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Abstract

Numerous Knowledge Graphs (KGs) are being created to make Recommender Systems (RSs) not only intelligent but also knowl-
edgeable. Integrating a KG in the recommendation process allows the underlying model to extract reasoning paths between recom-
mended products and already experienced products from the KG. These paths can be leveraged to generate textual explanations to
be provided to the user for a given recommendation. However, the existing explainable recommendation approaches based on KG
merely optimize the selected reasoning paths for product relevance, without considering any user-level property of the paths for
explanation. In this paper, we propose a series of quantitative properties that monitor the quality of the reasoning paths from an ex-
planation perspective, based on recency, popularity, and diversity. We then combine in- and post-processing approaches to optimize
for both recommendation quality and reasoning path quality. Experiments on three public data sets show that our approaches sig-
nificantly increase reasoning path quality according to the proposed properties, while preserving recommendation quality. Source
code, data sets, and KGs are available at https://tinyurl.com/bdbfzr4n.

Keywords: Recommender Systems, Reinforcement Learning, Explainability.

1. Introduction

Motivation. Explaining to users why certain results have been
provided to them has become an essential property of mod-
ern systems. Regulations, such as the European General Data
Protection Regulation (GDPR), call for a “right to explana-
tion”, meaning that, under certain conditions, it is mandatory
by law to generate awareness for the users on how a model be-
haves [11]. Explanations have been also proved to have benefits
from a business perspective, by increasing trust in the system,
helping the users make a decision faster, and persuading a user
to try and buy [30]. Recommender Systems (RSs) are a notable
class of decision-support systems that urge supporting explana-
tions. Existing RSs often act as black boxes, not offering the
user any justification for the provided recommendations. Ef-
forts have been devoted to challenge these black boxes to make
recommendation a transparent social process [36].
State of the Art. Transparency has been increasingly recog-
nized as an essential yet prominent objective by the machine-
learning research community. This importance has led to a pro-
liferation of interpretability and explainability methods. No-
table methods rely for instance on the use of bi- and tri-partite
graphs [38, 40, 26] and Knowledge Graphs (KGs) [5, 18]. In-
tegrating this external knowledge has resulted in both increased
transparency and higher effectiveness in many domains. First
steps towards improving transparency in RS have been made by
augmenting traditional recommendation models, that originally
modelled user-product interactions only, with external knowl-
edge about the users and the products. For its integration, prior
work has adopted regularized and path-based approaches.

Regularized approaches [6, 39] extend the original objective
function with a term that implicitly encodes high-order rela-
tions between users and products in the KG. Given a range of
pre-defined user and product characteristics, the approaches be-
longing to this class compute a weight for each characteristic
based on its importance for the recommendation of that product.
To compute these weights, some methods aggregate the neigh-
bours of a certain user or product, as an example [32, 31]. Other
methods require ad-hoc model-dependent modules for impor-
tance weights computation [38]. These importance weights can
be used to select a pertinent textual explanation from a fixed set
of explanations pre-defined by scientists. For instance, [40] de-
fined a user-centered set (e.g., ”users living in the same city”)
and a product-centered set (e.g., ”news with the same topic”) of
possible explanations. In case the users’ city was found to have
the highest weight, the textual explanation ”users living in the
same city” was shown to the user. However, these approaches
suffer from several limitations, e.g., high model dependence,
hand-crafted and narrowed set of rules, and lack of specificity.

Path-based approaches instead rely on pre-computed paths
(tuples) that model the high-order relations between users and
products, according to the KG structure [34, 13, 23]. These tu-
ples serve as an additional input to the recommendation model
during training. Compared to regularized approaches, the ap-
proaches in this second class identify candidate reasoning paths
between the recommended product and already experienced
products. These paths can be then leveraged to instantiate an ex-
planation template or as an input to text generation techniques,
to finally obtain a textual explanation. In the movie domain, a
path between a movie already watched by the user (movie1) and
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Figure 1: We adopted a mixed approach to analyze the space of relevant reasoning path quality properties comprehensively. As a result, we identified and
operationalized three reasoning path quality metrics. Explainable paths and the resulting lists of recommended products were optimized for these metrics through
in- and post-processing approaches. We finally assessed recommendation quality and reasoning path quality.

a movie recommended to that user (movie2), shaped in the form
of “user1 watched movie1 directed director1 directed−1

movie2”, can be used to provide the template-based textual ex-
planation “movie2 is recommended to you because you watched
movie1 also directed by director1”. Path-based approaches ad-
dress several limitations observed for regularized approaches.

Open Issues. Due to the large amount of nodes and edges in
the KG and the inordinate computational resources required to
explore it fully, path-based approaches generally perform the
path extraction and the recommendation steps separately. Con-
sidering that the path extraction is not directly optimized for
the recommendation objective, the selected reasoning paths do
not often encode the true functioning of the model and serve
only to generate sub-optimal post-hoc explanations. To under-
stand the underlying model reasoning, the need of path-based
approaches that can yield both the recommendation and its ex-
planation (self-explainable) from a model jointly optimized for
recommendation quality and reasoning path quality is timely.

State-of-the-art path-based approaches [36, 25, 37, 28, 33,
16] rely on a Reinforcement Learning (RL) agent, conditioned
on the user and trained for navigating to potentially relevant
products for that user through path reasoning. The agent then
samples paths between the user and the products in the KG, by
simultaneously conducting product recommendation and path
selection, based on the probability the agent took an existing
path to reach a given recommended product. However, to select
the user-product paths for textual explanation, all the existing
path-based approaches merely consider an inner-functioning
probability. None of them embeds objectives pertaining to how
the selected path and the derived textual explanation are per-
ceived by users (e.g., a user might prefer explanations linked to
more recently experienced products). From a technical perspec-
tive, this limitation means that no existing path-based method
includes optimization terms for user-level properties of the
paths from an explanation perspective, but just a term that mea-
sures the extent to which a product is relevant for a user. Hence,
approaches that can optimize the selected paths for explanation-
related properties from the user perspective are urging.

Our Approach and Contributions. In this paper, we aim to
achieve the above mentioned objective on template-based tex-
tual explanations, focusing on user-level offline properties of

the reasoning paths used for instantiating templates. Given that
such paths are the input of the textual explanation generation,
optimizing the selected paths for properties relevant for the user
can improve the perceived quality of the textual explanations.

However, there is a potentially large set of path-related prop-
erties to consider. Our study in this paper explores the space
of relevant reasoning path properties through a mixed-method
approach. We combine both literature review (also including
psychological dimensions) and user’s questionnaires (investi-
gating which and whether users perceive certain properties as
valuable). From this analysis, we identified a set of proper-
ties deemed as important by users, namely recency, popular-
ity (connected with novelty and serendipity) [41], and diver-
sity [14]. Considering a single explanation, recent linking in-
teractions might lead to a lower memory overload for users (to
link back to that past interaction) and textual explanations bet-
ter connected with their recent tastes. Popular entities might be
already known by the user and, possibly, lead to a better under-
standing of the provided explanation. Conversely, niche entities
might help users learn novel links across products in that do-
main. Finally, given that recommendations are often provided
as a list, with a textual explanation for each recommended prod-
uct, the explanation quality also depends on how explanations
are perceived as a whole over the list. Due to the imbalances in
the KG, existing approaches tend to mostly produce collabora-
tive filtering reasoning paths that lead to a textual explanation
in the form “...because another user that watched movie1 liked
movie2”. This type of explanation may be perceived as naive
and vague, and hence negatively impact the trust towards the
system. Considering the diversity of path type (e.g., directed or
starring) can lead to better perceived textual explanations.

Integrating these user-level optimization objectives can sup-
port the generation of better perceived explanations for recom-
mendation in several applicative areas. For instance, in the mu-
sic domain, providing explanations related to the last listened
songs (recency) might lead to the user feeling that the system is
better understanding their interests in the current session. In the
book domain, including popular entities in the generated tex-
tual explanation (popularity) has the potential to increase their
relevance and pertinence. As another example, in online course
recommendation, providing a more diverse set of explanation
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types might increase user trust on what the system found rel-
evant for recommending that course. Similar observations can
be made on other recommendation domains (e.g., movies, prod-
ucts, and points of interest), highlighting that our contribution
is general and flexible enough for a broad range of scenarios.

The recognized importance for these properties motivated us
to operationalize a range of metrics for recency, popularity, and
diversity of explanation. We proposed in- and post-processing
approaches that optimize the recommended products and the
accompanying textual explanations for these metrics. We as-
sessed the impact of our approaches on recommendation quality
and explanation path quality, investigating whether any trade-
off aroused. Figure 1 summarizes our pipeline. Concretely:

1. We introduce reasoning path quality metrics to measure
recency, popularity, and diversity of explanation, and ex-
plore the extent to which the paths generated by existing
approaches hold these properties.

2. We propose and combine a suite of in- and post-processing
approaches, acting on both the recommended products and
the reasoning paths, optimizing for the proposed reasoning
path quality metrics.

3. We show the benefits and any side-effect of our approaches
on the trade-off between recommendation quality and rea-
soning path quality, on three real-world public data sets,
against seven baselines.

2. Problem Formulation

We introduce the notation adopted in our study (summarized
in Table 1) and then define the addressed task.

2.1. Knowledge Graph Definition

We first formalize the concept of knowledge graph we used.

Definition 1. (Knowledge Graph) A knowledge graph is de-
fined as a set of triplets G = {(eh, r, et)| eh, et ∈ E, r ∈ R} where
E is the set of entities and R is the set of relations connecting
two entities. Each triplet (eh, r, et) ∈ G models a relation r ∈ R
between a head entity eh ∈ E and a tail entity et ∈ E.

Table 1: Mathematical notation adopted in our study.

Symbol Description

G Knowledge graph
E Entities set in a knowledge graph
R Relations set in a knowledge graph
U User entities set (U ⊂ E)
P Product entities set (P ⊂ E)
Pu Product entities set the user u previously interacted with (Pu ⊂ P)
F User-product feedback matrix
k Reasoning path length (k ∈ N)
Lk Reasoning paths set of length k
Lk

u Candidate reasoning paths of length k between user u ∈ U and ∀ product p ∈ P
Lk

u,p Candidate reasoning paths set of length k between user u ∈ U and product p ∈ P
θ Recommendation model parameters set
θ̃ Parameters set for an optimized recommendation model
n Recommended list size (n ∈ N)
P̃n

u Recommended products list of size n for user u ∈ U
L̃k

u Set of reasoning paths of length k selected to explain the recommended products P̃n
u of user u ∈ U

F̃u,p The predicted relevance of product p ∈ P for user u ∈ U
S̃lku,p The predicted probability the path lku,p of length k is followed from user u ∈ U to product p ∈ P
Υ Template-based textual generation function
Υ̃ Specific template-based textual generation function used in our study
V Vocabulary of words admitted for generating a template-based textual explanation

Following prior work in explainable recommendation [31,
36], we consider a knowledge graph where at least two types
of entities are present: the setU ⊂ E of users and the set P ⊂ E
of products. The special relation r f ∈ R between a user and a
product models the user feedback and is dependent on the do-
main (e.g., a user “watched” a movie or “listened to” a song).
Example additional entities (and relations) might be actors (an
actor “starred” a movie) or directors (a director “directed” a
movie) in the movie domain or artists (an artist “interpreted”
a song) and producers (a producer “produced” a song) in the
music domain. Based on this formalization, a k-hop reasoning
path between two entities in G can be formalized as follows.

Definition 2. (K-Hop Reasoning Path) A k-hop path between
entities e0, ek ∈ E is defined as a sequence of k + 1 entities
connected by k relations and denoted as lke0,ek

= {e0
r1
←→ e1

r2
←→

...
rk
←→ ek}, where ei−1

ri
←→ ei, with 0 < i ≤ k, is assumed to

represent (ei−1, ri, ei) ∈ G or its inverse (ei, r−1
i , ei−1) ∈ G.

We refer to the relation r ∈ R either as forward (active) if
(e, r, e′) ∈ G and e→ e′ or backward (passive) if (e, r−1, e′) ∈ G
and e← e′. We denote as Lk

u the set of all possible k-hop paths
between a user u and any product.

In the movie domain, an example 3-hop path between a user
and a movie might be “user1 watched movie1 directed−1

director1 directed movie2”. Each relation r ∈ R uniquely
identifies the candidate sets to be used for the head and tail en-
tities (e.g., the actor and movie sets for the relation “starred” or
the artist and song sets for the relation “interpreted”).

We finally introduce the type of a reasoning path as follows:

Definition 3. (Reasoning Path Type) Given a k-hop reasoning
path lke0,ek

= {e0
r1
←→ e1

r2
←→ ...

rk
←→ ek}, the type of the path lke0,ek

is
the last relation rk ∈ R.

The type of the example path is therefore “directed”.

2.2. Recommendation over Knowledge Graphs
We define the user-product feedback F ∈ R|U|∗|P| as a func-

tion, with F (u, p) = 1 in case user u interacted with product p,
F (u, p) = 0 otherwise.

Given this matrix, a traditional recommendation model not
explicitly using KGs aims to estimate relevances F̃ (u, p) ∈
[0, 1] of unobserved entries in F and use them for ranking
products. This operation can be abstracted as learning a model
θ : (U,P) → R. Products are sorted by decreasing relevance
for a user, and the top-n (n ∈ N), products P̃n

u are recommended.
Being interested in improving recommendation transparency,

given a certain k ∈ N, our focus is to recommend to user u a
useful set of products P̃n

u, where every product p ∈ P̃n
u is asso-

ciated with a reasoning path l̃ku,p ∈ L̃
k
u to be used as an input for

the textual explanation generation. This path is selected by the
model as the most representative for the recommended product
p among the set of all the predicted k-hop paths Lk

u,p between
user u and product p. Our addressed task, named as Knowledge
Graph Reasoning for Explainable Recommendation (KGRE-
Rec), can be hence formalized as:
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Definition 4. (Knowledge Graph Reasoning for Explainable
Recommendation Task) Given a knowledge graph G and an in-
teger K ∈ N representing the maximum hop length, the goal
is learning a model θ : (U,P,Lk) → R2 able to estimate (i)
the point-wise relevances F̃ (u, p) ∈ [0, 1] for unobserved en-
tries in F and (ii) the probabilities S̃(lu,p) ∈ [0, 1] that a path
lu,p ∈ Lk

u,p is followed to reach product p from user u in G, with
2 < k ≤ K.

Given a user u, the products are sorted by decreasing rele-
vance for user u based on F̃ , and the top-n products P̃n

u are
recommended. For each product p ∈ P̃n

u, the predicted paths
L̃k

u,p, with 2 < k ≤ K, from user u to product p are sorted by
decreasing probability of being followed based on S̃, and the
top path l̃ku,p is selected to generate the textual explanation.

2.3. Recommendation Objectives Definition

We believe that selecting the reasoning path based on an
inner-functioning probability does not necessarily lead to high-
quality explanations from the user’s perspective. We therefore
assume that there exist (i) a set CRQ of recommendation qual-
ity properties, denoted with functions in the form P∗ −→ R, and
(ii) a set CEQ of user-related reasoning path properties, denoted
with functions in the formL∗ −→ R. An example reasoning path
property might be the recency of the prior interaction attached
to the reasoning path, i.e., how recent the “watched” interaction
between user1 and movie1 in the example path “user1 watched

movie1 directed
−1 director1 directed movie2” is. An ideal

explainable RS θ̃ would consider both perspectives, maximiz-
ing the following objective function:

θ̃ = argmax
θ

E
u ∈ U

∑
c ∈ CRQ

c(P̃n
u) +

∑
c ∈ CEQ

c(L̃k
u) (1)

For simplicity, we assume that recommendation and reason-
ing path quality are equally weighted, leaving user’s specific
weights as a future work. Given the heterogeneous nature of
the reasoning path properties, prior work assumed that the orig-
inal recommendation model is optimized only on recommen-
dation quality (CRQ) and that reasoning path quality (CEQ) is
optimized via post-processing [3]. Our study in this paper ex-
plores the in-processing optimization of both recommendation
quality and reasoning path quality, and the combination of in-
and post-processing optimization.

2.4. Textual Explanation Generation

The reasoning paths selected for the recommended products
serve as an input to the textual explanation generation step.
Such generation step may be based, for instance, on templates
or advanced natural language generation. In our study in this
paper, we focus on template-based textual explanation genera-
tion according to the reasoning paths selected by an underlying
model [43]. Generally, a template can be seen as a string lit-
eral that includes expressions whose content is produced by a
model. Formally:

Definition 5. (Explanation Template) Given a vocabulary of
words V, an explanation template is abstracted as a function
Υ : L → V∗ that, given a path, produces a string representing
a human-readable textual explanation.

For each recommended product p ∈ P̃n
u, the path l̃ku,p is se-

lected to generate the textual explanation as described in Sec-
tion 2.2. Such path includes three conceptual parts:

• Linking Interaction (e0 = u ∈ U, r1 = r f , e1 = p1 ∈ P)
of a user u with a product p1 according to the feedback
information provided in F .

• Entity chain (e j−1, r j−1, e j), with j = 2, . . . , k − 1, from the
product p1 ∈ P, with e1 = p1, and connecting to non-
product entities e < P (shared entities).

• Recommendation (ek, rk, ek = p2 ∈ P) that connects prod-
uct p2 to be recommended to the path to user u.

For instance, given the guiding example path, (user1
watched movie1) is the past interaction, (movie1 directed−1

director1) is the entity chain, and (director1 directed movie2)
is the recommendation. Based on this conceptualization, we
formally define the specific concept of k-hop explanation tem-
plate adopted throughout our study, as follows:

Definition 6. (K-Hop Explanation Template) Given a vocabu-
lary of wordsV, a k-hop explanation template is abstracted as
a function Υ̃ : Lk → V∗ and implemented as Υ̃(lke0,ek

= {e0
r1
←→

e1
r2
←→ ...

rk
←→ ek}) = ”< ek > is recommend to you because you

< r1 > < e1 > also < rk > by < ek−1 >”.

Considering the example path, through our definition of
Υ̃, we can produce the textual explanation “movie2 is recom-
mended to you because you watched movie1 also directed

by director1”.

3. Explanation Property Design

Defining relevant reasoning path properties and optimizing a
recommendation model for them are the two key tasks emerged
from our formalization. In this section, we delve into the first
task, by describing the set of reasoning path properties inves-
tigated later on in our study. The identified properties con-
sider three key aspects pertaining to reasoning paths, connected
with the recency of the linking interaction, the popularity of the
shared entity, and the diversity of explanation path types. The
relevance and importance of these aspects for users emerged
from our mixed-method study, which capitalized on both litera-
ture analysis and user questionnaires1 under a paired-preference
protocol [3]. For each aspect, we present here the motivations
emerged from both the literature analysis and the users assess-
ment. We then provide a mathematical formulation and prac-
tical examples for each derived metric, using the toy path “u
listened song1 featured

−1 artist1 featured song2”.

1A questionnaire copy is available at https://tinyurl.com/

exp-quality-survey.
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3.1. Recency of the Linking Interaction
The first emerged aspect was the recency of an interaction

with the already experienced product in a path, i.e., u listened
song1 in the toy path.
Motivation. From the literature analysis, it emerged that in-
corporating the time of interaction into recommendation mod-
els is a practice that has led to gains in recommendation qual-
ity [15, 8], and could influence how users will perceive the fi-
nal explanation as well. Indeed, an explanation related to a re-
cent interaction would be intrinsically easier to catch for a user,
while older interactions might not be perceived as valuable or
might even be not remembered by the users. As an example, we
might consider a user of a movie platform who was highly ac-
tive in the past, but inactive in the last years. This user starts to
use again the platform, they perform various interactions with
new movies, and start receiving new recommendations. So, re-
warding an explanation based on the freshness of the interaction
would be useful. Fresher interactions could also be easier to
understand and would be more timely, compared to those with
products associated to very old interactions. The importance of
such property was also confirmed in the outcomes of our users
assessment. Indeed, we observed that 64.6% of the participants
preferred to see an explanation involving a product closely ex-
perienced in time, 6.8% opted for explanations involving older
interactions, and the remaining 28.6% of the participants said
that this property would not be relevant for them.
Operationalization. To operationalize this property, we con-
sidered the time since the linking interaction in the reasoning
path occurred. Given a user u ∈ U and the set Pu of products
user u interacted with, we denote the list of u’s interactions,
sorted chronologically, by Tu = [(pi, ti)], where pi ∈ Pu is a
product experienced by user u, ti ∈ N is the timestamp that
interaction of user u with product pi occurred, and ti ≤ ti+1

∀i = 1, . . . , |Pu|. We applied an exponentially weighed moving
average to the timestamps in Tu, to obtain the recency score of
each interaction performed by user u. Formally:

Definition 7. (Interaction Recency - IR) Given a user u ∈ U,
a chronologically sorted list of u’s interactions Tu, and a time
decay βIR ∈ [0, 1], the recency of the interaction (pi, ti) ∈ Tu is
defined as:
IR(pi, ti) = (1 − βIR) IR(pi−1, ti−1) + βIR ti with IR(p1, t1) = t1

(2)

The IR values were min-max normalized among those of all
the interactions in Tu to lay in the range [0, 1]. Given this for-
malization, we can introduce the recency of the linking interac-
tions over a list of reasoning paths.

Definition 8. (Linking Interaction Recency - LIR) Given a user
u, a chronologically sorted list of u’s interactions Tu, and the set
of reasoning paths L̃k

u selected for explaining the recommended
products P̃u, with |L̃k

u| = |P̃u|, the linking interaction recency
over the selected reasoning paths is defined as:

LIR(L̃k
u) =

1
|L̃k

u|

∑
l={e0

r1
←→e1

r2
←→...} ∈ L̃k

u

IR(e1, t) with (e1, t) ∈ Tu

(3)

In case the LIR values are close to 0 (1), the linking interac-
tion of the selected reasoning path is on average old (recent).

Optimizing the set of reasoning paths L̃k
u selected for ex-

plaining the recommended products for LIR can however in-
troduce possible side effects. Indeed, it might be possible that
all or the majority of the selected reasoning paths focus on a
tiny set of recent linking interactions. The very extreme case
would be that all the selected reasoning paths include the same
most recent linking interaction. This effect could make the link
to already experienced products for the provided explanations
repetitive and impact on the perceived explanation quality, as
an example. Due to this reason, we decided to operational-
ize an additional related metric for monitoring the diversity of
the linking interactions included in the selected reasoning paths
(i.e., how many different interactions are linked to provided ex-
planations). Formally:

Definition 9. (Linking Interaction Diversity - LID) Given a
user u and the set of reasoning paths L̃k

u selected for explain-
ing the recommended products P̃u, with |L̃k

u| = |P̃u|, the linking
interaction diversity over those paths is:

LID(L̃k
u) =

|{e1 | ∀l = {e0
r1
←→ e1

r2
←→ ...} ∈ L̃k

u}|

|L̃k
u|

(4)

LID values lay in the range (0, 1], with values close to 0 (1)
meaning that the recommended list has a low (high) linking in-
teraction diversity.

3.2. Popularity of the Shared Entity
The second aspect identified in our study was related to the

popularity of the shared entity, i.e., artist1 in the example path.
Motivation. From our literature analysis, it emerged that, in
traditional RS research, popularity is a concept generally con-
nected with novelty (e.g., the less popular the recommended
product among other users is, the higher the novelty is) and
familiarity (e.g., the more the product is popular among other
users, the higher the chance it will be familiar for the user).
These two beyond-accuracy properties have been often recog-
nized as important for the recommended products [14], accord-
ing to the application scenario. We therefore considered to in-
vestigate the extent to which the popularity of the shared entity
can influence the perceived quality of the explanation as well.
For instance, an artist who featured 20 songs might be consid-
ered more popular that one who featured 2 songs. In case a
very unpopular recommended product is given, an explanation
that contains a popular entity can help the user decide whether
that product can be interesting for them. Moreover, it should
be considered that the shared entity mentioned in an explana-
tion can act as a source of context, since it can influence the
perception of the usefulness of an product [7]. In [27], 70% of
the products that users expressed an interest in buying were fa-
miliar products. These observations are also remarked in [19],
which considered the familiarity of the users with the recom-
mended products. Conversely, in case the shared entity has a
low popularity, the user may not catch the explanation, since
they might not know that artist or actor presented in the expla-
nation. Providing explanations associated with products that
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are too popular or redundant could however increase the filter
bubbles in the explanations in the long term [10]. Therefore, the
popularity of the shared entity might be potentially minimized
or maximized according to the overall strategy of the platform,
e.g., promoting familiarity or novelty / serendipity. As a con-
firmation of this literature analysis, the answers to the second
question of our users assessment showed that 63.3% of users
expressed an interest toward this property, i.e., 40% (24.3%) of
the participants preferred a popular (unpopular) shared entity.
35.7% of the participants marked this property as not relevant.
Operationalization. Motivated by our analysis, we opera-
tionalized a metric able to quantify the extent to which the
shared entity included in a reasoning path is popular. We as-
sume that the number of relations a shared entity is involved
in the KG is a proxy of its popularity. For instance, the pop-
ularity of an actor is computed by counting how many movies
that actor starred in. We denote the list of entities participation
of a given type λ in the KG, sorted based on their popularity,
by Eλ = [(ei, vi)], where ei ∈ Eλ is an entity of type λ, vi ∈ N
is the number of relations the shared entity ei is involved in
(in-degree), and vi ≤ vi+1 ∀i = 1, . . . , |Eλ|. We again apply an
exponential decay to the number of relations in Eλ, to obtain the
popularity score of an entity participation of type λ. Formally:

Definition 10. (Entity Popularity - EP) Given an entity type λ,
a popularity-sorted list of entities participation Eλ, and a pop-
ularity decay βEP ∈ [0, 1], the popularity of an entity participa-
tion (ei, vi) ∈ Eλ is defined as:
EP(ei, vi) = (1−βEP) EP(ei−1, vi−1)+βEP vi with EP(e1, v1) = v1

(5)

The EP values were min-max normalized among those of all
entities of a given type to lay in the range [0, 1]. Given this
formalization, we can introduce the popularity of the shared
entity over a list of reasoning paths.

Definition 11. (Shared Entity Popularity - SEP) Given a user
u, all popularity-sorted lists of entities participation Eλ ∀λ, and
the set of reasoning paths L̃k

u selected for explaining the recom-
mended products P̃u, with |L̃k

u| = |P̃u|, the shared entity popu-
larity over the selected reasoning paths is defined as:

S EP(L̃k
u) =

1
|L̃k

u|

∑
l={e0

r1
←→...

rk
←→ek} ∈ L̃

k
u

EP(ek−1, v) with (ek−1, v) ∈ Eλ

(6)

SEP values close to 0 (1) mean that on average the included
shared entity has a low (high) popularity.

The optimization of the selected reasoning paths for SEP can
lead to side effects of a type similar to the ones we discussed
for LIR. It means that it might be possible that all or the ma-
jority of the selected reasoning paths focus on a tiny set of very
popular shared entities (extreme case: all the selected reason-
ing paths mention the most popular entity). This phenomenon
could for instance introduce filter bubbles in the space of shared
entities mentioned in the explanations and negatively impact on
the perceived explanation quality. We therefore introduce an-
other metric for monitoring the diversity of the shared entities
included in the selected reasoning paths. Formally:

Definition 12. (Shared Entity Diversity - SED) Given a user u
and the set of reasoning paths L̃k

u selected for explaining the
recommended products P̃u, with |L̃k

u| = |P̃u|, the shared entity
diversity over those reasoning paths is:

S ED(L̃k
u) =

|{ek−1 | ∀l = {e0
r1
←→ ...

rk
←→ ek} ∈ L̃

k
u}|

|L̃k
u|

(7)

S ED values lay in (0, 1], with values close to 0 (1) meaning
that the explanations for the recommended list have a low (high)
shared entity diversity.

3.3. Diversity of the Explanation Path Type

The third aspect was the diversity of path type (e.g., directed
and starred in the movie domain), for a list of explanations.

Motivation. From our literature analysis, we observed that,
in psychological science, information diversity is considered a
key factor affecting human comprehension and decisions [1]. In
RS research, diversity is becoming increasingly important, ar-
guing that recommending products by only their predicted rel-
evance increases the risk of producing results that do not sat-
isfy users because the products tend to be too similar to each
other [14, 29]. Considering explanations provided in a recom-
mended list as a whole, a possible conceptualization of diversity
is that the more reasoning path types we present, the better the
explanations are perceived. For example, in the music domain,
we might consider reasoning path types including featured

(as in the example path), wrote by, and composed by, and
aim at covering them in the provided explanations in a reason-
ably balanced way. Explanation diversity can help countering
the dominance of collaborative-based explanations, in the form
“... because a user who listened to your recommended song
has also listened to another song you know”. This phenomena
has been highlighted by prior works (e.g., [28]) and confirmed
in our exploratory analysis (see the appendix). We therefore
conjecture that the imbalanced representation of the relations in
a knowledge graph is one of the main causes. This reasoning
path type might be deemed as too generic - users receiving the
recommendation would not know who the other user is, so they
cannot trust them [30]. Moreover, the results of our users as-
sessment showed that 70% of the participants were in favor of
the recommended list accompanied by highly diverse reasoning
path types. Surprisingly, 25.7% of the participants expressed
their preference towards a low diversity. While, 4.3% of the
participants declared that this property would not be relevant.

Operationalization. Motivated by our findings, we introduced
a metric able to quantify how many different types of path ac-
company the list of recommendations. As a proxy of the expla-
nation type, we consider the last relation rk in a certain reason-
ing path lku,p (see def. 3). This metric is computed as the number
of unique types of explanations accompanying the recommen-
dations divided by the minimum between (i) the total number
of explanations and (ii) the total number of possible relations in
G. Formally:
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Definition 13. (Explanation Path Type Diversity - PTD) Given
a user u and the set of reasoning paths L̃k

u selected for explain-
ing the recommended products P̃u, with |L̃k

u| = |P̃u|, the expla-
nation path type diversity is:

PT D(L̃k
u) =

|{rk | ∀l = {e0
r1
←→ ...

rk
←→ ek} ∈ L̃

k
u}|

min(|L̃k
u|, |R|)

(8)

PTD values lay in the range [0, 1], with values close to 0 (1)
meaning that the recommended list has a low (high) explanation
path type diversity.

Since PTD takes into account the presence of path types
in the recommended list but not their representation, the op-
timization of this metric might lead to cases where certain
path types are still over-represented (e.g., those associated to
collaborative-based explanations, in the form “... because a user
who listened to your recommended song has also listened to an-
other song you know”) and others potentially of higher interest
and relevance for a user might appear just once in the recom-
mendations. We therefore decided to additionally monitor the
concentration of the explanation path types over the selected
reasoning paths. In this way, we can assess whether explana-
tion path types are both diverse and follow a well-balanced rep-
resentation over the recommendations. This additional metric
is computed using the Inverse Simpson Index [24], measuring
the probability of picking two explanations with a different type
in the recommended list [9]. Formally:

Definition 14. (Explanation Path Type Concentration - PTC)
Given a user u and the set of reasoning paths L̃k

u selected for
explaining the recommended products P̃u, with |L̃k

u| = |P̃u|, the
explanation path type concentration is:

PTC(L̃k
u) = 1 −

∑
r∈RN(r) (N(r) − 1)

|L̃k
u| (|L̃k

u| − 1)

with N(r) = {l | ∀l = {e0
r1
←→ ...

rk
←→ ek} ∈ L̃

k
u} ∧ rk = r)}

(9)

PTC values lay in the range (0, 1], with values close to 0
meaning that the representation of the explanation path types
covered in the recommended list is not well-balanced (one or
few types are more represented than others).

4. Explanation Property Optimization

Optimizing a recommendation model for the reasoning path
metrics formalized in the previous section is the other key task.
To this end, we propose two classes of approaches. The first
class (in-processing) includes approaches that embed reasoning
path quality properties in the internal model learning process.
Whereas, the second class (post-processing) covers approaches
that re-arrange the recommended lists (and the explanations)
returned by the original recommendation model optimized only
for recommendation quality. These two classes have mutual ad-
vantages and disadvantages. Post-processing approaches might
be limited in their impact, since reordering a small set of rec-
ommendations (and explanations) might have a less profound
effect than optimizing them during the training process. How-
ever, post-processing approaches can be applied to any recom-
mendation model and more easily extended to any new metric.

4.1. In-Processing Optimization

Our goal is to generate product recommendations accompa-
nied by reasoning paths, as formalized in our KGRE-Rec task
(See def. 4), considering both recommendation quality and rea-
soning path quality. We propose to model the problem behind
this task as a Markov Decision Process (MDP), which first
generates candidate paths between users and products based
on a certain similarity measure, and then performs a sampling
among candidate paths (see [36]). To solve this problem, we
adopted a reinforcement learning (RL) strategy. We describe
its components, i.e., state initialization, state transition, reward
definition, and candidate path sampling, below.

State Initialization. Given a path length k, the state of the
RL agent at step i, with i ≤ k, is defined as a tuple (u, ei, hi),
where u ∈ U is the user entity, ei is the entity the RL agent has
reached at step i, and hi = {r1, . . . , ei−1, ri} is the historical trace
path followed by the RL agent until step i. Given a user u ∈ U,
the initial state is (u, u, ∅) and the terminal state is (u, ek, hk). In
the initial state, users were uniformly sampled. We constrained
the path length to k = 3, proved to lead to the best performance
in prior work [31], and forced the entity ek to be a product (to
be recommended).

State Transition. The complete action space Ai of state i is
defined as all possible outgoing edges of entity ei in the G,
excluding any entities and relations in hi. Formally, Ai =

{(r, e) | (ei, r, e) ∈ G, e < hi, r < hi}. Since the out-degree
followed a long-tail distribution, some nodes had much higher
out-degrees compared with the others. Thus, we introduce an
action pruning strategy that keeps edges conditioned on the
user based on a scoring function Ψ : (U,E,R) → R. Then,
the pruned action space of state i for user u is defined as
Ãi(u) = {(r, e) | rank(Ψi( (u, ei, hi), (r, e) )) ≤ Zi, (r, e) ∈ Ai},
where Z ∈ N is the maximum action space size at step i. The
scoring functionΨ is typically the dot product between the head
entity ei and the tail entity e of state i, both represented via trans-
lational embeddings [4]. Therefore, during pruning, reasoning
paths that might be relevant according to the notions of reason-
ing path quality might end up being excluded. To counter this,
we extended the original multi-hop scoring function with a sec-
ond term associated to the reasoning path quality, according to
the hop that has been reached. Formally, given a state (u, ei, hi)
and an action (r, e) ∈ Ai:

Ψi( (u, ei, hi), (r, e) ) = (1 − α) F̃ (ei, e) +

α
∑
c ∈ C

c({[u] · hi · [ei, r, e]})

with F̃ (ei, e) =< ei, e > + be

(10)

where < · · · > is the dot product operation, · is the list con-
catenation operation, ei, e ∈ Rd are the d-dimensional embed-
dings of the entities ei, e ∈ E, be ∈ R is the bias for entity e,
α ∈ [0, 1] is the weight assigned to the explanation term (op-
timized through grid search in our study), and C ⊂ CEQ =

{LIR, S EP, PT D} is a subset of reasoning path quality metrics
to optimize. At step i = 0, the entity e refers to a product al-
ready experienced by user u. LIR would be the only reasoning
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path quality metric that can be computed (C = {LIR}). Given
that k = 3, the entity e at step i = 1 refers to the entity shared
between the already experienced product and the product to be
recommended and also uniquely determines the type of path
(C = {LIR, S EP, PT D}). Since PT D is a property of a set of
paths, we gave a higher score for this metric when the type of
the current path was not already seen for user u during learning.

Finally, the action (r, e) ∈ Ãi(u) with the maximum
Ψi( (u, ei, hi), (r, e) ) was selected to transit to the next state, dur-
ing the learning process.
Reward Definition. Based on our MDP formulation, our goal
is to learn a stochastic policy π that maximizes the expected
cumulative reward for any initial user u. To solve this task,
we adopted the same REINFORCE strategy proposed by [36].
However, their original cumulative reward function represented
a proxy of recommendation utility only (and hence encodes rec-
ommendation quality - CRQ) and does not consider any notion
of reasoning path quality. To counter this, using the same nota-
tion of Eq. 10, we computed the reward function φ on the final
state (u, ek, hk) as:

φ(u, ek, hk) = (1−α) F̃ (u, ek) + α
∑
c ∈ C

c({[u] ·hk · [ek]}) (11)

where u, ek ∈ Rd are the d-dimensional embeddings repre-
sentations of the user entity u and the recommended product ek

respectively, and C = CEQ = {LIR, S EP, PT D} is the set of path
quality metrics to optimize.
Candidate Path Sampling. Given the learnt stochastic policy
π and a user u, the final step is to infer the set of n products P̃n

u
to be recommended and the set of reasoning paths L̃k

u used for
generating their textual explanations.

To extract the candidate paths (and the recommended prod-
ucts) for each user u, we applied a beam search guided by the
action probability encoded in the policy π [36] (see Algorithm
1). This procedure takes as an input a given user u, the learnt
policy network π, the path length k (k = 3 in our study), and
the sampling sizes denoted by Z1, . . . ,Zk ∈ N. As an output, it
yields a set of candidate user-product paths Lk

u, with each path
associated to (i) the generative probability ∫ k in the set S̃ and
(ii) the relevance score F̃ (u, p) ∈ Φk of that product p for u.

Within the set of candidate pathsLk
u, there may exist multiple

paths from user u to the same product to recommend p. Thus,
for each product p ∈ {ek | ∀l = {e0

r1
←→ ...

rk
←→ ek} ∈ L

k
u}, we

selected the path l̃ku,p ∈ L
k
u,p with the highest generative proba-

bility based on S̃. Being the model optimized also for reasoning
path quality, such probability score encoded information about
it as well. Finally, we ranked the selected paths based on the
relevance F̃ (u, p) ∈ Φk and recommended the products P̃n

u to u.

4.2. Post-Processing Optimization
Compared to an in-processing optimization, post-processing

approaches perform a re-ranking of both products to recom-
mend and their corresponding reasoning paths, to optimize cer-
tain reasoning path quality metrics. The input of such step are
the recommended products and their selected reasoning paths,
originally returned by any pre-trained model that solves the

Algorithm 1: Candidate path sampling constrained to
path quality
Data: knowledge graph G, user u, learnt policy π, path

length k, action sampling sizes Z1, . . . ,Zk,
relevance function F̃

Result: candidate user-product path set Lk
u, probability

set S̃k, relevance set Φ
1 L0

u ← {{u}}, S
0 ← {1} ;

2 state0 ← (u, u, ∅) ; // State initialization

3 for i← 1 to k do
4 Li

u ← ∅, S
i ← ∅ ;

5 forall l = {. . . , ei−1} ∈ L
i−1
u , ∫ ∈ S

i−1 do
/* Actions candidate for state transition

(with pruning) */

6 Ai ← {a = (ri, ei) | (ei−1, ri, ei) ∈ G, ei < l, ri < l}
;

7 Ãi ← {a ∈ Ai | rank(π(statei−1, a)) ≤ Zi} ;
8 forall a = (ri, ei) ∈ Ãi do
9 statei ← (u, ei, l ∪ {ri}) ; // State update

10 Li
u ←L

i
u ∪ {l ∪ {ri, ei}} ; // Add extended

path

11 Si ← Si ∪ {∫ π(statei, a)} ; // Add

probability score

12 end
13 end
14 end

/* Path, probability, relevance for paths ending

with a product */

15 Lk
u ← {l | ∀l = {e0, . . . , ek} ∈ L

k
u ∧ ek ∈ P} ;

16 S̃k ← {Sk
l | ∀l ∈ L̃k

u} ;
17 Φk ← {F̃u,ek | ∀l = {u, . . . , ek} ∈ L

k
u} ;

18 return Lk
u, S̃k, Φk

KGRE-Rec task. For the implementation, we capitalized on
a maximum marginal relevance approach, with the reasoning
path metric(s) as support metric(s).

For each position i ≤ n of the recommended list, for each
candidate path l ∈ Lk

u, we computed a weighted sum between
(i) the relevance of the product p associated to the path l for the
user u (Φk

l = F̃ (u, p)) and (ii) the extent to which the recom-
mended list re-ranked so far would increase the target metric, if
we had included that product p with a specific path l in the rec-
ommendations at position i. Once we computed this weighted
score for all paths, we found the path L̃k,i

u = {u, . . . , ek} that
achieves the highest weighted score, recommended the last en-
tity P̃i

u = ek (a product) to user u at position i, and generated its
textual explanation based on the path L̃k,i

u . This procedure is re-
peated until position n (see Algorithm 2). Formally, the product
P̃i

u and the selected path L̃k,i
u are determined as:

(P̃i
u, L̃

k,i
u ) = argmax

p ∈ P\P̃i−1
u , l ∈ Lk

u\L̃
k,i−1
u

Q(l = {u, . . . , p},Φk
l ,C)

with Q(l,Φk
l ,C) = (1 − α) Φk

l + α
∑

c ∈ C
c(l)

(12)

where α ∈ [0, 1] is a parameter that expresses the trade-off be-
tween relevance and the target (set of) reasoning path metrics,
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Algorithm 2: Candidate path sampling constrained to
path quality

Data: candidate paths set Lk
u, relevance set Φk,

re-ranking function Q, path quality functions C,
recommended list size n

Result: recommended products list P̃n
u, reasoning paths

list L̃k
u

1 P̃0
u ← ∅, L̃

k,0
u ← ∅ ;

2 P̂ ← {ek | ∀l = {u, . . . , ek} ∈ L
k
u ∧ ek ∈ P} ; // Reachable

products

3 forall i← 1 to n do
4 L̃

k,i
u ←

{
argmax

l={u,...,ek} ∈ L
k
u

Q(l,Φk
l ,C)
}

;

5 P̃i
u ← {ek} ;

6 Lk
u ← L

k
u \ L̃

k,i
u ; // Remove the identified path

7 P̂ ← P̂ \ P̃i
u ; // Remove the recommended product

8 end
9 return P̃n

u, L̃
k,n
u

and C is the set of reasoning path quality metrics (either LIR,
SEP, PTD, or any combination) to optimize for. With α = 0, we
yield the output of the original model, not considering reason-
ing path quality (viceversa for α = 1). This greedy approach
fits with the real world, where users may see only the first n
recommendations, and the rest becomes visible after scrolling2.

5. Experimental Evaluation

In this section, we aim to evaluate the proposed suite of ap-
proaches, by answering to the following key research questions:

RQ1 How does the recommendation utility achieved after ap-
plying our approaches compare to that achieved by other
state-of-the-art models?

RQ2 Which type of optimization (in-processing, post-
processing, their combination) leads to the highest rea-
soning path quality?

RQ3 How do our approaches affect the final recommendations
and explanations provided to users?

5.1. Experimental Setup

Data Sets. We conducted experiments on three data sets,
namely MovieLens1M (ML1M) [12], LastFM-1B (LASTFM)
[22], and Amazon-Cellphones (CELL) [17]. They are all pub-
lic and vary in domain, extensiveness, and sparsity (see Table
2). For ML1M, we adopted the KG generated in [6], whereas
we adopted the KG generated in [32] for LASTFM. For CELL,
the KG was built from contextual user reviews, each including
related products, the product subcategory, and the review text,
as done by [42]. For all data sets, we discarded (i) products
(and their interactions) absent in the KG as an entity and (ii)
relations occurring less than 200 times.

2For completeness, we refer the reader to our repository for a detailed de-
scription of the computational complexity each of the proposed methods has.

Table 2: Statistics of the pre-processed data sets used in this study.

ML1M LASTFM CELL
User-Product # Users 6,040 15,773 27,879
Information # Products 3,226 47,981 10,429

# Interactions 1,000,209 3,955,598 194,439
Knowledge # Entities 16,899 114,255 425,264
Graph # Relations 1,830,766 8,501,868 477,409

# Relation Types 10 9 7

Data Preparation. For each data set, we first sorted the in-
teractions of each user chronologically. We then performed a
training-validation-test split with the 70% oldest interactions
in the training set, the subsequent 10% in the validation set
(adopted for hyper-parameter fine tuning), and the 20% most
recent interactions in the test set. We assumed that products
already seen by the user were not recommended another time.
The same pre-processed data sets were used to train, optimize,
and test each benchmarked model.
Evaluation Metrics. We monitored recommendation qual-
ity and reasoning path quality on top-10 recommended lists
(n = 10), a well-known recommendation cut-off. For the first
perspective, we measured the Normalized Discounted Cumu-
lative Gain (NDCG) [35], using binary relevance scores and a
base-2 logarithm decay, and the Mean Reciprocal Rank (MRR).
For the second perspective, we measured the Linking Interac-
tion Recency (LIR, Eq. 3), the Shared Entity Popularity (SEP,
Eq. 6), and the Explanation Path Type Diversity (PTD, Eq.
8). In addition, we monitored the Linking Interaction Diver-
sity (LID, Eq. 4), the Shared Entity Diversity (SED, Eq. 7),
and the Explanation Path Type Concentration (PTC, Eq. 9).
Benchmarked Models. The considered baselines3 included
factorization models (BPR [20], FM [21], NFM [20]), three
knowledge-aware models based on regularization (CKE [39],
CFKG [2], KGAT [32]), and one knowledge-aware model
based on reasoning paths (PGPR [36]). Our optimization ap-
proaches could be applied only to models based on reasoning
paths (i.e., PGPR). In a single-metric optimization scenario4,
we denote as {R|P|D}-(P)PGPR the results after post-processing
only, as {R|P|D}-(I)PGPR the results after in-processing only,
and as {R|P|D}-(IP)PGPR the results combining both, based on
the optimized reasoning path quality metric: recency (R : LIR),
popularity (P : SEP), diversity (D : PTD).

5.2. RQ1: Impact on Recommendation Utility
In a first analysis, we compared the utility of recommenda-

tions obtained after applying our approaches and of those ob-
tained by the baseline models5. With this in mind, Table 3 re-
ports the NDCG and MRR obtained by each model under the

3The detailed description of each baseline and the selected fine-tuned
hyper-parameters are listed in the README of our repository.

4For conciseness, we did not cover a joint optimization of multiple reason-
ing path quality metrics. We leave it as a future work.

5For our approaches, the values of α were selected assuming that the plat-
form owners are willing to lose 10% of NDCG at most to increase as much
as possible reasoning path quality. While scientists bring forth the discussion
about metrics and design models optimized for them, it is up to stakeholders to
select the trade-off most suitable.
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Table 3: Recommendation utility (NDCG@10, MRR@10).

Baselines ↑ Ours ↑
Model ML1M LASTFM CELL Model ML1M LASTFM CELL

NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR NDCG MRR

BPR 0.33 0.23 0.13 0.09 0.05 0.03 R-(I)PGPR 0.33 0.25 0.13 0.09 0.06 0.02
FM 0.32 0.21 0.15 0.09 0.02 0.01 R-(P)PGPR 0.33 0.25 0.14 0.08 0.06 0.04

NFM 0.32 0.21 0.14 0.09 0.02 0.01 R-(IP)PGPR 0.33 0.25 0.14 0.09 0.06 0.04
CKE 0.33 0.22 0.14 0.09 0.04 0.03 P-(I)PGPR 0.33 0.24 0.12 0.08 0.07 0.03

CFKG 0.27 0.17 0.08 0.05 0.00 0.00 P-(P)PGPR 0.32 0.24 0.14 0.08 0.06 0.03
KGAT 0.33 0.24 0.15 0.09 0.02 0.01 P-(IP)PGPR 0.32 0.23 0.12 0.08 0.06 0.03
PGPR 0.33 0.24 0.14 0.09 0.07 0.04 D-(I)PGPR 0.33 0.25 0.14 0.10 0.07 0.04

D-(P)PGPR 0.31 0.24 0.15 0.09 0.06 0.04
D-(IP)PGPR 0.32 0.24 0.14 0.09 0.06 0.04

For each data set: best result in bold, second-best result underlined.

considered settings. The patterns for both metrics were similar
and, therefore, we will focus only on NDCG below.

Except for CFKG, the considered baselines achieved an over-
all similar NDCG ranging in [0.32, 0.33] (ML1M) and [0.13,
0.15] (LASTFM). In CELL, the NDCG was generally low,
ranging in [0.02, 0.05], except for PGPR (0.07). This result
might be caused by the high sparsity and low test set size of
the CELL set. Interestingly, in this data set, the gap in perfor-
mance between traditional recommendation models and PGPR
was higher. The main reason could be that PGPR exploited in-
formation from the review linked to a certain user interaction
for generating better recommendations.

Compared to the baselines, all our approaches did not sub-
stantially affect NDCG (loss ≤ 0.01 NDCG points). In ML1M,
five out of nine cases resulted in the same NDCG achieved by
the best baseline model (0.33), three out of five cases showed a
decrease of 0.01 NDCG points, and just in one case the decrease
was of 0.02 NDCG points (D-(P)PGPR). Similarly, in CELL,
two out of nine cases resulted in a NDCG comparable to that of
the best baseline model (0.07), whereas the other seven cases
were characterized by a decrease of just 0.01 NDCG points.
The NDCG of our approaches in LASTFM was more evidently
worse than that of baseline models, compared to the other data
sets. Just one case, D-(P)PGPR resulted in an NDCG equal to
that of the best baseline model, whereas the other cases showed
a decrease in NDCG between 0.01 and 0.03 NDCG points. We
conjecture that this difference in LASTFM might be caused by
the peculiar nature of listening interactions.

Considering in- and post-processing approaches, the former
optimization strategy led to the highest NDCG in ML1M (0.33,
regardless of the optimized property) and CELL (0.07 in case
of SEP and PTD optimization, 0.06 for LIR optimization).
The latter optimization strategy resulted in a higher NDCG in
LASTFM (0.15 under a PTD optimization, 0.14 for both LIR
and SEP). Comparing reasoning path quality metrics, optimiz-
ing for LIR (SEP and PTD) generally led to the highest NDCG
in ML1M (LASTFM and CELL). We conjecture that the reason
behind this difference across data sets comes from the peculiar
temporal patterns of the user interactions in ML1M, emerged
from our exploratory analysis (see the appendix).

Observation 1. Optimizing for reasoning path qual-
ity through our approaches led to state-of-the-art NDCG.
The measured NDCG was equal or at most two points
lower than that of non-(path-)explainable baselines, on
all data sets. It emerged that accounting for user-level
reasoning path quality often does not lead to a loss (when
observed, it is negligible) in recommendation utility.

5.3. RQ2: Impact on Reasoning Path Quality

In a second analysis, we investigated the impact of (a combi-
nation of) our in- and post-processing approaches on reasoning
path quality, compared the that of the original PGPR model.
Indeed, PGPR represented the only model able to generate rea-
soning paths, among the considered baselines. Table 4 col-
lects all the reasoning path quality metrics introduced in our
study, namely LIR (LID), SEP (SED), and PTD (PTC), for each
model. Since the patterns observed in LASTFM and CELL
were similar to those observed in ML1M, we describe only the
latter ones in detail for conciseness.

In ML1M, an in-processing optimization already led to a rea-
soning path quality score higher than that obtained by the orig-
inal PGPR, respectively for each optimized metric LIR, SEP,
and PTD (R-(I)PGPR: 74.4% LIR and -13.7% LID; P-(I)PGPR:
145.8% SEP and 1.02% SED; D-(I)PGPR: 38.46% PTD and
144.4% PTC). Each in-processing setting reported gains on the
other two reasoning path quality metrics not directly optimized.
This gain was generally higher while optimizing for PTD (-
2.32% LIR, 1.25% LID; 25% SEP, 0% SED) than SEP (2.32%
LIR, -1.25% LID; 15.3% PTD, 44.4% PTC) and LIR (20.8%
SEP, 1.02% SED; 7.69% PTD, 33.3% PTC).

Similarly, the path quality score obtained via our post-
processing was always higher than that of the original PGPR
(R-(P)PGPR: 106.9% LIR and -47.5% LID; P-(P)PGPR:
174.1% SEP 1.04% SED; D-(P)PGPR: 207.6% PTD and
411.1% PTC). The gain on (non-optimized) path metrics tended
to be higher than that observed under in-processing.

Combining in- and post-processing approaches led to the
largest gain in reasoning path quality, compared to that of the
original PGPR (R-(IP)PGPR: 113.95% LIR and -42.5% LID;
P-(IP)PGPR: 225% SEP and 0% SED; D-(IP)PGPR: 330.7%
PTD and 711.1% PTC). Optimizing for either LIR, SEP, or PTD
generally resulted in a decrease in LID, SED or PTC respec-
tively, especially under post-processing6.

Observation 2. Compared to PGPR, our in- and post-
processing optimization approaches showed a substan-
tially higher reasoning path quality based on the pro-
posed metrics, on all data sets. Higher gains were ob-
served for PTD than for the other properties. There were
gains also on reasoning path metrics not directly op-
timized, highlighting a positive interdependence across
metrics according to the domain.

5.4. RQ3: Impact on Recommendations and Explanations

In a third analysis, we were interested in understanding how
the proposed in- and post-processing approaches concretely
changed the top-n recommended lists and their accompanying
explanations. To this end, we provide a use case for each rea-
soning path quality perspective, showing the results generated

6We refer the reader to our source code repository for additional analyses
regarding how the characteristics of the selected reasoning paths were affected
by our optimization approaches.
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Table 4: Reasoning path quality (LIR, LID; SEP, SED; PTD, PTC).

ML1M LASTFM CELL
LIR ↑ LID ↑ SEP ↑ SED ↑ PTD ↑ PTC ↑ LIR ↑ LID ↑ SEP ↑ SED ↑ PTD ↑ PTC ↑ LIR ↑ LID ↑ SEP ↑ SED ↑ PTD ↑ PTC ↑

PGPR 0.43 0.80 0.24 0.98 0.13 0.09 0.46 0.60 0.38 0.99 0.13 0.04 0.21 0.69 0.57 0.99 0.30 0.46
R-(I)PGPR 0.75 0.69 0.29 0.99 0.14 0.12 0.66 0.63 0.41 0.99 0.16 0.09 0.46 0.75 0.52 0.99 0.19 0.12
R-(P)PGPR 0.89 0.42 0.40 0.99 0.14 0.12 0.93 0.43 0.42 0.99 0.14 0.06 0.33 0.57 0.81 0.99 0.36 0.45

R-(IP)PGPR 0.92 0.46 0.36 0.99 0.14 0.12 0.93 0.42 0.45 0.99 0.15 0.07 0.86 0.51 0.52 0.99 0.19 0.11
P-(I)PGPR 0.44 0.60 0.59 0.98 0.15 0.13 0.55 0.71 0.67 0.99 0.17 0.13 0.29 0.72 0.70 0.99 0.29 0.45
P-(P)PGPR 0.48 0.79 0.65 0.96 0.19 0.23 0.63 0.74 0.60 0.98 0.18 0.15 0.33 0.57 0.81 0.99 0.36 0.45

P-(IP)PGPR 0.43 0.78 0.78 0.96 0.16 0.15 0.55 0.70 0.72 0.98 0.18 0.15 0.28 0.62 0.85 0.99 0.29 0.42
D-(I)PGPR 0.42 0.81 0.30 0.98 0.18 0.22 0.55 0.70 0.38 0.99 0.14 0.06 0.34 0.64 0.80 1.00 0.20 0.04
D-(P)PGPR 0.49 0.75 0.33 0.99 0.40 0.46 0.55 0.70 0.46 0.99 0.41 0.48 0.24 0.68 0.41 0.99 0.47 0.62

D-(IP)PGPR 0.42 0.72 0.41 0.99 0.56 0.73 0.54 0.70 0.48 0.99 0.50 0.59 0.54 0.71 0.76 1.00 0.55 0.68
For each category: best result of the optimized metric and its complementary metric in bold, second-best result underlined.

for an example user by (i) the original PGPR model, (ii) our
in-processing approach only, (iii) our post-processing approach
only, and (iv) the combination of both in- and post-processing.
For each use case, Fig 2 reports the explanation template (see
def. 6), how the textual explanation can be generated from the
selected reasoning path, and the specific part of the explanation
influenced by the model output (LIR, SEP, PTD).

Recency. Figure 2a shows that our approaches led to textual
explanations including more recent linking interactions than the
original PGPR model. In this specific example, the difference
in LIR between the original and the in-processing approaches
(0.10) and between the post-processing and the combination
(0.01) was small. It follows that the main contribution to the
increase in LIR was provided by the post-processing optimiza-
tion. However, it should be noted that, these differences in-
creased when we considered the entire user population. With
this example, however, we were also able to highlight the (neg-
ative) side effect that may often characterize a post-processing
only optimization. Indeed, R-PGPR often reported the same
linking interaction across recommended products (low LID).
This effect could be exacerbated by close temporal proximity
the user interactions in ML1M. Conversely, the combination of
in- and post-processing optimization approaches (R-(IP)PGPR)
showed that it is possible to mitigate this effect (increase LID)
while even improving LIR.

Popularity. Figure 2b depicts the recommendations and the
resulting reasoning paths once SEP was optimized. In all the
considered settings, our approaches resulted in a higher SEP
and, therefore, textual explanations mentioning more popular
shared entities. Differently from the recency perspective, the
differences in SEP were higher between settings, with the com-
bined setting showing an evident gain with respect to the other
ones. It should be also noted that, in this case, the diversity of
the shared entity (SED) was generally high. Though only user
shared entities were often selected, none of them was repeated
multiple times in the same recommended list. With this exam-
ple, we could also appreciate the positive interdependence be-
tween SEP and PTD. Indeed, when the in-processing was part
of the optimization setting (P-(I)PGPR and P-(IP)PGPR), one
and two entity types different than the user type appeared in the
selected reasoning paths.

Diversity. Figure 2c shows the recommended products and se-

lected paths obtained after optimizing for PTD. In the provided

PGPR (avg LIR=0.50)
Recommendation Linking Interaction LIR
Star Wars IV The Godfather II 0.00
Star Wars VI Galaxy Quest 0.89
Schindler's List Star Man 0.48
E.T. Extra-Terrestrial Ben-Hur 0.83
American Beauty Romancing Stone 0.96
Silence of the Lambs Raiders of Lost Ark 0.58
Braveheart Tommy 0.00
Jaws The Godfather II 0.00
The Godfather: Part I King Kong 0.74
Star Wars: Episode I Star Man 0.48

Template: “because you <User Feedback> <Linking Interaction> also <Path Type> <Shared Entity>”
Sample Explanation: “because you watched Galaxy Quest also watched by another user similar to you” 

R-(I)PGPR (avg LIR=0.6)
Recommendation Linking Interaction LIR
Star Wars IV Roger Rabbit? 0.79
Star Wars VI The African Queen 0.41
Schindler's List Roger Rabbit? 0.79
Saving Private Ryan The African Queen 0.41
E.T. Extra-Terrestrial Galaxy Quest 0.89
Silence of the Lambs Ben-Hur 0.83
Braveheart Who Would Be King 0.54
American Beauty Wizard of Oz 0.32
The Godfather I Romancing Stone 0.96
Back to the Future Indiana Jones 0.86

R-PGPR (avg LIR=0.94)
Recommendation Linking Interaction LIR
Star Wars IV Batman 0.93
Star Wars VI Romancing Stone 0.96
Schindler's List Batman 0.93
E.T. Extra-Terrestrial Ben-Hur 0.83
American Beauty Romancing Stone 0.96
Silence of the Lambs Indiana Jones 0.86
The Godfather I Jurassic Park 1.0
Terminator II Jurassic Park 1.0
Terminator I Jurassic Park 1.0
Die Hard Jurassic Park 1.0

R-(IP)PGPR (avg LIR=0.95)
Recommendation Linking Interaction LIR
Star Wars IV Jurassic Park 1.0
Star Wars VI Romancing Stone 0.96
Schindler's List Roger Rabbit? 0.79
E.T. Extra-Terrestrial Batman 0.93
American Beauty Galaxy Quest 0.89
Silence of the Lambs Raiders of Lost Ark 0.93
Braveheart Romancing Stone 0.96
Jaws Romancing Stone 0.96
The Godfather I Jurassic Park 1.0
Star Wars: Episode I Jurassic Park 1.0

1.0 

0.0 

0.75

0.25

Less
Recent

More 
Recent

(a) Recency (LIR) with R-(P)PGPR, R-(I)PGPR and R-(IP)PGPR.

PGPR (avg SEP=0.26)
Recommendation Shared Entity SEP
Star Wars IV id1300 (User) 0.50
Star Wars VI id521 (User) 0.14
Schindler's List id365 (User) 0.45
E.T. Extra-Terrestrial id678 (User) 0.19
American Beauty id454 (User) 0.08
Silence of the Lambs id334 (User) 0.30
Braveheart id3319 (User) 0.75
Jaws id561 (User) 0.10
The Godfather: Part I id2526 (User) 0.08
Star Wars: Episode I id3186 (User) 0.09

P-(I)PGPR (avg SEP=0.64)
Recommendation Shared Entity SEP
Star Wars IV Space (Category) 0.86
Star Wars VI id1940 (User) 0.99
Schindler's List id331 (User) 0.16
Saving Private Ryan id1056 (User) 0.33
E.T. Extra-Terrestrial id47 (User) 0.77
Braveheart id1697 (User) 0.93
The Godfather I id1273 (User) 0.74
Back to the Future id1003 (User) 0.69
Terminator I id1674 (User) 0.75
The Matrix id559 (User) 0.27

P-PGPR (avg SEP=0.69)
Recommendation Shared Entity SEP
Star Wars IV id2115 (User) 0.94
Star Wars VI id1735 (User) 0.37
Schindler's List id701 (User) 0.68
E.T. Extra-Terrestrial id2942 (User) 0.25
Silence of the Lambs id1883 (User) 0.82
Braveheart id3319 (User) 0.75
The Godfather I id2525 (User) 0.45
Pulp Fiction id194 (User) 0.86
Forrest Gump id1448 (User) 0.97
Shawshank Redemption id4681 (User) 0.87

P-(IP)PGPR (avg SEP=0.79)
Recommendation Shared Entity SEP
Star Wars IV Space (Category) 0.86
Star Wars VI id1940 (User) 0.99
Saving Private Ryan id1056 (User) 0.33
E.T. Extra-Terrestrial id47 (User) 0.77
Braveheart id1697 (User) 0.93
The Godfather I id1273 (User) 0.74
Back to the Future id1003 (User) 0.69
Robin Hood Cary Elwes (Actor) 0.75
Alien id1697 (User) 0.93
Lawrence of Arabia id1180 (User) 0.99

1.0 

0.0 

0.75

0.25

Less 
Popular

More 
Popular

Template: “because you watched <Linking Interaction> also <Path Type> <Shared Entity>” 
Example: “because you watched The princess Bride also starred by Cary Elwes” 

(b) Popularity (SEP) with P-(P)PGPR, P-(I)PGPR and P-(IP)PGPR.

PGPR (PTD=0.1)
Recommendation Path type
Star Wars IV Watched
Star Wars VI Watched
Schindler's List Watched
E.T. Extra-Terrestrial Watched
American Beauty Watched
Silence of the Lambs Watched
Braveheart Watched
Jaws Watched
The Godfather: Part I Watched
Star Wars: Episode I Watched

D-(I)PGPR (PTD=0.2)
Recommendation Path type
Star Wars IV Watched
Star Wars VI Watched
Schindler's List Watched
Saving Private Ryan Watched
E.T. Extra-Terrestrial Watched
Silence of the Lambs Watched
Braveheart Watched
American Beauty Watched
The Godfather I Watched
Terminator II Belong to

D-PGPR (PTD=0.3)
Recommendation Path type
Star Wars IV Watched
Star Wars VI Watched
E.T. Extra-Terrestrial Watched
American Beauty Watched
Braveheart Watched
Jaws Watched
The Godfather I Watched
Star Wars I Watched
Alien Belong to
Mistery Men Edited By

D-(IP)PGPR (PTD=0.5)
Recommendation Path type
Star Wars IV Watched
Schindler's List Belong to
E.T. Extra-Terrestrial Watched
Braveheart Watched
The Godfather I Watched
Terminator I Watched
Flew Over the Cuckoo's Watched
Species Directed by
Time to Kill Cinematography
Home for Holidays Composed by

1.0 

1/|ℜ| 

0.75

0.25

Less
Diversity

More 
Diversity

Template: “because you watched <Linking Interaction> also <Path Type> <Shared Entity>” 
Example: “because you watched The Gateway also directed by Roger Donaldson” 

(c) Diversity (PTD) with D-(P)PGPR, D-(I)PGPR and D-(IP)PGPR.

Figure 2: Impact on the recommendations and explanations for a random user
in ML1M.
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example, the diversity of explanation path type was very low
(0.10). The most frequent path type was ”watched”, confirm-
ing our initial motivation on the majority of explanations being
connected to what other users have experienced (collaborative-
filtering like). In- and post-processing optimization approaches
alone were able to improve PTD, but the absolute value was still
relatively low. In particular, it should be noted that at most two
path types different than ”watched” were included and linked
to the lowest ranked products. Such behavior might be due to
the way the optimization approaches were formulated. Specif-
ically, once the sets of products to recommend and their cor-
responding reasoning paths were selected (after the optimiza-
tion), the products were ranked according to their relevance for
the user. To let other reasoning path types appear in the top-n
recommendations, it was often necessary to introduce products
not originally ranked at the top by the recommendation models.
Therefore, once finally ranking based on relevance, the newly-
added products linked to different path types ended up being at
the bottom. Combining both approaches made it possible to in-
crease the total number of path types different than ”watched”
to four and partially counter the abovementioned issue, with
one of the four linked to the product at position 2. However, the
majority of path types was still ”watched” (low PTC). Future
work should investigate novel ways of dealing with this issue.

Observation 3. As exemplified in the provided use
case, compared to the other settings, the combination of
both in- and post-processing not only generally reported
the highest reasoning path quality scores (explanations
linked to more recent user interactions, more popular
shared entities, and more diverse reasoning path types)
but also showed the highest diversity of linking interac-
tions and shared entities as well as the lowest concentra-
tion of path types.

6. Conclusions and Future Work

In this paper, we conceptualized, assessed, and operational-
ized three metrics to monitor reasoning path quality at user
level. We proposed a suite of in- and post-processing ap-
proaches to optimize for these metrics. Experiments on three
real-world data sets from different domains showed that, com-
pared to the baselines, not only the proposed approaches im-
prove the overall path quality, but also preserve recommenda-
tion utility.

Our findings in this study, paired with its limitations, will
lead us to extend and operationalize a larger space of user-level
reasoning path properties deemed as important for the next gen-
eration of explainable RSs. Indeed, the proposed properties are
not exhaustive by any means, and further studies will be con-
ducted, also via additional user surveys. Traditional beyond-
accuracy metrics explored in RS research, e.g., serendipity, di-
versity, and novelty, can be further elaborated in the context of
reasoning paths. Other properties can be also used to control
the fair exposition of the entities pertaining to humans (e.g.,
producers and actors in the movie domain) in the explanations.

Another interesting direction can investigate model agnostic ex-
planation subsystems able to turn explanation scores returned
by regularized-based explainable RSs into explanation paths to
provide textual explanations. This would also serve to assess
the transferability of our approaches to a larger set of models.
On the other hand, assessing generalizability to other domains
(e.g., education) will require to extend existing data sets with
their KG. Finally, in the long term, the impact of explainable
RSs on the platform and its stakeholders will be evaluated via
online experiments at scale.

Appendix A

To show that the identified reasoning path quality metrics
might have an impact on the resulting explanations, we ex-
plored the distribution of the interactions per user over time, the
distribution of the popularity over the entities, and the distribu-
tion of relations per type over the KG, on the three considered
data sets (ML1M, LASTFM, and CELL).

Recency. First, we considered that the LIR is defined accord-
ing to the time the user interacted with the already experienced
product. It was therefore important to explore how the interac-
tions per user are distributed over time. To this end, for each
user, we computed the average distance in time between their
most recent interaction and any other interaction that user per-
formed. Figure A.1 collects the percentage of users according
to their average distance in time over a daily, monthly, or yearly
period. Most of the users (78.4%) in ML1M performed their
interactions within one day. This behavior might be attributed
to the nature of the data, collected from a platform where users
were explicitly asked to provide ratings for movies. Optimiz-
ing for LIR would not affect much the temporal perception the
user has towards the linking interaction. Conversely, users had
a tendency to listen to songs over longer time frames (more in
the past) in LASTFM. In Amazon CELL, there was a more bal-
anced distribution of user interactions over time frames. For
the latter two data sets, optimizing for LIR would produce ex-
planations that are more relevant to the recent interactions and
tastes of users, especially for those who tended to interact less
frequently over time (right bars).

Popularity. Second, we considered that the SEP is defined ac-
cording to the popularity of the shared entity included into the
reasoning path. Figure A.2 depicts how the entity popularity
is distributed over entities of a given type. In ML1M, as ex-
pected, users and movies appear as the entities with the highest
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Figure A.1: For each data set, the percentage of users grouped by distance
between user most recent interaction and their other interactions (D = Days, M
=Months, Y = Year).
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Figure A.2: For each data set, entity popularity distribution per type (log scale).
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Figure A.3: Path type (relations type) distribution in the KG.

popularity estimates in the KG. Overall, the popularity varia-
tion over entities of a given type seemed large and comparable
across types. In the other two data sets, certain entity types
showed a larger variation in popularity than others. The vari-
ation in popularity was substantial in most of the entity types.
Optimizing for SEP would hence produce explanations that in-
clude more popular shared entities. Given the results collected
in Figure A.2, playing with this property would possibly have
a more prominent impact on the shared entities in the selected
reasoning paths.
Diversity. Finally, we considered that the PTD is defined
according to the reasoning path types covered in the recom-
mended list. Figure A.3 shows the distribution of relation types
in the KG. It should be noted that the reasoning path type diver-
sity is limited to the relations available in the KG. In all data
sets, most of the relations came from user interactions (i.e.,
watched, purchased, described as). Only a minority of them
were derived from the external knowledge in the KG. It follows
that this imbalanced setting may directly influence the path se-
lection step during training and, consequently, the PTD in the
recommendations.
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