of the SnO2 nanowires.

The composition and structure of the nanowires were investigated by means of X-ray
diffraction. The top pattern in Figure 1b shows many intense and sharp peaks, which can be
easily assigned to the reflections of the SnO: tetragonal phase, with lattice parameters of a=b
=4.742 and ¢ =3.186 A. As can be seen in the pattern in the lower part of Figure 1b (in blue),
the experimental peaks aptly match those in the reference JCPDS n. 77-0450. The pattern in
Figure 1b does not show other phases besides the tetragonal SnOz, nor peaks due to impurities
or amorphous contributions, and therefore confirms the good crystallinity of the nanowires.

3.2. Traditional Gas Measurements

The performance of the gas sensor based on SnO:2 nanowires was initially studied in
a traditional way. The dynamic response of the device at various temperatures is shown
in Figure 2a,b. The sensor was subjected to different concentrations of ethanol (Figure 2a)
and methanol (Figure 2b) ranging from 1 to 100 ppm. Both graphs show that the response
increased rapidly when the gas was injected and decreased even more rapidly when the
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gas was replaced by dry air. The intensity of the response increases with increasing gas
concentration, as expected, and the signal fully recovers when dry air is injected, with no
noteworthy drifts. The graphs in Figure 2c,d show the response of the sensor as a function
of the gas concentration (ethanol in Figure 2c and methanol in Figure 2d). The response
clearly increases with concentration, initially more markedly and then more slowly, and
increases with increasing operating temperature. The graphs in Figure 2, although differ-
ent, are quite similar: The response increases with the gas concentration and temperature
for both ethanol and methanol. The traditional analysis of the sensor response does not
allow us to distinguish the two gases.
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Figure 2. Dynamic response of the sensor to different concentrations of (a) ethanol and (b) methanol
at different temperatures; response as a function of gas concentration for (c) ethanol and (d) metha-
nol at different operating temperatures.

3.3. Machine Learning: Visualization and Classification

To achieve selectivity and to be able to distinguish ethanol from methanol, the re-
sponses of the sensor at the five temperatures were combined in 5D points and analyzed
with different techniques of multivariate statistics and machine learning. The first tech-
nique used is principal component analysis (PCA), a technique that allows the dimensions
tobe reduced from five to two (so that points can be visualized) while retaining maximum
information from the original data. The graph of the first two main components is shown
in Figure 3, where the points relating to ethanol are green and those relating to methanol
are violet. It is clear that the points relating to the two gases lie on different lines, and it is
therefore easy to distinguish them qualitatively. The points of each gas lie on a line be-
cause they are measurements at different concentrations: The leftmost points are the meas-
urements at 1 ppm, and moving to the right, the points are relative to measurements at
higher concentrations, up to 100 ppm (they are the same concentrations as in Figure 2a,b).



Sensors 2022, 22, 5554

6 of 11

Figure 3 intuitively demonstrates that the sensor is able to distinguish the points relating
to the two gases, but it is not enough. For this reason, linear discriminant analysis (LDA)
was also used, which is shown in the inset of Figure 3 and confirms how the points relating
to the two gases are clearly distinct, also in a quantitative way. This means that the gas
sensor is able to distinguish the two gases despite the different concentrations tested.
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Figure 3. Plot of the first two main components illustrating the measurements at different concentra-
tions (1 to 100 ppm) of ethanol (in green) and methanol (in violet). Inset: Linear discriminant analysis
of the points relating to the two gases, which shows how they are separated and distinguishable.

3.4. Machine Learning: Quantification

To assess the danger of methanol poisoning or an adulterated drink, it is necessary
not only to detect its presence, but also its concentration (in the breath or in the drink). To
obtain an estimate of the gas concentration, a support vector machine (SVM) was used, a
supervised technique that uses the first set of data as “calibration” [30,31]. The data used
for Figure 2 was used as a training set, while other concentrations (2, 4, 8, 15, 30, and 80
ppm) were used to test the sensor performance in estimating the gas concentration. The
concentrations of the test dataset were chosen halfway between those of the training da-
taset in order to make the work more difficult for the sensor and to obtain the estimate in
the worst realistic conditions. The linear support vector machine performed a regression
in the five-dimensional space and the sensor provided the estimates shown in Figure 4.
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Figure 4. Estimation of the concentration of (a) ethanol and (b) methanol, obtained with a linear
regression by means of a support vector machine.

The X-axis shows the nominal concentration tested, while the estimate provided by
the sensor is shown on the Y-axis. The diagonal therefore represents the perfect estimate:
The closer a point is to it, the more correct the estimate is.

The blue dots in Figure 4a are related to ethanol, and are very close to the diagonal,
demonstrating good sensor accuracy. In fact, the mean absolute error of the sensor on the
ethanol concentration is only 3.1 ppm. The green dots in Figure 4b refer to methanol, and
are also close to the diagonal, confirming an accurate estimate for methanol as well. The
mean absolute error for methanol is 3.3 ppm. It can be seen in both plots that the sensor
estimate is always higher than the nominal value, and this is useful since it is more dan-
gerous to underestimate the methanol concentration than to overestimate it, whether in
the case of an intoxicated person or an adulterated drink.

3.5. Relative Humidity

The measurements shown in the previous graphs were obtained in dry air, but both
the breath and the headspace of a drink have high relative humidity. For this reason, the
sensor has been tested in different relative humidity conditions, in order to understand
how its performance varies. To statistically evaluate the performance of the sensor, three
concentrations of each gas (1, 10, and 100 ppm) were chosen, and each measurement was
repeated eight times, in order to evaluate the repeatability of the measurement. This pro-
cedure was repeated at different relative humidity values: 0, 25, 50, and 75%.

The five-dimensional space was reduced by principal components analysis, and Fig-
ure 5 shows the results in 2D plots. Figure 5a shows the points in dry air (0% relative
humidity, RH), and the groups of points related to each concentration of each gas are col-
ored differently (shades of blue for ethanol and green for methanol).
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Figure 5. Plots of the principal components for concentrations of 1, 10, and 100 ppm of ethanol and
methanol at (a) 0%, (b) 25%, (c) 50%, and (d) 75% relative humidity.

At the bottom, from left to right, there are the concentrations of ethanol (1, 10, and
100 ppm), while from the bottom left, going up diagonally, there are the concentrations of
methanol, in the same order. In Figure 5b, there are the points obtained at 25% RH, in
Figure 5c those at 50% RH, and in Figure 5d those at 75% RH. The arrangement of the
point groups is roughly always the same.

To better compare the performance under various humidity conditions, the graphs
were made with the same dimensions. The distribution of the groups of points is similar in
the four graphs, but it can be noticed how, as the relative humidity increases, the groups of
points tend to become closer. On the one hand, the points relating to the highest concentra-
tions of ethanol move upwards slightly, closing the gap with those of methanol. On the other
hand, the points relating to methanol at higher concentrations drop a lot towards those of
ethanol and towards the lower concentrations on the left. Qualitatively, this shows that the
discrimination between the various concentrations of the various gases becomes a little
more difficult. Unfortunately, PCA plots are purely qualitative and influenced by the per-
ception of the human eye. To obtain a less subjective idea of the sensor performance, linear
discriminant analysis was applied, the results of which are shown in Table 1.

Table 1. Confusion matrix of the classification of the different types of measurements (type of gas
and its concentration).

Estimated
Ethanol Methanol
1 ppm 10 ppm 100 ppm 1 ppm 10 ppm 100 ppm
1 ppm 8
10 ppm 8
True 100 ppm 8

1 ppm 8

10 ppm 8
100 ppm 8

Only one table is shown since the results in the four relative humidity conditions are
the same and indicate an accuracy of 100%. Table 1 therefore summarizes the classification
of the sensor for the various measurements, demonstrating that the device is able to dis-
tinguish the gas and its concentration in all humidity conditions.

To confirm these results, a Euclidean UPGMA clustering was also applied, the results of
which are shown in Figure S1 in the Supplementary Material. In addition, in that case, the
sensor demonstrates the ability to distinguish ethanol and methanol and their concentrations.

3.6. Experimental Measurements in Realistic Conditions

To verify its performance under realistic conditions, the sensor was tested on mix-
tures of alcohol in distilled water. Since most of the spirits consumed in the world (whis-
key, gin, vodka, cachaga, tequila, grappa) have an alcohol content of approximately 40°,
we have simulated bottles of this type by making alcohol mixtures at 40° in distilled water.

Since 100 mL of methanol is considered the minimum lethal dose in humans [32], we
made three types of samples: Ten samples contained a water/ethanol solution (40%), sim-
ulating a safe commercial distillate; in ten samples, 100 mL of ethanol was replaced with
methanol; and in another ten samples, 50 mL of ethanol was replaced with methanol (to
simulate a less dangerous dose).

A graph of the first two principal components is shown in Figure 6, in order to illustrate
the relationships between the clusters of points relative to the different mixtures. The ellipses
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indicate 90% confidence intervals. The points from mixtures containing methanol are partially
overlapped, while the points from mixtures with only ethanol are distinct from the others.

The partial overlap between the ellipses of the samples with 50 and 100 mL of meth-
anol is due to the limitedness of the 2D graph. To quantitatively verify the sensor perfor-
mance in realistic conditions, linear discriminant analysis was used, which showed a cor-
rect classification in 100% of cases. This means that the sensor can perfectly distinguish
the three classes of alcoholic mixtures, but above all, more importantly, the safe mixtures
(without methanol) from the toxic ones (with methanol).

Principal Component 2 (2.5%)

Ethanol

Principal Component 1 (95.2%)

Figure 6. Principal components plot for alcoholic mixtures at 40° of pure ethanol in distilled water,
with 50 mL of methanol, and 100 mL of methanol.

Although more tests must certainly be performed, we believe that these results
demonstrate the ability of the electronic nose based on a thermal gradient to also face
applications in the field of food safety.

4. Conclusions

A single chemoresistive sensor based on SnO: nanowires was used to distinguish
methanol from ethanol and measure its concentration. The responses of the sensor at five
working temperatures were combined in five-dimensional points in order to then be pro-
cessed with multivariate statistical analysis and machine learning techniques. Using prin-
cipal component analysis, linear discriminant analysis, and a support vector machine, the
sensor was able to accurately distinguish methanol from ethanol and measure the concen-
tration of the two gases with an average error of 3 parts per million in approximately 2-3
min. The sensor has proven the ability to distinguish the type of gas and its concentration
in all conditions of relative humidity. The sensor correctly classified 100% alcoholic mix-
tures at 40° (simulating vodka, whiskey, gin) in real conditions. These performances
demonstrate that this approach can be effective in detecting methanol-intoxicated patients
or detecting the presence of methanol in alcoholic beverages in lieu of more expensive and
time-consuming analytical techniques.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s22155554/s1, Figure S1: UPGMA dendrograms obtained in
different humidity conditions: (a) 0%, (b) 25%, (c) 50% and (d) 75%.
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