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Abstract: Parkinson’s disease (PD) is an incurable neurodegenerative disease that is rarely diagnosed
at an early stage. Although the understanding of PD-related mechanisms has greatly improved
over the last decade, the diagnosis of PD is still based on neurological examination through the
identification of motor symptoms, including bradykinesia, rigidity, postural instability, and resting
tremor. The early phase of PD is characterized by subtle symptoms with a misdiagnosis rate of
approximately 16–20%. The difficulty in recognizing early PD has implications for the potential use
of novel therapeutic approaches. For this reason, it is important to discover PD brain biomarkers that
can indicate early dopaminergic dysfunction through their changes in body fluids, such as saliva,
urine, blood, or cerebrospinal fluid (CSF). For the CFS-based test, the invasiveness of sampling is a
major limitation, whereas the other body fluids are easier to obtain and could also allow population
screening. Following the identification of the crucial role of alpha-synuclein (α-syn) in the pathology
of PD, a very large number of studies have summarized its changes in body fluids. However, method-
ological problems have led to the poor diagnostic/prognostic value of this protein and alternative
biomarkers are currently being investigated. The aim of this paper is therefore to summarize studies
on protein biomarkers that are alternatives to α-syn, particularly those that change in nigrostriatal
areas and in biofluids, with a focus on blood, and, eventually, saliva and urine.
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1. Introduction
1.1. PD

PD is a brain disorder with an irreversible and continuous process of neurodegenera-
tion until death. There is no cure for this disease, but treatments are available, of which
levodopa (L-dopa) is the gold standard. The disease is diagnosed by neurologists by ob-
serving motor symptoms such as bradykinesia, rigidity, postural instability, and resting
tremor [1,2]. However, all these symptoms occur years (possibly decades) after the onset of
the neurodegenerative process, leading to difficulties in recognizing early PD, which is char-
acterized by hyposmia, depression, constipation, sleep disturbances (REM-sleep-behavior
disorder, excessive daytime sleepiness) [3,4]. As a result, misdiagnosis rates are in the range
of 10–30% [5–7], which reduces the therapeutic benefit and compromises the possibility of
using novel therapeutic approaches. For this reason, significant effort is underway in the
search for candidate biomarkers that can track disease progression and/or differentiate PD
from the other neurodegenerative diseases, as well as being able to detect early changes at
the level of the basal ganglia. The basal ganglia are a group of subcortical nuclei including
the striatum (STR), which is subdivided into dorsal (caudate and putamen) and ventral
(nucleus accumbens), the globus pallidus (external and internal parts), the subthalamic
nucleus, and the substantia nigra (SN) [8]. The SN is divided into two areas: the pars
compacta (SNpc), which consists mainly of dopaminergic perikarya, and the pars reticulata
(SNpr), which consists mainly of gamma-aminobutyric acid (GABA)-inhibitory neurons.
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The SNpc has dopaminergic projections to the striatum, putamen, and caudate nuclei.
Within the striatum, these dopaminergic projections synapse on the D1- and D2-family
receptor neurons, which are involved in the “direct and indirect pathways” of the basal
ganglia [9]. Furthermore, PD is not only characterized by alterations in the dopaminergic
system, but the map of altered substances includes several neuroproteins, neurotrans-
mitters, and neuropeptides that are expressed or not expressed within the nigro-striatal
circuits [10–12].

1.2. PD Biomarkers: General Information

Because PD is a multifactorial disease, several types of biomarkers are under study,
including clinical, brain-based (such as neuroimaging), genetic, and biochemical. Clinical
biomarkers, such as bradykinesia, resting tremor, and muscle rigidity are used by clinicians
to identify PD and monitor both response to medical treatment and disease progression.
However, other clinical features, such as hyposmia, rapid eye movement (REM) sleep-
behavior disorder (RBD), and constipation are under consideration as biomarkers of prodro-
mal PD [3,4]. Neuroimaging techniques, such as transcranial sonography, magnetic reso-
nance imaging (MRI), positron-emission tomography (PET) or single-photon-emission com-
puted tomography (SPECT) are considered biomarkers of nigrostriatal neurodegeneration
and may also detect the early phase of PD and follow its progression [13]. Genetic biomark-
ers are considered important tools in the diagnosis of PD, and a family history is reported
in approximately 10–20% of PD patients [14]. Of the various genes identified as biomarkers,
some are associated with autosomal recessive inheritance, particularly Parkin and PINK1,
which are associated with typical early-onset PD [15]; others are related to atypical juvenile
PD, such as ATP13A2, DNAJC6, FBOX7, and SYNJ1 [16], whereas SNCA, LRRK2, and
VPS35 are associated with typical autosomal dominant PD [17]. In general, studies of ge-
netic risk factors for PD have been limited to single-nucleotide variants, which account for a
small fraction of the genetic variation in the human genome. Recent results from researchers
involved in the PD Biomarker Programme (PDBP: https://pdbp.ninds.nih.gov/news,
accessed on 6 June 2023) identified a structural-genotype variant associated with PD risk
in 2585 patients compared with 2779 controls [18]. In terms of biochemical biomarkers,
there are a large number of studies focusing on different biomolecules present in the
brain and/or body fluids, including metabolites as glutathione, pyruvate, and glycine
derivatives [19], plasma lipids such as N-acylphosphatidyl ethanolamines [20], and a large
number of proteins, including α-syn. There are several methods used to evaluate biochemi-
cal biomarkers. Quantitative reverse-transcription PCR (RT-qPCR) or in situ hybridization
can be used to identify the mRNA, while electronic, fluorescence and confocal microscopy
may be useful to investigate where a molecule is expressed and/or in which cell types.
However, the most useful techniques for detecting biomarkers in the blood include multi-
color flow cytometry, the radioimmunoassay (RIA), the enzyme-linked immunosorbent
assay (ELISA), the single-molecule array (Simoa), and chemiluminescence. In the last
decade, high-performance liquid chromatography–mass spectrometry (HPLC-MS) has
become an essential part of biomarker-discovery research through targeted, semi-targeted
or non-targeted measurement analysis, allowing large amounts of data to be collected with
high accuracy from a variety of samples, including bodily fluids. Interestingly, through
a spectrometry-based method, the analysis of SN from PD patients and controls in a
PDBP study allowed the identification of several mechanisms leading to dopaminergic cell
death and α-syn deposition, including those related to ribosome activity and GABAergic
synapse [21]. Following the identification of the crucial role of brain α-syn in the pathology
of PD, a very large number of studies summarized the changes to this protein in body
fluids, particularly in the CSF. However, methodological problems have led to the poor
diagnostic/prognostic value of this protein, as shown in several studies [22–24], including
one carried out in a large Parkinson’s Progression Markers Initiative (PPMI) cohort of
patients [25], and alternative biomarkers are currently under investigation. The aim of
this paper is, therefore, to focus on brain-protein biomarkers, alternatives to α-syn and, in
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particular, those that may indicate early dopaminergic dysfunction through their changes
in bodily fluids. With regard to CSF, despite its close association with the brain, the inva-
siveness of sampling is a limitation, whereas the other bodily fluids are easier to obtain and
could also allow population screening, so the present review focuses on blood and, even-
tually, saliva and urine. To the author’s knowledge, reviews on brain-protein biomarkers
that change in the biofluids are rare. These candidate biomarkers are reviewed for their
potential to aid in early diagnosis, prognosis, or monitoring of specific clinical features.

2. Brain-Biomarker Changes in Body Fluids of PD Patients
2.1. Neurofilament Light Protein

Neurofilaments (NFs) are members of a family of intermediate filament proteins
characterized by an ‘intermediate’ diameter (10 nm), which is larger than that of actin
filaments (6 nm) and smaller than that of myosin filaments (15 nm) [26], and include
NF-L, -M, and -H, corresponding to light, medium, and heavy, respectively [27]. These
NF proteins occupy the axonal cytoplasm, support neurons, and interact with several
other proteins that regulate synaptogenesis and neurotransmission [28,29]. The -L, -M,
and -H NFs were found by immunohistochemistry (IHC) to be abnormally aggregated
within Lewy bodies in the post-mortem SN of a PD patient (whose disease stage was not
reported) [30]. Blood NF-L levels measured by ELISA were used to discriminate PD from
atypical parkinsonism [31] with the same diagnostic accuracy as CSF NF-L [32]. In addition,
plasma NF-L was correlated with disease severity and the progression of both motor and
cognitive functions using an electrochemiluminescence immunoassay [33], while when the
serum NF-L was measured by Simoa together with other fluid biomarkers, it helped to
discriminate PD patients from controls [34]. In a complete longitudinal PPMI cohort study,
a large dataset of NF-L measurements by Simoa or ELISA was obtained from: (i) 176 CSF
samples, including newly diagnosed and drug-naïve PD patients and controls, (ii) 1190 sera
from patients with PD (including newly diagnosed and drug-naïve patients) (iii) other
neurodegenerative diseases, (iv) subjects with prodromal conditions and mutation carriers
as well as sera form healthy controls, [35]. The results showed that the serum and CSF NF-L
levels were significantly correlated and were highest in other neurodegenerative diseases,
but higher in the PD patients than in the controls. Furthermore, the NF-L levels increased
over time and with age (by 3.35% per year of age, and women had a median serum
level 6.79%, which was higher than that of the men), were correlated with PD severity
and, most importantly, were highest in early PD, but also relatively high in the prodromal
groups, including patients affected by RBD disorders, suggesting a prognostic role.

Similar results were obtained in another large study [36], in which PD patients were
selected on the basis of diagnosis within 2 years, not receiving treatment at baseline, Hoehn
and Yahr (H-Y) stage 1 or 2, 123I-isoflurane DaT imaging, and, to avoid misdiagnosis, a
longitudinal review of their diagnosis. The study included CSF samples from 207 PD pa-
tients and 102 controls, while the sera were collected from 361 PD patients and 176 controls,
plus 291 individuals who provided both serum and CSF samples. Using Simoa, the base-
line CSF and serum NF-L levels were both higher in the PD patients than in the controls,
but the CSF NF-L levels were significantly elevated in the males compared to the females,
which is not consistent with the study cited above. In addition, the same study showed
in a cross-sectional and prospective follow-up of the PD patients that baseline CSF and
serum NF-L levels could predict motor decline and tremor (but not rigidity). Interestingly
serum NF-L levels measured by Simoa may also be useful to differentiate PD from essential
tremor (ET) [37]. Indeed, when NF-L levels were measured by electrochemiluminescence
immunoassay in sera from patients with PD (>2 years of diagnosis; n = 146), ET (n = 82)
and 60 age-matched healthy controls, significantly higher levels were found in PD than
in ET and healthy controls. In the same study, serum NF-L was found to be elevated in
patients with advanced H-Y stage and dementia and was an independent contributor to
motor symptoms and cognitive severity. In 289 patients with advanced PD, NF-L measured
by Simoa was associated with motor function, cognitive decline, and subclinical cardiac
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damage [38]. A study focusing on the comparability of PPMI and Asian cohorts highlighted
the importance of adjusting several variables, including demographics, age, and sex, to
best interpret serum NF-L levels for research and clinical practice [39]. However, despite all
these important findings, the diagnostic accuracy of serum NF-L is low [35] and changes are
not specific for PD [40–43]. Therefore, rather than being a diagnostic tool for PD, NF-L may
be a useful marker for certain specific aspects of PD, such as dementia, cognitive decline, or
cardiac damage. It may also be a good biomarker for distinguishing PD from ET.

2.2. Substance P

Substance P (Sub-P) is an 11-amino-acid peptide that belongs to the tachykinin family
and is derived from a pre-protachykinin polyprotein precursor of the TAC1 gene [44,45].
Sub-P acts through various mechanisms, including autocrine, paracrine, and endocrine, to
modulate pain perception by altering cellular signaling pathways [46,47]. Sub-P mRNA is
found in the GABAergic neuron terminals of the SN [48], where the protein acts to sensitize
postsynaptic dopaminergic neurons to glutamate [49]. In humans, the presence of Sub-P
within α-syn aggregates was demonstrated by IHC in the perikarya of the colon [50] and
olfactory bulb [51]. Sub-P changes in SN and/or STR of PD patients have been extensively
studied in both animal models and patients. Sub-P levels detected by IHC and/or RIA
were decreased in the SN and STR of both unilateral and bilateral rats injected with
6-hydroxydopamine (6-OHDA) [52–54], whereas the opposite results were obtained in rats
treated with intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) [55,56]. Consistent with animal models, when human post-mortem brains were
measured using various techniques, including RIA, reduced levels of Sub-P were found
in the SN [57–59], globus pallidus [59], putamen [58,60], and caudate [61] of PD patients
compared with control brain samples. In patients with early (n = 15) and advanced (n = 15)
PD, sputum Sub-P levels were assessed by ELISA and were significantly decreased in
the advanced-stage patients compared to the controls and early-stage patients [62]. In
another study [63] including 22 PD patients (with a score of 2 on the H-Y scale and treated
with L-dopa) and 12 controls, serum Sub-P levels were measured by competitive ELISA.
The Sub-P levels were higher than in the controls and increased proportionally with the
disease severity (motor impairment). The limited number of available studies on Sub-P
in the bodily fluids of PD patients and the small number of subjects involved make it
difficult to identify Sub-P as a reliable blood (or saliva) biomarker. However, the presence
of Sub-P within α-syn aggregates needs to be investigated further, especially for its possible
involvement in early PD.

2.3. S100 Calcium-Binding Protein A10

The S100s are a family of low-molecular-weight proteins with two calcium-binding
sites that have a helix–loop–helix conformation. Approximately 21 different proteins have
been recognized and are encoded by the S100A1, S100A2, and S100A3 genes (among others)
genes [64]. The S100 calcium-binding protein A10 (namely S100A10 or P11), encoded by the
S100A10 gene, modulates neuronal function [65]. The expression of P11 was investigated
in post-mortem brains (both the SN and the putamen from fresh snap-frozen samples) of
PD patients (3 females and 2 males) and controls (4 females and 1 male). The P11 levels,
which were submitted to a Western blot (WB) analysis, decreased in the dopaminergic
SN cells, along with the mRNA detected by laser-capture microdissection coupled to
quantitative real-time PCR [66]. In the same study, P11 was also investigated by multicolor
flow cytometry in leukocytes from a total of 42 PD patients with or without depression
(at different disease stages, including de novo PD patients and those with H-Y scores of)
and 15 controls. The P11 levels in the CD8+ cells were found to be higher in the depressed
and non-depressed PD patients compared to the controls (with a sensitivity and specificity
of 93%), but increased exclusively in the CD14+CD16− of the depressed PD patients,
corresponding to the same modulation reported in depressed patients without PD [67].
Furthermore, the P11 levels in the monocytes, cytotoxic T cells, and NK cells were all
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correlated with PD severity. Although the pathological role of P11 in PD remains unclear,
as with its role in normal SN, P11 can be considered as a PD biomarker that is useful in
identifying patients at risk of developing depression [68].

2.4. Neurotensin

Neurotensin (NT) is a 13-amino-acid peptide [69] that is widely distributed in neurons,
in which, in dense nuclear vesicles, it acts as a neuromodulator of several neurotransmit-
ters, such as acetylcholine, as well as serotonin, GABA, and dopamine [70].The IHC of
normal rat brains showed the expression of NT in ventral tegmental-area fibers and SN
(both compacta and reticulata) [71], while combined HPLC/RIA showed an increased
(twofold) expression in post-mortem SN samples from 6 advanced-PD patients (compared
to 5 controls) [72]. In another study, using specific RIA on postmortem brain samples from
25 human patients with advanced PD compared to controls, the NT levels were significantly
decreased in the hippocampus but not altered in the SN [73]. Using RIA on blood samples
from 36 subjects (16 controls,16 patients with advanced disease, and 4 untreated patients),
the NT concentrations were higher in the PD patients than in the controls and higher in
the untreated patients than in the patients treated with L-dopa [74]. However, the number
of studies using blood from early PD patients is excessively small, so further studies are
needed to clarify the role of NT as a blood biomarker in PD.

2.5. Chromogranins

Chromogranin proteins [75] are the major components of secretory granules in neu-
roendocrine cells, where they play a role in granulogenesis and in the sorting and processing
of secretory-protein cargo [76]. Chromogranin proteins are considered biomarkers of neu-
roendocrine neoplasia [77]. Many proteins belong to the chromogranin family, including
chromogranins A (CgA) and B (CgB) and secretogranin II (SgII, or chromogranin C) [78].
Several studies have reported that chromogranin-family proteins are found in the SN
and are involved in PD changes. One study reported that CgA, detected by IHC with an
antibody against the WE14 epitope, was expressed in non-dopaminergic neurons of the
SNpc [79]. Processed and unprocessed forms of CgA were expressed in anatomically de-
fined GABAergic, glutamatergic, cholinergic, and catecholaminergic neurons in the rodent
central nervous system [79]. In human studies, the midbrain, cerebellum, and cerebrum
of 7 PD patients and 2 PD-associated Alzheimer’s disease (AD) patients were examined
by light and electron microscopy using antibodies against synaptophysin and ChA, and
compared with 10 controls. Lewy bodies were observed in the hematoxylin- and eosin-
stained sections of all the PD and PD/AD cases. Within the Lewy bodies, the antibodies
mainly stained the peripheral zones, and at the ultrastructural level, labeling was found
in the vesicular, filamentous, and granular structures. However, the antibodies did not
show any differences between the PD and normal controls on immunoblot analysis [80]. In
another study, post-mortem brains from 4 cases of AD, 2 cases of Pick’s disease, 4 cases
of PD and various other diseases, and brains from 6 cases without neurological disorders
were examined for CgA expression by IHC. Lewy bodies with vesicles in the periphery
of the central nucleus were immunoreactive for CgA in the SN of the PD brain samples
but also in those with other diseases [81]. Another study [82] showed that serum levels of
chromogranins and secretogranins were correlated with the progression and severity of
the PD. The subjects included in the study were patients with early (n = 14), intermediate
(n = 18), or late (n = 4) stages of PD, according to their H-Y scores, as well as well-defined PD
(n = 36) and healthy controls (n = 52). The serum concentrations of CgA, CgB, and SgII were
measured by ELISA. Compared with the controls, the serum CgA levels were significantly
increased and the serum SgII levels were significantly decreased in the overall population
of PD patients, whereas the serum CgB levels did not differ between the two groups. In
the early-stage group, the CgA and SgII levels were lower and higher, respectively, than
in the other groups. Both the CgA and the SgII serum levels changed progressively over
time and were correlated with both the H-Y and the UPDRS scores. The results for the
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chromogranins were promising, but the number of early-stage PD patients studied was
small, and it remains to be investigated whether the blood changes are characteristic of PD
or of neurodegenerative diseases in general, as has been observed using CSF [83].

2.6. VGF

The VGF gene (not abbreviated) is regulated by the nerve-growth factor (NGF) in
PC12 cells and cultured cortical neurons [84]. The VGF precursor (proVGF), consisting
of 617/615 aa in rats/mice and humans, respectively, with >85% identity (minor sequence
differences between rat and human) [85], is expressed in rat brains [86], but also in human
plasma [87,88]. It is induced by growth factors [89] and can give rise to a variety of truncated
peptides, including the so-called TLQP [90–92], NERP1, and NERP2 [93]. Peptide sequences
of VGF have mainly been identified in CSF, where specific peptide alterations have been
associated with certain diseases. For example, VGF peptides cleaved at the N-terminus
of proVGF were found to be altered in CSF of psychiatric disorders [94–97], while others
in the middle of proVGF may be useful CSF biomarkers for dementia [98–100]. The VGF
immunostaining (using an antibody against the last nine amino acids at the C-terminus)
was decreased in GABAergic (containing Sub-P) fibers of the SN in rats treated with
6-OHDA, but it was restored by L-dopa treatment [101]. Unfortunately, VGF expression
in human SN remains to be investigated, but VGF alterations of certain peptides (TPGH
and NERP-1) have been found in the post-mortem parietal cortexes of PD patients [102].
In addition, the next-generation RNA sequencing of cingulate cortex samples (from 23 PD
patients, compared with 11 controls) found the VGF gene to be implicated in the molecular
etiology of PD and PD-related dementia [103]. The levels of VGF C-terminal (C-t) peptides
were analyzed by a home-made competitive ELISA using an antibody directed against
the last nine amino acids at the C-terminus of human proVGF in PD patients at the time
of diagnosis (drug-free, n = 23) or after dopamine replacement (n = 40) compared to age-
matched controls (n = 21) [101]. In the drug-free patients, a strong decrease (>50%) was
observed at the time of diagnosis, whereas long-term L-dopa treatment caused an increase
in VGF. The levels of VGF C-t peptides were also correlated with disease duration, LED, and
the severity of olfactory dysfunction, but not with the H-Y score. The VGF changes observed
in the blood of PD patients were verified in other bodily fluids, such as the CSF and urine.
When CSF samples were analyzed from two independent cohorts of subjects (n = 196) and a
longitudinal cohort (n = 105), including all the controls and treated PD patients (with disease
duration of no more than 6 years), the C-terminal region of the VGF protein was found to be
decreased by liquid chromatography–tandem mass spectrometry in the data-independent
acquisition mode [104]. Using the same technique, more than 200 urine samples from
different groups of subjects were analyzed, including (i) healthy controls, (ii) non-manifest
carriers of the LRRK2 G2019S mutation, (iii) idiopathic PD patients, and (iv) manifest PD
patients with LRRK2 G2019S. The results showed that changes (decrease) were found in the
peptides covering most of the VGF sequence [105]. Interestingly, CSF and urine data were
found to be correlated [106]. Decreased levels of VGF C-t peptides have also been studied
in plasma samples from amyotrophic lateral sclerosis patients, but a small reduction was
found only in the late stage of the disease [87] while no changes in plasma-VGF C-t peptides
were observed in a rat model of schizophrenia [107]. In conclusion, VGF C-t peptides are
potential blood biomarkers for PD, as they appear to be selectively altered in PD. However,
both the use of a more specific sandwich ELISA and confirmation by HPLC-MS are required
to accurately identify individual VGF sequences that are altered in PD blood.

2.7. Glial Fibrillary Acidic Protein

Glial fibrillary acidic protein (GFAP) is an intermediate filament protein found pri-
marily in mature astrocytes. This protein has a much broader function than the provision
of mechanical support to cells, as it is involved in the production and regulation of the
blood–brain barrier, increases synaptic plasticity, and coordinates neuronal activity [108].
This protein is upregulated in brain damage or neuronal degeneration; therefore, it is
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considered a marker of astrocyte activation (or astrogliosis) [109]. Increased numbers of
GFAP-immunoreactive astrocytes were observed in the SN of mice after only one day of
MPTP administration [110], as well as after 6-OHDA treatment [111]. The role of astroglio-
sis in the PD brain is not fully elucidated, although most of the relevant studies observed
slight or no increases in the expression of both GFAP-immunoreactive cells (determined
by IHC-stereological quantification and WB analysis) in postmortem samples from SN
collected from patients with PD [112–114]. Only Damier et al. observed the opposite results
in their study, i.e., the increased expression (according to their IHC analysis) of GFAP in
the SN of PD patients correlated with the percentage of lost dopaminergic neurons [115].
Changes in GFAP levels were also studied in the plasma of PD patients. Tang et al. ob-
served an increase in GFAP levels (using Simoa) in PD patients (n = 60) compared to healthy
controls (n = 15), and the highest increase was in PD patients with dementia (n = 24) [116].
Similar results were obtained with serum samples in which an increase in GFAP levels
(detected by sandwich ELISA) was observed in PD patients (n = 23) compared with healthy
controls (n = 29) [117] and, again, this increase was more pronounced in PD patients with
mild cognitive impairment or dementia than in PD patients with normal cognition [118].
Another cross-sectional study examined PD patients characterized by RBD, an important
risk factor for cognitive impairment in PD patients [119]. These patients (n = 39) had
higher serum GFAP levels compared to PD patients without RBD (n = 70) and healthy
controls (n = 37, measured with Simoa) [120], suggesting the role of GFAP as a predictive
PD biomarker. Elevated serum levels of this protein are also observed in patients with other
neurodegenerative diseases, such as AD and frontotemporal lobar degeneration [121,122].

3. Conclusions

PD is one of the most significant neurodegenerative diseases, and because most of
the cardinal symptoms occur late in its course, a large number of dopaminergic neurons
are already damaged when it is diagnosed. Therefore, there is a great need for biomarkers
that can be used to ensure early diagnoses, as well as to differentiate PD from other
diseases with high sensitivity and specificity, and to track disease progression. When
biomarkers are altered in both the brain and body fluids it is more likely that changes in the
periphery are linked to the changes occurring in the central nervous system. In addition,
improvements in the identification of the neuronal proteins that change in PD could lead to
a better understanding of the PD pathological mechanisms, which in turn could lead to
new approaches to diagnosis and treatment. Although the candidate biomarkers studied
here are promising (Table 1 and Figure 1), they have limitations related to (i) the small
number of blood samples, especially in the early PD, (ii) their low specificity in PD, (iii) the
lack of studies based on orthogonal methods, which are often required to provide the
independent confirmation of the results. At this point, it is important to note that a single
biomarker is unlikely to achieve the higher standard of sensitivity and specificity required
for an accurate diagnosis of PD, as the mechanisms involved in PD are very complex
and sometimes similar to those in other neurodegenerative diseases. Therefore, another
good strategy may be to validate a large panel of PD fluid biomarkers, including those
non-specific that may increase in value when combined.

Table 1. Changes in protein biomarkers in brains and bodily fluids of PD patients.

Protein Brain Body Fluid

Method Change Sample Phase Method Change Sample Phase

NF-L IHC [17] * SN Advanced
Early

SIMOA [21–24]
ECLIA [25] ↑ Serum Advanced Prodromic

ECLIA [20] ↑ Plasma Advanced

SP RIA [44–46] ↓ SN Advanced ELISA [50] ↑ Serum Advanced

RIA [45,47] ↓ Putamen Advanced ELISA [49] ↓ Sputum Early
Advanced

RIA [48] ↓ Caudate Advanced
RIA [46] ↓ GP Advanced
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Table 1. Cont.

Protein Brain Body Fluid

Method Change Sample Phase Method Change Sample Phase

P11 qPCR [53] ↓ SN Advanced Flow cytometry [53] ↑ Plasma Advanced

NT HPLCRIA
[58,59]

↑
↓

SN
Hyp. Advanced RIA [60] ↑ Plasma Early

Advanced

ChA IHC [66,67] *
SN

cerebellum
cerebrum

Advanced ELISA [68] ↑ Serum Early Intermediate
Advanced

VGF ELISA
[87–89] ↓ Cortex Advanced ELISA [87] ↓ Plasma Early

Advanced

LC-MS/MS [91] ↓ Urine with or without
LRRK2 G2019S mutation

GFAP IHC [101] ↑ SN Advanced SIMOA [102] ↑ Plasma Advanced
ELISA [103]

[104]
SIMOA [106]

↑ Serum Advanced

PD = Parkinson’s disease; NFL = neurofilament light chain; IHC = immunochemistry; * = abnormal aggregation;
SN = substantia nigra; SIMOA = single-molecule array; ECLIA = electrochemiluminescence im-
munoassay; SP = substance P; RIA = radioimmunoassay; ELISA = enzyme-linked immunosorbent as-
say; GP = globus pallidus; P11 = S100A10 (S100 calcium-binding protein A10); qPCR = quantitative poly-
merase chain reaction; NT = neurotensin; HPLCRIA = high-performance liquid chromatography with ra-
dioimmunoassay; ChA = chromogranin A; SgII = secretogranin II; VGF = non-acronym; Ct = C-terminus;
LC/MS/MS = liquid chromatography/mass spectrometry/mass spectrometry; LRRK2 = leucine-rich repeat ki-
nase2; G2019S = Glycine2019Serine mutation; GFAP = glial fibrillary acidic protein. Hyp: hypothalamus.
↑ = increased concentration; ↓ = decreased concentration.
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Figure 1. Brain-biomarker changes in bodily fluids of PD patients. Figure legend: The figure shows
proteins that change in the brain (nigrostriatal areas) and bodily fluids (plasma, saliva, and urine) of
PD patients. NF-L and ChA were found to be abnormally aggregated in the brain and increased in
the blood. SP and P11 decreased in the brain (and SP also decreased in sputum), but increased in the
blood, while GFAP and NT increased in both the brain and blood. In contrast, VGF decreased in the
brain, but also in blood and urine. NF-L: neurofilament light protein; SP: substance P; P11: S100A10
(S100 calcium-binding protein A10); NT: neurotensin; ChA: Chromogranin A; VGF: no acronym;
GFAP: glial fibrillary acidic protein. Upward arrow: increase; downward arrow: decrease.
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