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Abstract

The last decade has been pervaded by the automatic applications leveraging Arti-
ficial Intelligence technologies. Novel systems have been adopted to automatically
solve relevant tasks, from scanning passengers during border controls to suggesting
the groceries to buy to fill the fridge. One of the most captivating applications of Ar-
tificial Intelligence is represented by voice assistants, like Alexa. They enable people
to use their voice to perform simple tasks, such as setting an alarm or saving an
appointment in an online calendar. Due to their worldwide usage, voice assistants
are required to aid a diverse range of individuals encompassing various cultures,
languages, accents, and preferences. It is then crucial for these systems to function
fairly across different groups of people to ensure reliability and provide assistance
without being influenced by sensitive attributes that may vary among them.

This thesis deals with the design, implementation, and evaluation of Artificial In-
telligence models that are optimized to operate fairly in the context of voice assistant
systems. Assessing the level of performance of existing fairness-aware solutions is an
essential step towards comprehending how much effort should be put to provide fair
and reliable technologies. The contributions result in extensive analyses of existing
methods to counteract unfairness, and in novel techniques to mitigate and explain
unfairness that capitalize on Data Balancing, Counterfactuality, and Graph Neural
Networks Explainability. The proposed solutions aim to support system designers
and decision makers over several fairness requirements. Specifically, over method-
ologies to evaluate fairness of models outcomes, techniques aimed to improve users’
trustworthiness by mitigating unfairness, and strategies that generate explanations
of the potential causes behind the estimated unfairness. Through our studies, we
explore opportunities and challenges introduced by the latest advancements in Fair
Artificial Intelligence, a relevant and timely topic in literature.

Supported by extensive experiments, our findings illustrate the feasibility of de-
signing Artificial Intelligence solutions for the mitigation and explanation of unfair-
ness issues in the models adopted in voice assistants. Our results provide guidelines
on fairness evaluation, and design of methods to counteract unfairness concerning
the voice assistant scenario. Researchers can use our findings to follow a schematic
protocol for fairness assessment, to discover the data aspects affecting the model
fairness, and to mitigate the outcomes unfairness, among others. We expect that
this thesis can support the adoption of fairness-aware solutions in the voice assistant
pipeline, from the voice authentication to the requested task resolution.
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Chapter 1

Introduction

1.1 Motivation and Open Issues

Artificial intelligence (AI) systems have been pervading an immense amount of activ-
ities, jobs, and services to ease the human involvement. Automatic systems powered
by AI are currently employed in several scenarios, for instance to guarantee security
(e.g., border controls scanning, identity verification for bank transactions) [138], to
process or generate text data (e.g., language translation, question answering) [95],
to support mental health issues (e.g., chatbots) [3], or to improve user satisfaction
in e-commerce and streaming platforms (e.g., recommender systems) [128].

The increment of responsibility provided to automatic decision-making systems
raise issues about side consequences related to the usage of AI. Ongoing efforts by
researchers have been focused on improving AI algorithms in terms of trustworthi-
ness [147], ethics [35], fairness [107], and explainability [170]. Such aspects have
been analyzed in some of the most popular tools leveraging AI, among which voice
assistants like Alexa [72, 131] and Google Home. A concerted effort has been par-
ticularly made to analyze and mitigate unfairness in voice-based assistants [131]
and speaker recognition systems in general [118]. However, current studies only
questioned whether the recognition task performed by such tools was fair.

Voice assistants provide several services, from planning the shopping cart to sug-
gesting activities or movies to watch. Indeed, some of the voice assistants operations
involve additional AI systems, e.g., recommender systems [128], which are devoted
to suggest movies, songs, and so on, personalized on the basis of a user’s personal
preferences. It follows that accounting for the fair decision-making of voice assis-
tants in their speaker recognition task is not enough, but also the personalization
for the consumers should be generated by a fair process [150].

The literature in recommendation has been active in assessing [47], mitigat-
ing [92], and explaining [59] unfairness issues in the outcomes of the employed mod-
els. However, there are still challenges related to the reliability and consistency
of the methods devised to improve and better understand fairness in recommender
systems. Additionally, the community has not yet explored the fairness require-
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Figure 1.1: Personalization context empowered with this thesis contributions in the
speaker verification and recommendation processes.

ments to be adopted in an end-to-end voice assistant task of recognizing speakers
and suggesting personalized content based on their request.

1.2 Contributions

In this thesis, the fairness concerns involved in a voice assistant for the multiple tasks
of speaker recognition and personalized recommendation are studied by individually
analyzing each task. The Figure 1.1 depicts the pipeline of the considered multiple
tasks and the diverse fairness requirements planned in our study. The focus is
on contextualizing the existing works that counteract unfairness issues in speaker
recognition and recommendation, devising novel methods to improve fairness, and
also exploring strategies to better comprehend the causes behind AI unfair decisions.
The proposed contributions consist of a comprehensive analysis of the performance
of existing unfairness mitigation methods, an extended protocol to evaluate fairness-
aware algorithms, and a framework to both mitigate unfairness and identify the data
subset that causes a system to generate unfair outcomes. This series of works aims
to support the process of fairly verifying the identity of a speaker and fairly provide
personalized recommendations to improve the user satisfaction and trustworthiness
towards such unified technologies.

Going more into detail, we provide (i) a framework to examine the performance
in unfairness mitigation of existing approaches, which have been devised for recom-
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mender systems or adopted to speaker recognition from other domains, (ii) a set of
practical perspectives that forms a unified evaluation protocol to verify an algorithm
fairness from different viewpoints and scenarios, (iii) two frameworks powered by ex-
plainability strategies, one identifies the peculiar voice features negatively affecting
the most a speaker recognition system, the other extracts a subset of user-item in-
teractions that can be used to both explain and mitigate unfairness in recommender
systems.

Overall, this thesis provides guidelines, insights, limitations, and future direc-
tions for AI algorithms adopted to counteract unfairness in speaker recognition and
recommender systems. The content of this manuscript could support researchers
into understanding the various fairness notions used in the literature, how they are
operationalized to study the issue from different viewpoints, and how fairness should
be evaluated on AI systems outcomes.

1.3 Dissertation Structure

The remainder of this thesis is organized as follows: Chapter 2 provides a brief intro-
duction to deep AI architectures, fairness notions and regulations, and the literature
methods devised to solve the tasks underlying this thesis overall contributions.

Chapter 3 illustrates our frameworks to assess, mitigate and explain unfairness
in high-end speaker recognition models. The main framework leverages multiple
fairness notions to analyze the outcomes bias from different viewpoints and a data
balancing technique as a mitigation tool. An extension of the framework leverages
surrogate models to estimate the influence of speech covariates on the accuracy of
speaker recognition models. Such influence highlights specific voice characteristics
that can be used as an explanation of aspects discovered in the outcomes, e.g., un-
fairness in recognition accuracy. This work has been partially studied jointly with dr.
Giacomo Meloni, an independent researcher, and published on the “European Sym-
posium on Software Engineering” (ESSE) [55] and the “The International Speech
Communication Association” (INTERSPEECH) conference proceedings [53]. The
framework component aimed to estimate the influence of speech covariates has been
described in a paper published on the “Pattern Recognition Letters” journal [54].

Chapter 4 depicts a research process aimed to first contextualize existing al-
gorithms for unfairness mitigation in recommendation under a common evaluation
protocol, and then identify a comprehensive list of practical perspectives that should
be met to consider an unfairness mitigation technique as reliable in practice. Such
research process extends towards a novel method that is not only able to mitigate
unfairness in recommendation, but it is also driven by explainability techniques to
being more interpretable and to highlight the possible causes of unfairness issues in
recommender systems. The first work on contextualization of unfairness mitigation
algorithms and identification of practical perspectives has been partially studied
jointly with prof. Ludovico Boratto from the University of Cagliari (Italy), and
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published on the “European Conference on Information Retrieval” (ECIR) confer-
ence proceedings [18] and the “Information Processing & Management” (IPM) jour-
nal [19]. The novel method to mitigate and explain unfairness in recommendation
has been partially studied jointly with prof. Ludovico Boratto from the Univer-
sity of Cagliari (Italy) and dr. Francesco Fabbri from Spotify, and published on
the “International Conference on Information Knowledge & Management” (CIKM)
conference proceedings [16] and submitted to the “Transactions on Intelligent Sys-
tems and Technology” journal.

Chapter 5 discusses the implications of our research with particular focus on its
limitations, but also on open issues related to our work and potential advancements.

Additional content is provided on two appendices, related to two works regarding
aspects not directly related to the main topic of fairness advancements in recommen-
dation and speaker recognition. Appendix A presents a work aimed to examine the
adoption of information retrieval models to support the autonomous browsing of in-
formation related to mental health issues. Such a framework would enable patients
to get more familiar with their own diseases for a therapeutical purpose, and an
unfairness evaluation is also performed due to the sensitive information associated
with personal health issues. This topic has been partially studied with dr. Vivek
Kumar from the University of Cagliari (Italy), and published on the “International
Workshop on Algorithmic Bias in Search and Recommendation” (BIAS) workshop
proceedings [86]. Appendix B regards an extension of the explanation framework de-
vised for unfairness in recommendation, such that it is generalized to explain several
aspects beyond fairness in recommendation, e.g., coverage, diversity, model insta-
bility, or novelty. This topic has been partially studied with prof. Ludovico Boratto
from the University of Cagliari (Italy) and dr. Francesco Fabbri from Spotify, and
submitted for publication to the last year edition of the “European Conference on
Information Retrieval” (ECIR).



Chapter 2

Background

This chapter provides essential context around deep learning, algorithmic fairness
background, and methods for speaker verification, recommendation, and algorithmic
fairness studied and used in this thesis.

2.1 Deep Learning

AI is a thriving field with many practical applications that aims to create machines
capable of simulating human-like intelligence and decision-making processes. It
encompasses a wide range of techniques, algorithms, and methodologies to solve
complex problems and learn from data.

Deep Learning (DL) is a subfield of AI that focuses on training artificial neural
networks with multiple layers to perform tasks such as image recognition, natu-
ral language processing, and speech recognition. It has revolutionized many AI
applications due to its ability to automatically learn hierarchical representations
from data. Indeed, we can identify two other sub-levels between DL and AI, i.e.
Machine Learning and Representation Learning, where the former is broader than
the latter. Representation learning is a fundamental concept within deep learning,
where the neural networks learn to automatically extract meaningful features and
representations from raw data. DL extends representation learning by introducing
representations that are expressed in terms of other, simpler representations [64].
Machine Learning (ML) is a broader field that encompasses deep learning, repre-
sentation learning, but also other algorithms and techniques that extract patterns
from raw data. ML algorithms, as well as the ones in the mentioned sub-fields, can
be classified as supervised, unsupervised, or reinforcement learning, depending on
the type of training data and the learning approach.

At its core, AI represents the broader goal of creating intelligent machines, and
DL specializes in training deep neural networks for complex tasks, where the data
is processed along several mathematical functions, i.e. layers, that learn a new
representation. Each layer can be thought of as the state of the computer’s memory
after executing another set of instructions in parallel [64]. Networks with greater
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depth can execute more instructions in sequence. Here we revise some of the most
common, but also recent neural networks used to solve tasks contemplated in this
thesis contributions.

2.1.1 Feed Forward Neural Networks

Deep feedforward networks, also known as feedforward neural networks (FFNNs)
or multilayer perceptrons (MLPs), are fundamental models in deep learning. The
main objective of these networks is to approximate a specific function f ∗ [64], which
describes a phenomenon that can be learnt by specific tasks, e.g., classification.
The network is composed of layers of functions, forming a directed acyclic graph,
and there are no feedback connections in the model, i.e. the information flows
through a uni-lateral direction. Feedforward networks play a crucial role in machine
learning applications and in many commercial systems. During training, the network
learns to approximate the desired output f ∗(x) by processing training data examples
through a chain of layers until the final layer, denoted as output layer, is reached.
The term “deep learning” comes from the network’s depth, which refers to the
number of layers in the model. The inner layers between the first and the last
one are called hidden layers, because their output is not directly related to the
training data, but their usage is established by the network itself. These networks
are denoted as “neural” because they are inspired by neuroscience, with each hidden
layer representing a vector-valued function akin to neurons.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networs (CNNs) are a family of FFNNs suited for data with
a grid-like topology, such as time-series and image data. The name derives from the
mathematical operation performed by such networks, i.e. convolution. Convolutions
are applied on the grid-like data by means of small filters, called kernels, that slide
across the grid and extract local patterns, such as edges and low-level features [64].
CNNs typically include pooling layers that process the convoluted data through a
down-sampling operation to represent the data with low-dimensional feature vec-
tors. After multiple convolutional and pooling layers, a sequence of fully connected
layers, also denoted as dense layers, takes in input the output features for several
downstream tasks. CNNs have especially become a fundamental tool in various
computer vision applications thanks to their ability to learn relevant features from
spatial information, such as images and videos.

2.1.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a family of networks suited for graphs, charac-
terized by a non-Euclidean data structure. A graph is a data structure representing
a set of entities, denoted as nodes, and their relationships, denoted as edges. GNNs
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present some similarities with CNNs given that the Euclidean grid-like data structure
used by CNNs can be regarded as instances of graphs [175]. The main idea behind
GNNs is to propagate information across the graph to learn representations for each
node that capture both the node’s own features and the information from its neigh-
boring nodes. This propagation of information is typically done through message
passing mechanisms, where each node aggregates information from its neighbors and
updates its representation accordingly. We can distinguish among several types of
GNNs based on the underlying implementation and aggregation mechanism: graph
convolutional networks (GCNs), graph attention networks (GATs), graph sample
and aggregate (GraphSAGE), gated graph neural networks, heterogenous informa-
tion networks (HINs), and so on.

2.1.4 Residual Neural Networks

Residual Neural Networks, commonly known as ResNets, are a type of deep CNN
architecture introduced by [70]. ResNets are specifically designed to address the
vanishing gradient problem that occurs in very deep neural networks. The van-
ishing gradient problem arises when gradients become very small as they propagate
backward through many layers during the training process. ResNets tackle this issue
by using a novel shortcut connection or skip-connection that allows the network to
learn residual mappings instead of directly learning the desired output. In simpler
terms, instead of learning the mapping from the input to the output, ResNets learn
the difference between the desired output and the input (the residual). The network
then learns to predict this residual and adds it back to the original input, effectively
making it easier for the network to learn the identity mapping.

2.1.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of networks suited to deal with
sequential data. RNNs leverage the concept of parameter sharing to learn gener-
alizable patterns across diverse sequences [64]. Without parameter sharing, RNNs
could not generalize due to separate parameters targeting each value of the time
index. Each member of the output is a function of the previous members of the
output, utilizing the same update rule applied to the previous outputs. Hence, com-
putational graphs of RNNs encompass feedback and cycles, reflecting the influence
of the present value of a variable on its own value at a future time step. Exten-
sions of RNNs, such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU), introduce self-loops to accumulate information over a long duration,
with focus on the sequence context. Additionally, several gates, controlled by other
hidden units, are introduced to control the way the internal state is managed, by
also leveraging a forgetting factor to discard information of previous states.
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2.2 Algorithmic Fairness

Algorithmic fairness is an essential property that must be considered and analyzed
in modern machine learning systems. Indeed, the algorithms that drive such systems
are vulnerable to biases exactly as humans, resulting in unfair decisions towards an
individual or demographic group. As [107] states, “fairness is the absence of any
prejudice or favoritism toward an individual or group based on their inherent or
acquired characteristics”. In this section, we describe real-world example of algo-
rithmic unfairness, governmental regulations proposed in USA and EU, and several
fairness notions that define what is and what is not fair.

2.2.1 Historical Background

Due to the prolific spread of AI and machine learning in different real-world appli-
cations, safety and fairness constraints have become a significant issue. Inherent
biases exist in modern AI applications, affecting our daily lives when interacting
with chatbots, employment matching, flight routing, automated legal aid for immi-
gration systems, and advertising placement algorithms [107]. A canonical example
is represented by COMPAS, a software used by courts in the USA to decide whether
to release or keep in prison an offender. An investigation uncovered COMPAS being
unfair towards African-American [107], given that the software reported a higher
likelihood of predicting African-American offenders to be at a higher risk of recom-
mitting a crime compared with Caucasian offenders. Another demonstration of bias
present in decision-making systems is an algorithm devised to deliver advertisements
promoting jobs in STEM (Science, Technology, Engineering and Math) fields [90].
Such advertisements should have been delivered by the system in a gender-neutral
way, but an investigation reported the algorithm being discriminatory. Indeed, it
considered younger women to be a valuable subgroup and more expensive to show
advertisements to, given that less women compared with men saw the advertisement.

2.2.2 Artificial Intelligence Regulations

Due to the aforementioned issues and events raising insecurities about the relia-
bility of AI applications, governments have been examining and introducing novel
regulations on such systems. In USA, regulating AI is in its early days [83], and
no one knows how such a law about AI will look like. Moreover, USA remains far
behind Europe, where lawmakers are preparing to enact an AI law [2]. In earlier
stages, European laws regarding unfairness issues were already present, regulating
the definition and characteristics of sensitive attribute and protected groups. Ex-
plicit mentions are given in Art. 21 of the EU Charter of Fundamental Rights, Art.
14 of European Convention on Human Rights, and Art. 18-25 of the Treaty on the
Functioning of the European Union. The novel Artificial Intelligence Act [2, 57] will
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Figure 2.1: Risk categories for AI use cases under the Artificial Intelligence Act.

put new restrictions on AI applications on the basis of a categorization of the risks,
depicted in Figure 2.1.

In particular:

• prohibited practices (unacceptable risk) include real-time biometric sys-
tems, social scoring algorithms that could lead to unfavourable treatment of
individuals, and manipulative systems aimed to distort individuals’ behaviors
to cause physical or psychological harm.

• high-risk AI systems include biometric identification, employment and
worker management, law enforcement, border control management, education
and vocational training, and so on

• low-risk AI systems include systems whose operation neither depend or use
personal data nor make predictions that could lead to unfavourable outcome
or affect any individual directly or indirectly

2.2.3 Fairness Notions

We capitalize on [107] to describe some of the most operationalized fairness notions
in the AI areas studied in this thesis. In particular, we will focus only on four fairness
notions: demographic parity, equal opportunity, equalized odds, and counterfactual
fairness. For further information and a complete list of all the fairness notions, we
suggest the reader to consult [107].

Demographic Parity

Also denoted as statistical parity, demographic parity is a fairness notion that is
satisfied if the likelihood of a positive outcome is the same regardless of the demo-
graphic group a person belongs to. Let Ŷ be a predictor, under the simplest scenario
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of a binary sensitive attribute that leads to the demographic groups set A = {0, 1},
demographic parity is formally defined as:

P (Ŷ | A = 0) = P (Ŷ | A = 1). (2.1)

In practice, this definition is typically operationalized by measuring the difference
in performance experienced by an AI system across demographic groups, e.g., the
difference in speaker verification accuracy across males and females.

Equal Opportunity

Confining our discussion to classification tasks, equal opportunity is related to the
true positive term, which refers to a positive outcome correctly assigned to a person
in the positive class. Indeed, equal opportunity is satisfied if the likelihood that a
person in the positive class is assigned to a positive outcome is the same regardless
of the demographic group a person belongs to. Extending the notation used for
demographic parity with Y = {0, 1}, which denotes the negative (0) and the positive
(1) class a person is associated with, equal opportunity can be formally defined as:

P (Ŷ = 1 | A = 0, Y = 1) = P (Ŷ = 1 | A = 1, Y = 1). (2.2)

In other words, equal opportunity is satisfied if the predictor report equal true
positive rates across demographic groups.

Equalized Odds

The notion of equalized odds does not only take into account the true positives as
equal opportunity, but also the false positives, which refer to the positive outcomes
incorrectly assigned to the people in the negative class. Indeed, equalized odds is
satisfied if both the probability of a person in the negative class being incorrectly
assigned a positive outcome and the probability of a person in the positive class
being correctly assigned a positive outcome are the same across demographic groups.
Formally:

P (Ŷ = 1 | A = 0, Y = y) = P (Ŷ = 1 | A = 1, Y = y). (2.3)

In other words, equalized odds is satisfied if the predictor reports equal true
positive rates and equal false positive rates across demographic groups.

Counterfactual Fairness

Before delving into the next type of unfairness notion, we first define what coun-
terfactual reasoning means by relying on [88, 11]. The term counterfactual denotes
the opposite of the term factual. The latter is used to describe an event actually oc-
curred in the real-world or a property actually established. An event is then denoted
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as factual if it is occurred in the actual world. Conversely, an event is denoted as
counterfactual if it is occurred in a counterfactual world. Counterfactuality studies
address questions about the effect of hypothetical actions or interventions, and, once
such effect is understood, we can ask what action plausibly caused an event [11].
In simpler words, counterfactual reasoning studies the event that would occur in
the counterfactual world with respect to event occurred in the actual world when
a property, condition or attribute is modified. For instance, asking what would
happen if you turned left with your car instead of right at an intersection is an ex-
ample of counterfactual thinking, because you are assuming a distorted world (the
counterfactual one) where the event changed and you turned left, but you actually
turned right (in the actual world).

[88] introduced the fairness notion of counterfactual fairness, which is satisfied if
the likelihood of a predictor outcome is the same regardless we assign a person to a
demographic group a or a′, e.g., male or female. The outcome of the predictor should
then not be causally dependent on a sensitive attribute, i.e. on the demographic
group the person under consideration belongs to. Counterfactual fairness can be
formally defined as:

P (ŶA←a = y | A = a) = P (ŶA←a′ | A = a). (2.4)

for all y and for any a′ attainable by A. Hence, A should not be a cause of Ŷ in any
individual instance.

2.3 Algorithmic Methods

2.3.1 Methods for Speaker Verification

Speaker recognition is implemented via two main tasks: identification aims to detect
the speaker’s identity within a gallery of candidate speakers; verification aims to
confirm the identity of the claimed speaker and operates in an open-set regime based
on a gallery of enrolled speech samples. Automatic Speaker Verification corresponds
to the verification task, so as to verifying an uncertain voice sample belongs to the
speaker under consideration. Such systems are typically employed to secure the
access to a private area or device, e.g., a phone or a bank account, by impeding
speakers different from the owner to gain access.

Following [78], the speaker verification task can be outlined in two stages: feature
extraction (also denoted as front-end) and feature matching (also denoted as back-
end). The former is responsible to transform the digital signals of a vocal sample
into a different representation, such as feature vectors or numerical descriptors.
The latter corresponds to the verification stage, where an unclassified audio sample
is converted into a feature vector, then compared with the vocal fingerprint of the
genuine speaker to check they where generated by the same individual. Some modern
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architectures perform both the front-end and back-end task, whose technique is
denoted as end-to-end speaker recognition.

Speaker modeling has been recently dominated by deep neural networks [33]
(DNNs) which significantly outperform classic solutions like GMM-UBM [126] or I-
Vectors [38]. DNNs are typically pre-trained for the identification task, but are then
adapted to open-set verification by discarding the classification head and extracting
an intermediate representation, referred to as a speaker embedding. The embeddings
of the query and enrolled samples are compared to confirm the speaker’s identity.

Countless deep neural architectures have been proposed for speaker modeling.
Some of the most prominent differences among the existing architectures involve
the input acoustic representation, the backbone network, and the temporal pooling
strategy. Directly using waveforms to learn a representation is possible [125], but
it is much more common to use a hand-crafted 2D representation (e.g., spectro-
grams or filterbanks). The latter enables the adaptation of successful backbones
from computer vision, e.g., VGG (Visual Geometry Group) [114] or ResNet (resid-
ual networks) [151, 161]. Recurrent [144], pooling [161], or time delay neural net-
works [133] can be then used to deal with the time dimension typical of the vocal
input. Usually, trainable pooling layers achieve better results than simple pooling
operators (e.g., average pooling [161] or statistical pooling [133]). Some of the most
successful learned designs include the family of VLAD (Vector of Locally Aggregated
Descriptor) models. NetVLAD [159] assigns each frame-level descriptor to a cluster
and computes residuals to encode the output features. Its variant GhostVLAD [159]
excludes some of the original NetVLAD clusters from the final concatenation, such
that undesirable speech sections are down-weighted.

Being the front-end the main operation of speaker recognition systems, we will
describe in detail some of the algorithms devised for such task, and also a modern
end-to-end architecture.

Gaussian Mixture Model

The Gaussian Mixture Model (GMM) [78] is a probabilistic model that can be
thought as a generalization of k-means clustering, where each cluster relates to a
Gaussian distribution. GMM assumes datasets are formed by a mixture of Gaussian
distribution with uncertain variables, and the combining factors related to each clus-
ter and Gaussian distribution are probabilities. GMMs have been the most common
probability functions in text-independent speaker recognition where continuous fea-
tures are used. GMMs are trained from a set of acoustic features extracted from the
speech data of each speaker. Specifically, each speaker is modeled using a separate
GMM, which captures the statistical distribution of the acoustic features for each
speaker and estimates the parameters that best fit such distribution.
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X-Vector

X-vectors is the name given to the segment level speaker embeddings, generated
by the corresponding method and used to discriminate between speakers [78]. The
approach is developed on deep neural network embeddings, where the network is
based on a time-delay architecture and the feature matching is performed by a
separated classifier like principal linear discriminant analysis. The complete process
leverages a time delay to extract short term temporal frame-level context to then use
a statistic pooling layer to aggregate over the input segment, computing mean and
standard deviation. The final speaker embeddings are indeed denoted as x-vectors.

ResNet

The family of ResNets architectures, e.g., ResNet-34, ResNet-50, is based on the
residual neural networks, previously described in Section 2.1.4. In particular,
ResNets are a mixture of CNN and residual blocks, where the number specified
in their name, e.g., 34 in ResNet-34, stands for the number of layers of the archi-
tecture. This type of algorithms is leveraged for automatic speaker verification by
learning from a different representation of the vocal fingerprint of a speaker. Indeed,
audio signals can be transformed in a 2D representation, e.g., spectrograms, which
can represent in a single format the intensity and the spectrum of frequencies of a
vocal sample as it varies with time.

2.3.2 Methods for Recommendation

There has been an increasing effort in recommendation literature to devise novel
methods to solve the recommendation task. The goal of a preference model is to
predict whether or to what extent a user u ∈ U shows interest in an item i ∈ I, e.g.,
a song, a movie, or a job candidate. The main categorization for recommendation
systems is collaborative filtering, content-based filtering, and hybrid systems [128].
We focus on collaborative filtering techniques, which learn the interaction preference
of each user from the knowledge of other users based, for instance, on the similarity of
their interaction histories, i.e. the items they interacted with. Collaborative filtering
techniques can be subsequently categorized in memory-based and model-based. The
latter includes several systems, based on different architecture types, e.g., matrix
factorization (MF), deep learning-based. The Figure 2.2 depicts the recommender
systems categorization that has just been introduced.

The researchers in recommendation have gradually shifted their attention to-
wards deep-learning based systems. Such systems leverage powerful and cutting-
edge architectures, such as GNNs [85, 145, 94, 156, 166], transformers [137], and
diffusion models [148]. Due to the extensive research conducted with the first
architecture type, the literature nowadays refers to collaborative filtering per-
formed with GNNs as graph collaborative filtering (GCF). Recommender systems
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Figure 2.2: Categorization of recommender systems.

based on transformers are particularly employed in sequential recommendation, e.g.,
BERT4Rec [137], due to the intrinsic property of transformers of predicting the next
data instance given a sequence of previous instances. Diffusion models have been
proposed to solve the recommendation task by learning to reconstruct the users’ past
interactions when artificial noise is added to them, e.g., DiffRec and LDiffRec [148].

Nonetheless, several studies have still been focused on improving classic model ar-
chitectures, such as matrix factorization and autoencoders, For instance, ENMF [26]
extended the matrix factorization architecture to a neural recommendation model
that can learn the users’ preferences without the need of sampling techniques,
which is a common practice in recommendation. Another example is represented by
EASE [136], a shallow autoencoder that basically corrects the conceptual flaws of
neighborhood-based approaches, and that is able to generate recommendations by
learning to reproduce the users’ interaction history.

Memory-based

The recommender systems that fall in the category of memory-based measure the
similarity among users on the basis of the ratings they assign to the items. Based
on the computed similarity, the items to recommend to a certain user u are derived
from the users most similar to u. Some of the items such users interacted with could
be recommended to u if the latter do not include such items in the history. This
approach is also denoted as neighborhood-based, given that it leverages the most sim-
ilar users to perform the recommendation task, i.e. the neighbors of a certain user.
Two main variants exist, UserKNN and ItemKNN. The former learns the similar-
ity across users by processing the interactions vectors of each user, while the latter
process the interactions vectors from the viewpoint of each item by computing the
similarity of a possible item to recommend with those the user under consideration
interacted with.

Matrix Factorization

Matrix factorization approaches leverage latent representations of each entity in the
recommendation scenario, i.e. users and items. Such latent representations, i.e.
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embeddings, represent each user and each item in a N -dimensional space by N nu-
merical features. The interest of a user towards an item is predicted by performing
a matrix multiplication between the users and items embedding. This is the general
operation of MF, or Generalized Matrix Factorization (GMF), but other variants
have been designed that change the way the entities are represented or learn to dis-
criminate different embeddings. For instance, Singular Value Decomposition (SVD)
performs a more articulated factorization than MF, while Bayesian Personalized
Rank (BPR) leverages a pairwise loss to guide the embeddings generation towards
discriminating positive from negative interactions.

Deep Learning-based

Novel recommender systems are deep learning-based, leveraging the deep networks
available in the machine learning literature to learn high-order preferences between
users and items. The main addition in deep learning-based systems is a neural
network that extends other collaborative filtering algorithms or performs an end-to-
end recommendation process. For instance, Neural Collaborative Filtering (NCF)
extends the classic matrix factorization algorithm by adding a series of MLPs to
learn a stack of latent representations. Other architectures re-design the task a
neural network is typically used for to treat it as a recommender system. GNN-
based recommender systems, for instance, are neural networks devised to perform
a linking prediction task in a graph, and given that user-item interactions can be
represented by a graph, such task also models a recommendation scenario.

2.3.3 Methods for Algorithmic Fairness Analysis

In the last years, several techniques have been designed to counter unfairness issues
in different downstream tasks, such as speaker verification and recommendation.
Researchers mainly focused on assessing, explaining and mitigating unfairness issues
exhibited by the decisions of models employed in the addressed tasks.

Preliminary research [51] on speaker verification uncovered that a deep-learning
model exposes different equal error rates among individuals, based on their language,
gender, and age. Data balancing and pre-training strategies across groups were pro-
posed as countermeasures in speaker [171, 108] and face [130] recognition, due to
the lack of training data representing the minority demographic group. Subsequent
progress included unfairness treatments based on group-adapted encoders [131] or
adversarial and multi-task learning techniques [118]. Evaluation frameworks aimed
to investigate performance disparities across different demographic subgroups rep-
resent another line of research in voice-only [76] and audio-visual biometrics [52].
However, none of the above studies questioned the origin of the disparities, beyond
data imbalance. Understanding why a speaker recognition system may lead to dis-
parate performance for different (groups of) users is still an under-explored topic,
though being essential to enable such systems for everyone.
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On recommender systems, preliminary studies exhibited the lacking of a con-
sensus on how to perceive unfairness from a consumer perspective. Indeed,
prior works were built upon a certain notion of fairness according to diverse as-
pects. Such notions can be categorized in two principles: equity of certain met-
ric scores (e.g., the recommendation utility scores) between demographic groups
(EQ) [47, 21, 155, 81, 9, 124, 92, 141]; independence of a certain outcome (e.g.,
the predicted relevance scores or recommended lists) from the sensitive attribute
(IND) [93, 154, 157, 58]. Usually, prior studies proposed mitigation procedures co-
herently built on top of the fairness notion they tackled, e.g., by balancing the
representation of groups in the training set [47], re-ranking items such that both
recommendation utility and fairness are improved [92, 141], and decoupling the user
and item latent representations from sensitive attribute information [93, 154, 157].
Nonetheless, consumer unfairness was assessed by varied evaluation protocols, com-
prising a diverse range of datasets, utility and fairness metrics, resulting in a convo-
luted landscape for fairness analysis in recommendation. Differently from the liter-
ature in speaker verification, explainability concerns have been remarkably explored
in recommendation. Several methods [20, 174, 10, 169, 61, 32, 140, 97] have been
especially proposed to provide predictions explanations (also denoted as local [127],
instance-level [168]) about why each individual item was suggested to each user [31].
Conversely, explanations generated for aspects related to the whole system (denoted
as global [5], model-level [168] or dataset-level [39]) are still under-explored.

We present a categorization of fairness-aware methods aimed to explain and mit-
igate unfairness (unfairness mitigation methods), with a particular focus on tech-
niques devised for the latter task. In particular, we focus on the user-side fairness
and on personalization systems, e.g., recommender systems. In such systems, fair-
ness at the user side is typically denoted as consumer fairness, i.e. the users receiving
the recommendations are denoted as consumers.

Down-Sampling Techniques

Down-sampling techniques are based on the assumption that unfairness is solely
intrinsic to the data fed in input to a model. Indeed, such methods work in a pre-
processing [107] fashion by modifying the data through balancing and pre-training
strategies. Recent works investigated the application of such techniques by balancing
the demographic groups representation in the dataset as an unfairness countermea-
sure in speaker [171, 108] and face [130] recognition. Other studies in personalization
systems, such as recommender ones, adopted the same strategy to balance the con-
sumers’ representation on two datasets on the movie and music domain [47]. This
type of unfairness mitigation can be helpful to counter unfairness, but its positive
effects are not reliable and consistent across several experiments, datasets and con-
sidered sensitive attributes.
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Regularization-based Techniques

Differently from pre-processing techniques as the down-sampling ones introduced in
Section 2.3.3, the regularization-based methods account also for the model impact
on the outcomes unfairness, denoted indeed as in-processing methods. The learn-
ing process of a recommender system is modified by an extended loss function that
simultaneously optimize also for another task, with the goal of mitigating the unfair-
ness. [21] devised an unfairness mitigation method tailored for neighborhood-based
systems, which constraints the training process towards considering neighborhoods
that are balanced across demographic groups. [81] studied a suite of objective func-
tions with the goal of making recommender systems learn the consumers’ preference
patterns independently from the sensitive information of the users. [155] leveraged
the optimization of multiple objectives unified in a single loss function to find the
optimal configuration resulting in all the objectives being minimized or maximized.
Among the multiple objectives, two of them focus on mitigating unfairness on the
consumer-side and on the items side.

Post-Processing Techniques

Following the taxonomy proposed by [107] to distinguish unfairness mitigation meth-
ods, we proceed to describe post-processing techniques. Differently from pre- and
in-processing methods, post-processing ones are applied directly on the model out-
comes, e.g., predictions or recommendation lists. Recent works proposed to miti-
gate unfairness by leveraging integer programming to maximize utility and minimize
fairness on recommendation lists [92], adding fake users as “antidote” data to the
unfairness issue [124], or reducing bias disparity with regard to each demographic
group by adopting a greedy algorithm [141]. Re-ordering the lists recommended to
the consumers is a popular strategy in recommendation, and it is indeed leveraged to
improve fairness together with other properties, such as explainability, serendipity,
coverage [10].

Counterfactual Techniques

Here we delve into how counterfactuality is used in recent studies to examine the
unfairness issue based on the discussion on counterfactual reasoning previously intro-
duced in Section 2.2.3. Counterfactual techniques study the unfairness by analyzing
the effects of altering how the information related to the individuals in the data is
processed. Recent works adopted different type of alterations in terms of which in-
formation was targeted, but also varied across which stage leveraged counterfactual
reasoning in the learning process. For instance, [93] adopted the proper notion of
counterfactual fairness to devise a method that modifies the latent representation of
the consumers, such that their sensitive attributes were not encoded in such repre-
sentation. In this way, a model would perform unbiased decisions on the basis of the
resulting bias-free embeddings, satisfying counterfactual fairness. Conversely, other
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works [44, 60, 59] focused on altering the initial representation of the consumers or
the relationship among them. Such works lie withing the sphere of global explana-
tions, such as to uncover the data features that caused a certain issue, such as model
instability [117] and unfairness [39, 59]. A similar line of research on explainability
is employed in the GNNs literature under binary classification and recommendation
tasks. Specifically, counterfactual reasoning drives methods to find the minimal per-
turbation to the graph (in terms of nodes or edges) fed in input to the GNN such
that the prediction changes [97, 82, 32].

Sensitive Information Independence through Adversarial Techniques

A recent and effective technique adopted in machine learning to counteract unfair-
ness is leveraging adversarial techniques. Such methods are used to optimize simul-
taneously two main objectives: the first aims to solve the task under consideration,
e.g., recommendation, while the other seeks to “fool” an additional model. The
additional model can be denoted as sensitive attribute predictor or discriminator,
whose goal is to predict the sensitive information of a user from its latent repre-
sentation. Therefore, unfairness mitigation methods based on adversarial reasoning
are trained to also alter the users’ latent representations, such that it is harder for
a discriminator to predict the sensitive information and the resulting representa-
tions are independent of the protected attributes. This is done by learning a set
of filters to apply on the latent representations, that lead to an altered one where
the users’ sensitive attributes are obfuscated to the discriminator. This techniques
was successfully applied in speaker recognition to treat unfairness in a multi-task
learning process [118]. In recommendation, [93] generated bias-free embeddings to
improve counterfactual fairness, [154] adopted adversarial methods to generate em-
beddings that could lead to unbiased predictions for news recommendation, and
[157] leveraged a set of filters and discriminators that resulted in embeddings being
independent of multiple sensitive attributes in a GNN-based recommendation task.
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Fairness in Speaker Verification

3.1 Introduction

Increasingly adopted in online and on-life applications, speaker recognition systems
aim to confirm or refute the user’s identity based on the characteristics of the user’s
voice [77, 33]. Current successful applications include scanning passengers dur-
ing border controls, checking identities for bank transactions, forensics analysis,
and remote access to computers (e.g., online exams) [138]. In particular, speaker
recognition is a driver for personalization in voice-based interfaces and assistants,
such as Amazon Alexa and Google Home, to detect the active speaker based on
the voiceprints, i.e. a unique voice signature, and provide personalized responses.
Personalizing the handling of voice queries amid social voice environments is a
key feature, considering that voice-based interfaces are becoming commonplace in
workspaces [75]. In a common speaker recognition system, speech samples are pro-
vided by the user, and the resulting utterances are processed to create the enrolled
speech model for that user. The vocal sample presented at authentication time is
then compared with the enrolled speech model to make the decision.

Achieving the highest possible accuracy has been a primary goal along the
years [42, 79, 111, 115]. However, recent literature in the machine-learning com-
munity highlighted that achieving impressive accuracy cannot be the sole goal for
machine-learning models shaped for our society [65, 15, 24]. When consequential
decisions are made about individuals on the basis of the outputs of speaker recogni-
tion systems, concerns about discrimination and fairness inevitably arise. Indeed,
it may happen that the systems outputs result in decisions systematically biased
against individuals in certain demographic groups. This might be due to differences
in dialects (e.g., because of regional accent), inter-group heterogeneity (e.g., age,
gender, or ethnicity), or speech pattern variability of each individual in the group
(e.g., people with disabilities).

This behavior may result in certain groups being offered limited services from
personalization systems (e.g., Alexa, Google Home), being unfairly denied access to
a platform or being more vulnerable to attackers, with both usability and security
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issues. Cognisant of this problem, a timely research paradigm of fair machine learn-
ing emerged, attempting to mitigate [51, 45, 129, 130, 37] and explain [39, 89] this
unfairness, often referring to fairness as a concept of non-discrimination based on
the membership to protected groups. However, several questions connected to how
much unfairness issues affect speaker recognition systems still remain unanswered, re-
marked by the different and under-explored fairness notions recently proposed [107].

In this chapter, we extend the literature of fairness in speaker recognition systems
b: (i) providing a fairness-benchmarking protocol for assessing how much speaker
recognition systems are fair, (ii) investigating the relationship among group fairness
metrics in speaker recognition to determine the metric yielding more disparity in
recognition performance across groups, and (iii) uncovering the influence of voice
characteristics on the disparate error rates emphasized by speaker recognition mod-
els. To this end, we designed two frameworks to inspect multiple speaker recognition
systems: (i) a framework based on automated pipelines to measure the unfairness
of these systems decisions, and (ii) an explanatory framework to analyze the voice
covariates affecting the fairness of these models outcomes. Several deep-learning
architectures were trained on the multi-language audio samples contained in Fair-
Voice [51], a dataset based on the resources provided by Mozilla Common Voice1.
Our experiments highlight the benefits of unfairness mitigation and explanation
techniques applied to speaker recognition models.

This chapter presents in detail the following contributions:

• We propose a multi-architecture framework which makes it possible to train,
evaluate, and inspect multiple speaker recognition systems by means of auto-
mated pipelines to measure the accuracy and fairness of identification trials of
speakers from different demographic groups.

• We performed an extensive analysis of the adoption of an unfairness mitiga-
tion procedure on state-of-the-art speaker recognition models. We capitalized
on a setting with multiple sensitive attributes and group fairness metrics to
underline the generalizability of this approach under various scenarios.

• We extracted several voice characteristics reflecting speakers’ unique traits.
They were leveraged by an explanatory framework to provide key observations
on the impact of these voice characteristics on the outcomes unfairness of
speaker recognition architectures.

The rest of this chapter details the listed contributions as follows: Section 3.2
formulates the speaker recognition task, and defines accuracy and fairness metrics
for speaker verification, Section 3.3 presents a methodology aimed to mitigate the
biased outcomes of speaker recognition systems, Section 3.4 shows an approach to
uncover the voice features leading such models towards unfair predictions. Finally,

1https://commonvoice.mozilla.org/.

https://commonvoice.mozilla.org/
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Figure 3.1: Enrollment (at the top) and Verification (at the bottom) process in a
speaker recognition system.

Section 3.5 summarizes the findings resulting from the work presented in this chapter
and future works to extend the research in this field.

3.2 Problem Formulation

In this section, we formalize the speaker recognition task, and present the metrics
selected to measure the accuracy and to operationalize several fairness notions.

3.2.1 Speaker Recognition Task

Given a set of speakers U , we can denote as A ⊂ R∗ the domain of audio signals
with unknown length produced by the speakers in U . We can consider a tradi-
tional processing pipeline stage F : A → S, that generates an intermediate acoustic
representation S ⊂ Rk×∗, e.g., a spectrogram, where k is the feature vector di-
mensionality. This intermediate representation is leveraged in an explicit feature
extraction step by an encoder Dθ : S → D, that produces fixed-length representa-
tions D ∈ Re, where e is the embedding dimensionality. Given a decision threshold
τ , a verification trial can be defined as:

vτ : Dθ,u′ ×Dθ,u → {0, 1} (3.1)

where, under the feature extraction parameters θ, an input feature vector du′ from
an unknown user u′ is compared with a feature vector du from user u to confirm or
refute the identity of the speaker u (1 and 0, respectively).

Given that multiple audio samples could be available for the enrolled user u, the
respective feature vector du could be generated in several ways, such as the average of
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the enrollment speaker embeddings or the creation of a single embedding by pooling
utterances. In our study, we consider a one-shot verification policy to align with the
evaluation protocol of relevant prior works in traditional speaker recognition. Such
protocol assesses the performance of the model by evaluating it along a list of trial
verification pairs, denoted as P = {(du, du′) | u, u′ ∈ U ∧ u ̸= u′}, such as the trial
test pairs in the VoxCeleb-1 set [33]. Our verification policy relies on a similarity
function ϕ : D ×D → R and it is formally defined as:

vτ (du′ , du) = 1[ϕ(du′ , du) > τ ] (3.2)

Based on this verification policy, training a speaker recognition model becomes an
optimization problem. This means finding the model parameters θ and verification
threshold τ that maximize the expectation on the following objective function:

argmax
(θ,τ)

E
u,u′∈ U

{
vτ (Dθ,u′ , Dθ,u) u′ = u

1− vτ (Dθ,u′ , Dθ,u) u′ ̸= u
(3.3)

In other words, we aim at maximizing the cases where vτ (Dθ,u′ , Dθ,u) = 1 when
u′ = u and those where vτ (Dθ,u′ , Dθ,u) = 0 when u′ ̸= u.

3.2.2 Task Optimization Targets

Accounting for unfairness issues in machine learning establishes a multi-criteria set-
ting, where both accuracy and fairness are relevant. We focused on group fairness,
whose goal is to guarantee the decisions of machine learning model are fair across
demographic groups. Therefore, we use U1, U2 in this section to denote two par-
titions of the user set U based on the belonging of speakers to two demographic
groups, e.g., males and females. It should also be noted that the accuracy and
fairness metrics adopted in a speaker verification task rely on the decision threshold
selected to decide if two audio samples belong to the same speaker or not (see (3.2)).
Hence, the notation Mτ will be used to denote any metric M that depends on the
value of the decision threshold τ . We first describe the metrics used to measure the
identification accuracy of speaker recognition systems. Then we present how the
notions in Section 2.2.3 can be operationalized to estimate these systems fairness.

False Acceptance Rate (FAR)

Grounded to evaluation metrics used in classic machine learning, this score is equiv-
alent to the False Positive Rate (FPR), which measures the probability that a given
condition exists when it does not. Given the identification task performed by speaker
recognition systems, the literature uses the term false acceptance instead of false
positive to denote an impostor being incorrectly identified as the legitimate user.
Consequently, FAR measures the probability that the speaker recognition system
incorrectly accepts an access attempt by an impostor. Formally, for a speaker u:
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FARτ (u) =
|{(du, du′) ∈ P | vτ (du′ , du) = 1 ∧ u ̸= u′}|

|{(du, du′) ∈ P | u ̸= u′}|
(3.4)

In other words, FAR is measured by dividing the number of false acceptances by
the number of impostor attempts, and it is then associated to the security of the
system. The lower the FAR, the higher the security.

False Rejection Rate (FRR)

As FAR is equivalent to FPR, the false rejection rate is equivalent to the False
Negative Rate (FNR), which measures the probability that a given condition does
not exists when it does. In the context of identification systems, FRR measures the
probability that the model incorrectly fails to authenticate a legitimate user. For a
speaker u, it is formally defined as:

FRRτ (u) =
|{(du, du′) ∈ P | vτ (du′ , du) = 0 ∧ u = u′}|

|{(du, du′) ∈ P | u = u′}|
(3.5)

In other words, FRR is calculated as the ratio between the number of false
rejects and the number of genuine attempts, and it is associated to the usability of
the system. The lower the FRR, the higher the usability.

Equal Error Rate (EER)

This score represents the error obtained at the threshold where the FAR and the FRR
are equal. Hence, EER outlines the threshold where a speaker recognition system
reports the highest security and highest utility, while, at the other thresholds, one
of the two aspects is less guaranteed. It is formally computed as:

EERτ (u) =
FARτ (u) + FRRτ (u)

2
(3.6)

In other words, EER estimates the average error done by the speaker recognition
system in terms of both security (FAR) and utility (FRR).

Disparity Score (DS)

Prior studies identified as fair a system able to recognize the speakers with the
same performance across demographic groups. Denoting EER as the performance
of speaker recognition systems, it follows that unfairness can be estimated as the dis-
parity of EER across demographic groups. The disparity score reflects this concept
by measuring unfairness as the absolute value of the difference between two EERs,
associated with two different demographic groups, e.g., male users’ EER and female
users’ EER or over-40 users’ EER and under-40 users’ EER. DS can be defined as:
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DS =|EERτ (U1)− EERτ (U2)|

s.t EERτ (Uz) =

∑|Uz |
i=1 EERτ (uz,i)

|Uz|
(3.7)

Precisely, a disparity in EER across groups means that, for that model, can be
easier/harder to recognize users within certain groups.

Disparity in Demographic Parity (DP)

As described in Section 2.2.3, demographic parity is satisfied when the likelihood
of a speaker being positively recognized is the same regardless of the demographic
group. Given that the classic evaluation protocol for binary classification tasks in
machine learning consists in counting the true positives (TP), false positives (FP),
true negatives (TN), false negatives (FN), we can denote the likelihood of a speaker
being positively recognized as the positive rate PRτ = (TPτ + FPτ )/(TPτ + FPτ +
TNτ + FNτ ). Then, the metric DP implies that PR should be the same regardless
of the demographic group and can be instantiated as follows:

DPτ (U1, U2) = |PRτ (U1)− PRτ (U2)| (3.8)

Disparity in Equal Opportunity (EOpp)

As described in Section 2.2.3 and following the classic evaluation protocol in machine
learning as for demographic parity, equal opportunity implies that the probability
of a speaker being correctly verified should be equal across demographic groups. In
other words, the equal opportunity definition states that all the demographic groups
should have equal true positive rates (TPR), measured as TPRτ = TPτ/(TPτ +
FNτ ). This notion is operationalized as follows:

EOppτ (U1, U2) = |TPRτ (U1)− TPRτ (U2)| (3.9)

Disparity in Equalized Odds (EOdd)

As described in Section 2.2.3 and following the classic evaluation protocol in machine
learning as for demographic parity and equal opportunity, equalized odds implies that
the likelihood of a speaker being correctly verified and of being incorrectly verified
should both be the same across demographic groups. In other words, the equalized
odds definition states that the demographic groups should have equal rates for true
positives (TPR) and false positives (FPR) (FPRτ = FPτ/(FPτ+TNτ ))

2. Equalized
odds is instantiated as follows:

EOddτ,TPR(U1, U2) = |TPRτ (U1)− TPRτ (U2)|
EOddτ,FPR(U1, U2) = |FPRτ (U1)− FPRτ (U2)|

(3.10)

2As mentioned in Section 3.2.2, it is equivalent to FAR, but here we denote it as FPR for
consistency with the fairness literature.
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Fairness Discrepancy Rate (FDR)

Fairness Discrepancy Rate is a metric proposed in [37] that takes simultaneously
into account the false positive rate (FPR) and the false negative rate (FNR)
(FNRτ = FNτ/(FNτ + TPτ )). Even though the authors mention FDR as be-
ing an operationalization of the equalized odds notion, it instantiates the notion
of treatment equality, which ”is achieved when the ratio of false negatives and false
positives is the same for both protected group categories”, according to [107]. FDR
is formally defined as:

FDRτ (U1, U2) = 1− (αFPRτ + (1− α)FNRτ ) (3.11)

where α is a hyper-parameter that defines the importance of false positives, i.e.
the security of the system.

3.3 Techniques for Unfairness Assessment and

Mitigation

This section describes the proposed adoption of a pre-processing technique aimed to
mitigate unfairness across demographic groups in speaker recognition systems. The
work carried out in this study resulted in a fairness-aware framework composed of
three main components:

1. A testing balancing module that generates testing sets for a comprehensive
assessment of the fairness of speaker recognition systems. A subset of speak-
ers that equally represent all the demographic groups is sampled to prepare
the testing sets, such that the verification pairs are meticulously selected to
challenge the fairness of models.

2. A training balancing module that samples the same number of speakers for
each demographic group from the data subset left by the first component.
The sampled speakers are processed to extract their utterances to generate a
training set. Thus, the training split consists of audio samples coming from a
set of speakers where each demographic group is equally represented.

3. A fair evaluation module consisting of an automated pipeline that gathers the
results of the speaker recognition systems under the verification trail evaluation
(based on the testing sets of the first module), and assess the fairness level
under several metrics, as the ones introduced in Section 3.2.2.
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Figure 3.2: Structure of the automated pipelines in our framework: (i) training and
testing sets are created for fair learning and evaluation procedures, (ii) the speaker
recognition system is trained under a fairness-aware context, (iii) the evaluation
results of the model are processed to measure its accuracy and fairness performance.

3.3.1 Methodology

Testing Balancing Module

This module samples the speakers from which the trail verification pairs will be
created following a specific methodology, ad-hoc for fairness evaluation. Specifically,
N speakers are sampled from the dataset, such that each demographic group is
equally represented, and we denote them as test speakers. For instance, given a
scenario where each speaker is characterized by the sensitive binary attributes gender
and age, and N = 100, this module would sample 25 test speakers to represent each
demographic group, i.e. 25 younger males, 25 older males, 25 younger females, 25
older females. Additionally, we also adopt a constraint on the number of utterances
provided by each one of the N speakers, such that at least δ verification trial pairs
could be created to guarantee a comprehensive evaluation of the speaker recognition
systems. Specifically, for each test speaker ui, δ unique trials pairs against utterances
of the same speaker ui and δ unique trial pairs against utterances from a different
speaker uj, i ̸= j are considered. The trial verification pairs between the different
speakers ui and uj are created considering a demographic group shared by both
users. Given that our evaluation protocol considers two sensitive attributes (gender,
age), it follows that this module generates two types of testing sets, an intra-gender
one and an intra-age one. Specifically, the set of intra-gender trial pairs have been
constructed such that ui and uj belong to the same gender group, while the intra-age
trial pairs have been constructed with ui and uj coming from the same age group.
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Intra-group trial pairs have been often proved to be the most challenging ones to
recognize, so our study uses the intra-age testing set when assessing unfairness on
age and intra-gender testing set when assessing unfairness on gender. This ensures
an adequate representation of each demographic group, making these testing sets a
suitable tool for fairness evaluation in speaker recognition.

Training Balancing Module

The remaining speakers in the dataset that are not test speakers, i.e. they are not
part of the testing set, are used to train the speaker verification models, and we
denote them as train speakers. The training balancing module applies a balancing
strategy to generate a training set with the same number of speakers for each de-
mographic group. For instance, considering the gender, this means having an equal
distribution of male and female speakers. In this way models can be trained on
a more balanced dataset, a strategy that reported promising results in unfairness
mitigation in other machine learning fields [130]. The audio files used for training
included only those of the train speakers, i.e. those who are not part of the testing
set. The balancing process is based on the less represented group, such that the
number of speakers of the least represented group remains constant, while the other
groups’ representation follows the least represented one. This methodology results
in two types of training sets:

• NB: we consider the full dataset of utterances without any type of balancing,
i.e. fully unbalanced dataset.

• UB: we randomly sampled the same number of train speakers for each demo-
graphic group to create a user-balanced set.

In case of a multi-language dataset, we generate the two training sets types for each
language, e.g., Spanish NB, English NB. Moreover, under each setup, we controlled
that the same number of train speakers was included across languages, for fair com-
parison of the results across languages as well. In fact, our study is also interested
in evaluating whether the language may be a covariate that leads to unfair perfor-
mance of a model. This point can promote a better understanding of how a model
fairly performs in real world.

Fair Evaluation Module

The first two modules perform operations only at the pre-processing level in our
framework. Then, the speaker recognition models are trained on the training sets
generated by the training balancing module, and the performance of such systems
is evaluated on the testing sets generated by the testing balancing module. The
fair evaluation module is based on an automatic pipeline that gathers the perfor-
mance of a speaker recognition system on each trial verification pair of a testing set.
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The performance is measured by the similarity function ϕ used in (3.2), such that
the fairness of a model can be evaluated under several decision thresholds τ . The
module takes the performance scores and estimates the fairness using five metrics
described in Section 3.2.2: disparity score (DS), disparity in demographic parity
(DP), disparity in equal opportunity (EOpp), disparity in equalized odds (EOdd),
fairness discrepancy rate (FDR).

3.3.2 Experimental Setup

Dataset

Despite the existence of several datasets for speaker verification evaluation [7, 119,
33], our fairness study was conducted on FairVoice [51], a dataset that offers a large
number of utterances and labeled speakers across several sensitive attributes and lan-
guages. The dataset was sampled from Mozilla Common Voice, one of the largest
corpora including unconstrained speech from diverse acoustic environments. All the
waveforms were single-channel, 16-bit recordings sampled at 16 kHz. We selected
this dataset since it covers a wide range of demographic groups identified by their
language, gender, and age, and the labels which describe such sensitive attributes
are available for each individual speaker. However, not all the languages provided by
FairVoice include enough female speakers in order to set balanced datasets that are
sufficiently large to train state-of-the-art deep speaker recognition systems. Specif-
ically, among the specific-language datasets of English, Spanish, French, German
speakers, we only considered the first two languages because they embrace enough
utterances for each demographic group.

The pre-selected dataset has been filtered by the number of utterances per
speaker. Specifically, only the speakers who have provided at least five samples were
taken into consideration in our analyses. This step is essential because we require to
create trial verification pairs with both utterances coming from the same speaker in
order to simulate legitimate authentication scenarios. Hence, if a speaker does not
provide a minimum number of utterances, we cannot create enough trial pairs. This
filtering step led to a total of 6,321 English speakers and 1,298 Spanish speakers. In
our study, we analysed disparities conveyed by speaker recognition systems on four
demographic groups per language, based on their gender (female, male) and their
age (speakers under and over 40 years old), so only speakers with both gender and
age labels were considered, resulting in 6,246 English speakers and 1,280 Spanish
speakers. We selected 40 as a splitting age, since it allows us to better balance the
representation of the resulting age groups, while maintaining a reasonable size of
the training dataset. Based on the testing balancing module, we set δ = 64 for the
trail verification pairs and N = 100, so considering for each language 100 speakers
evenly distributed across the demographic groups (25 speakers for each demographic
group). Given that the module creates an intra-gender and an intra-age testing set
for each language, the resulting testing sets are four, namely Spanish Test-Gender,
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Test-Age, and English Test-Gender, Test-Age. These criteria led to the following
distribution of the remaining speakers across languages and demographic groups:

• English: 400 over-40 females (6.5%), 718 under-40 females (11.7%), 1,093
over-40 males (17.8%), 3,935 under-40 males (64.0%)

• Spanish: 281 over-40 females (23.8%), 155 under-40 females (13.1%), 351 over-
40 males (29.8%), 393 under-40 males (33.3%)

As mentioned earlier in Section 3.3.1, the balancing strategy is based on the least
represented group. For instance, when balancing the Spanish dataset on the number
of speakers per group, we can observe that under-40 females are less represented,
with 155 speakers. Hence, we filter only 155 speakers of each group to perfectly
balance data across these groups for Spanish. Additionally, this module controls
that the same number of training speakers is included across languages. It follows
that the balanced training sets Spanish UB and English UB include utterances
of 620 speakers in total, 155 for each demographic group, while the unbalanced
training sets Spanish NB and English NB are composed of utterances coming from
the speakers distribution just detailed for each language.

Speaker Recognition Models

The speaker recognition models trained and tested for these experiments are some
of the ones previously introduced in Section 2.3.1, namely X-Vector, ResNet-34,
ResNet-50. For clarity, we specify the architecture structure and the data features
dimensionality these models work with. X-Vector takes 24 dimensional filterbanks
of size 24×300 (frequency×temporal) as input with a frame-length of 25ms, mean-
normalized over a sliding window of up to 3s. Spectrograms of size 257 x 250
are generated by a 512-point Fast Fourier Transforms (FFTs) to be fed in input
to ResNet-34 and ResNet-50 for 3s of speech using a hamming window of width
25ms and step 10ms. The difference between these two models is that the former is
composed of 34 residual layers, while the latter by 50 residual layers. The ResNets
models were adapted from computer vision to spectrogram inputs by replacing the
last fully-connected (FC) layer with two layers: an FC one with support in the
frequency domain and average pooling with support in the time domain. On the
other hand, X-Vector includes five layers that operate on speech frames, with a
time context centered at the current frame. A pooling layer aggregates frame-level
outputs and computes mean and standard deviation. Two FC layers aggregate
statistics across the time dimension. We used a GhostVLAD pooling [159].

From each speaker’s utterance we randomly sampled segments and standardized
the inputs to 2-second clips (by cropping or padding). No voice activity detection
or silence removal was applied. Each acoustic vector was normalized by subtracting
the mean and dividing by the standard deviation of all frequency components in
a single time step. The models were trained for classification using Softmax, and
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Table 3.1: Performance of the considered speaker recognition models at the EER
security level.

Train
set

Test
set

English Spanish

ResNet-34 ResNet-50 X-Vector ResNet-34 ResNet-50 X-Vector

NB
Intra-age 0.08 0.09 0.08 0.06 0.05 0.06

Intra-gender 0.11 0.13 0.11 0.08 0.08 0.08

UB
Intra-age 0.07 0.07 0.08 0.07 0.06 0.06

Intra-gender 0.11 0.1 0.11 0.09 0.08 0.08

served with 32-sized batches. We used the Adam optimizer, with an initial learning
rate of 0.001, decreased by a factor of 10 every 10 epochs, until convergence.

By leveraging the training files previously arranged, we were able to train several
speaker recognition models under different setups. Specifically, we performed 12
model learning processes, given that three models were trained on four training
sets, two for each language. For the sake of clarity, we considered the same model
parameters and the same training parameters described by the authors of each deep-
learning architecture. Even the parameters for acoustic extraction, i.e. spectrogram
or filterbank computation, were kept consistent with respect to the original papers
[133, 114]. Our framework allows to setup the parameters of a training process, e.g.,
the architecture type, the batch size, the learning rate, and so on.

3.3.3 Results

Speaker Verification Performance

We first evaluate the performance of the speaker recognition models in terms of
equal error rate (EER) and report the results in Table 3.1. Even though other
security levels are considered in the literature, e.g., FAR1%, we focus on the EER
because the fairness performance analyzed in the next sections accounts for the EER
security level. All the models in all the settings have comparable performance, and
no one outperforms the others. Evaluation on the English intra-gender set counts
more errors in the verification pairs for all the models, with EER values reported
over 0.1 only in these settings. The balancing strategy applied on the training set
(UB) does not impact the performance of the models, making this method reliable
to counteract unfairness while maintaining a good EER level. In order to support
this claim, the following experiments evaluate the speaker recognition systems in
terms of the fairness estimated by the metrics used by the fair evaluation module.
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Table 3.2: Disparity score between age groups (DS Age) and gender groups (DS
Gender) of the speaker recognition systems under the unbalanced (NB) and user-
balanced (UB) training settings, and the intra-gender and intra-age testing settings.

Train
Set

Test
Set

DS Age DS Gender
ResNet-34 ResNet-50 X-Vector ResNet-34 ResNet-50 X-Vector

E
n
g
li
sh NB

Intra-age 5.58 4.82 6.99 3.21 2.45 4.32
Intra-gender 3.46 4.52 5.42 1.18 0.12 1.84

UB
Intra-age 1.95 4.33 6.97 4.27 4.02 4.86

Intra-gender 4.61 6.84 5.23 0.54 0.48 3.14

S
p
a
n
is
h NB

Intra-age 1.18 0.10 0.95 0.29 1.41 0.54
Intra-gender 2.18 3.37 0.67 1.33 1.14 0.13

UB
Intra-age 1.29 0.36 1.07 1.09 0.80 1.09

Intra-gender 2.33 2.79 0.57 1.65 0.47 0.94

Fairness Performance in Error Rates

Before delving into the impact of our balancing strategy on various fairness notions,
we focus on estimating the system fairness by the disparity in error rates, similarly
done by [51]. To do so, we employ the metric DS used by the fair evaluation module
to estimate the difference in EER experienced by the demographic groups defined by
the same sensitive attribute, e.g., between males and females by the gender attribute.
The results of our experiments are depicted in Table 3.2. To highlight the extent to
which each testing set is challenging on the respective setting, we report DS Age and
DS Gender even when intra-gender and intra-age testing sets are used respectively.

Several experiments report lower DS values, i.e. fairer, in the settings where the
measured DS and the testing set focus on the same sensitive attribute. Especially
on English, DS Gender is lower when the intra-gender testing set is used for eval-
uation compared with the setting where the intra-age testing set is adopted. The
user-balanced training set (UB) had a positive impact on several settings, but this
observation does not hold systematically. Focusing on the experiments where the
measured DS is related to the testing set, e.g., DS Age with intra-age test set, the
balancing strategy is effective on mitigating the disparity in EER between over-40
and under-40 users on English, but it is the opposite on Spanish. Results on DS
Gender with the intra-gender test set are effective on some settings such as ResNet-
34 on English and ResNet-50 on Spanish. It follows that the balancing strategy can
help in mitigating the disparity in error rates, but it is not enough reliable to be
effective in most of the experiments it could be adopted for. Further experiments
with different languages, datasets, and models could better confirm the unreliability
of this balancing method in mitigating unfairness across speakers’ groups.
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(a) EER - Gender

(b) EER Age

Figure 3.3: Fairness estimates of three deep neural architectures (X-Vector,
ResNet34, ResNet50), under different training data balancing (NB: unbalanced;
UB: user-based balance across demographic groups). The lower the metric is, the
fairer the model is.

Extended Fairness Evaluation

The fair evaluation module is equipped with a wide set of fairness metrics, each one
reflecting a different notion and a different perspective on what is perceived fair or
unfair. As done for DS, we study the other four fairness metrics, namely DP, EOpp,
EOdd, FDR, based on their disparity operationalization. However, given that the
size of Spanish NB in terms of speakers is much lower than the English NB set,
this extended fairness evaluation is carried out only for English to provide findings
with statistical significance. We also do not report the results measured with the
fairness discrepancy rate (FDR) [37] because the resulting patterns were similar to
those obtained by DP.

Figure 3.3 reports the fairness metric scores on each sensitive attribute, under
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X-Vector - Age

X-Vector - Gender

Figure 3.4: The impact of the decision threshold on the trade-off between fairness,
security, and usability for X-Vector, three fairness metrics, for the user-based bal-
anced training set (UB). represents the FAR, represents the FRR, represents
the respective fairness metric value. For Equalized Odds represents EOddτ,TPR,
while represents EOddτ,FPR.

different training balancing setups. Balancing users across demographic groups often
helps mitigating unfairness. Specifically, the disparities between males and females
are mitigated for all models under all fairness metrics, except DP for ResNet-50 at
EER. The fairness scores on the age-based groups highlight a good level of mitigation
of the disparity between under- and over-40 users as well, but not for all models, e.g.,
DP for ResNet-34 at EER. Indeed, ResNet-34 is the one being influenced the most
by the balancing of the dataset, followed by X-Vector. Surprisingly, the ResNet-
50 architecture tends to be fairer on the gender-based groups, while the other two
architectures are often fairer than ResNet-50 for age-based groups.

Additionally, we assess the impact of the recognition threshold on the trade-
off between (security, usability) and fairness. Given that models trained on UB
often led to the fairest results, we focused only on these models. For each model,
for each threshold between 0 and 1, we computed FAR, FRR, and the fairness
estimate, to understand the relation between security (FAR), usability (FRR), and
fairness under different fairness notions. Figures 3.4-3.5 report the fairness score,
FAR, and FRR as a function of the recognition threshold, for each model. For
almost all settings, the disparity scores show their peaks nearby the EER and FAR
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ResNet-34 - Age

ResNet-34 - Gender

ResNet-50 - Age

ResNet-50 - Gender

Figure 3.5: The impact of the decision threshold on the trade-off between fairness,
security, and usability for ResNets, three fairness metrics, for the user-based bal-
anced training set (UB). represents the FAR, represents the FRR, represents
the respective fairness metric value. For Equalized Odds represents EOddτ,TPR,
while represents EOddτ,FPR.
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1% security levels. Our analyses on the age-based groups shed light on unfairness
near the FAR 1% threshold, while experiments with the gender-based groups often
show unfairness at thresholds close to the EER one. On gender-based groups, the
thresholds at which a model achieves lower disparities vary across models. On age-
based groups, the thresholds close to EER lead to a degree of unfairness, but not
as much as thresholds slightly higher than EER, where the disparities achieve the
highest peak. These results highlight the friction between fairness and accuracy
(FAR and FRR), confirming the trade-off usually experienced in this task.

3.4 Counterfactual Reasoning for Unfairness Ex-

planation

In this section, we describe the foundations of our explanatory framework that aims
to study the impact of voice characteristics on the performance of different speaker
encoders. The central question in the explanatory modeling research is the choice
of explanatory variables. Two main approaches exist for choosing them, based on
confirmatory or exploratory research. They can be regarded as two complementary
components of the same goal, i.e. finding relevant variables in the most efficient,
reliable, and replicable way. The difference is that, in confirmatory research, the
potential impact of different variables is hypothesized a-priori, based on existing
theories. The confirmatory research approach is useful when researchers have a the-
ory (or theories) supported by facts. The second approach is exploration-driven,
which is used when there exists a lack of sufficient theory foundations. Exploratory
research could likewise produce new hypotheses that could formally be evaluated
later. Our study belongs to the second category, as we design a general framework.
With it, we studied the impact of voice characteristics on speaker verification per-
formance, in terms of false acceptance rates, to highlight how the security could
be affected by such characteristics. Our explanatory framework will be outlined in
three parts:

1. First, we describe the numerous explanatory variables selected for our frame-
work, where several of them reflect unique characteristics of each individual’s
voice.

2. Then, we introduce the dependent variable representing the performance of
the systems. As previously mentioned, the performance was estimated as the
rate of false acceptances to examine the influence of the explanatory variables
on the security of the speaker recognition models, but we first processed the
performance to be adapted to our explanatory model.

3. We present the formulation of the explanatory model that processes the dis-
tribution of the vocal characteristics of the speakers to estimate their impact
on the systems performance.
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Figure 3.6: Once the dataset is pre-processed, we created two speaker encoders and
ran an explanatory analysis to assess the impact of voice characteristics.

The experiments devised to analyze the impact of voice characteristics on the
system security leverage counterfactual reasoning. As introduced in 2.3.3, counter-
factual reasoning studies the hypothesis of a counterfactual world, where the change
of one or more features could modify a certain event occurred in the real world.
Grounded to the concept of counterfactual fairness, we select the speakers’ sensi-
tive attributes as the changing features to observe whether the models predictions
would differ if in a counterfactual world a speaker belonged to a different demo-
graphic group, e.g., if a male was considered a female. An overview of our method
is depicted in Figure 3.6.

3.4.1 Methodology

Explanatory Variables Extraction

The explanatory variables considered in our study include voice characteristics per-
taining to a wide range of perspectives. Each speaker u was represented in terms of
two main categories of characteristics: protected and non-protected. Non-protected
characteristics, e.g., jitter, shimmer, were extracted from each speech waveform w
belonging to speaker u and averaged across speech waveforms of that speaker u to
obtain a vector x of size P , where P is the number of non-protected characteristics.
As we will describe later, non-protected characteristics can be further divided into
three sub-categories: quantitative, qualitative, and dialogue. Conversely, protected
characteristics, e.g., gender and age sensitive attributes, were defined at the speaker
level and represented with the vector z of size T , where T is the number of protected
attributes. Formally, a speaker u was represented as a vector cu = [z;x] ∈ RP+T ,
where [; ] is the concatenation operator.

Indeed, speech can be influenced by protected attributes, such as age and body
conformation. Even though the availability of protected explanatory variables in
corpora adopted for speaker recognition is limited, our study considered the following
three protected attributes included into FairVoice:

• Gender of the speaker, self-reported by users, represented as a binary label
(male, female).



Chapter 3. Fairness in Speaker Verification 37

• Age Range of the speaker, with the label ”younger” assigned to those with
age ≤ 40, ”older” otherwise.

• Language spoken by the speaker (English, Spanish).

Non-protected quantitative variables measure properties common to any audio
signal and do not have any direct relation with personal speaker traits. Specifically,
we considered:

• Root mean square (RMS) is the loudness of the audio signal, measured as
the power of the wave averaged across its length; a low-volume audio sample
could negatively affect recognition performance.

• Decibels relative to full scale (dBFS) represents the loudness of the audio
signal in decibel (dB) units, under a logarithmic scale, relative to the maximum
possible loudness.

• Maximum Amplitude that is reached by the sound wave.

• Intensity (Mean, Std. Dev., Skewness, Kurtosis) is the power of the audio
signal per unit area perpendicularly to that area, measured in dB SPL (Sound
Pressure Level).

• Signal-to-Noise Ratio (SNR) measures the noise of the audio signal in dB,
where a lower value reveals a high noise in the audio signal.

Non-protected qualitative variables include all those characteristics of a audio
signal that differ depending on the source that generated it. The vocal folds that
produce the human voice are an organic structure. Hence, the oscillations of the voice
could contain significant fluctuations. Characteristics like fundamental frequency or
jitter are affected by the context of the dialogue. Specifically, we considered:

• Harmonics-to-Noise Ratio/Harmonicity (HNR) (Mean, Std. Dev.,
Skewness, Kurtosis) represents the degree of acoustic periodicity, with high
values for signals where most of the energy is in the periodic part. This mea-
sure is influenced by personal traits and medical conditions [14].

• Fundamental Frequency F0 (Mean, Std. Dev., Skew, Kurtosis) of a speech
signal refers to the approximate frequency of the (quasi-)periodic structure of
voiced speech signals. The sound wave is divided into several windows, and
F0 is extracted for each one as the average number of oscillations per second
and expressed in Hertz. This property depends on gender, age, overall body
size, and cultural aspects [22].
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• Formants F1, F2, F3, F4 Frequencies (Mean, Std. Dev., Skewness, Kur-
tosis) are the first four lowest resonant frequencies of the vocal tract [22].
There is a significant positive correlation between vocal tract length and body
size (either height or weight), but also clear differences in male and female
vocal tract morphology [56]. After data cleaning, F1 skewness, F3 kurtosis
and F4 kurtosis were maintained.

• Formant Position is the average standardized formant value for the first n
(we use n = 4) formants [50].

• Jitter is the variation in signal frequency caused by irregular vocal fold vi-
bration, included in all natural speech. This measure is influenced by several
factors, such as loudness, language, gender, and personal habits, e.g., smoking
or alcohol consumption [22]. In our study, jitter is measured with the local
variation of [14] implementation, defining it as the average absolute difference
between consecutive periods divided by the average period.

• Shimmer is similar to jitter, but accounts for the variation in amplitude.
This measure depends on personal traits. We adopted the local dB variation
from [14], defined as the average absolute base-10 logarithm of the difference
between the amplitudes of consecutive periods, multiplied by 20.

When considering sound waves containing human voices, aspects related to what
a person is saying and how the speech is made can influence the performance of a
speaker recognition system. Non-protected dialogue variables include properties
related to the way speech is generated by a speaker, such as:

• Number of Syllables could impact the recognition task.

• Number of Pauses in a speech could be relevant for the speaker recognition
system.

• Rate of Speech is the number of syllables pronounced along the entire audio
sample, related to the propensity of the user to speak in a certain amount of
time.

• Articulation Rate, differently from the rate of speech, is the number of
syllables pronounced only over the speaking duration; so it describes how fast
the user speaks.

• Speaking Duration Without Pauses (SDWP) counts the total duration
in seconds of the portions of the audio example where the user is speaking.
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Dependent Variables Preparation

The dependent variable is the performance of the speaker recognition model at
the user level. Performance is estimated using the False Acceptance Rate (FAR)
experienced by the user, to align our evaluation protocol with other works analyzing
the impact of voice data manipulation [104, 105] focused more on security against
imposture. As previously described and formally defined in Section 3.2.2, FAR is
the measure of the likelihood that the biometric security system will incorrectly
accept an attempt by an unauthorized user. For simplicity, with FAR as dependent
variable, in our experiments we consider secure (label 1) a value of FAR = 0 and
insecure (label 0) a value of FAR > 0.

Explanatory Model Creation

Explanatory modeling refers to the application of statistical models to data for
testing causal hypotheses about theoretical constructs. In this study, on the basis
of the components described in the previous sections, the causal hypothesis is: can
explanatory variables, capturing voice characteristics, explain the variation of the
dependent variable related to speaker verification performance? To this end, we
introduce a surrogate model as the explanatory model, which, for a certain speaker
recognition system, is optimized to explain the dependent variable (FAR) by means
of the explanatory variables extracted from the speakers’ utterances. To analyze the
dependency of the performance on the explanatory variables, we considered random
forests and linear models as a surrogate model, leaving the usage of other families
of explanatory models for future works. Formally, an exploratory statistical model
G for a speaker verification system V can then be defined as:

Gθ : f(cu) = ŷV s.t. h(G) = ΨV (3.12)

where ŷV is the prediction of G, h is a function that from G returns the importance
weights ΨV ∈ RP+T , which are the hypothesized impactful parameters that vary
in terms of the information captured from each characteristic in cu. Training a
surrogate model becomes then an optimization problem:

argmin
θ

|f(cu)− yV | (3.13)

where θ ∈ R∗ is a set of parameters, i.e. rules used internally by G to be
optimized. Surrogate models were optimized via a grid search on all the audio
samples included in the testing set. Specifically, the vector c of explanatory variables
characterizing each user was fed as input of the surrogate model. The dependent
variable was considered as the ground truth value to predict. Since we are interested
in the explanation power of the surrogate models, no further split of this set is
performed.
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Table 3.3: Performance of the considered speaker encoders under negative pairs
created with another user from the same age range or the same gender (more chal-
lenging scenario).

ResNet-34 X-Vector
Negative pair type EER FRRFAR1% EER FRRFAR1%

Same age range 0.08 0.27 0.08 0.2
Same gender 0.11 0.43 0.11 0.3

3.4.2 Experimental Setup

Dataset

The dataset used to carry out the experiments on our explanatory model is Fair-
Voice, the corpora previously described in Section 3.3.2. We embraced the same
configuration idea adopted for the training and testing files of our previous study,
but we applied some modifications to increase the significance of the experiments
with our explanatory framework. We considered a balanced multi-language training
set setting, where the speakers’ representation was balanced by gender and age for
both languages in the same training set. Specifically, we merged together the train-
ing sets UB of English and Spanish in one single training set, i.e. the training set
includes 155 speakers for each of the eight demographic groups obtained by com-
bining gender, age, and language, for a total of 1,240 speakers. We also performed
a merge operation on the testing set, so including 100 English speakers and 100
Spanish speakers evenly distributed across gender and age groups. Differently from
the previous experiments, for each speaker in this merged testing set we generated
55 trial verification pairs: 5 positives (other utterances from the same speaker) and
50 negatives (other utterances from another speaker) divided in 25 intra-age and
25 intra-gender verification pairs of the same language group (no pair includes an
English and a Spanish speaker, nor vice versa).

Speaker Recognition Models

We focused on a subset of the models adopted to study the balancing strategy
previously described. Specifically, among the three models X-Vector, ResNet-34,
ResNet-50, our explanatory framework was applied to study the impact of the voice
characteristics on the performance of the first two architectures. Given the objec-
tive of examining the extent to which voice features affect the models prediction
process and their security, we selected speaker recognition systems with architec-
tures substantially different. It follows that ResNet-50 was not considered due to
the structure similarity with ResNet-34 and no relevant aspects differ between these
two models, e.g., EER performance. We maintained the same hyper-parameters for
this study, but the models were re-trained given that we applied a multi-language
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setup, which was not contemplated in our previous study. We report in Table 3.3
the models performance in FRR at the FAR1% security level and in EER, which
were measured according to the training set and the testing set introduced earlier,
but still highlighting the nature of the trail verification pairs.

3.4.3 Results

Relationship between Explanatory Variables

In a first analysis, we investigated whether protected explanatory variables have
any relationship with other speech covariates we considered as explanatory variables
(quantitative, qualitative, and dialogue). To this end, Figure 3.7 shows the Pearson
correlation among the considered explanatory variables. For conciseness, we present
only the results for the Random Forest (RF) as a surrogate model, since it achieved
a value close to 1 for both F1 score and AUC and can well explain the relationship
of the dependent variable with the explanatory variables. We also played with linear
models, but achieved both F1 Score and AUC lower than 0.65. For clarity, we also
removed non-protected variables highly correlated with each other.

It can be observed that there was a high absolute correlation between gender
and other voice characteristics, such as F0 mean and statistical moments measured
on the distribution of the 4 formants (F1, F2, F3, F4). Similarly, jitter local and
shimmer local dB had a positive correlation with gender as well, confirming that
these characteristics are able to encode personal traits of each individual. Conversely,
age range and language did not report any significant correlation with other speech
covariates.

Influence of Speech Covariates on Performance

In a second analysis, we analyzed which speech covariates influence speaker recog-
nition performance the most. In particular, we examined the dependency of the
FAR (security) from the considered explanatory variables by means of the surrogate
models included in our explanatory framework. Before training the surrogate mod-
els, a variance inflation factor [39] was applied to remove multi-collinearity among
explanatory variables (threshold equal to 5.0), which resulted in removing a range
of less influential explanatory variables. The remaining ones were used to train the
surrogate models. In order to uncover the influence of explanatory variables on
recognition performance, we leverage techniques of permutation feature importance
on the surrogate models, applied over 10 repetitions to ensure statistical significance.

Figure 3.8 collects the explanatory variable importance scores on ResNet-34 and
X-Vector, respectively. It can be observed that the RF surrogate model considered
the formants F1, F3, and F4 as well as the fundamental frequency F0 to be the most
important variables for both speaker encoders. None of the protected explanatory
variables were considered as important by the surrogate model, except for language
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Figure 3.7: Pearson correlation between explanatory variables.

in X-Vector. Overall, our results reveal that protected attributes do not directly
affect the performance of the speaker recognition system. Other speech covariates,
despite still being correlated with protected attributes, can be used to interpret and
then counteract unfairness in terms of security on both speaker encoders.

Impact of Protected Class Changes

Previous experiments revealed that there exists a relationship between protected at-
tributes (especially gender) and other voice characteristics and that some key voice
characteristics can explain the error rates experienced by a speaker recognition sys-
tem (especially FAR) to a good extent. In our third and last analysis, we therefore
leveraged the surrogate model to investigate what happens to the dependent vari-
able when we flip the protected class of a user in his/her vector c, e.g., by modifying
the gender (age; language) of a user from female (younger; English) to male (older;
Spanish). Our goal is to compare the predictions of the surrogate model when the
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(a) ResNet-34

(b) X-Vector

Figure 3.8: Permutation feature importance of voice characteristics on the predicted
FAR over 10 repetitions.

original vector and the vector with the flipped protected attribute are fed, respec-
tively. Through our surrogate model, we provided “what if” feedback of the form
“if an input data point was cu’ instead of cu, then a speaker encoder outcome would
be ŷ’, and not ŷ”.

Figure 3.9 reports the predicted FAR for original vectors and vectors with a
protected class flipped on ResNet-34 and X-Vector respectively. The orig curve
depicts the density distribution of the predicted FAR when the original vector of
each speaker was used. The other curves represent the predicted FAR when the
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(a) ResNet-34

(b) X-Vector

Figure 3.9: Counterfactual analysis of the effect of flipping the protected class on
predicted FAR.

corresponding protected attribute is “flipped” for each user, i.e. the curve labeled
gender was generated by flipping the gender class of each speaker and similarly for
language and age range. It can be observed that flipping the gender and language
classes resulted in a significant increase of predicted FAR level on ResNet-34. Con-
versely, flipping the language and age classes positively affected FAR predictions
on X-Vector. Hence, the sensitive attributes, especially the language, are able to
modify the predictions of RF. This observation is also in line with what we observed
in the first two analyses.
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3.5 Findings and Discussion

This chapter outlined the contributions conceived by our research work in the
speaker recognition field. Our studies raised awareness about fairness in machine
learning applied for speaker recognition tasks through the analysis of methods to
mitigate and explain unfairness experienced in such systems outcomes. We summa-
rize the findings of our work in speaker recognition as follows.

• Speakers balancing techniques applied to the training data do not affect the
recognition performance of the systems.

• The balancing strategy can help in mitigating the disparity in error rates, but
it is not systematically effective.

• Under an extended fairness evaluation, under-sampling the speakers in the
training set systematically mitigates disparities across gender groups, while
the mitigation across age groups is model-dependent.

• Studying the impact of the balancing strategy along decision thresholds, we
observed that unfairness across age groups is more prominent near the FAR
1% threshold, while experiments with the gender-based groups often show un-
fairness at thresholds close to the EER one.

• There are significant relationships between gender and other speech covariates.
Age and language do not relate significantly with any covariates.

• Speech covariates pertaining to vocal frequency aspects explain the most the
disparate security estimates across individuals.

• The spoken language has the strongest impact on the security of the two con-
sidered speaker recognition systems.

The proposed research opens to several future works. For instance, we can
investigate on approaches able to better mitigate unfairness and on multi-class sen-
sitive attributes beyond gender and age. Additionally, adversarial methods could
be leveraged to obfuscate the sensitive attribute latent representation in the speaker
encoders embeddings to guarantee unbiased predictions. The studies on our ex-
planatory framework proved that the causes of disparate performances go beyond
mere memberships to certain demographic groups, but they result from fine-grained
voice characteristics (some of them related to the group membership). This opens
a new perspective for analysis and mitigation of unfairness in speaker recognition
where it might be no longer required to know the (hard to retrieve, especially due
to privacy constraints) protected attribute labels. Other voice covariates emerged
from our analysis can be used as a real proxy of such labels and as drivers for spe-
cific mitigation strategies, e.g., clustering users based on those characteristics and
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provide treatments to the disadvantaged clusters. Another line of research can also
focus on making input waveform statistically indistinguishable from the perspective
of the relevant voice characteristics, for instance through the use of autoencoders,
in order to make speaker encoders robust to these characteristics.
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Fairness in Recommendation

4.1 Introduction

With the large adoption of decision-support systems, humans’ intervention has been
increasingly supported by automated intelligence in various real world, high-stakes
environments. A notable example of decision-support system is represented by rec-
ommender systems, where people are provided with personalized suggestions gener-
ated by a certain model (e.g., [8, 106]). Recommender systems filter the tremendous
amount of products and services available in streaming platforms, e-commerce, so-
cial media, and so on, to help us make decisions, from selecting books to meeting
new friends [128]. Their wide adoption has spurred investigations into possibly un-
fair practices in the systems’ mechanisms [27, 46, 39, 101, 17]. Prior studies have
shown that recommender systems often lead to discriminatory outcomes [41, 91, 116].
These phenomena can occur in the form of unfavorable outcomes, affecting the en-
tity being ranked (item or provider unfairness) or the users the recommendations
are targeted to (user or consumer unfairness) [21, 27, 4].

An abundance of consumer fairness notions have been consequently proposed,
along with procedures for unfairness mitigation [21, 58, 92, 47, 81]. Despite the
growing interest in providing fair recommendations to consumers, the landscape is
convoluted, with often diverging definitions. The fragmented conception of consumer
fairness has led to unfairness mitigation procedures built on top of heterogeneous
evaluation protocols. Why, when, and how to apply a certain mitigation procedure,
another, or all of them is still unclear. The current state of progress on consumer
unfairness mitigation therefore calls for a discussion on what consumer fairness is
and which properties a mitigation procedure against consumer unfairness should
be evaluated on to let scientists select more consciously the procedure to apply
according to the circumstances and conditions they experience.

Meanwhile, as recommender systems become more and more effective and so-
phisticated, the complexity of their functioning increases dramatically. The recom-
mendations of novel systems improve the satisfaction of the users, but their lack of
interpretability lays the groundwork for worrying questions [60]. The issue of in-
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terpretability comes in addition with the prominent importance of preserving prop-
erties that go beyond recommendation effectiveness, such as trustworthiness [147],
fairness [150], and explainability [170]. However, all these issues (from model inter-
pretability to results that go beyond accuracy) are usually treated by the modern
literature as independent perspectives, mostly tackled one at a time. Taking as an
example algorithmic fairness (which is also the main case study in this thesis), while
it is of uttermost importance to provide the end users and the content providers with
equitable recommendations, it is also important for service providers (e.g., an on-
line platform) to understand why the model behind their platform is unfair. Hence,
tackling algorithmic fairness in an explainable way is a central yet under-explored
area, contemplated only in a few works [59, 39].

This perspective does also apply to unfairness mitigation methods, since the
existing ones have often relied on mathematical formulations of fairness princi-
ples, but have been rarely informed from explanatory analyses on such unfairness
[21, 47, 92, 58]. Indeed, the few existing approaches that explain unfairness in recom-
mender systems did not lead to a mitigation procedure that leverages the identified
explanations to mitigate the measured unfairness [59, 39]. Moreover, their unfair-
ness explanation methods exploit user and item features, which might be challenging
to obtain, given that most recommendation models work with user-item interaction
data, and to be used to mitigate the examined issue.

Shifting the focus to other areas within explainable artificial intelligence, var-
ious techniques have been employed to determine the relevant data entities that
can serve as explanations for diverse tasks. Counterfactual methods have recently
emerged as an effective way to explain the predictions produced by models based
on Graph neural networks (GNNs) [67, 84, 143, 172], which have proven to be effec-
tive in modeling graph data in several domains, such as information retrieval [34],
recommender systems [71, 165], natural language processing [164] and user pro-
filing [29, 30, 162]. Approaches driven by counterfactual reasoning have also been
used to guarantee algorithmic fairness in GNN-based models, for various downstream
tasks, by manipulating the topological structure [6, 99, 146]. However, to the best of
our knowledge, no approach was ever proposed to explain unfairness in GNN-based
recommender systems or leverage explainability techniques to mitigate unfairness in
such systems. Filling this research gap goes beyond a simple application of counter-
factual explanations methods for GNNs, so as to uncover and subsequently mitigate
unfairness in recommender systems. Indeed, the original methods that generate
explanations to explain the predictions [97, 82, 32, 167] or to mitigate the unfair-
ness [43] in GNN-based models are applied for classic tasks, e.g., classification, and
classic graphs, while recommender systems are characterized by a bipartite nature,
since they bridge the interactions between two types of entities (nodes), i.e. users
and items.

In this chapter, we account for the issues previously highlighted and extend
the literature of fairness in recommender systems by (i) providing a comprehen-
sive overview of existing mitigation procedures through a systematic reproducibility
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Figure 4.1: Overview of the research conducted to assess, explain, and mitigate
unfairness issues in recommender systems.

study, (ii) identifying which properties a mitigation approach for consumer unfair-
ness should meet to be effective and reliable, (iii) devising a framework to gener-
ate global explanations of unfairness across consumer groups in GNN-based recom-
mender systems to explain, but also mitigate such issue, through user-item interac-
tions and no additional features.

The contributions of this chapter is five-fold:

• we conducted a systematic reproducibility study on algorithmic procedures for
mitigating consumer unfairness in rating prediction or top-k recommendation
tasks, identifying 15 relevant papers and reproducing 8 of them.

• we defined a common evaluation protocol, including two public datasets, two
sensitive attributes and two fairness notions to assess the fairness level of the
recommendation models reported in the reproduced papers, with and without
the proposed mitigation procedure.

• we identified a set of eight technical properties a given mitigation procedure
against consumer unfairness should meet for being effective in practice, and
assessed the extent to which existing mitigation procedures against consumer
unfairness meet the defined properties, qualitatively and quantitatively (when
possible).
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• we formulated the problem of explaining unfairness in GNN-based recom-
mender systems and proposed a framework to generate global counterfactual
explanations of the unfairness they propagate.

• we leveraged these global counterfactual explanations to augment the bipartite
graph used during the GNN-based model inference step, such that the altered
recommended lists could be fairer across demographic groups.

The rest of this chapter details the listed contributions as follows: Section 4.2
formulates the recommendation task adopted by recommendation systems in gen-
eral and by systems based on GNNs, Section 4.3 contextualizes existing unfairness
mitigation procedures under a common evaluation protocol and assesses the level
they meet eight practical properties, which we designed ad-hoc for consumer unfair-
ness evaluation, Section 4.4 shows an approach that identifies a set of interactions
between users and items as an explanation of the unfairness across consumer groups
in GNN-based recommender systems, Section 4.5 describes a data augmentation
method that finds new user-item interactions to generate a new graph with the goal
of mitigating unfairness in recommendation utility across demographic groups at
the GNN model inference-level. Finally, Section 4.6 summarizes the findings result-
ing from the outcomes observations of our multifaceted experimental analysis and
illustrates future works to extend the research in consumer unfairness in recommen-
dation.

4.2 Problem Formulation

4.2.1 Model-based Recommendation Task

In recommendation, the goal of the preference model is typically predicting whether
or to what extent an (unseen) item would potentially be of interest for a user. In
a common scenario, the model uses past interactions between two main entities,
namely users U and items I, to learn preference patterns. Each user u ∈ U is
assumed to have interacted with a certain item i ∈ I in case they rated, liked, or
clicked on such item, depending on the applicative scenario. The set of items Iu a
user interacted with is referred to as the u’s history.

A main categorization in recommendation is the type of feedback given by a
user to an item, which can be implicit or explicit. Specifically, an implicit feedback
implies a user u interacted with an item i without information on the interest level
for such item, e.g., watching a movie, listening to a song. On the other hand, an
explicit feedback given by u to i denotes the extent to which i is of interest to u,
e.g., rating a movie, putting “like” on a song. The feedback of all the users and
items can be gathered to generate a feedback matrix R ∈ R|U |×|I|, where Ru,i ̸= 0 if
a user u interacted with an item i, otherwise Ru,i = 0. The goal of a recommender
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system is to predict the relevance of the missing entries in R, i.e. the entries that
are equal to 0. A general recommender system can then be defined as:

f(R;W ) → R̂ ∈ R|U |×|I| (4.1)

Thus, f is parameterized by the weight matrix W and predicts a relevance matrix
R̂ to fill the missing entries in R.

Additionally, we can distinguish among three main sub-tasks of recommendation:
top-k recommendation, next-item recommendation, rating prediction. One does not
negate the other, since the first two could be performed on the basis of a rating
prediction task, but they are typically treated separately.

• Top-k recommendation typically exploits an implicit feedback matrix, where
Ru,i = 1 denotes an interaction between a user u and an item i. The goal in
top-k recommendation is to suggest a list of k items based on the predicted
relevance. Given a user u, items in I are sorted based on their decreasing
relevance in R̂u, and the top-k items are recommended to user u.

• Next-item recommendation typically exploits an implicit feedback matrix as
well as the top-k recommendation one. The goal is to learn the list-wise
and sequence-aware preference of each user, so as to predict the next-item a
user would prefer to interact with, e.g., a product to add to an online cart.
While it can be perceived as a top-1 recommendation based on the item with
the respective highest relevance, next-item recommendation is performed by
models that account for the sequence order of the users’ interactions to learn
which item would better fit the next entry in the sequence.

• Rating prediction exploits an explicit feedback matrix, where Ru,i ̸= 0 is equal
to a numeric value on a rating scale, e.g., between 1 and 5, where 1 denotes
the user u did not minimally like item i, whereas 5 denotes i fully satisfied u.
The goal is to predict the extent to which each item is of interest to each user
to fill the missing entries in R. In this case, the predicted relevance matrix R̂
would be better denoted as a predicted rating matrix, because it includes the
interest levels that a model predicts they would have been given by the users
if they actually interacted with those items. As mentioned earlier, top-k and
next-item recommendation could be performed on the basis of the predicted
ratings.

4.2.2 Graph-based Recommendation Task

Graphs are structures that represent a set of entities (nodes) and their relations
(edges). GNNs operate on graphs to produce representations that can be used in
downstream tasks. In our case, user-item interactions can be represented by means of
an undirected bipartite graph G = (U, I, E), where E is the set of edges representing
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the interactions and U ∪ I, with n = |U | + |I|, is the set of nodes. No edge exists
between nodes of the same type, i.e. E = {(u, i) | u ∈ U, i ∈ I} highlighting that
E only contains edges between users and items, and not among users or among
items. GNNs can then solve the recommendation problem by treating it as a linking
prediction task, in order to predict potentially interesting links between users U and
items I in the bipartite graph G.

The graph G is a different way to represent the feedback matrix R. Given that
a graph is typically represented by a n× n adjacency matrix A, we use A to denote
the feedback matrix R. A GNN-based recommender system can then similarly be
defined as:

f(A;W ) → R̂ ∈ R|U |×|I| (4.2)

In this case, the relevance R̂u,i is better denoted as the linking probability between
user u and item i. In a common scenario, the adjacency matrix A is normalized
on the basis of the degree matrix. Therefore, f predicts the user-item relevance
matrix R̂ by combining the normalized adjacency matrix L = D−

1
2AD−

1
2 , where

Dj,j =
∑

k Aj,k are entries in the degree matrix D, with the learned weight W
according to the GNN implementation. Analogously to the general recommender
system, given the matrix R̂ and a user u, items in I are sorted based on their
decreasing linking probability in R̂u, and the top-k items are recommended to user
u. Consequently, the list of items recommended to user u is referred to as Qu as and
the set of all recommended lists as Q.

4.2.3 Task Optimization Targets

Metrics used to evaluate recommender systems are particularly different from the
ones used for other tasks, e.g., classification. Indeed, top-k recommendation task
metrics typically account for the length of the list Qu recommended to each user,
and they could also depend on the order the items are presented in Qu. Addi-
tionally, in top-k recommendation it is more common to deal with the utility of a
recommendation list instead of its accuracy, given that we evaluate the extent to
which a preference model recommends items that are useful and of interest for a
user. Focusing on group fairness, we describe several metrics devised to assess the
unfairness of a recommender system, usually based on the disparity in utility across
demographic groups or on other perspectives, e.g., independence from the sensitive
attribute. Given T = {ru,i | ru,i ∈ R∧ ru,i ̸= 0} the number of nonzero entries in the
feedback matrix R, i.e. the number of user-item interactions in a dataset, we present
some of the most used metrics in recommendation to measure the performance in
different tasks and to measure the fairness.

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is generally used in statistics to measure the errors
between paired observations. Referring to recommendation, in particular the rating
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prediction task, MAE is used to measure the error in predicting the real rating given
by a user u to an item i. Formally:

MAE(R, R̂) =
1

|T |

|T |∑
j=1

|RTj
− R̂Tj

| (4.3)

In other words, MAE measures the absolute difference between RTk
, which rep-

resents the real rating given by u to i as a data instance of the dataset, and R̂Tk
,

which is the rating predicted by a model.

Root-Mean Squared Error (RMSE)

Root-Mean Squared Error (RMSE) is used similarly as MAE, but they have a main
difference. In the RMSE formula the errors are squared before they are averaged,
so the RMSE gives a relatively high weight to large errors, while MAE is a linear
score, which means that all the individual differences are weighted equally in the
average. Formally:

RMSE(R, R̂) =

√∑|T |
k=1 (RTj

− R̂Tj
)2

|T |
(4.4)

F1 Score (F1)

F1 Score (F1) is a metric used to measure the accuracy of a test, given by the
harmonic mean of precision and recall. In top-k recommendation, precision and
recall account for the size of the list recommended to the users, hence, we deal with
precision@k and recall@k, where the former is the fraction of relevant retrieved
instances among the retrieved instances (i.e. k instances), and the latter is the
fraction of relevant retrieved instances among all relevant instances. Hence, we
define a list-aware F1 Score, denoted as F1@k, as follows:

F1(R, R̂)@k = 2
precision@k · recall@k

precision@k + recall@k
(4.5)

It should be noted that F1@k does not account for the position of the items in
the list, i.e. the value of F1@k does not change if a relevant item is recommended
at the top or at the bottom of the list.

Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain (NDCG) is a metric designed to capture
the notion that relevant items should be ranked higher in the recommendation list
and that the importance of an item decreases as its position goes down in the list.
It considers the graded relevance of items, e.g., user ratings or relevance scores, and
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calculates a discounted cumulative gain, denoted as DCG, based on the relevance
and the position of each recommended item. DCG is then normalized by an ideal
ranking that represents the perfect order of relevant items. For each user u and the
corresponding recommendation list Qu = q, NDCG can be formally defined as:

NDCG(Ru, R̂u)@k =
DCG(Ru, R̂u)@k

DCG(Ru, Ru)@k
; DCG(Ru, R̂u)@k =

k∑
j=1

2ru,qj − 1

log2(j + 1)

(4.6)

Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) measures the effectiveness of a ranking algorithm by
considering the rank of the first relevant item in the list of recommended items.
Specifically, for each user, the reciprocal rank is calculated as the inverse of the rank
of the first relevant item in the list. If no relevant item is present in the recommen-
dation list, the reciprocal rank is set to 0. For each user u and the corresponding
recommendation list Qu = q, MRR can be formally defined as:

MRR(Ru, R̂u)@k = max({1/j | 1 ≤ j ≤ k, ru,qj ̸= 0}) (4.7)

Disparity in Demographic Parity (DP)

Disparity in Demographic Parity (DP) estimates fairness based on the notion of
demographic parity, which in prior works in top-k recommendation [155] it was op-
erationalized as the disparity in recommendation utility across demographic groups.
Let S be a metric that measures the recommendation utility (e.g., NDCG, MRR),
G the set of demographic groups, and denoting the feedback sub-matrix and the
predicted relevance sub-matrix with respect to a demographic group g as Rg and
R̂g, respectively, we can formally define DP as:

DP (R, R̂)@k =
1(|G|
2

) ∑
1≤i<j≤|G|

∥∥∥S(Rgi , R̂gi)@k − S(Rgj , R̂gj)@k
∥∥∥2
2

(4.8)

Category Equity Score (CES)

Category Equity Score (CES) is the metrics proposed in [21] to measure whether
the distribution of a desired item category is similar across demographic groups.
The definition is not perfectly clear, since it is a consumer-side metric, but the
paper mentions item categories as “protected”. We studied this metric considering
each item category, e.g., movie or song genre, as protected for each iteration and
measuring CES for each one. We report the original definition with our notation:
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CES(R, R̂)@k =

∑
u∈Ugi

∑
q∈Qu@k γ(q)/|U gi∑

u∈Ugj

∑
q∈Qu@k γ(q)/|U gj

(4.9)

where gi and gj are two different demographic groups of the set G, U g denotes
the users belonging to the demographic group g, γ : q → 0, 1 is a function that maps
to 1 if the recommended item is in a “protected” category.

ϵ-Fairness (EPS)

ϵ-Fairness (EPS) is a metric proposed in [58] that accounts for the preference distri-
bution for any two items across demographic groups. In other words, a recommender
system is said to be ϵ-fair if, for any two items, the proportion of users with the
same preference is approximately identical in all the subpopulations of users defined
by the same sensitive attribute. In their definition, the term “preference” is used
exactly with respect to the considered two items to study if the users prefer an
item over another with an approximately identical distribution across demographic
groups. Formally, for any two items i and i′:

EPS(R, R̂) =

∣∣∣∣∣ |{u | u ∈ g ∧ R̂u,i > R̂u,i′}|
|{u | u ∈ g}|

− |{u | u ∈ g¬ ∧ R̂u,i > R̂u,i′}|
|{u | u ∈ g¬}|

∣∣∣∣∣ ≤ ϵ

(4.10)
where g and g¬ are two different demographic groups of the set G.

Bias Disparity (BD)

Bias Disparity (BD) is a metric proposed in [141] that studies the propagation of
preference bias from the interaction data to the recommendation. In other words,
BD estimates how different is the distribution of a certain item category in the lists
recommended to the users in a demographic group with respect to the distribution
of these users’ interactions with the considered item category. Let c ∈ C be an item
category, Ic be the subset of items of category c and g ∈ G a demographic group,
BD can be formally defined as:

PR(R) =

∑
u∈g
∑

i∈Ic Ru,i∑
u∈g
∑

i∈I Ru,i

; B(R) =
PR(R)

P (c)
; BD(R, R̂) =

B(R̂)−B(R)

B(R)
(4.11)

where PR is the preference ratio of a demographic group g for the item category
c, P (c) = |Ic|/|I| is the probability of selecting uniformly at random an item of
category c, B is the preference bias of a group g for the item category c with
respect to its representation in the dataset, and B(R̂) represents the preference bias
measured on the recommended lists by first measuring the preference ratio on the
latter.
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Kolmogorov-Smirnov Test (KS)

Kolmogorov-Smirnov Test (KS) in its two-sample form can be used to test whether
two one-dimensional probability distributions differ. It was used in [80] to test
whether the distributions of the predicted ratings for two demographic groups dif-
fered, such that a smaller value of KS ∈ [0+inf) indicates that the predicted ratings
and sensitive attribute are more independent. In can be easily interpreted as the
area between two empirical cumulative distributions of predicted ratings for two
demographic groups and it can be formally defined as:

KS(R̂) = sup
x

|FR̂,g(x)− FR̂,g¬(x)| (4.12)

where sup is the supremum function, FR̂,g(x) and FR̂,g¬(x) are the empirical
distribution functions of the predicted ratings for the demographic group g ∈ G and
g¬ ∈ G, respectively.

Group Loss Variance (GLV)

Group Loss Variance (GLV) is a metric used in [124] to estimate the variance across
demographic groups of the mean squared estimation error reported by a recom-
mender system in a rating prediction task. Formally:

Lj =

∥∥∥R̂gj
T −R

gj
T

∥∥∥2
2

|T gj |
; GLV (R, R̂) =

1

|G|2
∑

1≤j<k≤|G|

(Lj − Lk)
2 (4.13)

where T gj = {ru,i | ru,i ∈ R ∧ u ∈ gj} is the set of the real ratings given by the
users in the j-th demographic group gj ∈ G.

Generalized Entropy Index (GEI)

Generalized Entropy Index (GEI) is an inequality index used in [9] to measure the
inequality of the benefit distribution over all the users or demographic groups. The
concept of benefit is better described in the work [134] from which the metric is
taken from, whose goal is to estimate how unequally the outcomes of an algorithm
benefit different individuals or groups in a population. The definition of the benefit
function bj needs to be determined for a specific task. For a constant α ̸= {0, 1},
GEI can be formally defined as:

b̄ =
1

|T |

|T |∑
j=1

bj ; GEI =
1

|T |α(α− 1)

|T |∑
j=1

[(
bj
b̄

)α

− 1

]
(4.14)
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Area Under the Curve (AUC)

Area Under the Curve (AUC) is a metric typically used in classification problems.
AUC is derived from the receiving operating characteristic curve (ROC curve), which
is the plot of true positive rates and false positive rates at various decision thresholds.
Specifically, AUC is the area under the ROC curve, which is equal to the probability
that a classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one. We define this metric as a fairness tool leveraged in [93, 154] to
estimate the accuracy of a predictor model with the goal of predicting the sensitive
attribute of the users from their latent representation. For an unbiased predictor f ,
AUC can be defined as follows:

AUC(f) =

∑
t0∈D0

∑
t1∈D1 1[f(t0) < f(t1)]

|D0| · |D1|
(4.15)

where D0 and D1 denote the set of negative and positive examples, respectively.

4.3 Techniques for Unfairness Assessment and

Mitigation

This section describes our study aimed to shape recommender systems that account
for consumer fairness. A common understanding and practical benchmarks on how
and when each procedure can be used in comparison to the others is crucial. As a
response, we conducted a systematic reproducibility study of algorithmic procedures
for mitigating consumer unfairness in rating prediction or top-k recommendation
tasks on the basis of a four-step pipeline:

1. A paper collection process was performed to gather recent studies proposing
mitigation methods to counter consumer fairness, by scanning Information
Retrieval scientific journals, as well as conferences and workshops proceedings
with high impact.

2. We defined a common evaluation protocol to assess the unfairness level of
the models adopted in the collected papers, with and without applying the
corresponding mitigation procedures.

3. Eight technical properties were devised to increase the perspectives of consumer
fairness evaluation in top-k recommendation, such that a given mitigation pro-
cedure against consumer unfairness would be reliable and effective in practice
if it meets the proposed properties.

4. A comprehensive assessment of the mitigation level of the reproduced methods
for consumer unfairness was carried out using our common evaluation protocol
under both a rating prediction and top-k recommendation task. Finally, the
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mitigation procedures devised for consumer unfairness in top-k recommenda-
tion were tested in terms of the tailor-made technical properties under our and
original evaluation protocol.

Figure 4.2 provides a visual representation of our study based on the aforemen-
tioned four-step pipeline.

4.3.1 Methodology

Paper Collection Process

To collect existing mitigation procedures against consumer fairness, we systemati-
cally scanned the recent proceedings of top-tier Information Retrieval conferences
and workshops, namely CIKM, ECIR, ECML-PKDD, FAccT, KDD, RecSys, SIGIR,
WSDM, WWW, and journals edited by top-tier publishers, namely ACM, Elsevier,
IEEE, and Springer. The keywords for our manual research were composed of a
technical term, “Recommender System” or “Recommendation”, and a non-technical
term, “Consumer Fairness” or “User Fairness”. We marked a paper to be relevant
if (a) it focused on a personalized recommendation task, (b) it proposed a mitigation
procedure, and (c) that procedure targeted the end users receiving the recommenda-
tions. Papers on other domains (e.g., non-personalized rankings), other stakeholders
(e.g., providers only), and on pure conceptualization only (e.g., proposing a fairness
notion without any mitigation) were excluded. Papers addressing both consumer
and provider fairness were included, since they also target the end users. Finally,
15 relevant papers were considered in our study.

We then attempted to reproduce the mitigation procedure proposed in each
relevant paper, relying as much as possible on the source code provided by the
authors themselves. We hence tried to obtain the source code for each relevant

Figure 4.2: Method. We systematically collected papers and retrieved their source
code. We processed the datasets used in our evaluation protocol, formatted them
as per each mitigation requirements, and made the format of the mitigation results
uniform. We trained the recommendation models included in the original papers,
with/out mitigation, and computed fairness and utility metrics for the target rec-
ommendation task.
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paper, by searching for the link into the paper, browsing for the official repository
on the Web, and sending an e-mail to the authors as a last resort. We considered a
mitigation procedure to be reproducible if a working version of the source code was
obtained, and required minimal changes to accept another dataset and extract the
final recommendations. Otherwise, we considered a paper to be non-reproducible
given our reproduction approach. We also considered works to be non-reproducible
when the source code was obtained but included only a skeleton version of the
procedure with many parts and details missing. At the end, 8 out of 15 relevant
papers could be reproduced with a reasonable effort.

In Table 4.1, for each reproducible paper, we identified the recommendation
task (RP : Rating Prediction; TR : Top-k Recommendation), the notion of con-
sumer fairness (EQ : equity of the error/utility score across demographic groups; IND
: independence of the predicted relevance scores or recommendations from the de-
mographic group), the consumers’ grouping (G : Gender, A : Age, O : Occupation, B
: Behavioral), the mitigation type (PRE-, IN- or POST-Processing), the evaluation
datasets (ML : MovieLens 1M or 10M, LFM : LastFM 1K or 360K, AM: Amazon,
SS: Sushi, SY: Synthetic), the utility/accuracy metrics (NDCG; F1; AUC; MRR;
RMSE; MAE), and fairness metrics (EPS; CHI; KS; GEI; TI; DP; CES; GLV). The
reproducibility ratio was of 53% (8/15) in total: 50% (4/8) for top-k recommen-
dation1 and 57% (4/7) for rating prediction. We identified [154, 155, 93, 141] and
[13, 74, 49] as non-reproducible procedures according to our criteria for top-k rec-
ommendation and rating prediction, respectively. Given that the most recent works
addressing consumer fairness in recommendation focus on the top-k recommenda-
tion task, we also report in Table 4.1 the non-reproducible mitigation procedures
devised for top-k recommendation task, denoted by the symbol (*). In light of this,
specialized evaluation tools, particularly the technical properties mentioned at the
bullet 3 in the Section 4.3 introduction, will be examined in the next sections only
on papers focused on top-k recommendation, even for non-reproduced algorithms
when possible.

Common Evaluation Protocol

To ensure evaluation consistency and uniformity across mitigation procedures, given
the heterogeneity of the original experimental evaluations, we mixed replication and
reproduction [1, 36]. For readability, we use the term “reproducibility”. So, we used
the source code provided by the original authors to run their models and mitigation
procedures, and our own artifacts (data and source code) to (a) pre-process the
input datasets as per their requirements and (b) compute evaluation metrics based
on the relevance scores or recommendations they returned.

1During our studies, some authors published the source code of their papers for consumer
fairness mitigation in top-k recommendation, increasing the reproducibility ratio from 50% (4/8)
to 75% (6/8), but we could not reproduce them due to our work coming to an end.
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Table 4.1: The considered reproducible mitigation procedures for consumer fairness.
The works with the symbol (*) were not available or not reproducible at the time
of this study.

Task Paper Year
Mitigation Evaluation
Notion Groups Type datasets Utility Metrics Fairness Metrics

TR
Burke et al. [21] 2018 EQ G IN ML NDCG CES
Tsintzou et al. [141]* 2019 EQ G POST ML 1M-SY - BD
Frisch et al. [58] 2021 IND G-A IN ML NDCG EPS-CHI
Li et al. (A) [92] 2021 EQ B POST AM NDCG-F1 DP
Li et al. (B) [93]* 2021 IND G-A-O-MS IN ML 1M-INS NDCG-HIT AUC
Wu et al. (A) [154]* 2021 IND G IN NEWS AUC-NDCG-MRR AUC-F1
Wu et al. (B) [155]* 2021 EQ G-A IN ML 1M-LFM 1K RECALL-NDCG DP

TR + RP Ekstrand et al. [47] 2018 EQ G PRE ML-LFM NDCG-MRR DP

RP

Kamishima et al. [81] 2018 IND G-A IN ML-SS MAE KS
Rastegarpanah et al. [124] 2019 EQ B POST ML RMSE GLV
Ashokan & Haas [9] 2021 EQ G POST ML-SY RMSE-MAE GEI
Wu et al. (C) [157] 2021 IND G-A-O IN ML-LFM RMSE AUC-F1

1 Notion: Equity (EQ), Independence (IND).
2 Groups: Gender (G), Age (A), Occupation (O), Country (C), Marital Status (MS).
3 Type: Pre-Processing (PRE), In-Processing (IN), Post-Processing (POST).
4 datasets: MovieLens 1M (ML 1M), LastFM 1K (LFM 1K), Amazon (AM), Synthetics (SY), [153] (NEWS).

Datasets. The assessment of consumer fairness is challenging due to the lack of
public datasets with ratings and sensitive attributes of the consumers. In our analy-
sis, we considered all the public datasets that (a) were used in at least one reproduced
paper, (b) reported at least one sensitive attribute, and (c) included enough ratings
to reasonably train a recommender system (≥ 200,000 ratings). We hence evalu-
ated the reproduced mitigation procedures on two public datasets on the movies,
MovieLens-1M (ML 1M), and music, Last.FM 1K (LFM 1K), domains (Table 4.2).
Each dataset was downloaded from the original website and pre-processed accord-
ing to our common evaluation protocol, in response also to some limitations of the
reproduced mitigations. For instance, given that the existing mitigation procedures
are often tailored to binary groups only, we grouped users in two groups in case of
datasets with multi-class sensitive attributes (while attributes like gender and age
are by no means a binary construct, what we are considering is a binary feature).

Gender labels were already binary in ML 1M. We binarized age labels, organized
in seven age ranges, such that the two groups included consecutive age ranges and
had the most similar representation possible. For LFM 1K, we considered only
users reporting both their gender and age and filtered those with wrong ages (≤ 0
or ≥ 125). Interactions of a user for the same artist were aggregated, using the
number of plays of a user for an artist as a proxy of the rating, similarly done
by [47]. We filtered users interacting with less than 20 artists (as in ML 1M), and
ratings were log-normalized and scaled in [1, 5]. Gender labels were already binary.
We binarized age labels (integer) with the same criteria used in ML 1M.

Protocol. Each reproduced paper applied the corresponding mitigation proce-
dure to a set of state-of-the-art recommendation models, which was quite het-
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Table 4.2: The datasets with consumer’s sensitive attributes included in this study.

dataset #Users #Items #Ratings Sensitive Attributes

ML 1M [69] 6,040 3,952 1,000,209 Gender (M : 71.7%; F : 28.3%) Age ( < 35 : 56.6%; ≥ 35 : 43.4%)
LFM 1K [25] 268 51,609 200,586 Gender (M : 57.8%; F : 42.2%) Age ( < 25 : 57.8%; ≥ 25 : 42.2%)

erogeneous across papers due to authors’ arbitrary choices or the focus on a
specific type of model. These models covered several families, including mem-
ory (ItemKNN [47, 9], UserKNN [47]), matrix factorization (BiasedMF [92, 9],
PMF [92, 81, 157], FunkSVD [47]), learning-to-rank (NCF [92], LBM [58], SLIM-U [21],
ALS [124], LMaFit [124]), graph (GCN [157]), and session-based (STAMP [92]). In line
with our reproduction approach, we applied a given mitigation on the same models
considered by the original authors2.

Specifically, given a dataset, a sensitive attribute, and a reproducible paper, we
considered the following evaluation protocol. We first performed a train-test split
per user, with 20% of the interactions (the most recent if a timestamp was available,
randomly selected otherwise) being in the test set and the remaining interactions
being in the train set. In case a validation set was needed for best model selection,
10% of interactions (selected in the same way) of each user from the train set were
considered as a validation set and the other ones included in the final train set. To
fit with the original source code, the format of the considered sets and the sensitive
attribute’s labels per user were adapted. No changes on the source code specific for
the mitigation procedure were applied.

Using the prepared sets and an appropriate hyper-parameters grid, we ran a
grid search for each recommendation model, with and without mitigation. For each
paper, our source code includes the scripts to format a dataset as per the orig-
inal source code requirements and to compute evaluation metrics as well as the
details of models hyper-parameter tuning. For each setup, we obtained the pre-
dicted relevance scores and the recommendations, and computed utility and fairness
metrics. Utility metrics included NDCG for top-k recommendation (using binary
relevances) and RMSE for rating prediction, selected due to their popularity (see
Table 4.1). Consumer fairness metrics monitored equity through Disparity in De-
mographic Parity (DP), computed as the difference on utility for the corresponding
task between groups, and independence through Kolmogorov-Smirnov (KS), com-
puted on predicted relevance scores, covering two well-known perspectives and steps
of the pipeline. We left analyses on other fairness notions and implementations of
the same fairness notions as a future work.

2Though some procedures might be applied across models, their transfer often requires arbitrary
design choices and core changes that mine our rigorous reproduction.
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Practical Perspectives of Technical Properties

In this section, we propose eight key properties to consider while evaluating a miti-
gation procedure offline, before moving it into practice (e.g., user studies or online
experiments). Being recommender systems often powered by machine learning, these
properties would be indeed applicable also to mitigation procedures for any machine-
learning model, from a conceptual perspective. This generality would indeed allow
to contextualize mitigation procedures for recommender systems with respect to
those for other machine-learning models in the future, giving a high-level overview
on unfairness mitigation across machine-learning applications. It is worth noticing
that the specificity of these properties would be represented by the way they were
operationalized and monitored practically in the recommendation scenario (exper-
imental protocols and results reporting) in our study. For instance, the property
concerning data robustness was operationalized by considering data imbalances per-
taining to the popularity of items according to the user’s interactions with them,
which is peculiar to a recommendation scenario. The design process for these prop-
erties was based on the adopted practices in the current academic literature about
mitigation procedures for recommender systems (when possible) or those for general
machine-learning models for completeness.

Applicability. A notable property a mitigation procedure would need to be eval-
uated on to support scientists’ in their selection process is represented by the extent
to which it can be technically applied to many recommendation models. As in
the more general machine-learning field, mitigation procedures can be applied in
pre-processing, by transforming the input data, in-processing, by constraining the
training process of state-of-the-art models, and post-processing, by re-arranging the
original predictions. Post-processing mitigation procedures can be applied to a wider
range of models, being model-agnostic per definition. Although an in-processing
approach could be extremely effective, it could be limitedly applicable to another
model, especially from a different family. For instance, a mitigation procedure in-
volving knowledge about users’ neighbors might be seamlessly applied to different
neighborhood-based recommendation models, but not to deep-learning models not
relying on such neighborhood concept. On the other hand, an upsampling strategy
can be used to manipulate the training data to be fed to any model, and a re-
ranking procedure would be able to act on the original predictions provided by any
model. One specificity of this property with respect to the recommendation task is
that even pre-processing procedures might not always be model-agnostic, since for
instance an in-processing tailored for a pair-wise model would need to act on pairs
of items (not single items). Similar considerations can be made for post-processing
approaches, which might rely on assumptions about the original rankings (e.g., in
knowledge-aware recommendation) a model was able to produce.
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Property. Applicability indicates the extent to which a mitigation pro-
cedure can be technically run on a wide range of different recommendation
models without requiring any substantial change to the fundamental steps it
is based on.

Coherence. Recent literature, in both the machine-learning field and the rec-
ommendation field more specifically, has proven that models can result in unfair
outcomes for the users belonging to a certain demographic group. In some cases,
mitigating unfairness for that demographic group might result in reversing the dis-
parity towards the other group(s) (instead of merely reducing it for the originally
disadvantaged groups). For instance, [17] showed that applying upsampling tech-
niques to the training data and regularizing the training process, along with their
combination, often leads to introducing disparities for the group the recommender
system was originally performing the best on. A mitigation procedure would need to
(at least) reduce the unfairness towards the originally disadvantaged group, without
introducing any unfairness towards another group.

Property. Coherence indicates the extent to which a mitigation procedure
tends to reduce the biased outcomes for the originally disadvantaged group,
without reversing the disparate outcome towards the other group(s).

Consistency. One of the primary properties a mitigation procedure should ef-
fectively satisfy is being able to reduce the unfairness estimate measured on the
original recommendation model, according to the targeted fairness notion. Notably,
this property is the most popular one among those implicitly considered so far in
the literature. This observation is expected, since it represents the property that
motivates the design and development of a mitigation procedure in general. Being
able to reduce unfairness only under a specific dataset and for a specific set of de-
mographic attributes would not be enough, however, for a mitigation procedure to
be considered consistent. Unfairness mitigation should ideally be possible regardless
of the dataset and the demographic attribute.

Property. Consistency indicates the ability of a mitigation procedure to
substantially reduce the model’s unfairness according to the pursued fairness
notion, given any dataset and any consumer grouping method.

Data Robustness. User-item interaction datasets collected from online platforms
are usually characterized by imbalances with respect to the collected feedback (e.g.,
due to the popularity bias recommender systems often emphasize) and the stakehold-
ers influenced by the provided recommendations (e.g., under-represented provider
or consumer groups). Furthermore, depending on the domain, there might be fea-
tures having a causal relationship with consumer unfairness. For being practically
successful, mitigation procedures should be able to deal with data characterized by
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(even extremely) imbalances and evident causal relationships. Inspecting robustness
with respect to the data would be especially important when mitigation procedures
do not report good results. Indeed, given a dataset and a mitigation procedure
which shows a limited consistency, it could be better to analyze the underlying
data, explain the causes behind unfairness from a data perspective, and inform the
mitigation procedure about them.

Property. Data robustness indicates the ability of a mitigation procedure
to reduce unfairness also in challenging cases related to data distribution
(e.g., imbalances) and relationships between unfairness and other features.

Reproducibility. The source code of an approach, by producing results that are
then analyzed and interpreted, allows to elaborate scientific conclusions. This im-
poses specific constraints on the code that are often overlooked in practice. Being
able to make a mitigation procedure reproducible, by sharing for instance the origi-
nal source code, would allow the community to test it even under different conditions
(e.g., datasets or data splits). This sheds light on reproducibility, a key property to
meet for progressing on unfairness mitigation. Other than enabling other researchers
to assess the work’s quality in more detail, sharing the source code would be impor-
tant to increase the visibility of a study and further prove its potential advancement
from the community.

Property. Reproducibility indicates the ability of taking the original source
code that implements a mitigation procedure and being able to execute it
under the same or a different evaluation protocol, with respect to the one
used in the original paper.

Scalability. The increasing number of users and items in online platforms that
leverage recommender systems is demanding a high amount of computational re-
sources in terms of memory and execution time. Requirements pertaining to these
resources should not be ignored, especially when a mitigation procedure against
consumer unfairness should be run within or on top of the original recommenda-
tion model. Existing mitigation procedures were originally evaluated on barely
small datasets, questioning the extent to which such procedures could be applied in
real-world online platforms that involve thousands or even millions of users, items,
interactions, and so on.

Property. Scalability indicates the ability of a mitigation procedure to
scale well when the number of interactions, users, items, and sensitive at-
tributes, and other relevant features increases consistently.
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Trade-off Management. In the fair machine learning literature, it has been often
highlighted a trade-off between accuracy/utility and fairness. This phenomenon
particularly characterized the recommendation domain as well, e.g., [17]. A notable
observation coming from these prior studies is that such trade-off often appeared
for the best performing recommendation models, while was less evident for the ones
reporting lower utility. This would be expected since less accurate models tend
to provide random predictions more frequently. Inspecting the trade-off between
utility and fairness in the context of a mitigation procedure for consumer unfairness
would therefore be more relevant in case the original model already achieved a good
performance. In the same way, while applying a mitigation procedure on a high-
performing model, in an ideal case, we expect that the mitigation effectively reduces
unfairness while preserving as much as possible the original model’s performance.

Property. Trade-off management indicates the ability of a mitigation
procedure to preserve the performance estimate achieved by the target rec-
ommendation model originally (before the mitigation was applied).

Transferability. In recent years, a large number of studies addressed consumer
unfairness in recommender systems. However, these studies often examined the im-
pact of the respective mitigation procedure on a restricted set of recommendation
models or, in extreme cases, only on a single one. It therefore remains unclear the
extent to which a mitigation procedure, originally evaluated and proven to be effec-
tive on a range of recommendation models, transfers well and it is equally effective
(and so reduces unfairness) on another recommendation model. From a conceptual
perspective, transferability is related to consistency (being effective across datasets
and users’ groups) and applicability (being applicable to a recommendation model).
The main difference is that, with transferability, we aim to highlight the fact that,
even if a mitigation procedure has been proven to be effective on a model, there are
no guarantees that it will be equally effective on other models it could be applied
to. Being transferable implies, for a mitigation procedure, that the consistency is
preserved regardless of the model.

Property. Transferability indicates the ability of a mitigation procedure to
be effective (and not only applicable) on a wide range of recommendations
models, even those it was not originally designed for or tested on.

4.3.2 Results

Equity and Independence Assessment in Rating Prediction and Top-k
Recommendation

Our first experiments focus on both the rating prediction and top-k recommendation
task, by analyzing the extent to which the mitigation procedures impact on recom-
mendation utility and unfairness. To this end, we report recommendation utility
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and fairness scores obtained under the above evaluation protocol, for Top-k Recom-
mendation (TR) across gender groups in Table 4.3 and across age groups in Table
4.4, and for Rating Prediction (RP) across gender groups in Table 4.5 and across age
groups in Table 4.6. DP was tested for statistical significance via a Mann-Whitney
test. For KS, we used its own score. The symbols (*) and (∧) meant significance at
p-values 0.05 and 0.01, respectively.

Impact on Recommendation Utility. In a first analysis, we assess the impact
of mitigation procedures on recommendation utility, focusing on the NDCG/RMSE
columns provided in the aforementioned tables.

In a TR task, we observed that the NDCG achieved by the untreated models
(Base) in ML 1M was in the range [0.110, 0.140], except for SLIM-U, FunkSVD,
LBM, and STAMP, whose NDCG was lower (≤ 0.084). Mitigating unfairness (Mit)
in ML 1M did not generally result in a substantial change in utility (±0.006 gender;
±0.003 age). Higher changes were observed in two cases: SLIM-U treated with Burke
et al.’s mitigation (stable for gender; −0.036 age) and LBM treated with Frisch et
al.’s (−0.023 gender; stable for age). In LFM 1K, the untreated models (Base) got
an NDCG in [0.204, 0.406], overall higher than ML 1M. The models ranking based
on NDCG differs for several models from ML 1M. Though their utility was relatively
high, PMF, FunkSVD, LBM, and STAMP were still under-performing in LFM 1K.
The treated models (Mit) showed changes in NDCG (±0.009 gender; ±0.018 age)
larger in magnitude than ML 1M. SLIM-U with Burke et al.’s mitigation (−0.019
gender; −0.113 age) and LBM with Frisch et al.’s mitigation (+0.068 gender; +0.069
age) led to higher changes in NDCG.

Considering an RP task, the untreated models (Base) achieved an RMSE in

Table 4.3: [Top-k recommendation (TR) - Consistency - Gender Groups] Recom-
mendation utility (NDCG, the higher it is, the more useful the recommendations),
equity (NDCG Demographic Parity - DP, the closer to zero it is, the fairer the
model) and independence (Kolmogorov-Smirnov - KS, the closer to zero it is, the
fairer the model) assessment of recommendation models before (Base) and after
mitigating (Mit) for gender groups.

ML 1M LFM 1K
NDCG ↑ DP ↓0 KS ↓ NDCG ↑ DP ↓0 KS ↓

Paper Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Burke et al. [21] SLIM-U 0.084 0.084 ˆ0.022 ˆ0.028 ˆ0.032 ˆ0.115 0.320 0.301 *-0.060 ˆ0.072 ˆ0.006 ˆ0.142
Frisch et al. [58] LBM 0.044 0.021 ˆ0.006 ˆ0.004 ˆ0.013 ˆ0.025 0.144 0.212 *-0.035 *-0.058 ˆ0.120 ˆ0.126
Li et al. (A) [92] BiasedMF 0.112 0.051 ˆ0.017 ˆ0.001 ˆ0.035 ˆ0.006 0.287 0.114 ˆ-0.095 ˆ-0.060 ˆ0.012 ˆ0.001

NCF 0.117 0.057 ˆ0.016 ˆ-0.001 ˆ0.022 ˆ0.006 0.250 0.138 *-0.073 -0.026 ˆ0.033 ˆ0.001
PMF 0.119 0.056 *0.013 ˆ-0.002 ˆ0.023 ˆ0.006 0.200 0.071 *-0.062 -0.027 ˆ0.010 ˆ0.001
STAMP 0.022 0.020 *0.003 ˆ0.003 ˆ0.006 ˆ0.006 0.160 0.113 -0.021 0.002 ˆ0.001 ˆ0.001

Ekstrand et al. [47] FunkSVD 0.018 0.015 ˆ0.004 0.002 ˆ0.027 ˆ0.018 0.010 0.013 -0.006 -0.003 ˆ0.107 ˆ0.119
ItemKNN 0.140 0.134 ˆ0.038 ˆ0.030 ˆ0.030 ˆ0.031 0.287 0.286 ˆ-0.127 *-0.116 ˆ0.019 ˆ0.022
UserKNN 0.137 0.131 ˆ0.031 ˆ0.024 ˆ0.074 ˆ0.052 0.406 0.411 ˆ-0.110 ˆ-0.106 ˆ0.067 ˆ0.067

Configurations that resulted in a statistically significant difference in NDCG (for DP) or predicted relevance (for KS ) distributions between the two

groups under a Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.
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Table 4.4: [Top-k recommendation (TR) - Consistency - Age Groups] Recommenda-
tion utility (NDCG, the higher it is, the more useful the recommendations), equity
(NDCG Demographic Parity - DP, the closer to zero it is, the fairer the model)
and independence (Kolmogorov-Smirnov - KS, the closer to zero it is, the fairer the
model) assessment of recommendation models before (Base) and after mitigating
(Mit) for age groups.

ML 1M LFM 1K
NDCG ↑ DP ↓0 KS ↓ NDCG ↑ DP ↓0 KS ↓

Paper Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Burke et al. [21] SLIM-U 0.084 0.048 ˆ0.022 ˆ0.014 ˆ0.009 ˆ0.095 0.320 0.207 -0.026 ˆ-0.145 ˆ0.017 ˆ0.082
Frisch et al. [58] LBM 0.044 0.042 ˆ0.005 ˆ0.006 ˆ0.021 ˆ0.027 0.144 0.213 -0.011 -0.021 ˆ0.125 ˆ0.152
Li et al. (A) [92] BiasedMF 0.112 0.051 ˆ0.015 ˆ0.000 ˆ0.042 ˆ0.006 0.287 0.111 *-0.079 0.010 ˆ0.019 ˆ0.005

NCF 0.117 0.057 ˆ0.018 ˆ0.002 ˆ0.029 ˆ0.006 0.250 0.137 *-0.067 -0.015 ˆ0.055 ˆ0.005
PMF 0.119 0.056 ˆ0.020 ˆ0.004 ˆ0.027 ˆ0.006 0.200 0.071 *-0.046 0.004 ˆ0.008 ˆ0.005
STAMP 0.022 0.020 0.000 ˆ0.000 ˆ0.006 ˆ0.006 0.160 0.113 -0.031 -0.008 ˆ0.005 ˆ0.005

Ekstrand et al. [47] FunkSVD 0.018 0.016 ˆ0.008 ˆ0.006 ˆ0.029 ˆ0.021 0.010 0.016 0.002 -0.004 ˆ0.054 ˆ0.047
ItemKNN 0.140 0.138 ˆ0.027 ˆ0.024 ˆ0.029 ˆ0.033 0.287 0.269 0.010 0.020 ˆ0.133 ˆ0.118
UserKNN 0.137 0.137 ˆ0.028 ˆ0.023 ˆ0.060 ˆ0.051 0.406 0.397 -0.023 -0.031 ˆ0.036 ˆ0.031

Configurations that resulted in a statistically significant difference in NDCG (for DP) or predicted relevance (for KS ) distributions between the two

groups under a Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.

Table 4.5: [Rating Prediction (RP) - Gender Groups] Rating prediction error
(RMSE, the lower it is, the more accurate the rating prediction), equity (RMSE
Demographic Parity - DP, the closer to zero it is, the fairer the model) and inde-
pendence (Kolmogorov-Smirnov - KS, the closer to zero it is, the fairer the model)
assessment of recommendation models before (Base) and after mitigating (Mit) for
gender groups.

ML 1M LFM 1K
RMSE ↓ DP ↓0 KS ↓ RMSE ↓ DP ↓0 KS ↓

Paper Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Ekstrand et al. [47] FunkSVD 0.881 0.894 ˆ-0.032 -0.023 ˆ0.052 ˆ0.051 1.255 1.268 *0.039 0.039 ˆ0.040 ˆ0.052
ItemKNN 0.865 0.882 ˆ-0.034 *-0.026 ˆ0.055 ˆ0.056 1.218 1.230 *0.037 *0.035 ˆ0.064 ˆ0.072
UserKNN 0.896 0.911 ˆ-0.035 -0.025 ˆ0.056 ˆ0.058 1.226 1.239 ˆ0.047 *0.054 ˆ0.036 ˆ0.045

Kamishima et al. [81] PMF BDist 0.863 0.870 ˆ-0.029 ˆ-0.046 ˆ0.056 ˆ0.032 1.172 1.179 0.014 *0.029 ˆ0.067 ˆ0.029
PMF Mean 0.863 0.870 ˆ-0.029 ˆ-0.048 ˆ0.056 ˆ0.056 1.172 1.179 0.014 *0.025 ˆ0.067 ˆ0.054
PMF Mi 0.863 0.870 ˆ-0.029 ˆ-0.046 ˆ0.056 ˆ0.032 1.172 1.179 0.014 *0.029 ˆ0.067 ˆ0.029

Rastegarpanah et al. [124] ALS 0.894 0.890 ˆ-0.034 ˆ-0.034 ˆ0.035 ˆ0.033 1.490 1.189 ˆ0.145 0.029 ˆ0.036 ˆ0.114
Ashokan & Haas [9] ALS Par 0.867 0.868 ˆ-0.030 ˆ-0.029 ˆ0.056 ˆ0.034 1.145 1.146 0.016 0.018 ˆ0.047 *0.017

ALS Val 0.867 0.867 ˆ-0.030 ˆ-0.030 ˆ0.056 ˆ0.057 1.145 1.150 0.016 0.018 ˆ0.047 ˆ0.050
ItemKNN Par 0.865 0.866 ˆ-0.034 ˆ-0.033 ˆ0.055 ˆ0.036 1.176 1.183 *0.033 *0.045 ˆ0.061 ˆ0.058
ItemKNN Val 0.865 0.865 ˆ-0.034 ˆ-0.034 ˆ0.055 ˆ0.052 1.176 1.173 *0.033 *0.036 ˆ0.061 ˆ0.046

Wu et al. (C) [157] FairGo GCN 0.895 0.892 ˆ-0.038 ˆ-0.034 ˆ0.048 ˆ0.045 1.609 1.283 ˆ0.151 0.038 ˆ0.113 ˆ0.113

Configurations that resulted in a statistically significant difference in RMSE (for DP) or predicted relevance (for KS ) distributions between the

two groups under a Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.

the range [0.863, 0.905] in ML 1M. By mitigating (Mit) in ML 1M, no substantial
changes were observed (±0.017 gender; ±0.013 age). In LFM 1K, the untreated
models (Base) achieved a higher RMSE, in the range [1.145, 1.255]. ALS and GCN
are the lowest performers (1.490 and 1.609, respectively). The treated models (Mit)
showed minimal (±0.0135 gender; ±0.012 age) which are similar to the changes
in ML 1M. ALS under Rastegarpanah et al.’s mitigation lowered RMSE (−0.301
gender; −0.305 age), as well as GCN under Wu et al. (C)’s mitigation (−0.326
gender; −0.332 age).
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Table 4.6: [Rating Prediction (RP) - Age Groups] Rating prediction error (RMSE,
the lower it is, the more accurate the rating prediction), equity (RMSE Demo-
graphic Parity - DP, the closer to zero it is, the fairer the model) and independence
(Kolmogorov-Smirnov - KS, the closer to zero it is, the fairer the model) assessment
of recommendation models before (Base) and after mitigating (Mit) for age groups.

ML 1M LFM 1K
RMSE ↓ DP ↓0 KS ↓ RMSE ↓ DP ↓0 KS ↓

Paper Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

Ekstrand et al. [47] FunkSVD 0.881 0.886 ˆ0.042 ˆ0.045 ˆ0.073 ˆ0.081 1.255 1.264 0.032 0.035 ˆ0.083 ˆ0.086
ItemKNN 0.865 0.875 ˆ0.039 ˆ0.042 ˆ0.074 ˆ0.079 1.218 1.226 0.019 0.028 ˆ0.088 ˆ0.092
UserKNN 0.896 0.902 ˆ0.047 ˆ0.050 ˆ0.092 ˆ0.103 1.226 1.233 0.034 0.031 ˆ0.087 ˆ0.095

Kamishima et al. [81] PMF BDist 0.863 0.872 ˆ0.039 ˆ0.031 ˆ0.084 ˆ0.018 1.172 1.183 0.045 ˆ0.065 ˆ0.124 ˆ0.047
PMF Mean 0.863 0.872 ˆ0.039 ˆ0.027 ˆ0.084 ˆ0.045 1.172 1.184 0.045 ˆ0.069 ˆ0.124 ˆ0.042
PMF Mi 0.863 0.872 ˆ0.039 ˆ0.031 ˆ0.084 ˆ0.018 1.172 1.183 0.045 ˆ0.064 ˆ0.124 ˆ0.047

Rastegarpanah et al. [124] ALS 0.894 0.892 ˆ0.034 ˆ0.040 ˆ0.034 ˆ0.037 1.490 1.185 0.033 *0.052 ˆ0.017 ˆ0.064
Ashokan & Haas [9] ALS Par 0.867 0.871 ˆ0.041 ˆ0.048 ˆ0.074 ˆ0.026 1.145 1.146 0.043 *0.046 ˆ0.082 *0.015

ALS Val 0.867 0.866 ˆ0.041 ˆ0.042 ˆ0.074 ˆ0.079 1.145 1.149 0.043 *0.046 ˆ0.082 ˆ0.077
ItemKNN Par 0.865 0.870 ˆ0.040 ˆ0.048 ˆ0.074 ˆ0.031 1.176 1.177 0.029 0.031 ˆ0.085 ˆ0.029
ItemKNN Val 0.865 0.864 ˆ0.040 ˆ0.042 ˆ0.074 ˆ0.071 1.176 1.172 0.029 0.032 ˆ0.085 ˆ0.083

Wu et al. (C) [157] FairGo GCN 0.895 0.908 ˆ0.040 ˆ0.044 ˆ0.070 ˆ0.074 1.609 1.277 0.043 *0.056 ˆ0.079 ˆ0.120

Configurations that resulted in a statistically significant difference in RMSE (for DP) or predicted relevance (for KS ) distributions between the

two groups under a Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.

Impact on Group Unfairnes. In a second analysis, we investigated the impact
of mitigation procedures on unfairness. For each table and dataset, we consider the
DP and KS columns.

We start from a TR task, focusing our presentation on the subset of models that
achieved a reasonable NDCG (≥ 0.110 for ML 1M; ≥ 204 for LFM 1K). In ML
1M, the DP and KS achieved by the untreated models (Base) laid in the ranges
([0.013, 0.038] gender; [0.015, 0038] age) and ([0.022, 0.074] gender; [0.027, 0.060]
age), respectively. Without any mitigation, in terms of DP, BiasedMF, NCF, and
PMF (≤ 0.017 gender; ≤ 0.020 age) were fairer than UserKNN, and ItemKNN
(≤ 0.031 gender; ≥ 0.027 age). To some surprise, when KS was considered, we ob-
served a different pattern. The fairest models in order were NCF and PMF (0.022
and 0.023 gender; 0.029 and 0.027 age), ItemKNN and BiasedMF (0.030 and 0.035
gender; 0.029 and 0.042 age), and UserKNN (0.074 gender; 0.060 age). By mitigat-
ing (Mit), DP went down to the range ([−0.002, 0.030] gender; [0.000, 0.034] age),
while KS laid in the range ([0.006, 0.052] gender; [0.006, 0.051] age). In LFM 1K,
models were less fair than in ML 1M. The untreated models (Base) achieved a DP
in the ranges ([−0.060,−0.127] gender; [0.010,−0.079] age) and a KS in the ranges
([0.001, 0.067] gender; [0.017, 0.133] age). The models ranking in terms of DP and
KS was similar between LFM 1K and ML 1M. Once mitigated (Mit), interestingly,
we observed that re-sampling by Ekstrand et al. resulted in a decrease of fairness
for ItemKNN and UserKNN in terms of DP on age groups (≥ 0.06). These findings
are replicated for ItemKNN in terms of KS on gender groups (0.03), while, for age
groups KS was substantially lowered (0.015). Other cases did not lead to substantial
changes.

In a RP task, in ML 1M, untreated models (Base) achieved a DP in [−0.038,



Chapter 4. Fairness in Recommendation 69

− 0.025] (gender) and [0.034, 0.051] (age), and a KS in [0.035, 0.056] (gender) and
[0.034, 0.092] (age). With no mitigation, there were minimal differences in terms of
DP between models for the attribute gender (avg. 0.033, std. dev. 0.003). For the
attribute age, the untreated models had similar DP (avg. 0.041, std. dev. 0.005).
Considering KS, comparable estimates across models were observed (avg. 0.053, std.
dev. 0.003 gender; avg. 0.076, std. dev. 0.007 age). ALS (0.035 gender; 0.034 age)
resulted in fairer outcomes in terms of KS. Treated models (Mit) showed stable fair-
ness (±0.010 gender; ±0.008 age) in all cases, except for Kamishima et al. (±0.019
gender; ±0.012 age) when DP was considered. In terms of KS, models treated
with Kamishima et al.’s mitigation (for gender only PMF BDist and PMF Mi) and
Ashokan et al.’s mitigation (parity setting) were substantially fairer (≥ 0.019 gen-
der; ≥ 0.039 age), while other treated models did not benefit from the mitigation
(±0.003 gender; ±0.011 age). In LFM 1K, untreated models (Base) achieved a DP
in [0.014, 0.151] (gender) and [0.019, 0.045] (age), and a KS in [0.036, 0.113] (gen-
der) and [0.017, 0.124] (age). Without mitigating, findings in ML 1M held in LFM
1K, except for the high DP (0.151) and KS (0.113) of GCN for gender. Treated
models (Mit) instead showed stable fairness (≤ 0.015 gender; ≤ 0.009 age) except
for Kamishima et al. (≥ 0.019 age), ALS (0.116 gender; 0.019 age), GCN (0.113
gender; 0.013 age), in terms of DP (opposite to ML 1M). In terms of KS, except the
mitigations of Kamishima et al. and Ashokan et al. (parity), treated models did
not benefit from mitigation (≤ 0.015 gender; ≤ 0.005 age).

Top-k Recommendation Evaluation under Technical Properties

Although other recommendation tasks, e.g., rating prediction, exist in many com-
mercial systems, the users are presented with a personalized ranking of items, but
the predicted rating values are not. With a practical focus on personalization, we
therefore evaluated our specialized technical properties only on consumer unfairness
mitigation procedures adopted on recommendation models that aim to find a few
specific items supposed to be most appealing for the user, based on their interests.

Applicability. Fairness is an objective that should be tackled regardless of the
implementation of a recommendation model. Models used in the literature often
belong to similar families, e.g., model- or memory-based, making it easier the devel-
opment of mitigation procedures applicable to different models. The models’ family
is particularly important in the context of in-processing approaches, where aspects
related to the implementation are relevant with respect to the range of models the
mitigation is applicable to. Furthermore, the possible flexibility of an in-processing
procedure could allow a broader range of models to benefit from it. This perspec-
tive can be envisioned for [21]’s work, where the authors added a regularization
term to the loss function of SLIM, a hybrid model, to balance the neighborhoods.
Such term can be also used on a simpler memory-based model, e.g., UserKNN, by
regularizing the weights of the neighborhoods. In addition, in-processing proce-
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dures like [58, 93, 155, 154] can be extended to different architectures by modifying
some aspects that pertain to several families, e.g., multi-objective optimization and
feature-independent user embeddings.

Other mitigation procedures are instead designed without considering in advance
the recommendation model they will be applied to. Pre-processing approaches,
such as data transformation or user representation balancing [47], are examples that
potentially have a very high applicability for top-k recommendation. Conversely, the
applicability of post-processing approaches [92, 141] could depend on other aspects
related to the adopted fairness notion and how this notion needs to be satisfied.
[141] proposed an approach to reduce the amplification of input data biases over
specific categories of items by a recommender system; without datasets including
category labels, this mitigation could not be applicable to a model.

Coherence. To investigate this phenomenon, we study the Tables 4.3-4.4, where
the demographic parity score and the Kolmogorov-Smirnov test score are reported
for the recommendation models originally considered in each paper, before and af-
ter applying the respective mitigation procedure. We were particularly interested
in observing whether the sign of the fairness metric score changed between the two
(reversed unfairness, so low coherence) or was the same (the same group was disad-
vantaged, so high coherence). The results show that some configurations reported a
DP opposite in sign when a mitigation procedure was used, compared to the original
recommendation model. A value of DP less than zero exhibits a bias towards the
minority group, while the majority group is advantaged when DP is higher than 0.

A notable example that showed low coherence was SLIM-U when the mitigation
of [21] was applied on gender groups of LFM 1K. When the original model was
treated with the mitigation procedure, the outcomes advantaged male users instead
of female users. This suggests that biases are not always caused by the characteristics
of the dataset, and the way the model learns from the data is also relevant. In
particular, due to the neighborhood balancing, the model learnt patterns on the
basis of a different viewpoint on the data, which resulted in a higher recommendation
utility for male users. Several experiments with [92]’s procedure were characterized
by this phenomenon as well. On ML 1M, the mitigation procedure advantaged the
minority group to a small extent when applied to NCF and PMF, while on LFM 1K
the bias slightly shifted towards male users for STAMP and towards younger users
for BiasedMF and PMF. A low coherence was also reported for FunkSVD while
considering age groups. However, the bias towards the demographic groups was not
substantial, neither for the original model (bias towards younger user) nor for the
mitigated one (bias towards older users).

Coherence was not satisfied in ML 1M and in LFM 1K by two and five models out
of ten respectively, which raises the question whether the bias in the outcomes can
be reduced by just re-arranging the training data. The recommendation model and
mitigation procedure should be thoroughly examined to understand the causes that
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led to unfairness towards one or more demographic groups. We therefore encourage
researchers to take into account this property, so as to devise mitigation procedures
with a high coherence in future works addressing consumer unfairness.

Consistency. In order to carry out a comprehensive analysis of this property,
we both consider our unified evaluation protocol as well as the original evaluation
process in the corresponding paper. It would indeed be inconclusive to analyze
the mitigation procedures consistency based solely on out protocol, given that the
authors could have devised their algorithms to counter unfairness under a specific
fairness notion and the evaluation should reflect the same viewpoint.

Unified Evaluation. Tables 4.3-4.4 report the performance of the recommender sys-
tems, before (Base) and after (Mit) unfairness was mitigated, in terms of recom-
mendation utility (NDCG@10) and fairness (Demographic Parity and Kolmogorov-
Smirnov test). We assumed that a mitigation procedure was consistent on a recom-
mendation model when there was a significant decrease of unfairness compared to
that of the original recommendation model.

Our results on ML 1M show that the mitigation procedures were able to improve
DP for all the models, except for SLIM-U on gender groups. On the other hand, KS
was decreased only by [92]3 and [47]’s mitigation procedures (except for ItemKNN,
where we observed a minimal increment). In LFM 1K, unfairness was mitigated
between gender groups in terms of DP by all the mitigation procedures, with the
exception of LBM and SLIM-U. Only [92]’s method improved DP for age groups.
KS was reduced by both [92] and [47]’s mitigation procedures, the former for both
sensitive attributes, while the latter only for age groups. Overall, [92] was the only
consistent mitigation procedure across datasets and sensitive attributes.

Original Evaluation. Even though Tables 4.3-4.4 present a complete overview of
the consistency achieved by the considered mitigation procedures, NDCG DP and
KS were often not monitored in the original papers. The two metrics we adopted
monitor unfairness from two viewpoints not necessarily corresponding to the fairness
notions addressed by the authors of the original papers. We were therefore inter-
ested in investigating the extent to which the consistency patterns observed under
the fairness metrics adopted in our study were confirmed (or reversed) in case we
monitored fairness through the metrics proposed in the original papers. To this end,
we experimented with the three mitigation procedures whose original paper differs
substantially from this perspective, with our framework.

Specifically, [92]’s paper originally monitored demographic parity with respect
to the F1 Score (F1@10) as a fairness evaluation metric. We therefore computed
this metric under our evaluation protocol and reported the results in Table 4.7.
It can be observed that no recommendation model, after mitigating through the

3[92] mitigation extracts only the top 10 items that maximize utility and fairness, setting the
other prediction scores to 0. KS is lower for this approach because most of the prediction scores
are equal to 0.
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Table 4.7: [Consistency] Recommendation utility (F1 score, the higher it is, the
more useful the recommendations) and equity (F1 Demographic Parity - DP, the
closer to zero it is, the fairer the model) assessment for the recommendation models
before (Base) and after (Mit) [92]’s mitigation. These two metrics were those used
in the original paper.

Gender Age
ML 1M LFM 1K ML 1M LFM 1K

F1 ↑ DP ↓0 F1 ↑ DP ↓0 F1 ↑ DP ↓0 F1 ↑ DP ↓0
Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

BiasedMF 0.057 0.024 *0.003 -0.003 0.043 0.018 ˆ-0.014 ˆ-0.006 0.057 0.024 *0.001 -0.002 0.043 0.017 0.002 ˆ0.009
NCF 0.056 0.026 *0.004 -0.003 0.035 0.018 ˆ-0.008 -0.002 0.056 0.026 ˆ0.003 -0.001 0.035 0.018 0.003 0.004
PMF 0.058 0.026 0.000 *-0.004 0.029 0.011 ˆ-0.007 -0.002 0.058 0.026 *0.002 -0.001 0.029 0.010 0.003 0.006
STAMP 0.008 0.008 *0.001 *0.001 0.021 0.014 -0.002 0.000 0.008 0.008 -0.001 -0.001 0.021 0.014 0.002 0.004

Configurations that resulted in a statistically significant difference in F1 score (for DP) distributions between the two groups under a
Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.

Table 4.8: [Consistency] Fairness assessment of recommendation models before
(Base) and after (Mit) [58]’s mitigation, on the metric used in the original pa-
per, i.e. ϵ-fairness (the closer to zero it is, the fairer the model).

Gender Age
ML 1M LFM 1K ML 1M LFM 1K

Model Base Mit Base Mit Base Mit Base Mit

LBM 0.022 0.012 0.009 0.009 0.094 0.092 0.010 0.010

above mitigation procedure, reported a lower unfairness estimate for all the settings.
Therefore, in contrast to the patterns observed in the unified protocol above, the
method was not consistent on any of the models used in the original work in terms
of F1 DP. Conversely, [58]’s work original assessed fairness with the ϵ-fairness score.
This score is closer to 0 if, for any two items4, the proportion of users with the same
preference is approximately the same in all the demographic groups. The results
in Table 4.8 show a decrease in unfairness only on ML 1M. No improvement was
reported on LFM 1K, making [58]’s mitigation procedure not consistent on LBM.

Finally, [21]’s work monitored consumer unfairness using the category equity
score (CES) across item categories as a proxy. For any item category, when the
items distribution for that category in the recommendation lists is equal across
demographic groups, CES is equal to 1 (the recommender system is considered
fair). ML 1M originally included the movie categories. On the other hand, LFM 1K
did not contain song categories, but just the MusicBrainz5 ID of the artist. This ID
was used to retrieve the genres from the artist profile in the platform (if available),
assigned by sorting the artist’s genres by vote and taking the most voted genres
(more than one in case they had the same number of votes). Then, for any two
genres A, B, A ̸= B, genre B was replaced by genre A if the name of genre A was a

4A maximum of 5000 unique combinations of items have been used to reduce execution time.
5https://musicbrainz.org/

https://musicbrainz.org/


Chapter 4. Fairness in Recommendation 73

Figure 4.3: [Consistency] Category equity score distribution across item categories
(CES, the closer to 1 it is, the more similar the category representation between
the interactions and the recommendations) before (Base) and after (Mit) [21]’s
mitigation under for the following combinations of datasets and demographic groups:
(a) ML 1M - Gender, (b) ML 1M - Age, (c) LFM 1K - Gender, (d) LFM 1K - Age.

sub-string of the name of genre B (e.g., death metal was replaced by metal). Each
box plot in Figure 4.3 represents the averaged CES distribution on a dataset for
a certain attribute, before and after applying [21]’s mitigation procedure. It can
be observed that the CES obtained after mitigating had a higher variance and the
average score was less close to 1 (and so the recommender system was less fair),
compared to the original model’s CES. Overall, this mitigation procedure would not
be considered consistent on SLIM-U according to our definition.

Data Robustness. To investigate data robustness, we analyzed the correlation
between the satisfaction of the users and the distribution of popularity over items.
For every row, Figure 4.4 shows three sub-plots, with each tick of the x-axis repre-
senting a group of items with similar popularity. The groups were formed by taking
1,000 consecutive items from an item list sorted by decreasing popularity. Consid-
ering only the interactions in the training set, each heatmap reports the difference
in percentage concerning a certain metric (NDCG, NDCG DP, and KS), computed
between the majority and the minority group. Each cell in sub-plots (a)-(d) rep-
resents the difference in percentage of the users who interacted with the respective
group of items, (b)-(e) show the difference in percentage of users who received the
items in the respective group as the top-10 recommendations, finally (c)-(f) collect
the difference in percentage of users satisfied by the items in the respective group
in the top-10 recommendations. We consider a user as satisfied from receiving an
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: [Data Robustness] User interaction, recommendation, and relevant rec-
ommendations drift across item groups formed based on their popularity. The re-
sults were obtained by mitigating unfairness through [47]’s procedure on the original
UserKNN recommendation model, on ML 1M for gender groups (a, b, c) and on
LFM 1K for age groups (d, e, f). Each tick of the x-axis represents a group of 1, 000
items with similar popularity, with groups formed by sorting items based on decreas-
ing popularity and taking disjoint sets of 1,000 consecutive items for each group.
The sub-plots (a, d) represent the percentage drift of the users who interacted with
that group of items, (b, e) represent the percentage drift of users who received the
items in that group within the top-10 recommendations, and (c, f) represent the
percentage drift of users who have been satisfied by receiving items of that group in
the top-10 recommendations.

item as a recommendation if that item was included in the recommended list, and
the testing set of that user included that item.

Sub-plots (a)-(b)-(c) show an analysis on gender groups by considering the pre-
dictions of UserKNN on ML 1M and the respective mitigation procedure of [47]. In
particular, this method balances the consumer group representation in the training
set, which leads to a more balanced interactions distribution for each demographic
group over items. This aspect was highlighted by the lower differences in sub-plot
(a). Sub-plot (b) reveals that also the items distribution in the recommendations
was more balanced: the cells are darker for the mitigation with respect to the orig-
inal model, which reported a bias towards male consumers. [47]’s mitigation on
UserKNN successfully reduced unfairness. Sub-plot (c) reports similar satisfaction
levels between male and female consumers, depicted as a lower intensity within the
respective cells, compared to the ones associated with the original model. These
results show that [47]’s procedure satisfies data robustness for ML 1M on gender
groups. The method generates fairer recommendations by taking into consideration
also the popularity bias as a possible causal reason of the unfairness between gender
groups.

Sub-plots (d)-(e)-(f) analyze the UserKNN predictions on LFM 1K, when [47]’s
mitigation was applied for age groups. UserKNN did not seem to be significantly
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affected by the mitigation method, when item popularity was considered. Instead,
the balancing leads to an higher percentage of interactions for the minority group
(sub-plot (d)), and so a more equal items distribution in the recommendations across
demographic groups (sub-plot (e)). However, the satisfaction level switched from
the majority to the minority group for the most popular items (sub-plot (f)). In-
terestingly, some item groups recommended by the original model satisfied more
the minority group. This suggests non-sensitive variables other than item popu-
larity could affect model’s unfairness. Hence, [47]’s mitigation did not satisfy data
robustness on LFM 1K for age groups.

Overall, mitigation procedures that can leverage data characteristics causally-
related to unfairness to reduce it would provide a more informed solution to the
problem. Such procedures would need to satisfy data robustness and support the
development of mitigation procedures according to the exploratory findings.

Reproducibility. To inspect the reproducibility of the considered mitigation pro-
cedures, we leveraged the findings derived from our paper collection process and
source code retrieval, again limited to the top-n recommendation task. The anal-
ysis reported that only 50% (4/8) of the papers could be reproduced. The other
works were marked as non-reproducible if the source code was not publicly shared
or additional requirements were not met.

During our analysis on the unfairness level of recent mitigation procedures pro-
posed in the recommendation literature, some authors of the papers we collected
published the source code of their algorithm, as previously mentioned in Footnote 1.
In light of this, without considering additional requirements, in this paragraph we
consider papers as reproducible if we found evidence of source code publicly avail-
able, even though we did not actually deal with source codes made public in a second
step. From our investigation, for the 75% (6/8) of the papers, a source code reposi-
tory was linked in the paper or the code was found on the Web. Such analysis shows
that the reproducibility level is higher than the 50% reported by our paper collection
process in Section 4.3.1, but it remarks in any case the need to sharing the source
code. In particular, no link to a public repository was reported in [141] and [155],
and no trace was found querying on the web through a search engine. Indeed, the
source code used by the authors of these two publications is not available anymore
or it has not been made public yet.

Scalability. Table 4.9 shows the estimated requirements of time and memory for
the recommendation models treated with their respective mitigation procedures.
SLIM-U was the model with the highest time requirement for ML 1M, even though
the amount of iterations was overall the lowest among the considered approaches.
This high time requirement was caused by the in-processing mitigation procedure
itself, since the original recommendation model could complete the training in less
than a third of that time In LFM 1K, the model was faster probably due to the lower
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Table 4.9: [Scalability] Number of iterations (Iterations), execution time (Time)
and computational resources (Memory) required by the considered unfairness miti-
gations on the recommendation models considered in the original papers.

Model Iterations
ML 1M LFM 1K
Time Memory Time Memory

SLIM-U [21] 10 ˜10h ˜10 GB ˜2m ˜2 GB
LBM [58] 300 ˜2h ˜500 MB ˜3h ˜400 MB
PMF [92] 100 ˜5-10m ˜20 GB ˜5-10m ˜20 GB
BiasedMF [92] 100 ˜5-10m ˜20 GB ˜5-10m ˜20 GB
NCF [92] 100 ˜5-10m ˜20 GB ˜5-10m ˜20 GB
STAMP [92] 100 ˜5-10m ˜20 GB ˜5-10m ˜20 GB
FunkSVD [47] 150 0.01s - 0.01s -
UserKNN [47] - 0.01s - 0.01s -
ItemKNN [47] - 0.01s - 0.01s -

number of users compared to ML 1M (although the number of items in LFM 1K
is higher than ML 1M). The highest memory demand among mitigation procedures
was required by [92], due to the mathematical optimization solver, which stored
a variable for any interaction in the predictions file6. [47]’s mitigation was the
most scalable according to our framework. This pre-processing approach did not
need additional computational memory to operate and the group balancing was the
fastest among mitigation procedures.

Scalability was evaluated also for the studies whose source code was not available
in a first phase or it could not be reproduced. The assessment was performed on
the basis of a theoretical analysis from a time complexity viewpoint. In particular,
we analyzed the structure of the mitigation procedures and their scalability with
regard to the increment of the number of sensitive attributes, users, items, and
interactions. Specifically, [93, 154, 155] include components that can be largely
affected by the number of the sensitive attributes in their in-processing approaches,
e.g., discriminators to generate bias-free embeddings and pairwise fairness losses.
[141]’s procedure swaps items within the recommendation lists on the basis of a
fairness notion, requiring knowledge of demographic groups and items categories.
Nevertheless, it is scalable because it is not affected by any of the considered factors
and depends on the manually specified number of swaps.

In general, applying a mitigation procedure is an additional step in a recommen-
dation pipeline aimed to reduce unfairness according to the pursued fairness notion.
Approaches that excessively affect recommendation models in terms of time and
memory would not be well suited for this purpose. On datasets with a higher num-
ber of users or interactions, the [21]’s in-processing mitigation would make SLIM-U

6The original paper took into account only the top-k items, which did not guarantee the fairest
possible outcome.
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(a) NDCG - Gender (b) DP - Gender (c) KS - Gender

(d) NDCG - Age (e) DP - Age (f) KS - Age

Figure 4.5: [Trade-off] Gain/loss in recommendation utility (NDCG), equity (NDCG
Demographic Parity - DP) and independence (Kolmogorov-Smirnov - KS ) resulted
from applying the mitigations for reducing unfairness on the recommendation models
used in the original papers, considering gender (a, b, c) and age (d, e, f) groups.
Concerning NDCG (DP and KS), positive (negative) percentages indicate a gain in
recommendation utility (fairness) after mitigating.

much slower, while [92]’s mitigation procedure would lead to unmanageable mem-
ory requirements. Since the primary task of a recommender system is suggesting
items of potential interest to users, researchers should focus on designing mitigation
procedures that account as much as possible for scalability.

Trade-off Management. To inspect trade-off management, Figure 4.5 reports,
for each sensitive attribute and target metric, the variation of the latter after apply-
ing the respective mitigation. The value in the heatmap cell represents the ratio in
percentage between the metric score achieved after mitigating and the one achieved
by the original model. For instance, for NDCG, this means that all positive val-
ues are gains over the original model, while for fairness metrics (DP, KS) a gain in
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fairness is represented by a loss in the considered metrics (the lower they are, the
fairer).

For gender groups (top row of the figure grid), it can be observed that [92]’s
mitigation was the best at reducing unfairness in terms of both DP and KS. However,
the NDCG loss was very high, with a negative peak of -64.4% for PMF on LFM 1K.
A mitigation procedure that better met the trade-off management property was the
one proposed by [47]. Indeed, on ML 1M, both DP and KS were improved for most
of the models, while the NDCG loss was negligible. On LFM 1K, only UserKNN
was positively affected by the mitigation, while a higher KS was reported by the
other two models under [47]’s mitigation.

Concerning age groups, no mitigation procedure was able to perform well on
both datasets in terms of trade-off. [92]’s mitigation reported a very high fairness
estimate, with a reduction of -99.4% of DP for BiasedMF, but again the NDCG
decrease was substantially high. [47] reported the best trade-off on ML 1M. Their
mitigation procedure led to gains on both DP and KS (except ItemKNN for KS) and
a minimal loss in NDCG, e.g., UserKNN. On the other hand, only the mitigation
method proposed by [92] was successful in reducing DP for LFM 1K, whereas the
best result reported by the other mitigation procedures was an increase of 33.4% on
UserKNN. Conversely, in terms of KS, we observed gains in fairness by most of the
models and mitigation procedures. Overall, [47]’s method was the one that reported
the best trade-off across all the datasets and sensitive attributes. It accomplished
the goal of reducing unfairness, while minimally affecting the recommendation util-
ity. Researchers are encouraged to consider this property, so as to develop mitigation
procedures that could be applied in practice in an effective way.

Transferability. To inspect transferability, we applied the mitigation procedures
proposed by [47] and [92] on the recommendation models used by the other papers.
We selected those two mitigation procedures, since they had the highest applicability
among the considered ones. Table 4.10 reports the recommendation utility and
fairness estimated for the recommendation models treated with the [47]’s procedure
for gender and age groups. The column Paper identifies only the paper that used the
respective model (under column Model) in their study, not the mitigation applied.

In ML 1M, the performance measured for the considered mitigation procedure
highly varied, decreasing DP for some models, e.g., SLIM-U, and increasing it for
others, e.g., BiasedMF and PMF, for both age and gender groups. A similar behavior
was reported for KS, but not always for the same models. The results were better
for LFM 1K, but the performance still varied, reducing DP in a substantial way on
SLIM-U and STAMP for both gender and age groups. KS was improved for most
of the models for both sensitive attributes, except when the mitigation strategy was
applied on BiasedMF, which reported a higher KS for both gender and age groups.
In summary, [47] does not hold a good transferability level.

For gender and age respectively, Table 4.11 reports the results obtained after
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Table 4.10: [Transferability - [47]] Recommendation utility (NDCG, the higher it is,
the more useful the recommendations), equity (NDCG Demographic Parity - DP,
the closer to zero it is, the fairer the model) and independence (Kolmogorov-Smirnov
- KS, the closer to zero it is, the fairer the model) assessment of the recommendation
models used in the other reproduced papers, before (Base) and after (Mit) [47]’s
mitigation for gender and age groups.

ML 1M LFM 1K
NDCG ↑ DP ↓0 KS ↓ NDCG ↑ DP ↓0 KS ↓

Paper Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

G
e
n
d
e
r

Burke et al. SLIM-U 0.084 0.079 ˆ0.022 *0.021 ˆ0.032 ˆ0.032 0.320 0.356 *-0.060 *-0.082 ˆ0.006 ˆ0.006
Frisch et al. LBM 0.044 0.020 ˆ0.006 -0.001 ˆ0.013 ˆ0.012 0.144 0.034 *-0.035 -0.008 ˆ0.120 ˆ0.061
Li et al. (A) BiasedMF 0.112 0.101 ˆ0.017 ˆ0.027 ˆ0.035 ˆ0.034 0.287 0.261 ˆ-0.095 -0.068 ˆ0.012 ˆ0.015

NCF 0.117 0.113 ˆ0.016 ˆ0.018 ˆ0.022 ˆ0.017 0.250 0.185 *-0.073 *-0.059 ˆ0.033 ˆ0.020
PMF 0.119 0.101 *0.013 ˆ0.027 ˆ0.023 ˆ0.030 0.200 0.194 *-0.062 -0.049 ˆ0.010 ˆ0.009
STAMP 0.022 0.027 *0.003 0.001 ˆ0.006 ˆ0.006 0.160 0.150 -0.021 -0.027 ˆ0.001 ˆ0.002

A
g
e

Burke et al. SLIM-U 0.084 0.081 ˆ0.022 ˆ0.017 ˆ0.009 ˆ0.013 0.320 0.345 -0.026 -0.084 ˆ0.017 ˆ0.013
Frisch et al. LBM 0.044 0.026 ˆ0.005 0.007 ˆ0.021 ˆ0.013 0.144 0.016 -0.011 -0.007 ˆ0.125 ˆ0.066
Li et al. (A) BiasedMF 0.112 0.107 ˆ0.015 ˆ0.039 ˆ0.042 ˆ0.032 0.287 0.271 *-0.079 -0.064 ˆ0.019 ˆ0.023

NCF 0.117 0.117 ˆ0.018 *0.018 ˆ0.029 ˆ0.019 0.250 0.186 *-0.067 -0.030 ˆ0.055 ˆ0.018
PMF 0.119 0.107 ˆ0.020 ˆ0.039 ˆ0.027 ˆ0.034 0.200 0.175 *-0.046 -0.026 ˆ0.008 ˆ0.011
STAMP 0.022 0.026 0.000 0.003 ˆ0.006 ˆ0.007 0.160 0.149 -0.031 *-0.051 -0.008 ˆ0.006

Configurations that resulted in a statistically significant difference in NDCG (for DP) or predicted relevance (for KS ) distributions between

the two groups under a Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.

Table 4.11: [Transferability - [92]] Recommendation utility (NDCG, the higher it is,
the more useful the recommendations), equity (NDCG Demographic Parity - DP,
the closer to zero it is, the fairer the model) and independence (Kolmogorov-Smirnov
- KS, the closer to zero it is, the fairer the model) assessment of the recommendation
models used in the other reproduced papers, before (Base) and after (Mit) [92]’s
mitigation for gender and age groups.

ML 1M LFM 1K
NDCG ↑ DP ↓0 KS ↓ NDCG ↑ DP ↓0 KS ↓

Paper Model Base Mit Base Mit Base Mit Base Mit Base Mit Base Mit

G
e
n
d
e
r

Burke et al. SLIM-U 0.084 0.046 ˆ0.022 ˆ0.008 ˆ0.032 ˆ0.007 0.320 0.172 *-0.060 ˆ-0.033 ˆ0.006 ˆ0.001
Ekstrand et al. FunkSVD 0.018 0.016 ˆ0.004 ˆ0.003 ˆ0.027 ˆ0.007 0.010 0.010 -0.006 *-0.005 ˆ0.107 ˆ0.001

ItemKNN 0.140 0.079 ˆ0.038 ˆ0.008 ˆ0.030 ˆ0.007 0.287 0.016 ˆ-0.127 -0.006 ˆ0.019 ˆ0.001
UserKNN 0.137 0.043 ˆ0.031 ˆ-0.007 ˆ0.074 ˆ0.007 0.406 0.189 ˆ-0.110 *-0.036 ˆ0.067 ˆ0.001

Frisch et al. LBM 0.044 0.037 ˆ0.006 ˆ0.005 ˆ0.013 ˆ0.006 0.144 0.118 *-0.035 *-0.032 ˆ0.120 ˆ0.001

A
g
e

Burke et al. SLIM-U 0.084 0.046 ˆ0.022 ˆ0.006 ˆ0.009 ˆ0.006 0.320 0.175 -0.026 0.024 ˆ0.017 ˆ0.006
Ekstrand et al. FunkSVD 0.018 0.016 ˆ0.008 ˆ0.007 ˆ0.029 ˆ0.006 0.010 0.010 0.002 0.002 ˆ0.054 ˆ0.006

ItemKNN 0.140 0.079 ˆ0.027 ˆ0.004 ˆ0.029 ˆ0.006 0.287 0.018 0.010 *0.012 ˆ0.133 ˆ0.006
UserKNN 0.137 0.043 ˆ0.028 ˆ-0.007 ˆ0.060 ˆ0.006 0.406 0.190 -0.023 0.032 ˆ0.036 ˆ0.006

Frisch et al. LBM 0.044 0.037 ˆ0.005 ˆ0.006 ˆ0.021 ˆ0.006 0.144 0.120 -0.011 -0.002 ˆ0.125 ˆ0.005

Configurations that resulted in a statistically significant difference in NDCG (for DP) or predicted relevance (for KS ) distributions between

the two groups under a Mann-Whitney U test are indicated with the symbol ”ˆ” (p < 0.01) and the symbol ”*” (p < 0.05) respectively.

applying [92]’s mitigation to the models included in the other papers. In ML 1M,
DP was reduced in all the settings, except for LBM on age groups. In LFM 1K,
the mitigation procedure improved DP by a considerable amount for gender groups,
e.g., ItemKNN, whereas DP for age groups increased for two models out of five.
KS cannot be analyzed for [92] as pointed out in Footnote 3. Due to the poor
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mitigation performance on age groups in LFM 1K, transferability is not satisfied
by [92]. We encourage readers to consider transferability in their future works,
enforcing the solidity of the logic of the proposed technique, as well as giving a clear
demonstration on how their mitigation procedure can be applied to other models.

4.4 Unfairness Explanation via Graph Perturba-

tion

This section describes our study aimed to generate explanations of unfairness ex-
perienced by GNN-based recommender systems. The previous section highlighted
the significant effort that has been recently put by the recommendation commu-
nity to provide the end users with equitable recommendations. However, it is also
important for service providers (e.g., an online platform) to understand why the
model behind their platform is unfair, which is still an unexplored area with just a
handful of studies. Starting from a popular technique in GNNs based on the ma-
nipulation of the graph topological structure, we devised a method that generates
a global explanation of unfairness measured in a GNN-based recommender system,
by analyzing the bipartite graph representing the user-item interactions and find-
ing a subset of them affecting the system fairness. Specifically, we propose GNNUERS
(GNN-basedUnfairness Explainer inRecommender Systems) and present its three
main components:

1. An extended and improved graph perturbation algorithm, specifically devised
for bipartite graphs, which recommendation systems based on GNNs typically
use. We specialize the manipulation of the graph topology on a subset of edges,
i.e. user-item interactions, to only account for the graph regions relevant for
recommendation tasks.

2. A perturbed graph generator that leverages the previous component and queries
the model to estimate the change in fairness resulting from the applied per-
turbation, and iteratively adjusting the set of edges to manipulate.

3. A two-term loss function specifically designed to guide the optimization pro-
cess towards selecting user-item interactions that significantly affect the fair-
ness of the system, such that these interactions could be provided as an ex-
planation of the system’s underlying unfairness.

A visual representation of GNNUERS’s operation is depicted in Figure 4.6.

4.4.1 Methodology

The next sections will not only describe the GNNUERS’s three components previously
mentioned, but we will also dive into a constraint adopted to the loss function to
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Figure 4.6: GNNUERS updates the perturbation vector such that the removed user-
item interactions from the graph lead the trained GNN to generate fairer recom-
mendations. The perturbation vector represents the counterfactual explanation of
the prior unfairness across demographic groups.

improve the targeted task in Section 4.4.1, and analyze our method in terms of
resources usage in Section 4.4.1.

Bipartite Graph Perturbation

Our graph perturbation approach is inspired by previous work for GNNs explanation
for binary classification on plain graphs [97]. However, since GNNUERS aims to perturb
a bipartite graph generated for recommender systems, it presents several differences.
In [97] a perturbation matrix P is populated to then generate the perturbed matrix
Ã = P ⊙ A7. Optimizing for P can eventually include indices for zero entries in A.
While for plain graphs this method results to be efficient, for bipartite graphs it can
be memory inefficient, mainly because it requires to store a perturbation value also
for the user-user and item-item links, not present in bipartite graph per definitionem.
To overcome these limitations, the perturbation in GNNUERS is optimized through a
vector p ∈ NB, where B is the number of existing edges in the original graph. Our
method is memory efficient, especially under sparse graphs, since it needs to store
perturbation values only for non-zero entries of A.

Given our unfairness explanation task, we aim to find a set of interactions in A
that led a GNN to generate unfair recommendations. To do so, we derive a perturbed

7⊙ denotes the Hadamard product.
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matrix Ã, resulting in fairer recommendations when a trained GNN uses Ã instead
of A during the inference phase. The non-zero entries Au,i ̸= 0 are perturbed by
p through a function h : N2 → N that maps the 2D indices (u, i) of A to a 1D
index for p. Thus, given j = h(u, i), j < B, an entry pj = 0 denotes the edge A(u, i)
is deleted in the perturbed adjacency matrix, i.e. Ãu,i = 0. In other words, the
perturbed matrix Ã is populated as follows:

Ãu,i =

{
ph(u,i) if h(u, i) < B

Au,i otherwise
(4.16)

The perturbation mechanism is therefore driven by the way h and B are defined.
Following [97, 135], we generate p through an optimization process that leverages

a real valued vector p̂. Once optimized, we apply a sigmoid transformation, and then
a binarization of the entries such that values ≥ 0.5 become 1, while values < 0.5
become 0, obtaining eventually p. The initialization of p̂ should guarantee Ã = A,
i.e., a real-valued α is selected to initialize p̂, such that pj = 1,∀j ∈ [0, B). In all the
experiments in Section 4.4.3 we set α = 0, leaving the analysis of other initialization
values as a future work.

Perturbed Graph Generation

Based on the protocol described above, GNNUERSmodifies the adjacency matrix edges
by means of the perturbation vector p. The decision process of which edges will be
deleted is performed by the counterfactual model f̃ . f̃(A,W ; p̂) → R̃ extends the
GNN-based recommender system f using p̂ as parameter and the frozen weights W
learnt by f as additional input. In detail, f̃ , similarly to f , predicts the altered
relevance matrix R̃ by combining the normalized version of the perturbed adjacency
matrix L̃ = D̃−

1
2 ÃD̃−

1
2 , where D̃u,u =

∑
i Ãu,i, with W according to the implemen-

tation of the original model f . Therefore, f̃ learns only p̂, while the weights W ,
already optimized by f to maximize the recommendation utility, remain constant.

As explained in Section 4.4.1, p is generated from p̂, whose values get updated
during the learning process. At different steps of the latter, the values of p̂ could
oscillate close to the threshold that determines if p will be 0 or 1 at the respec-
tive indices. Considering aspects such as floating-point errors or dropout layers,
the oscillation could negatively affect the update of p̂, due to previously perturbed
edges being restored, or vice versa. To counter this phenomenon, the perturbation
algorithm is constrained by the usage of a policy that prevents a deleted edge from
being restored, such that the number of perturbed edges follows a monotonic trend.

Loss Function Optimization

The previous section introduced f̃ , the counterfactual model responsible of the gen-
eration of the perturbed adjacency matrix Ã. In our context, we assume to model
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counterfactual explanations according to the users’ history. More precisely, a set
of user-item interactions, perturbed with respect to the original ones, represents a
counterfactual explanation in case a trained model produces at least one different
recommendation to the users, when these perturbed interactions are used in the
inference phase. In our graph-based approach, it means that we aim to generate a
perturbed version of the adjacency matrix A, i.e. Ã, that leads to the recommended
lists Q̃, with Q̃−Q ̸= ∅, when a GNN uses Ã (instead of A) for prediction. Follow-
ing [59], if the predictions, i.e. recommendations, generated by a model are fairer
when a set of modifications, i.e. the perturbed interactions in Ã, is applied to the
original data, i.e. A, such modifications represent the counterfactual explanation
of the unfairness estimated in the original predictions. Under our user unfairness
explanation task, we specifically aim to produce a perturbed adjacency matrix Ã
(counterfactual explanation) that leads to the highest fairness across users by means
of the lowest number of perturbations on the original adjacency matrix A.

Motivated by its increasingly recognized importance in prior work in top-k rec-
ommendation [155], we decided to model fairness according to the notion of demo-
graphic parity, even though our formulation and method is flexible to accommodate
other notions of fairness. Under this demographic parity notion of fairness, our goal
is to generate a perturbed adjacency matrix Ã that modifies the predictions of a
trained GNN, resulting in recommended lists Q̃ with closer utility estimates across
demographic groups than the original recommendations Q, constrained to the num-
ber of perturbed edges with respect to the original adjacency matrix A. Formally,
we seek to minimize the following objective function:

L(A, Ã) = Lfair(A, f(Ã,W )) + Ldist(A, Ã) (4.17)

where Lfair is the term monitoring fairness, operationalized according to the
notion of demographic parity, Ldist is the term controlling the distance between
the perturbed adjacency matrix Ã and the original one A. Therefore, L drives the
optimization of the perturbation vector p̂, such that the perturbed graph generator
updates the entries of p̂ on the basis of the instructions provided by L.

We follow recent works [155] to operationalize the demographic parity (DP)
notion, i.e. the core of Lfair, as the mean of the absolute pair-wise utility difference
across all demographic groups. Formally:

Lfair(A, R̃) =
1(|G|
2

) ∑
1≤i<j≤|G|

∥∥∥S(R̃gi , Agi)− S(R̃gj , Agj)
∥∥∥2
2

(4.18)

where S is a function that measures the recommendations utility level, G is the set
of considered demographic groups, R̃gi (R̃gj) and Agi (Agj) denote, respectively, the
altered relevance sub-matrix and the adjacency sub-matrix with respect to the users
belonging to gi (gj).

Following works that proposed methods to mitigate or explain unfairness
in recommendation [92, 9, 81, 59], we focus on a binary setting, with sensi-
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tive attributes comprised of two demographic groups. For instance, given G =
{males(M), females(F )}, Lfair aims at minimizing the utility disparity between
males and females, with the optimal result being:∥∥∥S(R̃M , AM)− S(R̃F , AF )

∥∥∥2
2
= 0

We denote the group with higher (lower) utility on the evaluation set as unpro-
tected (protected). This enables the reader to better contextualize the approach
with respect to fairness.

NDCG was selected as the utility metric S. However, due to the non-
differentiability of the sorting operation performed to compute NDCG, we adopt

an approximated version [155, 120], which we refer as N̂DCG8:

N̂DCG(r, a) = − 1

DCG(a, a)

∑
i

2ai − 1

log2(1 + zi)

s.t. zi = 1 +
∑
j ̸=i

σ

(
rj − ri

γ

) (4.19)

where r is the item relevance score produced by the recommender system, σ is a
sigmoid function, and γ is a scaling constant. We fix γ = 0.1 for the experiments in
Section 4.4.3, being the default value in the TensorFlow Ranking implementation.

N̂DCG is adopted only when constructing the fairness objective in Equation (4.18),
while the original NDCG is used in the evaluation phase. In the same way, we denote

as ∆N̂DCG the metric used to measure Lfair in our binary setting and ∆NDCG
the one used to evaluate unfairness in the experiments. Given our unfairness expla-

nation task, the ground truth labels used to measure N̂DCG during the GNNUERS

learning process are taken from the evaluation set. Such approach is justified by the
explanation task of the recommendation unfairness measured on the evaluation set
itself, while for other tasks, e.g., mitigation ones, having access to the ground truth
labels is a less realistic assumption [121].

Any differentiable distance function can be adopted as the distance loss Ldist [97].
In GNNUERS, it is based on the absolute element-wise difference between Ã and A,
defined as follows:

Ldist(A, Ã) = β
1

2
σ

(∑
i,j

∥∥∥Ãi,j − Ai,j

∥∥∥2
2

)
(4.20)

A sigmoid function is used to bound the distance loss to the same range of Lfair,
i.e. [0,1]. In particular, we used σ(x) = |x|/(1 + |x|) which needs a higher number
of perturbed edges to reach 1 compared with the popular logistic function, hence
covering a wider range of values. β is a parameter that balances the two losses, due

8We use the TensorFlow implementation, called ApproxNDCGLoss.
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to the trend of Lfair to report values ≪ 0.5, while Ldist gets rapidly close to 1.0 as
more edges are perturbed. We tested several values of β in the range [0.001, 2.0] and
the best value for each model was selected for the experiments in Section 4.4.3.

Gradient Deactivation

The optimization of (4.18) takes into account the approximate NDCG measured
on the predicted recommendations for the protected and unprotected group. The
update of the real-valued perturbation vector p̂ is then affected from the viewpoint
of both demographic groups. In particular, GNNUERS selects edges that could simul-
taneously optimize two objectives: increasing utility for the protected group and
decreasing it for the unprotected one. However, the edges that are going to be per-
turbed for one of the objectives could negatively affect the other one, and vice versa.
To this end, we perform a gradient deactivation on the recommendations generated
for the protected group, i.e. the back-propagation updates the perturbation vector
only from the unprotected group viewpoint. This procedure is applied only on the
protected group, such that the GNNUERS objective is to delete the edges generating
the gap in recommendation utility between unprotected and protected users.

Deactivating the gradient does not limit the group of edges that can be perturbed
because the optimization does not involve only the user nodes, but also the item
ones. Hence, GNNUERS could delete all the edges connected to an item node, both
coming from user nodes of the unprotected and protected group. For conciseness,
we will use the terms deactivated and activated to characterize a group associated
with inactive and active gradient respectively.

Resources Usage

In this section, the two steps of the GNNUERS pipeline are examined in terms of mem-
ory footprint and execution time complexity. The first step regards the generation
of the perturbed matrix Ã at each step of the learning process by means of (4.16),
which requires to store only the real-valued perturbation vector p̂. Leveraging a
sparse representation of A and Ã, the perturbation time complexity is dependent
only on the number of perturbed edges B, i.e., O(B). The second step, that is
the optimization process in Sections 4.4.1-4.4.1 directed towards learning p, has no
memory footprint and is executed for C iterations. Hence, given Θ the execution
time for the inference step of the extended GNN-based recommender system f̃ and
Ψ the execution time of (4.17), O(ΘΨCB) is the time complexity of the perturbed
graph generation.

4.4.2 Experimental Setup

The data manipulation, training and assessment of the GNN-based recommender
systems were built upon the framework Recbole [173]. The experiments were ran
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on a A100 GPU machine with 80GB VRAM and 90GB RAM.

Graph Topological Properties

GNNUERS identifies explanations in the form of user-item interactions that made a
GNN-based recommender system generate unfair outcomes. Each edge deleted from
the graph unlinks a user and an item node, modifying the network topological struc-
ture and affecting the properties characterizing all the nodes, e.g., degree. GNNUERS
edges selection process can then be described by the properties of the nodes of the
removed edges.

To this end, we selected three properties that reflect different networks topolog-
ical aspects and their relation to features examined in recommender systems tasks,
e.g., popularity bias. Let z ∈ Z be a generic node of G, i.e., Z ⊂ U if z is a user or
Z ⊂ V if z is an item, the nodes properties are defined as follows:

• Degree (DEG): the number of edges connected to each node. For a user
node u it represents the history length, i.e. |Iu|, for item nodes it represents
their popularity.

• Density (DY): it represents the tendency of a node to be connected to high-
degree nodes. For user nodes it represents the tendency to interact with pop-
ular items, for item nodes it describes the interest of their peers, where users’
interest is higher as their histories length is longer. Formally, given Nz the
neighbors set of a node z:

DYz =

∑|Nz |
i=1

|{z′ | (z̄i, z′) ∈ E ∧ z̄i ∈ Nz}|
|Z|

|Nz|
(4.21)

• Intra-Group Distance (IGD): it represents how a node z is close to the
other nodes z′ ∈ Z/{z}. Given the bipartite nature of recommender systems
networks, we consider two users (items) being distant n if the shortest path
that connects them include n items (users). IGD is the average of the number
of nodes of the same type normalized by their distance to the considered node.
Formally, given N the graph diameter:

IGDz =

∑N
n=1

|{z′ | Γ(z, z′) = n}|
n

|Z|
(4.22)

where Γ measures the shortest path length between two nodes of the same
type.

The selected properties can describe the context on which GNNUERS operates,
i.e. the GNN-based recommender systems, and insights on the unfairness can be
uncovered by the variance of such properties across demographic groups, due to the
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Table 4.12: Statistics of the four datasets used in our experimental protocol. Repr.
stands for Representation, Min. for Minimum. G stands for Gender, A for Age,
Gini. for the Gini coefficient applied over the values of the graph properties for each
group. The line over the graph properties denotes their average.

ML-1M [69] FENG9 LFM-1K [25] INS10

# Users 6,040 25,741 268 346
# Items 3,706 23,643 51,609 20

# Interactions 1,000,209 708,919 200,586 1,879
Min. User DEG 20 5 21 5

Domain Movie Grocery Music Insurance

Repr.
A O : 43.4%; Y : 56.6% O : 45.5% ; Y : 54.5% O : 42.2%; Y : 57.8% O : 49.4%; Y : 50.6%
G F : 28.3%; M : 71.7% NA F : 42.2%; M : 57.8% F : 23.4%; M : 76.6%

User DEG
A O : 106.1; Y : 124.9 O : 20.7; Y : 19.6 O : 657.5; Y : 428.0 O : 4.3; Y : 4.5
G F : 101.8; M : 122.7 NA F : 496.7; M : 545.3 F : 4.2; M : 4.5

Gini User DEG
A O : 0.53; Y : 0.52 O : 0.45; Y : 0.44 O : 0.43; Y : 0.43 O : 0.06; Y : 0.08
G F : 0.53; M : 0.52 NA F : 0.42; M : 0.45 F : 0.05; M : 0.08

User DY
A O : 0.07; Y : 0.07 O : 0.00; Y : 0.00 O : 0.03; Y : 0.03 O : 0.40; Y : 0.38
G F : 0.07; M : 0.07 NA F : 0.04; M : 0.04 F : 0.40; M : 0.39

Gini User DY
A O : 0.12; Y : 0.11 O : 0.45; Y : 0.42 O : 0.22; Y : 0.18 O : 0.12; Y : 0.14
G F : 0.12; M : 0.12 NA F : 0.15; M : 0.23 F : 0.14; M : 0.13

User IGD
A O : 0.95; Y : 0.96 O : 0.57; Y : 0.56 O : 0.99; Y : 0.99 O : 0.97; Y : 0.97
G F : 0.95; M : 0.96 NA F : 0.99; M : 0.99 F : 0.97; M : 0.97

Gini User IGD
A O : 0.03; Y : 0.02 O : 0.05; Y : 0.05 O : 0.01; Y : 0.01 O : 0.01; Y : 0.01
G F : 0.03; M : 0.02 NA F : 0.00; M : 0.01 F : 0.01; M : 0.01

intrinsic relationship between the given context and the unfairness. In particular, the
degree (DEG) of a user node represents the interest towards the available items and
the amount of information that the GNN can leverage in the aggregation step, the
density (DY) of a user node captures the inclination to engage with popular items,
the intra-group distance (IGD) of a user node indicates the propensity to interact
with items valued by fellow users within the same demographic group. Moreover, the
properties DEG and DY reflect the GNN ability to propagate information across the
user nodes using the message passing mechanism, given that DEG and DY regard
the nodes amount at the 1- and 2-hop distance respectively.

Data Preparation

Extensive research in user fairness in recommender systems is challenging due to the
limited datasets including users’ sensitive information. We relied on the artifacts of
our prior study presented in Section 4.3, where we performed a fairness assessment
on two corpora: MovieLens 1M (ML-1M), on the movie domain, and Last.FM 1K
(LFM-1K), on the music domain. The time information of the users’ interaction
in LFM-1K was missing, so, given that the interactions of each user are grouped
by artist and considered as a single interaction, we set the timestamp of the last
interaction with an artist to be the timestamp of the relative user-artist pair in
LFM-1K. We extended the set of datasets by including Insurance (INS), on the
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insurance domain, and Ta Feng (FENG), on the grocery domain11. All datasets
include age and gender (except FENG) information for all users and their statistics
are listed in Table 4.12, where the graph properties values regard only the training
set. The Gini coefficient for each property was measured as in [48].

User nodes in INS and FENG were filtered by their number of interactions, i.e.
their degree, so as to consider users with histories made up of at least 5 items.
Duplicated interactions, e.g., users buying the same product twice in FENG, were
removed. Based on the binary setting mentioned in Section 4.4.1, INS and FENG
age labels were binarized as Younger (Y) and Older (O), such that the Younger
group is more represented than the Older one for consistency with ML-1M and
LFM-1K, while gender labels were already binary, as Males (M) and Females (F).

We also adopted the splitting strategy used in our prior study of Section 4.3
for each dataset: per each user, 20% (the most recent if a timestamp is available,
randomly sampled otherwise) of the interactions forms the test set; the remaining
interactions are split again, such that 10% (selected in the same way) of this interac-
tions subset forms the validation set and the remaining 70% forms the train set. The
validation set was used to select the training epoch where the model reported the
best recommendation utility on the adjacency matrix A. Given the goal of finding
the edges causing unfairness in the test set, the truth ground labels of the latter
were extracted to optimize the fairness loss in (4.18).

Models

Recently, novel GNNs have been devised to solve the top-k recommendation task.
We relied on Recbole, which includes different families of GNNs-based recommender
systems. GNNUERS was adopted on the following models:

• GCMC [142]: this method is comprised of two components: a graph auto-
encoder, which produces a node embedding matrix, and a decoder model,
which predicts the relevance of the missing entries in the adjacency matrix
from the node embedding matrix.

• NGCF [149]: this state-of-the-art GNN-based recommender system propa-
gates embeddings in the user-item graph structure. In particular, it leverages
high-order connectivities in the user-item integration graph, injecting the col-
laborative signal into the embedding process in an explicit manner.

• LigthGCN [71]: it is a simplification of a GCN, including only the most essen-
tial components for collaborative filtering, i.e., the neighborhood aggregation.
It uses a single embedding as the weighted sum of the user and item embed-
dings propagated at all layers in the user-item interaction graph.

11Yelp [100] was also considered to include the business domain, but the users’ gender information
was predicted by their name, making questionable analyses on this dataset.
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These three GNNs are trained with the default hyper-parameters defined by Recbole,
specific for each model.

Explanation Baseline Methods

As mentioned in Section 4.4.1, GNNUERS in its base form applies a policy that prevents
the algorithm from restoring previously deleted edges. Additionally, we examined an
extension of GNNUERS by applying another policy, Connected Nodes (CN): it limits
the perturbation to the edges connected to the unprotected user nodes to investigate
whether recommendations unfairness is only due to the interactions performed by
the unprotected group. Therefore, CN guides the learning process to select the
users’ actions of the unprotected group that made f favor them.

The literature does not include baselines that explain unfairness in the form of
user-item edges as GNNUERS. The works proposing unfairness explainability meth-
ods in recommendation [39, 59] select relevant user/item features as explanations,
which cannot be compared with the ones generated by our framework. Approaches
proposed to explain unfairness in GNNs [44] were devised for classification tasks:
although it is not clear if this method could be extended to recommendation tasks,
such an engineering adaptation goes beyond the goal of our work. Other alternative
counterfactual explainability algorithms in GNNs [97, 82] generate explanations at
the instance level, which cannot be adapted to envision the unfairness task at the
model level.

To this end, we adopted CASPER [117] for comparison, a model-agnostic method
that causes the highest instability in the recommendations by perturbing a single
interaction, i.e. an edge of the graph. The instability induced by CASPER could
alter the recommendations, and, as a result, re-distributing the utility levels over
the demographic groups and positively affecting unfairness. At inference step, our
models generate the recommendation lists by using the training network perturbed
by CASPER, then fairness and utility metrics are measured. CASPER uses the
timestamp of each interaction to generate a directed acyclic graph of the interactions
of each user. INS does not include the time information, so CASPER was not applied
on this dataset.

We also introduce RND-P as sanity check, a baseline algorithm that at each
iteration randomly perturbs edges with a probability ρ, such that it mimics the
GNNUERS edges selection process, but based on a random choice. Given the size
diversity of our evaluation datasets, we set ρ = 1/(|Etrain|/100), where Etrain is the
set of training edges, as the value that works best across the selected epochs, such
that RND-P perturbs edges depending on the network size to prevent this method
from deleting all the edges in a few iterations.

The explanations methods were executed on all the models and datasets over
800 epochs adopting an early stopping method when Lfair does not improve with a
delta higher than 0.001 for at least 15 consecutive epochs.
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ML-1M FENG

LFM-1K INS

Figure 4.7: Distribution of ∆NDCG between younger and older users subgroups,
randomly sampled 100 times. A Wilcoxon signed-rank test is performed between
each pair of boxes and the respective p-value is shown if it is lower than 0.05

m
accord-

ing to the Bonferroni correction, where m is the number of pairwise comparisons
performed for each model.

4.4.3 Results

Unfairness Explainability Benchmark

We first investigated the capability of GNNUERS to select counterfactual explanations
that effectively optimize (4.18). GNNUERS learning process selects users coming from
both demographic groups, stores them in fixed size batches according to their dis-
tribution in the dataset and, optimizes the loss to minimize disparity in NDCG@10
(average) between the protected and unprotected group. The evaluation follows an
analogous process: we randomly sample 100 subgroups with the same demographic
groups distribution, with sample size equal to the batch size. This choice is also due
to reduce the sampling bias present in the datasets, i.e. the evaluation is not affected
by the different sample size of unprotected and protected groups. The batch size
for each dataset is selected such that it splits the users in at least five partitions,
guaranteeing a low probability of picking the same users in the randomly sampled
subgroups. We measure the differences in each subgroup with ∆NDCG, i.e. the
differences in performance between the two user groups, related to the unfairness
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ML-1M LFM-1K

INS

Figure 4.8: Distribution of ∆NDCG between males and females users subgroups,
randomly sampled 100 times. A Wilcoxon signed-rank test is performed between
each pair of boxes and the respective p-value is shown if it is lower than 0.05

m
accord-

ing to the Bonferroni correction, where m is the number of pairwise comparisons
performed for each model.

level measured by (4.18) (without the modulus operator). We compare our proposed
solution with CASPER, RND-P and the original values of ∆NDCG.

Age. The Figure 4.7 shows the ∆NDCG distribution across the subgroups by the
demographic groups of ”age”. For each boxplot, on top of it, we include the Wilcoxon
signed-rank test p-value significance of the difference between the means of each
distributions pair (it is included IFF the p-values are lower than 0.05

m
according to

the Bonferroni correction, wherem is the number of pairwise comparisons performed
for each model). On the bottom of the plots, we include the NDCG@10 after the
perturbation and the percentage of deleted edges. First, we can see how in ML-1M
and FENG, our methods significantly narrow the ∆NDCG distribution of the age
subgroups compared with NP by perturbing just 1% of the edges in some settings.
The single edge deleted by CASPER minimally affects the recommendations of all the
experiments, with more prominent effects on GCMC under several datasets, e.g.,
ML-1M, FENG. On the other hand, the perturbation applied by RND-P, in some
cases, can generate a decrease in unfairness, but the early stopping prevents it from
removing too many edges, which highlights its inefficiency in reducing ∆NDCG.
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Among our methods, GNNUERS+CN reports the least perturbations and generates
competitive decreases in ∆NDCG.

On INS, no explanation method is consistent in reducing ∆NDCG. This means
that the differences in performance between the demographics groups derived from
”age” are not affected by the perturbation of individual interactions, but other
aspects, e.g., specific nodes, caused the original disparity. Generally, we can see
how both GNNUERS and GNNUERS+CN, are able to significantly reduce ∆NDCG in
most of the settings, selecting small subsets of deleted edges. Interestingly, in some
cases, the NDCG@10 drops significantly (LFM-1K and FENG), while in others
remain consistent (ML-1M). This means that our algorithms are able to generate
explanations of the unfairness by detecting edges that contribute significantly to
increase unfairness and to improve performances for only one subgroup.
Gender. GNNUERS generates a significant decrease in ∆NDCG also for the subgroups
generated by the attribute ”gender”, as shown in Figure 4.8. In ML-1M and LFM-
1K, GNNUERS significantly explains unfairness for all the models, reducing ∆NDCG
by a relatively lower amount compared to the same experiments on age groups, in
particular on LFM-1K. Perturbing a single edge (CASPER) or more in a random way
(RND-P) does not decrease ∆NDCG in these cases (except for GCMC on LFM-1K),
while our method has proven to be effective regardless of the sensitive attribute
that defines the demographic groups. On INS, differently from what seen before,
GNNUERS can reduce unfairness between gender groups, by deleting a relevant higher
number of edges compared to other experiments. This result emphasizes how crucial
is to select the right demographic attribute affecting the results.

Impact on Recommendation Utility

GNNUERS is devised to minimize the gap in recommendation utility between the
demographic groups, without or minimally affecting the utility for the protected
group. We empirically evaluate this aspect, by examining the edges deletion impact
on the utility for each group. The NDCG@10 was measured individually for both
demographic groups to then averaging it by groups. The impact on recommendation
utility was measured as the change in utility after applying the perturbation. To
estimate this change significance, a Wilcoxon signed-rank was performed between
the 100 NDCG@10 averages measured on the recommendations altered from each
explanation method and the ones generated from the non-perturbed network. For
this analysis we consider GNNUERS and its extended version GNNUERS+CN.

The Table 4.13 shows: the average utility (highlighted for the unprotected group)
after perturbing the edges and its relative change from the original one between
brackets; for each value, the symbol (*) denotes the significance of the statistical
test with the 95% of confidence interval. We can see how, for any dataset and
model, the NDCG change for the unprotected group is greater than the protected
group one. This confirms that our algorithms can select the edges responsible for an
higher utility for the unprotected group. However, also the NDCG for the protected
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Table 4.13: For both protected and unprotected groups each column include the
value of NDCG after applying GNNUERS and in the brackets its relative change from
the original NDCG. Unproctected group values are highlighted and in italic.

Age Gender
Model Policy Younger Older Males Females

M
L
-1
M

GCMC
GNNUERS 0.11* (-21.6%) 0.11* (-11.6%) 0.10* (-24.2%) 0.10* (-14.6%)
GNNUERS+CN 0.12* (-14.0%) 0.11* (-06.7%) 0.11* (-16.3%) 0.10* (-10.2%)

LightGCN
GNNUERS 0.11* (-21.6%) 0.10* (-15.4%) 0.10* (-22.8%) 0.09* (-17.6%)
GNNUERS+CN 0.11* (-16.7%) 0.10* (-10.6%) 0.11* (-19.4%) 0.09* (-14.1%)

NGCF
GNNUERS 0.12* (-11.6%) 0.11* (-02.7%) 0.13* (-07.8%) 0.11* (-01.8%)
GNNUERS+CN 0.13* (-09.2%) 0.12 (-00.4%) 0.13* (-07.1%) 0.11 (-01.0%)

F
E
N
G

GCMC
GNNUERS 0.01* (-67.0%) 0.01* (-78.9%) - -
GNNUERS+CN 0.02* (-62.4%) 0.01* (-77.6%) - -

LightGCN
GNNUERS 0.02* (-51.3%) 0.02* (-61.2%) - -
GNNUERS+CN 0.03* (-36.7%) 0.03* (-51.2%) - -

NGCF
GNNUERS 0.04* (-10.4%) 0.04* (-28.1%) - -
GNNUERS+CN 0.04* (-01.9%) 0.05* (-13.2%) - -

L
F
M
-1
K

GCMC
GNNUERS 0.27* (-22.8%) 0.26* (-40.4%) 0.33* (-12.0%) 0.31* (-26.4%)
GNNUERS+CN 0.32* (-08.0%) 0.36* (-16.4%) 0.35* (-05.9%) 0.35* (-17.4%)

LightGCN
GNNUERS 0.34* (-05.9%) 0.37* (-15.5%) 0.34* (-07.9%) 0.37* (-16.7%)
GNNUERS+CN 0.33* (-09.5%) 0.37* (-15.8%) 0.35* (-07.4%) 0.38* (-13.9%)

NGCF
GNNUERS 0.35* (-01.5%) 0.39* (-09.6%) 0.36 (-00.9%) 0.38* (-12.4%)
GNNUERS+CN 0.35 ( 00.2%) 0.40* (-05.9%) 0.37* ( 02.5%) 0.42* (-04.1%)

IN
S

GCMC
GNNUERS 0.37* (-52.7%) 0.33* (-56.8%) 0.62* (-20.0%) 0.60* (-13.3%)
GNNUERS+CN 0.69* (-10.6%) 0.70* (-08.0%) 0.68* (-12.4%) 0.67* (-02.7%)

LightGCN
GNNUERS 0.71* (-09.9%) 0.71* (-08.4%) 0.69* (-12.8%) 0.69* (-05.2%)
GNNUERS+CN 0.79 ( 00.1%) 0.78 ( 00.3%) 0.74* (-06.7%) 0.73* ( 01.5%)

NGCF
GNNUERS 0.78 (-00.3%) 0.77* (-02.4%) 0.72* (-09.6%) 0.73* (-01.2%)
GNNUERS+CN 0.77* (-01.1%) 0.76* (-03.8%) 0.73* (-08.7%) 0.74 ( 00.7%)

group is affected in most of the experiments. This is because the results are model
dependent, and removing edges reduces the connectivity, and then the informa-
tion propagation through the GNN. Also, higher NDCG losses for the unprotected
groups reflect a better unfairness explanation, as seen for all the models in FENG12.
Based on this observation, since GNNUERS perturbations for NGCF result in the least
faithful unfairness explanation w.r.t. the other models in the previous RQ, for the
same model it reports the lowest loss in utility for both demographic groups. As a
matter of fact, not only for NGCF the NDCG for the protected group is minimally
affected, but it also increases in some settings, e.g., for males users in LFM-1K.
The GNNUERS+CN policy exhibits this behavior slightly more than GNNUERS, except
for FENG, where the NDCG is equal between deomgraphic groups, but GNNUERS

reports an additional 10% loss in utility. Using GNNUERS+CN edges selection is then

12GNNUERS learning process could be stopped once a desired level of fairness or utility is
reached for the explanation, depending on the application requirements.
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Figure 4.9: Deleted edges distribution (Del Edges Distribution) over the quartiles
(Q1-Q2-Q3-Q4) defined for each age group through sorting the nodes by each graph
property. The edges were deleted applying GNNUERS on NGCF.

Figure 4.10: Deleted edges distribution (Del Edges Distribution) over the quartiles
(Q1-Q2-Q3-Q4) defined for each gender group through sorting the nodes by each
graph property. The edges were deleted applying GNNUERS on NGCF.

beneficial to reduce the impact on the NDCG for the protected group.

Edges Selection Process

Despite the edges selected by GNNUERS represent themselves the counterfactual ex-
planations of the utility disparity across demographic groups, the edges taken as
they are do not provide sufficient information to fully understand the graph features
that contribute to the unfairness. To this purpose, we leverage the user nodes con-
nected to such edges and categorize them by the properties defined in Section 4.4.2.
Specifically, user nodes were distinguished by demographic groups (Males, Females,
Younger, Older) and the nodes in each group were partitioned in quartiles: the
order of the data points was defined by the value of each graph property that char-
acterizes the users in each quartile, e.g., low-DEG nodes (Q1). Thus, the graph
properties were individually measured for each demographic group by defining the
subgroups Males, Females, Younger, Older as the set Z one at a time, e.g., if Z is
the subgroup of Males, IGDz represents how the male z ∈ Z is close to the other
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males z′ ∈ Z/{z}.
For each demographic group and each quartile, the number of perturbed edges

was taken and normalized by the total number of edges perturbed in each experi-
ment. Therefore, the perturbed edges can be categorized as well based on the extent
such edges are distributed over the quartiles for each graph property. A higher distri-
bution over nodes with low or high DEG, DY, IGD levels highlights the aspects that
drove our explanation method to perturb the given edges, and, therefore, highlights
the aspects that led to the unfairness in the original recommendations.

GNNUERS+CN was not included in the following experiments because the edges
deletion constraint could only reflect the distribution over quartiles defined for the
unprotected group. RQ1 reported FENG, ML-1M, LFM-1K as the datasets on which
our method consistently explain unfairness by reducing the disparity in NDCG be-
tween the demographic groups derived by both ”gender” and ”age”. RQ2 highlighted
NGCF as the model where GNNUERS can explain unfairness while affecting the
recommendation utility of the protected group the least. GNNUERS selection process
will be analyzed only on the experiments with these settings, as they would better
reflect the properties characterizing biased recommendations.
Age. For each graph property, the Figure 4.9 reports the distribution of the edges
deleted by GNNUERS over the quartiles, which are defined for each demographic group
derived from ”age”. Except for LFM-1K, the distribution of deleted edges is signif-
icantly higher for the unprotected groups (ML-1M: Younger, FENG: Older), which
highlights that the unfair recommendations are highly dependent on the unprotected
users’ interactions. On ML-1M, the over-representation and over-DEG of the unpro-
tected group is enough to deviate the recommendations in their favor. No relevant
pattern is reported across quartiles, but, on the basis of the unbalanced groups’
representation, the nodes themselves could be related to the unfairness: GNNUERS

explains it by consistently pruning more their edges compared to the protected
group ones. For both FENG and LFM-1K, GNNUERS deletes more edges connected
to high-DEG and high-IGD unprotected users (LFM-1K: Younger, FENG: Older),
i.e. at the last quartile (Q4), which represents those unprotected users with the
most interactions and the closest ones to other unprotected user nodes. According
to Table 4.12, Older users in FENG are less represented, but their higher average
DEG and IGD reflects the observations derived from Figure 4.9. On LFM-1K, the
edges of the unprotected user nodes selected by GNNUERS are also characterized by a
high DY (Q4), that is regarding users connected with more popular artists (items)
on average compared to the protected users. Indeed, this category (high DEG,
DY, IGD on Table 4.12) of Younger users could have increased the popularity of
such connected artists, causing them to be more recommended to Younger in lower
quartiles and increasing their recommendations utility.
Gender. Figure 4.10 reports the distribution of the deleted edges over the graph
properties quartiles, defined for each gender group. FENG does not include gen-
der labels, so it could not be included in this figure. On ML-1M, the significant
difference of deleted edges between Males and Females denotes the extent the un-
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fairness is caused by an over-representation of the unprotected group (Males), in
terms of nodes and edges, i.e. over-DEG, according to Table 4.12. Additionally,
unfairness seems related to the Males nodes characterized by a low DEG and IGD
(Q1). Hence, GNNUERS uncovers unfairness as the connections regarding isolated
(low IGD) Males who prefer not to watch many movies (low DEG). The deleted
edges distribution over the latter is slightly higher towards the lowest (DY Q1) and
highest (DY Q4) popularity levels, restricting the GNNUERS edges selection to iso-
lated Males connected with just a few of mostly niche or mainstream movies. On
LFM-1K, GNNUERS perturbes the interactions applying a dual effect. Except for DY,
lower values (Q1) of the graph properties report a higher amount of deleted edges
connected to the unprotected (Females) nodes, while the nodes with higher values
(Q4) that lost more edges are the protected (Males) ones. Unfairness explanation is
then accomplished by the simultaneous perturbation of low-DEG, low-IGD Females
and high-DEG, high-IGD Males. Removing the interactions of isolated (low IGD)
Females listening to a few artists (low DEG) could drastically impact the fairness
levels, causing GNNUERS to inevitably perturb edges connected to nodes with the
opposite properties, i.e. high-IGD, high-DEG Males. The fact that Males report a
higher Gini on DY compared to Females suggests the former tend more to interact
with artists of diverse popularity, which emphasizes how the modification of the
artists’ popularity impacts the recommendations.

4.5 Unfairness Mitigation via Graph Augmenta-

tion

This section describes our work aimed to mitigate recommendation unfairness across
demographic groups in GNN-based systems by augmenting the graph data. The
previous section introduced GNNUERS, that perturbs the bipartite graph represent-
ing the user-item interactions network to detect a set of edges as an explanation
of the unfairness in recommendation utility across demographic groups. Here we
re-formulate the method such that it does not perturb existing edges in the graph,
but it generates a new augmented graph by adding user-item interactions not pre-
viously included in the dataset. These new edges added to the graph are selected
with the goal of mitigating unfairness when the augmented graph is fed in input
to the GNN-based system during inference. Even though not specifically defined
in the original work, we denote this method as BiGA, which stands for Bipartite
Graph Augmenter. We present BiGA through the main modification with respect
to GNNUERS and an additional set of policies aimed to focus on a specific subset of
interactions on the basis of relevant aspects regarding recommendation, GNNs and
behaviors characterizing each demographic group. Specifically:

1. We describe the re-formulated perturbation mechanism that finds new user-
item interactions to add to the dataset in the form of graph edges. Driven
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by the goal of reducing the disparity in recommendation utility across de-
mographic groups, the perturbation mechanism, along with the optimization
function, leverages the users preference information from a subset of data not
used for evaluation to guarantee the edges are added under a realistic setting.

2. We devised a set of sampling policies to guide the edges selection process to-
wards a smaller set of user-item interactions to add. Grounded to demographic
groups behavioral aspects, popular issues studies in recommendation and the
aggregation mechanism used in GNNs, the policies enable our method to fol-
low a clearer path in the augmentation phase, obstructed by the vast set of
missing interactions in common sparse datasets.

4.5.1 Methodology

Perturbation Mechanism for Graph Augmentation

Similarly to what defined in Section 4.4.1, we leverage a perturbation vector p of
size B to perturb the original adjacency matrix A. Entries in A are replaced by
the entries in p through a function h : N|U | × N|I| → N<B (given p as a 0-indexed
vector), that maps the 2D indices (u, i) of A into a 1D index for p, such that an
edge Ãu,i is added if ph(u,i) = 1. Formally:

Ãu,i =

{
ph(u,i) if h(u, i) ∈ N<B

Au,i otherwise
(4.23)

p is derived from a real valued vector p̂, as done in [97, 135], by applying a sigmoid
transformation before rounding values ≥ 0.5 to 1 and values < 0.5 to 0. We initialize
p̂i = −5,∀i ∈ [0, B), such that p̂i ≈ 0 after the sigmoid transformation and it is
guaranteed Ã = A.

Ground Truth Information for Unfairness Mitigation

The augmented graph generation follows the goal of the loss function introduced for
GNNUERS in Section 4.4.1, i.e. reducing the disparity in NDCG across demographic

groups (∆NDCG) and leveraging the approximated version N̂DCG to optimize the

perturbation mechanism towards mitigating the unfairness (∆N̂DCG). Addition-
ally, we denote the set (train or validation) from which the ground truth labels are

taken to measure N̂DCG during the perturbed graph generation as the perturbation
set. Focused again on a binary settings as prior studies [9, 81, 92] and ours, we define
the subsets UD = {u ∈ U |u ∈ GD} and UA = {u ∈ U |u ∈ GA}, where GD,GA are the
disadvantaged and advantaged groups respectively. The group with lower (higher)
utility on the perturbation set is denoted as disadvantaged (advantaged). The graph
augmentation aims at increasing the utility of such group, and not reducing the
advantaged group one. Thus, edges are only added to user nodes in UD.
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Sampling Policies

Even if the edges selection is guided by a fairness-aware loss function, the set of
edges to perturb could be vast. The user and item nodes of this set are described
by several properties, which could support or obstruct our method. For instance, in
a setting affected by popularity bias, adding edges to connect disadvantaged users
to popular items could positively affect their recommendation utility, but it could
also increase it for the advantaged group, hence, not mitigating the bias towards
the latter. Thus, we applied several sampling policies to narrow the set of edges
(connected to user nodes in UD) to be perturbed:

• B (Base): the base algorithm with no sampling applied.

• ZN (Zero NDCG): selects the users with no relevant items in their top-k
recommendation lists, i.e. NDCG@k = 0.

• LD (Low Degree): selects the ΨU% of user nodes with the lowest degree,
i.e. fewest interactions in the training set.

• S (Sparse): denoting a user u’s density as the average popularity of the items
u interacted with in the training set, it selects the ΨU% of users with the lowest
density (highest sparsity), i.e. mostly interacting with niche items.

• F (Furthest): selects the ΨU% of furthest user nodes from UA, where the
distance from uD ∈ UD is computed as the shortest paths lengths average
between uD and all uA ∈ UA.

• IP (Item Preference): following [13], we estimate the extent an item is
preferred by UD, thus, I is reduced by selecting the ΨI% most preferred items
by the same group.

where ΨU%, ΨI% denote parameters to sample the user set U or the item set I
respectively. We fix ΨU% = 35%, ΨI% = 20%.

These policies were selected factoring in the way each demographic group in-
teracts with the items (IP, S), common phenomena described in recommendation
literature (ZN, LD), the aggregation operation in GNNs models (LD, F). We can
distinguish between policies of type U (ZN, LD, S, F) or I (IP) if the sampling
is applied on the user or item set respectively. We also contemplated inter-group
combinations between policies U and I, but intra-group ones are excluded not to
lead to excessive reduction of the user or item set.

4.5.2 Experimental Setup

Our experiments are based on the artifacts used to evaluate GNNUERS, but we reduce
the set of datasets for fairness assessment to two corpora: MovieLens 1M (ML-1M)
[69], and Last.FM 1K (LFM-1K) [25]. The advantaged groups, their representation
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Table 4.14: Mitigation performance of our method’s policies: the relative difference
in ∆NDCG between the scores measured on the perturbation set before and after
applying each policy is reported. Unfairness mitigation is represented by negative
values (highlighted).

Policy
Policy

GCMC LightGCN NGCF
Type Gender Age Gender Age Gender Age

M
L
-1
M

B 14.5% 15.3% -100.0% -74.1% 6.9% 10.0%

U

ZN 0.0% -98.3% -99.3% -33.3% 0.8% 5.5%
LD 14.5% 15.3% -100.0% -74.1% 6.9% 10.0%
S 1.7% 13.6% -92.4% -80.2% 11.5% 10.0%
F 5.1% 15.3% -95.2% -81.5% 5.4% 9.1%

I IP 9.4% 544.1% -93.1% -92.6% 18.5% 9.1%

U+I

ZN+IP -53.8% -11.9% -88.3% -81.5% -100.0% 8.2%
LD+IP 9.4% -18.6% -93.1% -92.6% 18.5% 9.1%
S+IP 7.7% 10.2% -97.2% -80.2% 7.7% 15.5%
F+IP 9.4% -50.8% -97.9% -66.7% 4.6% 12.7%

L
F
M
-1
K

B -93.7% -89.9% 164.3% 271.0% -0.7% -32.6%

U

ZN -99.7% -92.4% -40.9% -97.2% -0.7% -49.9%
LD -59.2% -84.4% 164.3% 271.0% -0.7% -32.6%
S 5.8% -93.3% -69.3% -80.9% 0.2% -32.6%
F -95.5% -97.3% -58.6% -79.4% -0.7% -32.6%

I IP -88.4% -94.3% -6.4% -0.4% -2.4% -34.6%

U+I

ZN+IP -0.3% -96.4% -3.5% 0.2% 0.7% -32.6%
LD+IP -88.4% -94.3% -6.4% -0.4% -2.4% -32.4%
S+IP -8.9% -0.2% -3.8% 0.9% 0.7% -34.6%
F+IP 1.1% -0.4% -3.8% 1.3% 0.7% -34.8%

w.r.t. to the related sensitive attribute and other relevant information are depicted
in Table 4.12. We also adopt the same splitting strategy, that is for each dataset we
arranged the interactions list of each user in ascending order of recency, and split
the sorted lists with a ratio 7:1:2 to include each subset in the train, validation, test
set respectively. The validation set was used (i) to select the training epoch where
the non-perturbed model reached the highest NDCG, (ii) as the perturbation set for
our method. During the evaluation step, the edges selected by our method were
added to the training set, and, if present, removed from the other two sets.

As done for GNNUERS, we relied on Recbole [173] and adopted the same GNNs-
based models (GCMC, LigthGCN, NGCF) to solve the top-k recommendation task.
We optimized the hyper-parameters under a grid search strategy.

4.5.3 Results

Edges Augmentation Analysis

If the addition of the edges selected by our method successfully mitigates the model
unfairness, the characteristics of such edges, i.e. the nodes composing such edges,
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could describe a possible cause of the original recommendations unfairness (before
the graph was perturbed). Under a given policy, the features of the sampled nodes
characterize the edges selected by our method (Section 4.5.1). To this end, Table
4.14 depicts the unfairness mitigation performance of all the policies in each setting.
Such performance is the relative difference in |∆NDCG| between the scores measured
on the perturbation set before and after a policy was applied, where ∆NDCG =
NDCGUD

− NDCGUA
is the difference between the utility mean of UA and UD.

Some settings are positively affected by our procedure, regardless of the given
policy, though other ones can successfully be perturbed only by one or a few policies.
In fact, this aspect is highlighted by ZN+IP, the only policy mitigating unfairness
across gender groups on ML-1M for GCMC and NGCF, with a noteworthy change
of −100% for the latter. While the individual policies ZN (the disadvantaged users
provided with no relevant items out of the 10 recommended, i.e. NDCG@10 = 0)
and IP (items mostly preferred by the disadvantaged users) could not report a similar
result, the interactions added to the females, i.e. UD, by these policies combination
were able to reduce the gap in NDCG between gender groups.

Some policies systematically excel more than other ones under the same settings,
such as ZN across age groups on ML-1M (GCMC), and on LFM-1K (LightGCN,
NGCF). It is not obvious that adding interactions to the users selected by ZN could
mitigate the unfairness. In particular, with an in-depth inspection, we observed
that the policies successfully reducing ∆NDCG have a minimal or negligible effect
on the recommendation utility of UA, highlighting that the added edges are selected
to only improve the utility of UD.

While some policies can consistently reduce ∆NDCG under the same settings
(ZN+IP on ML-1M for gender ; ZN, S, F on LFM-1K for age), thus, suggesting the
unfairness originates at the dataset level, other experiments underline that the bias
is also included at the model level and a given policy does not work for different
models (ZN, F+IP on ML-1M for age ; LD on LFM-1K for age).

Mitigation Procedures Comparison

In this section, we evaluate the trade-off between the recommendation utility and
the unfairness mitigation performance of our method in comparison with SOTA
algorithms. Selecting mitigation procedures for the recommendation unfairness on
the end-user side is a non-trivial task, over-complicated by the multitude of fairness
notions and evaluation protocols. Thus, based on the similarity to our evaluation
protocol, we relied on the framework of our prior reproducibility study13 presented
in Section 4.3 and compared the mitigation procedures used for top-k recommenda-
tion with our method. Given our focus on the mitigation task, we only considered
models reporting high utility levels14, which could effectively solve the recommen-

13Experiments on LFM-1K were re-run to match our splitting strategy.
14We discarded LBM, STAMP, FunkSVD since they reported a NDCG lower than half of the

best models one (ItemKNN for ML-1M, UserKNN for LFM-1K) for both datasets.
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Figure 4.11: On the x-axis (y-axis) the relative difference, denoted as Rel. Diff.,
in recommendation utility NDCG (utility disparity ∆NDCG) between the scores
measured before and after each method was applied on gender and age groups.
Multiple points per method indicate the use of multiple models for each method.
Positive (negative) values on the x-axis (y-axis) denote an increment (decrement) in
NDCG (∆NDCG).

dation task and reflect existing biases as in real-world scenarios. The GNN-based
recommendation systems used with our algorithm satisfy this property. The follow-
ing results regarding our method pertain to the policies that reported the lowest
|∆NDCG| on the perturbation set (Table 4.14).

Figure 4.11 highlights the extent to which each method affected the recommen-
dation utility (x-axis) and the disparity in the latter between user groups (y-axis).
Our approach reports the best mitigation performance on all the settings, given by
the points labeled as Ours being systematically the lowest ones on the y-axis. More-
over, all the algorithms affect (often negatively) the recommendation utility at least
for one setting, except ours, whose points never move along the x-axis. In Table 4.15
we report the resulting levels of utility (NDCG) and fairness (∆NDCG) after each
algorithm was applied. Determining which setting is the best one depends on the
requirements of a specific application and to what extent the fairness is relevant. In
terms of recommendation utility, the GNN-based models are slightly less effective
than the best ones, but the mitigation produced by our method results in utility
disparity levels significantly lower than the systems reporting the highest NDCG,
e.g., LFM-1K on gender groups.

4.6 Findings and Discussion

We gather the findings of our studies in recommendation unfairness regarding the
systematic reproducibility study in Section 4.3, the unfairness explainer (GNNUERS)
in GNN-based recommender systems in Section 4.4, the mitigation procedure driven
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Table 4.15: Recommendation utility (NDCG) and utility disparity (∆NDCG) after
applying each method on user groups. For each setting, the best and second best
scores are in bold and italic respectively.

NDCG ↑ ∆NDCG ↓
Mitigation Model Gender Age Gender Age

M
L
-1
M

Burke et al. [21] SLIM-U 0.084 0.048 ˆ0.028 ˆ0.014
Li et al. [92] BiasedMF 0.112 0.112 ˆ0.013 ˆ0.017

NCF 0.120 0.120 ˆ0.015 ˆ0.019
PMF 0.123 0.123 ˆ0.015 ˆ0.021

Ekstrand et al. [47] ItemKNN 0.134 0.138 ˆ0.030 ˆ0.024
TopPopular 0.104 0.107 ˆ0.030 ˆ0.034
UserKNN 0.131 0.137 ˆ0.024 ˆ0.023

Ours GCMC 0.126 0.126 ˆ0.022 ˆ0.017
LightGCN 0.127 0.127 -0.014 ˆ0.012
NGCF 0.129 0.129 ˆ0.017 ˆ0.023

L
F
M
-1
K

Burke et al. [21] SLIM-U 0.301 0.207 ˆ0.072 ˆ-0.145
Li et al. [92] BiasedMF 0.245 0.247 *-0.049 *-0.060

NCF 0.202 0.203 -0.023 -0.048
PMF 0.164 0.164 *-0.049 ˆ-0.044

Ekstrand et al. [47] ItemKNN 0.286 0.269 *-0.116 0.020
TopPopular 0.321 0.315 *-0.102 -0.050
UserKNN 0.411 0.397 ˆ-0.106 -0.031

Ours GCMC 0.384 0.384 -0.024 -0.039
LightGCN 0.397 0.397 -0.030 -0.030
NGCF 0.387 0.387 *-0.077 -0.062

by a bipartite graph augmenter in Section 4.5:

• In general, the reproduced mitigation procedures did not substantially impact
on recommendation utility, regardless of the sensitive attribute, dataset, task.
The impact is larger in LFM 1K than ML 1M.

• Unfairness depends on the mitigation, model, and fairness notion. Often the
mitigation impact is small. Lowering DP does not imply lowering KS, and
vice versa. Unfairness is higher in LFM 1K than ML 1M.

• The disparate impact does not always harm the minority group. The latter
was advantaged for both attributes in LFM 1K (TR), in both datasets for age
and in LFM 1K for gender (RP).

• Except extreme cases, GNNUERS selects edges that systematically and signif-
icantly explain unfairness, regardless of the data, models and demographic
groups on which is applied.

• GNNUERS and GNNUERS+CN reduce the utility for unprotected groups, detecting
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Table 4.16: Summary categorization of the considered mitigation procedures with
respect to the proposed properties.

Paper Applicability Coherence Consistency Data Robustness Reproducibility Scalability Trade-off Transferability

Ekstrand et al. [47] Higher Higher Higher Higher Higher Higher Higher Lower
Li et al. (A) [92] Higher Lower Higher Higher Higher Lower Higher Higher
Frisch et al. [58] Lower Higher Higher Lower Higher Lower Lower -
Burke et al. [21] Lower Lower Lower Lower Higher Lower Lower -
Tsintzou et al. [141] Higher - - - Lower Higher - -
Li et al. (B) [93] Higher - - - Higher Lower - -
Wu et al. (A) [154] Higher - - - Higher Lower - -
Wu et al. (B) [155] Higher - - - Lower Lower - -

edges that generated a disparity in performance, while reporting a negligible
loss for the protected one.

• GNNUERS edges selection process is significantly affected by the dataset domain.
Experiments uncovered an unfairness mainly related to differences between
demographic groups in interest (DEG) and closeness (IGD).

• Some sampling policies suggest the unfairness originates at the dataset level
by consistently reducing the disparity in recommendation utility, while other
experiments underline that the bias is also included at the model level and a
given policy does not work for different models.

• Our unfairness mitigation algorithm offers a strong balance between utility
and fairness and demonstrates greater reliability in mitigating unfairness than
the other approaches.

Despite our work aimed to assess, explain and mitigate unfairness in recommen-
dation, several issues are still open in the literature. In particular, several challenges
emerged while conducting the systematic reproducibility study in Section 4.3. In
particular, (i) the code base modularity should be improved to easily accommodate
different datasets as an input, (ii) many procedures required extensive computa-
tional resources to treat the recommendation models, (iii) the evaluation settings
were often different. Our reproducibility study shows the first attempt of comparing
a wide range of unfairness mitigation procedures under the same evaluation protocol,
considering two relevant yet transferable fairness notions. As a summary, Table 4.16
provides a categorization of the considered mitigation procedures with respect to the
proposed properties. For each property and mitigation procedure, we assigned one
of the two following labels: Higher when the corresponding work was better than
the others on average for the selected property, Lower otherwise. A blank entry was
left for studies that could not be evaluated in terms of the corresponding property.
For papers whose source code was not available, the corresponding mitigation pro-
cedure was only analyzed in terms of applicability and scalability. Our findings are
expected to represent a guideline for researchers working on mitigating consumer
unfairness.





Chapter 5

Conclusions

In this thesis, we investigated the assessment, mitigation and explanation of unfair-
ness in artificial intelligence technologies to prevent such an issue from real-world
applications. In particular, we contextualized existing methods in the literature,
devised novel methods to mitigate unfairness and frameworks to highlight specific
data patterns as an explanation of the issue under consideration. Data Balancing,
Counterfactuality, and Graph Neural Networks Explainability methods have made
it possible to better understand the unfairness issue and efficiently counteract it.

5.1 Contributions Summary

The research under this thesis has been proved to provide the following contributions:

• The fairness-aware speaker recognition framework proposed in Chapter 3 pro-
vides tools to experiment with fairness in the field. To our knowledge, it is the
first framework providing functionalities to mitigate and explain unfairness
issues across users’ groups in speaker recognition.

• The reproducibility study conducted in Chapter 4 and the practical perspec-
tives defined for unfairness mitigation methods lay the foundation for fairness-
aware analysis in recommendation under a common protocol. Researchers can
leverage the reproduced works and the experimental settings of our studies
to benchmark their methods with state-of-the-art algorithms and to adopt a
comprehensive evaluation protocol for fairness analysis.

• The explainability framework proposed in Chapter 4 can identify the rela-
tionship between user-item interactions and unfairness. This information can
be leveraged by system designers not only to better understand the aspects
characterizing this issue, but also to mitigate it.
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5.2 Limitations and Open Issues

The contributions provided by the research work undertaken in this thesis represent
significant advancements for the literature, but they still present several limitations,
which give rise to new open issues:

• The fairness-aware framework proposed in Chapter 3 for speaker recognition
includes an unfairness mitigation method based on a data balancing approach.
However, several studies in machine learning proved that the models can af-
fect the unfairness measured in the outcomes, highlighting how counteracting
unfairness from the sole data viewpoint is not enough to guarantee fair results.

• The same framework for speaker recognition includes a surrogate model to
examine the influence of vocal characteristics on the outcomes unfairness. The
speech covariates discovered as relevant to explain the estimated unfairness are
related to personal and sensitive characteristics, which highlight the need to
devise unfairness mitigation methods accounting for causally-related features.

• The reproducibility study conducted in Chapter 4 for unfairness mitigation
methods in recommendation provides an extended overview of the state-of-
the-art results. However, several techniques require tailored experiments and
the common protocol in our study does not provide a thorough analysis of
their performance. Additionally, the limited datasets with sensitive attributes
do not offer a comprehensive examination of each method capabilities.

• The explainability framework introduced in Chapter 4 is based on GNNs for
recommendation to identify specific edges of the graph as negatively influential
on the recommendation unfairness. The literature includes several families
of recommender systems, and only a few are based on GNNs, which limits
the adoption of our method to other models. Additionally, the mitigation
technique based on our explanation algorithm could be hindered by models
deeper than the ones tested in our study, given that the modifications applied
on the graph topology could have a minor influence on the prediction process.

5.3 Future Works

The limitations described in the previous section shed light on new and additional
works for future investigations:

• Large and Multi-Domain Datasets. Available datasets in speaker recog-
nition and recommendation include a good amount of users and sensitive at-
tributes to work with. Still, systems running in production have been trained
with an extreme amount of data, typically proprietary. Research in artificial
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intelligence, in particular on fairness, is then limited by the size of the avail-
able corpora, but also by their nature. Indeed, as far as we know, a dataset
providing speakers’ utterances and recommended items based on a vocal query
are not publicly available, but it is highly probable that companies producing
voice assistants could benefit from data of this nature. It is then fundamental
to gather data to support additional and specific tasks as recommending items
personalized on the speaker identity and query utterance.

• Transferability across Models. Works proposing novel methods to mitigate
unfairness are often devised or tested only a limited set of models. Their
transferability to systems with a different architecture or more powerful is
not well examined. It is then unclear if such methods could be adopted in
practice due to the incompatibility with the models, insufficient execution
times, unreliability on large amount of data. Novel mitigation algorithms
should then be devised taking into account several properties, among which
fairness remains the main one.

• Enhanced Unfairness Mitigation. Several methods proposed to mitigate
unfairness in speaker recognition and recommendation overlook the model in-
fluence on the unfairness, Indeed, several algorithms focus on modifying the
data fed in input to the AI systems, but such modifications are performed
without accounting for their impact on the model. Even though the unfair-
ness could originate from the data characteristics, the model is significantly
responsible for the prediction process and different models could report differ-
ent levels of unfairness with the same data. It follows that novel mitigation
methods should learn to generate fairer outcomes by also learning the systems
influence on the resulting fairness.

• Generalized Explainability. The research into AI explainability, focused on
improving the interpretability of deeper and sophisticated systems, has been
increasing in recent years. Particularly on recommendation, explanations tools
are mainly proposed to clarify why a certain item is recommended to a specific
users. Meanwhile, several works study properties that go beyond the mere
predictions process, such as novelty, coverage, serendipity, and fairness. Future
research will aim to devise new explanations tools that could generalize to
multiple properties, instead of providing explanations for an individual aspect.

Based on the rapid evolution of speaker recognition and recommendation over
these years, we are hopeful that more attention will be dedicated to systems com-
bining the power of both technologies to solve more specialized tasks. Although
the single technologies are individually and thoroughly studied in the literature, the
analyzed process of vocal assistants requires to consider multiple aspects during its
design, and unfairness should be counteracted on each step of the pipeline.





Appendix A

Fairness in Therapeutic Counseling

A.1 Introduction

The recent pandemic has forced people to confine themselves to four walls and has
limited human interactions. Psychological issues such as anxiety and depression
have surfaced due to this prolonged situation [12]. The pandemic also emphasized
the importance of psychologists and remote therapy access. These services are cost-
intensive, and people are forced to make sacrifices or wait for bonus payments is-
sued by the governments. Furthermore, common people do not have familiarity and
awareness of mental health issues, which puts them at risk of incurring misinforma-
tive content publicly available online [112, 113].

The motivation of this study is to facilitate individuals in autonomously evaluat-
ing therapeutical content personalized for their psychological issues. This objective
is inspired by a publication over 20 years old [113] that emphasized the potential
benefits that information retrieval (IR) methods could offer to both patients and
therapists. IR can help in addressing mental health issues by efficiently providing
relevant and reliable information, personalizing treatment options based on specific
needs and preferences, and monitoring mental health trends in the population.

In this chapter, we aim to examine the application of IR tools to rank relevant
therapy counseling sessions according to the psychological disease a patient aims
to solve. Nonetheless, applying automatic decision-making systems to data that in-
cludes such sensitive attributes raises the need to account for unfairness issues, being
fairness one of the key requirements artificial intelligence (AI) systems should meet
according to the European Commission [23]. AI responsibility towards the entity re-
ceiving the ranked content is especially studied in the IR subfield of recommendation
systems. Researchers have faced beyond-accuracy issues, such as explainability [10]
and fairness [18, 19, 102], to make these systems more trustworthy. Along the same
lines, ranking methods for therapeutical content should be examined to assess that
the IR task is performed fairly across psychological diseases.
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A.2 Literature Review

Literature in healthcare focused on mental health issues and IR applied on such
domain is limited and it presents several limitations. First, despite the massive
amount of data that humanity produces, ironically, there is a scarcity of publicly
accessible data in healthcare and its sub-domains, e.g., mental health. Second,
publications regarding IR in healthcare do not analyze psychological diseases in
detail, but IR models applied to ranking tasks with large datasets, e.g., PubMed
[98], could also handle data related to mental health issues.

To bridge the former gap, researchers have recently worked towards releasing
freely accessible datasets in the psychological domain. The work in [123] proposed
a new benchmark for empathetic dialogue generation and released EMPATHET-
ICDIALOGUES, a dataset containing 224,850 conversations grounded in emotional
situations and gathered from 810 different participants. [158] released AnnoMI, a
dataset of conversational therapy sessions annotated by experts, composed of 110
high-quality and 23 low-quality Motivational Interviewing (MI) dialogues.

The second issue arises because psychological diseases are mentioned as part
of the wider and general healthcare field. The community started to recognize
healthcare disparities in the early 2000s [28]. Driven by the fairness key requirements
set up by the European Commission [23], recent works in healthcare [109, 35, 40, 96]
addressed unfairness issues of AI outcomes, e.g., in neural medicine and kidney
function estimation. In the mental health domain, [132, 152] examined unfair gaps
in access and questionable diagnostic practices against racial and ethnic groups, e.g.,
African Americans receiving a medical prescription less likely than Whites.

A.3 Methodology

Problem Formulation

We model an IR task where documents are represented as therapy sessions and
queries as psychological topics. Let S be the set of queries, i.e., topics, T the set
of documents, i.e. therapy sessions, Y = {0, 1} the set of relevance labels, which
represent the extent to which a document is relevant for a specific query, where higher
values denote higher relevance. In particular, given si ∈ S, a subset of documents
Ti = {ti,1, ti,2, ..., ti,n}, sorted in descending order by relevance, is retrieved to satisfy
si. The relevance of each document in Ti is denoted by yi = {yi,1, yi,2, ..., yi,n}, such
that yi,j is the relevance degree of ti,j for si.

A ranking model F : S × T → Ŷ takes queries and documents as input and
predicts the relevance score ŷ for each query-document pair. Therefore, training a
ranking model becomes an optimization problem. Given relevance-graded query-
document pairs, this means finding the model hyper-parameters θ that minimize
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the following objective function:

argmax
θ

L(F , si, ti,j, yi,j) (A.1)

Fairness Definition

A relevant amount of the IR literature analyzes fairness regarding the entities being
ranked [122, 62, 63]. Here we focus on the impact of ranking utility disparity on
psychological topics, which are considered proxies of psychological diseases. The
therapeutical content being retrieved should help and support any query with the
same level of therapy quality, regardless of the psychological disease being searched.
To this purpose, we operationalized the fairness definition of Demographic/Statistical
Parity. This definition is satisfied if the likelihood of relevant content is the same for
any psychological disease. Following other works focusing on the entity receiving the
ranked lists in IR [155, 18], unfairness is assessed as the disparity of ranking utility
across consumers. Let the Normalized Discounted Cumulative Gain (NDCG@k) be
the ranking utility metric, the disparity across topics DS is measured as the average
pairwise absolute difference between NDCG@k values and defined as follows:

DS =
1(|S|
2

) ∑
1≤i<j≤|S|

∥NDCGi@k −NDCGj@k∥22 (A.2)

A.4 Experimental Settings

Dataset

For our work, we have used AnnoMI1 [158], a high-quality dataset of expert-
annotated MI transcripts of 133 therapy sessions distributed over 44 topics, e.g.,
smoking cessation, anxiety management, and 9695 utterances. Dialogues comprise
several utterances of the therapists and the patients, labeled according to the ther-
apist’s approach, e.g., question, reflection, and the patient’s reaction, e.g., neutral,
change. AnnoMI is the first dataset of its kind to be publicly accessible in the
psychology domain, which is suitable for several tasks.

Our work focuses on providing therapeutical content in response to a particular
psychological disease, then we have only considered the therapist dialogue sessions
and, thus, the AnnoMI therapist’s utterances. However, due to the low number of
therapy sessions per topic, we reduced the ranking task to use only the therapist’s
utterances text in each session. Nonetheless, the quality of each therapist’s utterance
text is considered to be the same as the therapy session it belongs to, given that the
quality is dependent on the utterances each session is made up of.

1Data available at https://github.com/vsrana-ai/AnnoMI

https://github.com/vsrana-ai/AnnoMI
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We also re-labeled the topics of the dataset to reduce the original set. As a result
of an exploratory analysis supported by a psychology researcher, we aggregated the
topics based on (i) similarities between the psychological diseases being treated and
(ii) families of topics that could be envisioned in a more general group.

(i) several topics regard an equal or similar problem, but, in some cases, they
are associated with other aspects mainly related to the central topic, e.g., the
topics weight loss; diet and weight loss were merged into the single topic diet
and weight loss management

(ii) some new groups can be defined to include several topics to represent a broader
psychological problem that connects all the considered topics, e.g., the new
topic motivated towards adopting better life style envisions the same issue de-
picted by increasing self-confidence and reducing violence

The two AnnoMI topics birth control and opening up were instead discarded
because they did not fit the new topics labeling. 51 utterances were then removed
from the dataset, which does not affect the integrity of the whole corpus.

Data Preparation

To make each utterance text reflect as much as possible the quality of the respective
therapy session, we filtered out the utterance with less than 5 tokens, leading to a
total of 3984 utterances. The value was selected empirically to remove most of the
classic expressions not related to the respective topic, e.g., ”Okay, all right.”.

Given the thorny type of sensitive data, it is fundamental to assess the out-
comes fairness of the rankers used in our experiments. Based on the definition in
Section A.3, the dataset is split into training and testing sets following the ratio
80:20, respectively, such that the distribution of each psychological disease follows
the same ratio across the sets. Furthermore, the topics not representing both the
low and high MI dialogues quality were dropped, otherwise the disparities in ranking
utility could be misinterpreted as an unfairness issue.

Table A.1 lists the remaining topics and their distribution over the high (1) and
low (0) MI quality classes characterizing the 3984 utterances.

Information Retrieval models

A simple IR system takes a query as input and retrieves a list of documents ranked
by the predicted relevance. We use as a query the name of the psychological disease
being treated in a therapeutical counseling session, e.g., ”diabetes management.”

To analyze the applicability of IR tasks in the psychological domain, we use a
high diversity of neural rankers, selected to cover different levels of network com-
plexity. Arc-I [73], Arc-II [73], DRMMTKS [163], DUET [110], Dense Baseline [66],
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Table A.1: Distribution of topics over each MI quality class.

MI quality

Topic (Psychological Disease) Low (0) High (1)

adhering to medical procedure (AMP) 2.36% 7.83%
asthma management (AM) 0.66% 3.12%
compliance with rules (CR) 0.43% 9.50%
diabetes management (DM) 0.18% 11.45%
managing life (MF) 0.86% 12.18%
reducing alcohol consumption (RAC) 7.14% 24.95%
reducing alcohol consumption—smoking cessation (RAC—SC) 0.51% 0.66%
smoking cessation (SC) 3.70% 14.49%

HBMP [139], KNRM [160], Naive [66] are some of the models provided in the Match-
Zoo Python library2. TFR BERT [68] is a ranker based on the popular BERT pro-
posed by TensorFlow and represents the most complex network in this study. All
the models were optimized with a Softmax cross entropy loss and the selected hyper-
parameters can be found in the linked source code. We selected the best predictions
generated by each model based on the NDCG@5 on the training set.

A.5 Results

Ranking in Psychological Domain

Research in IR applied in the psychological domain, more specifically in therapeuti-
cal counseling, is hard to be found in healthcare literature. As far as our knowledge,
this is the first paper addressing the problem of ranking therapeutical documents to
support users with psychological diseases. To this end, we first investigated whether
the rankings produced by IR techniques guarantee a good level of utility on thera-
peutical counseling data.

Analyzing the ranking utility over different relevance levels could provide insights
into the decision-making process of each ranker. A model reporting utility values
quite different across relevance levels could be affected by the similarity between the
utterance text and the queried topic, instead of finding a pattern that connects high-
quality utterances to the relative psychological disease. Under this viewpoint, Figure
A.1 depicts the distribution of NDCG@k, k ∈ {3, 5, 10} over topics, i.e. queries,
measured on the rankings generated by the trained models. The performance of
most of the models is positively affected as the relevance level increases, with higher
medians and narrower ranges. Conversely, two of the most performing rankers,
DRMMTKS and TFR BERT, are robust against the k used to measure the NDCG,

2https://github.com/NTMC-Community/MatchZoo

https://github.com/NTMC-Community/MatchZoo
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Figure A.1: Distribution of NDCG@k, k ∈ {3, 5, 10} across topics for each ranker.
Higher NDCG denotes higher utility.

except for one outlier when the top 3 results are considered. The rankings generation
by these two models seems then more reliable because their predictions better map
the relation between the queried diseases and theMI quality of therapeutical content.

Other than that, even if the complexity of the underlying structure is signifi-
cantly different across models, there is no evidence of a relationship between higher
model complexity and higher NDCG average. For instance, TFR-BERT, one of the
most complex rankers, reports a slightly lower performance than the simpler Naive.
Nonetheless, the NDCG@10 distribution across topics for all models spans ranges
higher than 0.5, and, considering the over-representation of the high MI quality
class, it is reasonable to obtain such measures.

We can then positively answer our first research question, with all the models
reporting rankings of high utility on therapeutical counseling data.

Unfairness Levels across Topics

In our evaluation protocol, a query represents a psychological disease, which directly
reflects the patients that suffer from it and that look for support to treat it. Hence,
the decision-making process that generates a ranked list of therapeutical content
affects all the patients that could be helped by the retrieved information. To ensure
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Figure A.2: DS, the average pairwise absolute difference between utility values,
measured on the rankings provided for each psychological topic at different relevance
levels. Lower values are fairer.

that therapeutic content is accessible and effective for patients with diverse mental
health needs, it is crucial to investigate whether ranking algorithms exhibit bias
towards specific psychological diseases. Such bias may result in negative impacts on
the reliability of ranking outcomes, and limit the quality of therapeutical content
provided to patients.

The operationalized fairness notion in (A.2) is then used to measure the extent to
which the ranking utility for each topic differs from the others in a pairwise fashion.
Figure A.2 shows the unfairness level of each ranker in terms of NDCG disparity at
different k of relevance. DRMMTKS, TFR BERT, HBMP report the best fairness
degree for each top-k, while DUET, ArcI trade places as the unfairest model at
different relevance levels.

Even though these rankers are suitable to be applied to psychological data in
terms of utility, they do not seem to be reliable to provide fair rankings. Among all
the models, DRMMTKS reports the lowest and most stable DS across the different
relevance levels. Still, the NDCG disparity between each pair of topics is close
to 0.1 on average, which systematically highlights a different distribution of high-
and low-quality therapeutical content in the top-k lists across queries. Besides,
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Figure A.3: Each cell represents the NDCG measured on the ranking generated
for any queried topic (column) and any ranker (row) at different relevance levels.
The columns are sorted by NDCG average over the columns. Darker values denote
higher utility.

the unfairness levels of the top-3 ranking lists uncover a significant utility variance.
Being the relevance binary, this means that some queries result in at least 1 low-
quality document out of 3 in the list, which could potentially harm the patients
suffering from the queried mental issue.

These observations remark on the importance of examining the model outcomes
under a fairness definition and taking countermeasures to mitigate these issues,
especially in domains with such sensitive data.

Systematic Negative Impact

The previous research question uncovered a significant unfairness issue, reporting
most of the rankers as not being able to provide similar utility values for all the
topics. However, we have no insights into the utility of the rankings provided for
each individual topic and we do not know whether querying specific psychological
diseases leads to higher utility rankings w.r.t. to other ones. It is then important
to conduct individualized analyses of each query to uncover potential factors that
may be correlated with ranking performance.

Figure A.3 aggregates all the models and psychological topics in three heatmaps
(one for each relevance degree), where each cell represents the NDCG measured on
the ranked list provided by a ranker (row) for an individual queried topic (column).
Being the columns sorted in ascending order from left to right by NDCG average
across models, it is straightforward to notice how the darker cells concentrate on the
few topics at the right of each heatmap. In particular, the high-quality therapeutical
content retrieved for the queried topics Compliance with Rules (CR), Diabetes Man-
agement (DM), and Managing Life (MF) is systematically ranked higher compared
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to the other models.
Such observation is probably related to the higher representation of high-quality

utterances for the just mentioned topics. However, what seems to affect the ranking
utility the most is the high representation of low-quality utterances. Indeed, the
topics SC, RAC, AMP are composed of more than 1% of low-quality documents
and the related columns are closer to the left side of the heatmap for each relevance
level. A balanced representation of low- and high-quality utterances, as for the
RAC-SC mental health issue, results in models with ranking utility divergent from
each other.

Though these results are affected by the representation of MI quality classes, it
does not seem evident a systematic impact on specific diseases. At least one model is
able to provide optimal utility for a query and different models exhibit high and low-
ranking utility for the same topics, except for the ones with an over-representation
of high-quality utterances.

A.6 Conclusions and Future Works

In this paper, we investigated whether IR could be instrumental in supporting pa-
tients with their own mental health issues. Our methodology was based on a ranking
task to provide high-quality therapeutic content in higher positions than low-quality
ones. For such purpose, we used nine ranking models of a wide diversity of network
complexities, and our results are indicative that conversational therapeutic data is
suitable for ranking tasks, reporting high average utility.

Future works will focus on augmentation techniques to extend AnnoMI to gener-
ate a higher number of therapy sessions per topic to work with. Unfairness mitiga-
tion procedures will also be employed to reduce the ranking utility disparity reported
across psychological topics. We also aim to incorporate world knowledge in the form
of triples to address the domain adaptation challenges in mental health [87].
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Generalized Explainer of Global Issues

Recently, we have been investigating whether our unfairness explainer in GNN-based
recommender systems (GNNUERS) could be extended not only to explain unfairness,
but also other issues. Indeed, unfairness is an issue at the global level because it
regards the whole system, not a single consumer or provider. It follows that switch-
ing the objective and adjusting the manipulation of the graph topology could make
the method generalizable towards explaining other global issues such as provider
unfairness [59], instability [117], user coverage [103].

B.1 Proposed Method

Hence, we introduce a novel approach, named GENIUS-RS (Generalized ExplaiNer
of Global IssUeS in GNN-based Recommender Systems), which finds and adopts
a set of user-item interactions as an explanation of a global issue affecting a GNN-
based recommender system. In other words, the manipulated graph fed in input to
the GNN, treated as a black-box, aims to make the latter generate a set of altered
recommendations with an alleviated level of the global issue. The edges differing
between the manipulated graph and the original one represent, then, an explanation
of the global issue. As GNNUERS, this procedure is driven by counterfactual reasoning,
given that the manipulated graph represents a distorted version of the original graph
in the counterfactual world. GENIUS-RS is still an ongoing work, given that we aim
to extend the experiments suite to account for other global issues, e.g., instability
and user coverage, to reflect the purpose of this approach. We also plan to extend
the explanation tools to not only consider the removal of the edges, denoted as
GENIUS-RS−, but also the addition, denoted as GENIUS-RS+, and the edge rewiring,
still a work in progress.



120 Section B.1. Proposed Method

Insurance

Last.FM-1K

MovieLens-1M

TaFeng

Figure B.1: ∆NDCG over a minimum of 15 epochs and a maximum equal to the
epoch where one of GENIUS-RS+ or GENIUS-RS− reported the most effective explana-
tion (lower ∆NDCG). The horizontal line represents the ∆NDCG measured on the
original recommendations (without manipulation). The annotated values are the
NDCG measures with the manipulated graph (NDCG of NM is reported in the title)
at the epoch (pointed by the arrow) with the lowest ∆NDCG for each manipulation
strategy, and (*) denotes the statistical difference from the NDCG distribution of
NM under a Wilcoxon signed-rank test with a 95% confidence interval.
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B.2 Experimental Evaluation

We present here a partial experimental evaluation based on the same experimental
setup used for GNNUERS in Section 4.4.2, presenting only the manipulation strategies
of edge removal (GENIUS-RS−) and addition (GENIUS-RS+) adopted for explaining
unfairness across consumer groups. The two manipulation strategies GENIUS-RS−

and GENIUS-RS+ operate on two significantly different set of predefined edges. The
high sparsity of the selected datasets bounds GENIUS-RS− to manipulate a max-
imum of 1,000,209 user-item interactions (MovieLens-1M), while GENIUS-RS+ can
manipulate more than 600,000,000 graph edges (TaFeng). It follows that our prelim-
inary results do not include the experiments on TaFeng for all the settings, and on
MovieLens-1M for GCMC, due to out-of-memory problems raised with GENIUS-RS+.

Figure B.1 depicts the monitoring of the ∆NDCG over the epochs along which
GENIUS-RS is executed in its edge deletion (GENIUS-RS−) and addition (GENIUS-RS+)
manipulation strategies. Compared with the consumer unfairness measured with the
non-manipulated graph (NM), most of the experiments report a significantly lower
∆NDCG along the epochs. Except for GCMC and NGCF on Insurance (the smallest
dataset) across age groups, GENIUS-RS− can consistently explain consumer unfair-
ness across demographic groups, reaching quasi-optimal explanation levels (∆NDCG
≃ 0) in several experiments. Conversely, GENIUS-RS+ seems dependent on the
dataset size, given that it cannot explain the consumer unfairness on Insurance.
It also reports different trends among the models, possibly due to the GNNs being
distinctly influenced by the unseen interactions added by GENIUS-RS+.

In summary, except for extreme cases and despite the limited set of experiments,
GENIUS-RS, in particular GENIUS-RS−, systematically provides explanations of the
given global issue in a specific way, thanks to the moderate losses in NDCG. We plan
to carry out further analyses on additional global issues to confirm such preliminary
findings and the GENIUS-RS’s generalizability level, potentially presenting our results
to forthcoming conferences or journals.
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bell, Douglas A Reynolds, and Ivan Magrin-Chagnolleau. Person authentica-
tion by voice: A need for caution. In Proc. of the European Conference on
Speech Communication and Technology (ECSCT), 2003.

[16] Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, and Gia-
como Medda. Counterfactual graph augmentation for consumer unfairness
mitigation in recommender systems. In Proceedings of the 32nd ACM Inter-
national Conference on Information & Knowledge Management, Birmingham,
UK, October 21-25, 2023, 2023.

[17] Ludovico Boratto, Gianni Fenu, and Mirko Marras. Interplay between upsam-
pling and regularization for provider fairness in recommender systems. User
Model. User Adapt. Interact., 31(3):421–455, 2021.

[18] Ludovico Boratto, Gianni Fenu, Mirko Marras, and Giacomo Medda. Con-
sumer fairness in recommender systems: Contextualizing definitions and miti-
gations. In Advances in Information Retrieval - 44th European Conference on

http://www.fairmlbook.org
http://www.fairmlbook.org


125

IR Research, ECIR 2022, Stavanger, Norway, April 10-14, 2022, Proceedings,
Part I, pages 552–566, 2022.

[19] Ludovico Boratto, Gianni Fenu, Mirko Marras, and Giacomo Medda. Practical
perspectives of consumer fairness in recommendation. Inf. Process. Manag.,
60(2):103208, 2023.

[20] Léo Brunot, Nicolas Canovas, Alexandre Chanson, Nicolas Labroche, and
Willeme Verdeaux. Preference-based and local post-hoc explanations for rec-
ommender systems. Inf. Syst., 108:102021, 2022.

[21] Robin Burke, Nasim Sonboli, and Aldo Ordonez-Gauger. Balanced neighbor-
hoods for multi-sided fairness in recommendation. In Conference on Fairness,
Accountability and Transparency, FAT 2018, 23-24 February 2018, New York,
NY, USA, volume 81 of Proceedings of Machine Learning Research, pages
202–214. PMLR, 2018.
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