
REVISTA INVESTIGACIÓN OPERACIONAL Vol. 42, No. 2, 238-266, 2021

STATIONARY SUBDIVISION SNAKES FOR

CONTOUR DETECTION
Rafael Dı́az Fuentes, Javier Pino Torres, Victoria Hernández Mederos∗, and Jorge C. Estrada

Sarlabous

Instituto de Cibernética, Matemática y F́ısica, La Habana, Cuba.

ABSTRACT

In this paper we propose a method for computing the contour of an object in an image using a snake

represented as a subdivision curve. The evolution of the snake is driven by its control points which are

computed minimizing an energy that pushes the snake towards the boundary of the interest region.

Our method profits from the hierarchical nature of subdivision curves, since the unknowns of the

optimization process are the few control points of the subdivision curve in the coarse representation

and, at the same time, good approximations of the energies and their derivatives are obtained from

the fine representation. We develop the theory assuming that the subdivision scheme generating the

snake is linear stationary and uniform. To illustrate the performance of our method we develop a

computational tool called SubdivisionSnake, which computes the snakes associated with two classical

subdivision schemes: the four point scheme and the cubic B-spline. Our experiments using synthetic

and real images with SubdivisionSnake confirm that the proposed method is fast and successful.

KEYWORDS: subdivision, snakes, object segmentation.

MSC: 68U10, 65D18, 65D07

RESUMEN

En este art́ıculo se propone un método para calcular el contorno de un objeto en una imagen uti-

lizando una curva snake representada como una curva de subdivisión. La evolución de la curva snake

depende de sus puntos de control, los cuales se calculan minimizando una enerǵıa que empuja la

curva hacia la frontera de la región de interés. El método saca provecho de la naturaleza jerárquica

de las curvas de subdivisión, ya que las incógnitas del proceso de optimización son los pocos puntos

de control que se utilizan en la representación gruesa de la curva, mientras que la representación fina

de la curva permite obtener buenas aproximaciones de las enerǵıas y de sus derivadas. La teoŕıa se

desarrolla asumiendo que el esquema de subdivisión que genera la curva snake es lineal, estacionario y

uniforme. Para ilustrar el desempeño del método se desarrolló una herramienta computacional nom-

brada SubdivisionSnake, la cual calcula la curva snake correspondiente a dos esquemas clásicos de

subdivisión: el esquema de cuatro puntos y el esquema B-spline cúbico. Los experimentos utilizando

imágenes sintéticas y reales confirman que el método propuesto es rápido y funciona éxitosamente.

PALABRAS CLAVE: subdivisión, curvas snakes, segmentación de objetos .

∗vicky@icimaf.cu

238

1. INTRODUCTION

Active contours or snakes were introduced by Kass et al. in [28] as curves that slither within an image

from some initial position towards the contour of the object of interest. Snakes have become very

popular in segmentation and tracking applications [7], [18] since they are very flexible and efficient.

The evolution of the snake is formulated as a minimization problem and the corresponding objective

functions is usually known as snake energy. During the optimization process, the snake is iteratively

updated from a starting position until it reaches the minimum of the energy function. This energy

measures the distance between the snake and the boundary of the object. It also controls some

desirable properties of the final snake, such as the smoothness, the interpolation of distinguished

points, etc. The quality of segmentation is determined by the choice of the energy terms and the

starting position of the snake.

Kass et al. [28] originally formulated the snake energy as a linear combination of three terms: the

image energy, which only depends on the image, the internal energy, which ensures the smoothness of

the snake, and the constraint energy, which allows that the user interacts with the snake. The specific

definition of these energies depends on the application, on the nature of the image and also on the

representation of the snake. The image energy guides the snake to the boundary of the interest object

and it is the most important energy. It is usually defined as a weighted sum of a gradient based energy

[28], [33], that provides a good approximation of the contour of the object, and a region based energy

[22], [35], that distinguishes different homogeneous regions within the image. Gradient based energies

have a narrow zone of attraction in comparison with region based energies. Hence, the success of the

segmentation depends on the selection of the weight.

Snakes differ not only in the choice of the energy function but also in the representation of the curve.

According to the representation, snakes may be classified as point snakes [28], geodesic snakes [9], [1],

[38] and parametric snakes [32], [22],[6], [15]. Point-snakes simply consist of an ordered collection of

points. This representation depends on a large number of parameters (the snake points), which makes

the optimization expensive. Geodesic snakes are described as the zero level set of a higher-dimensional

manifold. This type of active contours is very flexible topologically. In consequence, it is suitable for

segmenting objects that have very variable shapes. A drawback of geodesic snakes is that they are

expensive from computational point of view. Parametric snakes are smooth curves written as a linear

combination of a basis of functions. The coefficients in this representation, known as control points,

are few. This makes faster the optimization process. The downside of parametric snakes is that the

parametrization restricts the shapes that can be approximated.

In this paper we focus on a particular class of parametric snakes: those obtained from linear and

stationary subdivision schemes. Subdivision schemes generate a curve starting from an initial set

of control points which, by the iterative application of refinement rules, becomes continuous in the

limit. Depending on the particular choice of the subdivision mask, the continuous limit curve may

have different degrees of smoothness. In the linear and stationary subdivision schemes, the limit

curve is a parametric curve, which can be written as a linear combination of the integer shifts of a

basic limit function, that is actually a scaling function. Subdivision curves have the multiresolution

property, which means that they can be easily represented in different scales. As a consequence,

239

snakes constructed as subdivision curves provides representations of the contour of a shape with

varying resolutions, a property that most of parametric snakes do not have.

1.1. Related work

In the context of image segmentation the most common parametric snakes are those producing B-

spline type curves, see for instance: [22], [6], [27] and [17]. But it is important to recall that these

papers, and many other where snakes are B-spline curves, never use the fact that B-spline are scaling

functions. Therefore, in these articles there is no notion of multiresolution representation of the snake.

The use of subdivision curves for segmentation was first proposed in [25], where the so called tamed

snake is introduced. This snake is generated by the classical four point subdivision scheme [19]. The

method incorporates image information considering the control points of the subdivision curve as

mass points attracted by edges of the image. The four point subdivision scheme is also used in [32] in

combination with the gradient vector flow. After every step of subdivision, the region energy of the

subdivision polygon is reversely computed and a local adaptive compensation is carried out, in such

a way that regions with high curvature are further subdivided, while flat regions remain unrefined.

In [29] a segmentation method called SketchSnakes is proposed. The method combines a general

subdivision curve snake with an initialization process based on few sketch lines drawn by the user

across the width of the target object. External image forces are computed at the points of the finer

level curve and then distributed, using weights derived from the original subdivision rules, among the

points of the coarse level. The positions of the control points are updated, new external forces are

calculated and the process is repeated until an accurate solution is reached.

More recently, exponential B-spline have been introduced to construct snakes that reproduce circular

and elliptical shapes [15], [16], [17], [13], [14]. In [3] subdivision snakes are obtained in a generic way

using a multiscale approach to speed up the optimization process and improve robustness. Depending

on the selected admissible subdivision mask, the snake may be interpolatory or reproduce trigono-

metric or polynomial curves. The multiscale approach facilitates to increase the number of points

describing the curve as the algorithm progresses to the solution and, at each step, the scale of the

image feature is matched to the density of the sample of the curve.

1.2. Our contribution

The proposed image energy, which is completely data driven, is a linear combination of a well known

edge-based term using gradient information to detect contours (see [3], [15], [26], [27]) and a new

region-based term which uses statistical information to discriminate different homogeneous regions.

Compared with the region-based energy used in [15],[26], [27], [3], in this paper we introduce a new

region energy designed to maximize the contrast between the average intensity of the image within

the snake and over the complement of the snake in a bounding box. This energy is simpler and

computationally cheaper than other similar energies proposed in the literature [10],[26], [27], [35],[15],

[4] because the bounding box, containing the object to be segmented, does not change during the

optimization. Moreover, the average intensity inside and outside the snake have neither to be estimated

a priori, nor to be included among the optimization parameters. Furthermore, we propose also an

240

algorithm to obtain a pixel-level discretization of the snake (see section 4.1.2.). This algorithm allows

to compute robust approximations of the region energy for images of either low or high resolution.

Finally, as part of this research, we develop a friendly and flexible computational application for object

segmentation, using two types of subdivision snakes: cubic B-spline and four points subdivision curves.

2. SUBDIVISION CURVES

2.1. Linear uniform stationary subdivision schemes

Denote by P0 a polygon in the plane. A subdivision scheme is a procedure that refines P0 producing a

sequence of polygons P1,P2, . . . with an increasing number of vertices. A linear, stationary, uniform

and binary subdivision scheme is based on the application of a refinement rule

pk+1
i =

∑
j∈Z

ai−2jp
k
j (2.1)

that computes the vertices pki = (xki , y
k
i) of the polygon Pk in the step k as a linear function of the

vertices of Pk−1. The coefficients a = {ai ∈ R, i ∈ Z} in (2.1)) are a called subdivision mask. In

practice, only a finite number of coefficients are different from zero. The subdivision scheme converges

if the sequence of piecewise linear functions fk(t) which satisfies the interpolation conditions

fk
(
i

2k

)
= pki , i ∈ Z (2.2)

converges uniformly. Denote by r(t) = (x(t), y(t)) the continuous limit function

r(t) = lim
k→∞

fk(t). (2.3)

This limit exists as long as the subdivision scheme applied to the functional data δ = {δi,0, i ∈ Z} =

{. . . , 0, 0, 1, 0, 0, . . .} converges. The corresponding limit function ϕ(t) is called basic limit function

and satisfies the refinement equation

ϕ(t) =
∑
j∈Z

ajϕ(2t− j). (2.4)

Due to the linearity of the subdivision rules, the subdivision curve r(t) can be written as a linear

combination of the integer shifts of ϕ(t),

r(t) =
∑
j∈Z

p0
jϕ(t− j). (2.5)

This representation can be used to define also the tangent vector to the curve (as well as the normal

vector),
d

dt
r(t) =

∑
j∈Z

p0
j

d

dt
ϕ(t− j). (2.6)

Even more, after (2.1), for any k ≥ 0 the subdivision curve may be expressed as,

r(t) =
∑
j∈Z

pkjϕ(2kt− j). (2.7)

241

From (2.7) we observe that,

r

(
i

2k

)
=
∑
j∈Z

p0
jϕ

(
i

2k
− j
)

=
∑
j∈Z

pkjϕ(i− j). (2.8)

In case of the interpolatory subdivision schemes, as ϕ(i− j) = δij , then it holds that,

r

(
i

2k

)
=
∑
j∈Z

pkj δ
i
j = pki . (2.9)

Also, according to (2.2) and (2.3) it holds,

r

(
i

2k

)
= lim
q→∞

fk+q

(
2qi

2k+q

)
= lim
q→∞

pk+q
2qi , q ∈ N. (2.10)

In case of interpolatory schemes the center and right hand expressions are limits of constant sequences

that converge to the point pki as stated in (2.9). Otherwise, the right hand sequence allows to analyze

the exact value of r
(
i/2k

)
, as it is done in (2.19).

Remark 2.1. A subdivision curve r(t) is usually represented by a polygon Pk whose vertices are

obtained after some refinements of an initial polygon P0. As k increases the polygon Pk provides a

better approximation of r(t). In this work we approximate r(t) by the polygon {r(i/2k)} whose vertices

are on the curve. For interpolatory subdivision schemes both Pk and {r(i/2k)} polygons are the same,

but they are different in the case of non-interpolatory schemes.

The expression (2.8) allows two options for the evaluation of the curve in dyadic parameters. The

first one uses the initial control polygon P0 and computes the evaluations ϕ
(
i

2k − j
)
. The second

subdivides the initial polygon k times and uses the polygon Pk. We choose the first option, since the

evaluation of ϕ
(
i

2k − j
)

for any i, j ∈ Z and k ∈ N can be done a priori storing the results in a lookup

table. The evaluation of the basic function at dyadic parametric values ϕ
(
i

2k − j
)

for any i, j ∈ Z
and k ∈ N can be computed as the subdivision of the polygon with vertices P0 =

{
(i, δ0

i), i ∈ Z
}

by

k times (see Figures 1 and 2).

In this work we are interested in closed curves that approximate the boundary of a region in a digital

image. Hence, if the curve r(t) has a control polygon with M vertices p0
i , i = 0, . . . ,M − 1, then the

polygon is periodically extended assuming that p0
i+M = p0

i for all i ∈ Z. Under this assumption, we

obtain from (2.5))

r(t+M) =
∑
j∈Z

p0
jϕ(t+M − j) =

∑
i∈Z

p0
i+Mϕ(t− i) (2.11)

=
∑
i∈Z

p0
iϕ(t− i) = r(t),

i.e., the subdivision curve is periodic with period M . For more details about subdivision schemes, see

[20].

242

2.2. Exact evaluation of linear uniform stationary subdivision schemes

To illustrate the performance of our method we discuss in details two classical subdivision schemes: the

four point and the cubic B-spline. The first one is interpolatory while the second is non-interpolatory.

Since the interpolation of the points provided by the user is the more natural starting point for the

snake, we explain in the case of the cubic B-spline how to compute the initial control polygon in such

a way that the B-spline curve passes through the given set of points.

In the next sections we describe the subdivision schemes chosen to generate the snake curves. More-

over, we provide the expressions needed to evaluate the subdivision curves and their derivatives at

dyadic parameters.

2.2.1. Four points subdivision scheme

The four point subdivision scheme [19], also known as DLG, is a linear, stationary and uniform

subdivision scheme, depending on a tension parameter ω. The rules that define this scheme are

pk+1
2i = pki (2.12)

pk+1
2i+1 =

(
ω +

1

2

)(
pki + pki+1

)
− ω

(
pki−1 + pki+2

)
(2.13)

The scheme is interpolatory since the rule (2.12) implies that the set of points of the step k+1 contains

the points of the previous step. Hence, the control points p0
i are interpolated by functions fk(t) for

all k ≥ 0 and thus they belong to the limit curve that we denote by rω(t), to recall that it depends

on the free parameter ω. This curve is continuous if ω is in the interval (0, 1
4) and it has a continuous

tangent vector when ω ∈
(

0,
√

5−1
8

)
. The basic limit function ϕω of the DLG scheme has support

[−3, 3], as it is shown in Figure 1 for ω = 1
16 .

ϕ(t)

t

1

-3 -2 -1 1 2 30

(a) Values of ϕ 1
16

(s), s ∈ Z

ϕ(t)

t

1

-3 -2 -1 1 2 30

(b) Values of ϕ 1
16

(s), s ∈ 1
2Z

ϕ(t)

t

1

-3 -2 -1 1 2 30

(c) Values of ϕ 1
16

(s), s ∈ 1
4Z

ϕ(t)

t

1

-3 -2 -1 1 2 30

(d) Values of ϕ 1
16

(s), s ∈ 1
8Z

Figure 1: Generating the values of the basic function for the 4-point subdivision scheme.

Since the subdivision rules (2.12)-(2.13) depend on 4 points to get a closed curve we need a closed

polygon composed by M + 3 points P0 = {p0
−1,p

0
0, . . . ,p

0
M−1,p

0
M ,p

0
M+1}, where p0

−1 = p0
M−1,

243

p0
M = p0

0 and p0
M+1 = p0

1. Hence, if the initial polygon has M vertices, then expression (2.5) for the

subdivision curve is reduced to

rω(t) =

M+1∑
j=−1

p0
jϕω(t− j), 0 ≤ t ≤M (2.14)

where ϕω(t) is the basic limit function of the four point subdivision scheme with parameter ω.

If we denote by tki the tangent vector to the subdivision curve at pki , then it holds:

tki =
d

dt
rω(t)

∣∣∣∣
t= i

2k

=
2k

1− 4ω

(
1

2
(pki+1 − pki−1)− ω(pki+2 − pki−2)

)
. (2.15)

Remark 2.2. In practice, we use (2.15) only to compute ϕ′(i/2k), obtained with {p0
i = (i, δ0

i)}. The

tangent vector for any subdivision curve is computed by using (2.6).

Recall that for i = 0, . . . , 2kM − 1 the subdivision curve rω(t) of the DLG scheme satisfies

rω

(
i

2k

)
= pki ,

drω
dt

(
i

2k

)
= tki . (2.16)

In what follows we use the notation tki = (txki , ty
k
i).

The best value for the parameter ω with respect to the regularity of the limit curve is ω = 1
16 [21]. In

the rest of this paper we consider only this case.

2.2.2. Cubic B-spline subdivision scheme

This linear, stationary and uniform subdivision scheme is defined by the rules:

pk+1
2i = 1

8pki−1 + 6
8pki + 1

8pki+1 (2.17)

pk+1
2i+1 = 1

2pki + 1
2pki+1 (2.18)

and generates as limit a cubic B-spline curve that is C2-continuous. The basic limit function ϕ for

this scheme has support [−2, 2], as it is shown in Figure 2.

Since this scheme is not interpolatory, the points in Pk don’t belong to the limit curve. Nevertheless,

following (2.10) it can be proved [34] that:

r

(
i

2k

)
= 1

6pki−1 + 4
6pki + 1

6pki+1. (2.19)

Remark 2.3. Recall that in this work, we don’t compute the values r
(
i/2k

)
using (2.19) for any

polygon P0 and its refinements. Instead, we store in a lookup table the pre-computed values of ϕ
(
i

2k

)
for i ∈ Z and a previous fixed value of k ∈ N, obtained from the initial data P0 =

{
(i, δ0

i), i ∈ Z
}

.

Then, we use:

r

(
i

2k

)
=
∑
j∈Z

p0
jϕ

(
i

2k
− j
)
.

Taking into account that P0 changes during the optimization of the snake the previous strategy reduces

the computational cost.

244

ϕ(t)

t

1

-2 -1 1 20

(a) Values of ϕ(s), s ∈ Z

ϕ(t)

t

1

-2 -1 1 20

(b) Values of ϕ(s), s ∈ 1
2Z

ϕ(t)

t

1

-2 -1 1 20

(c) Values of ϕ(s), s ∈ 1
4Z

ϕ(t)

t

1

-2-2 -1 1 20

(d) Values of ϕ(s), s ∈ 1
8Z

Figure 2: Generating the values of the basic function for the cubic B-spline subdivision scheme.

Since the subdivision rules (2.17)-(2.18) depend on 3 points to get a closed curve we need a closed

polygon composed by M+2 points P0 = {p0
−1,p

0
0, . . . ,p

0
M−1,p

0
M}, where p0

−1 = p0
M−1 and p0

M = p0
0.

Hence, if the initial polygon has M vertices, then the expression (2.5) for the subdivision curve is

reduced to,

r(t) =

M∑
j=−1

p0
jϕ(t− j), 0 ≤ t ≤M (2.20)

where ϕ(t) is the basic limit function of cubic B-spline subdivision scheme.

If we denote by tki the tangent vector to the subdivision curve at pki , then,

tki =
d

dt
r(t)

∣∣∣∣
t= i

2k

=
1

2

(
pki+1 − pki−1

)
. (2.21)

The use of this expression follows the same argument as in Remark 2.2..

Approximating subdivision curves do not interpolate their control points. Since control points are the

degrees of freedom, this property makes approximating subdivision snakes less intuitive in interactive

segmentation than interpolating subdivision snakes. To overcome this limitation, we explain now

how to compute the control points P̃0 of the cubic B-spline curve interpolating the vertices of the

initial polygon introduced by the user. This new strategy, different from other works as [6], unifies

the treatment of approximating and interpolating subdivision snakes, making the initialization and

interaction more user-friendly.

The control polygon P̃0 depends linearly on the polygon P0 as it is shown in the following.

Theorem 2.4. The subdivision curve generated by the cubic B-spline scheme that interpolates the set

of points P0 has control points P̃0 given by,

P̃0 = AP0, (2.22)

245

p̃0
0 p̃0

1

p̃0
2p̃0

3

p0
0 p0

1

p0
2p0

3

Figure 3: Interpolation of given set of points P0 by the cubic B-spline subdivision scheme

where the elements of matrix A = [as,t]
M−1,M−1
s=0,t=0 are given by:

as,t =

1
M + 3

M cos(sπ) + 2
M

M
2 −1∑
j=1

(
2

3
+

1

3
cos(2jπ/M)

)−1

cos(2(s− t)π/M), for M mod 2 = 0,

1
M + 2

M

bM2 c∑
j=1

(
2

3
+

1

3
cos(2jπ/M)

)−1

cos(2(s− t)π/M), for M mod 2 = 1.

See the proof in Appendix A. Figure 3 shows the points P0 to be interpolated by the cubic B-spline

and the control polygon P̃0 computed using (2.22).

3. SNAKE ENERGIES

In the rest of the paper we denote by Γ the object to be segmented in the given digital image and by

∂Γ its boundary. Our main goal is to compute a snake that approximates automatically ∂Γ. In the

literature, the evolution of the snake is driven by the minimization of several energies that measure

the proximity between the snake and ∂Γ and also some desirable properties of the snake like the

smoothness, the interpolation of distinguished points and so on.

Since our snake is a subdivision curve, the total energy Esnake, depends on the initial control polygon

P0 of the snake in the representation (2.5). The control polygon P0
∗ of the optimal snake is computed

as:

P0
∗ = arg min

P0
Esnake(P0). (3.1)

Here we assume that the region of interest Γ to be segmented is dark in comparison to the background.

Hence, the energy functionals related with the image are designed to detect dark objects on a brighter

background. This is not a limitation of the proposed method, since it can be easily adapted to the

contrary case.

All the energies are defined by integrals of functions which are computed approximately. To obtain

good approximations we use a large sample of points on the subdivision curve. In the following sections

we develop the expressions for each energy.

Remark 3.1. Images are represented in a system of coordinates defined by rows and columns, like

the indexing of a matrix. Thus, if a pixel has coordinates (x, y), the x-coordinate refers to the row and

246

the y-coordinate refers to the column (see for example Figure 4). This does not affect the definition

and use of the subdivision schemes, since each coordinate in (2.5) works independently.

3.1. Gradient energy

If I(x, y) denotes the image intensity at a pixel with coordinates (x, y) and r(t) = (x(t), y(t)) is

a parametric curve living on the image for t ∈ [0,M], the simplest image energy is the gradient

magnitude energy Emag given by:

Emag(r(t)) = −
∫ M

0

‖∇I(r(t))‖2 dt (3.2)

where ‖∇I(r(t))‖2 =
(
∂I
∂x (x(t), y(t))

)2
+
(
∂I
∂y (x(t), y(t))

)2

. Since the gradient magnitude energy

only depends on the magnitude of the gradient vector, the minimization of (3.2) can misguide the

snake to a neighboring object if the initial approximation is not very close to the boundary of interest.

To overcome this limitation, several alternative energies has been proposed, like balloon forces [12],

gradient vector-fields [37], [26],[27] or multiresolution approaches [6].

In this paper we use the gradient based image energy Egrad proposed in [26]. The idea behind this

approach is the following. If we travel around the ground truth boundary curve ∂Γ in counterclockwise

direction, then Γ is always on the “left”, i.e in the direction of −∇I. Hence, we pull the snake in the

direction of ∂Γ, requiring the normal to snake at any point to be parallel to −∇I at the same point.

More precisely, if we denote by n(t) the inward unit normal to snake at the point r(t), then the new

energy Egrad, which takes into account not only the magnitude of the image gradient but also its

direction is given by:

Egrad(r(t)) = −
∫ M

0

〈∇I(r(t)),

∥∥∥∥dr(t)

dt

∥∥∥∥n(t)〉 dt (3.3)

where 〈·, ·〉 is the usual scalar product and dr(t)
dt denotes the tangent to r(t). Expanding (3.3) we

obtain

Egrad(r(t)) = −
∫ M

0

(
∂I

∂x
(x(t), y(t))

dy(t)

dt
− ∂I

∂y
(x(t), y(t))

dx(t)

dt

)
dt. (3.4)

To obtain good approximations of the energies (and their derivatives with respect to the coordinates of

control points) we use a large sample of points on the subdivision curve. More precisely, given the initial

polygon P0 = {p0
0, . . . ,p

0
M−1}, we select k (in our experiments we take k = 4 or k = 5) and we use

(2.5) to generate 2kM points r(i/2k), i = 0, . . . , 2kM−1 on the subdivision curve. Moreover, we apply

bilinear interpolation on the gradient of the image to compute ∇I(r(i/2k)). Finally, we approximate

the energy substituting the integral in (3.4) by the average of values of the integrand over the sample

of 2kM points on the subdivision curve corresponding to parameter values i
2k , i = 0, . . . , 2kM − 1.

Taking into account (2.5) we obtain1 the following approximation of (3.4):

Egrad(P
0) ≈ 1

2kM

2kM−1∑
i=0

∂I
∂y

∑
j∈Z

p0
jϕ(i

2k − j)

 txki −
∂I

∂x

∑
j∈Z

p0
jϕ(i

2k − j)

 tyki

 (3.5)

1Recall that the indices of the inner summations depend on the choice of the subdivision scheme, see (2.14) and

(2.20).

247

where txki = dx
dt

(
i/2k

)
and tyki = dy

dt

(
i/2k

)
, so that

(
txki , ty

k
i

)
= dr

dt

(
i/2k

)
.

It should be noticed that the right hand side of (3.5) is a function of the coordinates of the initial

control points P0.

3.2. Region energy

The main disadvantage of gradient based energy (3.3) is that its zone of attraction is limited, since the

gradient is small as long as we move away from ∂Γ. To face this problem several region energies have

been introduced in the literature [33], [11], [10],[35], [15]. Some of them use statistical information to

identify different regions [26], [27],[35], [4].

Inspired in the energies proposed in [10], [15] and [35] we introduce here a simple region energy Ereg,

designed to maximize the contrast between the average intensity of the pixels within the snake and the

average intensity in the region outside the snake and inside a given bounding box. We denote by Ω the

region enclosed by the snake r(t) = (x(t), y(t)), t ∈ [0,M]. Moreover, we assume that a rectangular

region R, containing in its interior the object Γ to be segmented and also the initial control polygon

P0 of the snake, has been selected. Let |R| be the area of R and let |Ω| be the area of Ω (which may

vary while the snake evolves). Then the new region energy Ereg to be minimized is given by,

Ereg(P
0) := −

(∫ ∫
Ω
I(x, y)dxdy

|Ω|
−

∫ ∫
R\Ω I(x, y)dxdy

|R| − |Ω|

)2

. (3.6)

Recall that minimizing Ereg is equivalent to maximize the difference between the average intensity

inside Ω and the average intensity in the complement of Ω in R.

The region energy (3.6) may be written as,

Ereg(P
0) = −

(
IΩ
|Ω|
− IR − IΩ
|R|−|Ω|

)2

. (3.7)

where

IΩ =

∫ ∫
Ω

I(x, y)dxdy and IR =

∫ ∫
R

I(x, y)dxdy

denote the average intensity of the image inside r(t) and R respectively.

Observe that even when our region energy (3.6) is similar to the energy proposed in [15], there are

some substantial differences. First, in [15] the enclosing ellipse rλ (boundary of the region enclosing

the object to be segmented) is a dilatation of the best elliptical approximation re to the active contour

r. As the active contour r evolves, re and rλ change, thus in each iteration of the optimization process,

the area |Ω|, the average intensity IΩ of the image inside r, and the average intensity of the image in

the complement of the region enclosed by r with respect to the region enclosed by rλ must be updated.

In comparison, our approach based on region energy (3.6) is computationally less expensive because

the enclosing reference region (containing the active contour and the object) is a rectangle R, selected

initially by the user, that remains fixed during the evolution of the snake. As a consequence, its area

|R| and the average intensity IR of the image inside R are computed only one time. Hence, as the

active contour r evolves, in each iteration of the optimization process, only |Ω| and IΩ must be updated

in (3.7).

248

Since region energies are usually expressed as integrals of a function over the domain Ω enclosed by the

snake, some authors propose the use of Green’s theorem to rewrite the 2D integrals as line integrals

along the snake [15],[17],[27]. In particular, if we apply it to the function I(x, y) we obtain

IΩ =

∫ ∫
Ω

I(x, y)dxdy =

∫
∂Ω

I1(x, y)dy = −
∫
∂Ω

I2(x, y)dx (3.8)

where

I1(x, y) =

∫ x

−∞
I(τ, y)dτ and I2(x, y) =

∫ y

−∞
I(x, τ)dτ. (3.9)

Thus, if ∂Ω is parametrized by r(t) = (x(t), y(t)), 0 ≤ t ≤M , then from (3.8)) it holds

IΩ =

∫ M

0

I1(x(t), y(t))
dy(t)

dt
dt = −

∫ M

0

I2(x(t), y(t))
dx(t)

dt
dt. (3.10)

This approach reduces significantly the computational cost, but in our experiments we have found

that large errors may be introduced when we use it to compute the integrals in (3.6), in a digital

images context. In papers based on this approach, line integrals (3.9) are approximated using a

sample of points on the snake and summing up the contributions of column or row image pixel strips

corresponding to each point on the snake. But even if the snake is parametrized by a multiple of the

arc length, the distribution on the image of the sample of points may be very irregular. For instance, if

the image has low resolution then some points may belong to the same pixel overestimating the value

of the integral. On the contrary, if the image has high resolution then those rows or columns of Ω

without any point of the sample do not contribute to the computation producing an underestimate of

the integral. We propose instead a sort of rasterization of ∂Ω in order to describe it and compute then

(3.6) by means of the pixels in Ω and their values of intensity (see Figure 8). It should be noticed that

the subdivision curve r(t) is represented as a polygon with vertices in {r(i/2k), i = 0, . . . , 2kM − 1}
living on the image. Then, it should be observed that r(i/2k) = (xki , y

k
i) is represented on the image

by the pixel with coordinates (dxki e, dyki e).
In our rasterization algorithm of the snake (detailed in Section 4.1.2.), the integral of the intensity

is computed approximately summing up (with sign) the contribution of each horizontal image strip

intersected by Ω, see Figure 4. The value lij is the index of the column of the pixel that results from

the intersection of the edge [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
] with the j-th row of the image. Then,

IΩ =

∫ ∫
Ω

I(x, y) dx dy ≈
2kM−1∑
i=0

sign(xki − xki+1)

dxk
i+1e∑

j=dxk
i e

lij∑
l=1

I(l, j). (3.11)

The values of

lij∑
l=1

I(l, j) can be pre-computed in a lookup table to speed up the implementation.

In particular, the approximation of the area of Ω enclosed by the subdivision curve is,

|Ω| =
∫ ∫

Ω

dx dy ≈
2kM−1∑
i=0

sign(xki − xki+1)

dxk
i+1e∑

j=dxk
i e
lij . (3.12)

Finally, (3.11) and (3.12) are substituted in (3.7) to obtain the approximation of the region energy.

249

r(0)

r(1)

r(2)

r(3)r(4)

r(5)

r(6)

r(7)

(a) Representing Ω

− (s, l5s)

+ (t, l0t)

r(0)

r(1)

r(2)

r(3)r(4)

r(5)

r(6)

r(7)

(b) The strips used to approximate the integral in Ereg

Figure 4: Pixels considered to compute the region-based energy. Observe that pixel’s coordinates are

in the coordinate system of the image (row, column).

3.3. Optimization

To obtain the optimal position of the control points of the snake we minimize the total energy given

by,

Esnake(P0) = αEgrad(P
0) + (1− α)Ereg(P

0). (3.13)

The optimization problem is solved using the BFGS Quasi-Newton method with a cubic line search

procedure. This method requires the gradient of the snake energy with respect to the variables of

our problem: the coordinates (x0
j , y

0
j) of the control points p0

j , j = 0, . . . ,M − 1. In this section we

give the expressions of the approximations of partial derivatives of each energy with respect to each

coordinate x0
j and y0

j .

3.3.1. Derivatives of gradient energy

From (3.4) we obtain (see Appendix B for more details),

∂Egrad
∂x0

j

=

∫ M

0

((
∂2I

∂x∂y

∂x

∂t
− ∂2I

∂x2

dy

dt

)
∂x

∂x0
j

+
∂I

∂y

∂
(
dx
dt

)
∂x0

j

)
dt. (3.14)

Substituting the integral in (3.14) by the average of the integrand evaluated in the parameter values

i/2k, i = 0, . . . , 2kM − 1 we obtain (see more details in Appendix B) the following approximation for

the partial derivative of gradient energy with respect to x0
j ,

∂Egrad
∂x0

j

≈ 1

2kM

2kM−1∑
i=0

(
∂2I

∂x∂y

(
r

(
i

2k

))
tkix −

∂2I

∂x2

(
r

(
i

2k

))
tkiy

)
ϕ

(
i

2k
− j
)

+

1

2kM

2kM−1∑
i=0

∂I

∂y

(
r

(
i

2k

))
ϕ

′
(
i

2k
− j
)
. (3.15)

Proceeding in a similar way, from (3.4) we obtain,

∂Egrad
∂y0

j

=

∫ M

0

(∂2I

∂y2

∂x

∂t
− ∂2I

∂x∂y

dy

dt

)
∂y

∂ykj
+
∂I

∂x

∂
(
dy
dt

)
∂ykj

 dt. (3.16)

250

Discretizing the integral with the same procedure, from (3.16) we obtain the following approximation

for the partial derivative of gradient energy with respect to y0
j ,

∂Egrad
∂y0

j

≈ 1

2kM

2kM−1∑
i=0

(
∂2I

∂y2

(
r

(
i

2k

))
tkix −

∂2I

∂x∂y

(
r

(
i

2k

))
tkiy

)
ϕ

(
i

2k
− j
)

+

1

2kM

2kM−1∑
i=0

∂I

∂x

(
r

(
i

2k

))
ϕ

′
(
i

2k
− j
)
. (3.17)

3.3.2. Derivatives of region energy

In order to find the optimal control polygon we have to compute the partial derivatives of Ereg with

respect to the coordinates (x0
j , y

0
j) of the control points {p0

j , j = 0, . . . ,M − 1}. Since IR is constant,

from (3.7) we obtain,

∂Ereg
∂x0

j

= −2D

(
∂A

∂x0
j

− ∂B

∂x0
j

)
(3.18)

where

A :=
IΩ
|Ω|

, B :=
IR − IΩ
|R| − |Ω|

and D := A−B.

Proceeding as it is shown in Appendix B it can be proved that (3.18) is equals to,

∂Ereg
∂x0

j

= −2D

∫ M

0

(G−H I(r(t)))ϕ(t− j)y′(t)dt (3.19)

where

G :=
IΩ
|Ω|2

+
IR − IΩ

(|R| − |Ω|)2
and H :=

1

|Ω|
+

1

|R| − |Ω|
.

Proceeding in a similar way and deriving in the second equality of (3.8) it is easy to check that

∂Ereg
∂y0

j

= 2D

∫ M

0

(G−H I(r(t)))ϕ(t− j)x′(t)dt. (3.20)

In practice, we approximate (3.19) and (3.20) by

∂Ereg
∂x0

j

≈ − D̃

2k−1M

2kM−1∑
i=0

[
G̃− H̃I

(
r

(
i

2k

))]
ϕ

(
i

2k
− j
)
y′
(
i

2k

)
∂Ereg
∂y0

j

≈ D̃

2k−1M

2kM−1∑
i=0

[
G̃− H̃I

(
r

(
i

2k

))]
ϕ

(
i

2k
− j
)
x′
(
i

2k

)
where D̃, G̃ and H̃ denote the approximations of D,G and H respectively obtained from the approx-

imated values of IR, IΩ, |Ω| and |R| in (3.11) and (3.12).

4. IMPLEMENTATION

In this section we give some details about the computation of the energies previously introduced.

Moreover, we describe the main features of the application SubdivisionSnake, which is able to compute

the subdivision snakes produced by cubic B-spline and 4-point subdivision curves.

251

4.1. Details about the energies

For the implementation of energies it is necessary to define how to compute the gradient of an image

in a point, the area enclosed by a curve, and others details. In the following we discuss these themes.

4.1.1. Gradient energy

Since the image I is only defined in points with integer coordinates, the evaluation of I and its partial

derivatives in a point (x, y) ∈ R2 is approximated using bilinear interpolation. In particular, ∇I in

3.5 is approximated as,

∇I(x, y) := ∇I(bxc, byc) (1− {x})(1− {y}) +∇I(bx+ 1c, byc) {x}(1− {y})+

∇I(bxc, by + 1c) (1− {x}){y}+∇I(bx+ 1c, by + 1c){x}{y}, (4.1)

where {x} = x− bxc denotes the fractional part of x.

The gradient of the image in a pixel can be approximated using different filters such as Prewitt and

Sobel [24] (see Figure 5). Since we evaluate the gradient in points that belong to the snake, it is

convenient to extend the width of the filter in order to increase the region of attraction of gradient

energy (see Figure 6). Consequently, we use a generalization of the Prewitt filter of (2q + 1)× (2q + 1)

pixels, to compute the gradient in those pixels with distance greater or equal to q > 0 (see Figure

7) to the boundary of the image. For the rest of the pixels we use Sobel filter to approximate the

gradient. The constant value q depends on the image dimensions.

1

0

-1

1

0

-1

1

0

-1

∂I
∂x

-1 0 1

-1 0 1

-1 0 1

∂I
∂y

(a) Prewit: for ∂I
∂x (left) and ∂I

∂y (right)

1

-1

1

-1

0 0 0

2

-2

∂I
∂x

-1 1

-1 1

0

0

0

-2 2

∂I
∂y

(b) Sobel: for ∂I
∂x (left) and ∂I

∂y (right)

Figure 5: Some known filters to compute approximations of the gradient in a pixel.

(a)Image I (b)Filter Sobel: ∂I
∂x

(c)Filter Sobel: ∂I
∂y (d)Filter 7 × 7: ∂I

∂x
(e)Filter 7 × 7: ∂I

∂y

Figure 6: Partial derivatives computed using filters of different sizes. a) Original images, b) and c)

Sobel’s filter, d) and e) the proposed 7× 7 filter.

252

1

0

-1

1

0

-1

. . .

. . .

. . .

1

0

-1

1

0

-1

...
...

...
...

1 1 1 1

-1 -1 -1 -1

. . .

. . .

q

q

2q + 1

-1 0 1

-1 0 1

...
...

...

-1 0 1

-1 0 1

. . .

. . .

. . .

. . .

-1

-1

-1

-1

1

1

1

1

. . .
. . .

q q

2q + 1

Figure 7: Proposed filter to compute approximations of the gradient of an image: for ∂I
∂x (left) and

∂I
∂y (right).

The gradient of the image in each pixel is pre-computed and stored in a lookup table, so that the

evaluations in (3.5), (3.15) and (3.17) use the stored values.

4.1.2. Region energy

The first step to compute the integrals (3.6) defining the region energy is to obtain a sequence of

pixels that approximates the snake, that is represented by the polygon with vertices {r(i/2k) =

(xki , y
k
i), i = 0, . . . , 2kM−1}. The problem is reduced to the rasterization of each edge of that polygon.

Rasterization algorithms provide the pixels that are intersected by a straight line (see Figure 8.1).

Since these are more pixels than the ones needed to describe the region Ω enclosed by a closed polygon,

we select for each horizontal line only one pixel per edge of the polygon 2. To obtain these pixels,

called boundary pixels, we determine for the horizontal line j the pixels (j, lij) that are simultaneously

on the line and on the edge [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
]. If the result of the previous operation is more

than one pixel, then we select the outer pixel with respect to the region enclosed by the subdivision

curve (see Figure 8.2). Consequently, we proceed as follows.

We classify the edge [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
] as downhill, horizontal or uphill if the sign of xki − xki+1

is negative, zero or positive, respectively 3. To compute approximately the integrals in (3.6) it is

necessary to chose, for a given edge [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
], one pixel with coordinates (j, lij) for

each image row j, with min{dxki e, dxki+1e} ≤ j ≤ max{dxki e, dxki+1e}. The value of lij depends on the

previous edge classification as follows. Let ri(x) be the equation of the line passing through the pixels

(dxki e, dyki e) and (dxki+1e, dyki+1e), then,

ri(x) = dyki e+
dyki+1e − dyki e
dxki+1e − dxki e

(x− dxki e).

If [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
] is a downhill edge (see Figure 8.2, edge [r (4) , r (5)]) then,

lij = min {dri(j)e , dri(j + 1)e} , j ∈
[⌈
xki
⌉
,
⌈
xki+1

⌉]
(4.2)

2We choose the horizontal direction without loss of generality, the same result is obtained if the vertical direction is

chosen.
3Remember that we are using the system of coordinates defined by (row, column).

253

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

r(6)

Figure 8.1: Rasterization of straight lines.

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

r(6)

Figure 8.2: Boundary pixels to describe the boundary.

Figure 8: Pixel discretization of a straight line for a left edge and a right edge describing the boundary

of a region.

If [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
] is a uphill edge (see Figure 8.2, edge [r (1) , r (2)]) then,

lij = max {dri(j)e , dri(j + 1)e} , j ∈
[⌈
xki+1

⌉
,
⌈
xki
⌉]

(4.3)

Finally, if [r
(
i/2k

)
, r
(
(i+ 1)/2k

)
] is a horizontal edge, then there is no need to define the value of lij

as sign(xki − xki+1) = 0 in (3.11) and (3.12). In this case, the description of the boundary makes use

of the neighboring edges.

In order to describe the boundary of the region enclosed by the subdivision curve, we store pairs of

boundary pixels with respect to each horizontal. The amount of pairs on each horizontal line depends

on the convexity of the curve (see Figure 9). It should be noticed that a boundary pixel may be

simultaneously the right pixel of a pair and left pixel of the next pair in the same horizontal line, see

for example the pixel corresponding to r(7) in Figure 9.

r(0)

r(1)

r(2)
r(3)

r(4)

r(5)

r(6)

r(7)

Figure 9: Description of the boundary of a region with pairs of boundary pixels.

254

4.2. SubdivisionSnake Application

The segmentation technique proposed in this paper has been implemented in C# with .NET platform

(version 4.5). The optimization step, based on Limited memory BFGS method [8], is done using the

library Optimization.dll of Accord.NET [2]. The resulting application is called SubdivisionSnake

and it is independent of any imaging hardware.

Currently, SubdivisionSnake application is able to compute two types of subdivision snakes: cubic

B-spline (2.17)-(2.18) and four points subdivision curves (2.12)-(2.13). Other subdivision curves could

be easily added to the application if a procedure for evaluating the curve and its partial derivatives at

dyadic parametric values is included. The interaction with the user is very simple and only requires

an initial polygon approximating the boundary of the object to be segmented and a bounding box

containing the object to be segmented and the initial polygon. As illustrated in Figure 10, the position

of any control point can be intuitively manipulated on the image with simple mouse actions. The

snake is updated in real-time since control points have local influence and therefore only a small region

of the snake has to be recomputed. The resulting tool is a semi-automatic and intuitive segmentation

algorithm based on the position of the control points and consisting of three fundamental steps:

initialization, optimization and correction.

Initialization. Segmentation Interaction with the control points

Figure 10: Interaction of the user with SubdivisionSnake application.

SubdivisionSnake application has a main window to load the image and set the free parameters. This

window contains the following options:

• Load and save image: this option load the target image and save the segmented image. The

application accepts .jpg, .gif , .bmp, .png and .tif images. Color images are transformed in

gray images at the beginning of the processing.

• Target color object: using this option the user says if the object to be segmented is darker than

the background (default option) or the contrary.

• Control points: the application offers several options related to the control points of the snake.

Clicking on the image, the initial position of control points can be defined. It is also possible

to delete a control point or to change its position (dragging the mouse). Finally, control points

can be saved or loaded to be reused.

• α: this options allows the selection of a value in [0, 1] for the parameter α.

255

By default, we use α = 0.1 at the beginning of the optimization and α = 0.9 in the last steps of

the optimization since gradient based energies have a narrow zone of attraction in comparison

with region based energies. This means that in the default option the region energy controls

initially the movement of the snake inducing his fast displacement. When the position of the

snake stabilizes the value of α changes automatically to α = 0.9 and then the gradient energy

pushes the snake to the boundary of the object.

Otherwise, the selected α does not change during all the optimization process.

• Visualize: this option is used to visualize the snake and its control polygon.

5. RESULTS

To illustrate the performance of SubdivisionSnake we experiment with two group of images. The first

group is composed by synthetic images. These images are created in such a way that the boundary

of the object to be segmented is clear e intuitive. Some synthetic images used in this paper were

produced filling the interior of closed subdivision curves with a color that makes a good contrast with

the background. Other synthetic images were obtained using .seg files of Berkeley data base [5]. From

these files it is possible to know which pixels belong to each object to be segmented in the image. The

syntectic image is obtained assigning a specific color to these pixels and a contrasting color to the

rest of pixels. In general, synthetic images are simpler than the real images included in the second

group. In our experiment we also use real images from Berkeley data base and from other sources.

All the examples shown in this section are the direct result of the optimization process, without any

previous denoising, smoothing or interactive correction. Color images are transformed to gray level

images using the standard perceptual weightings for the three-color components [24].

5.1. Quantitative evaluation of results

When we work with synthetic images the ground-truth region, composed by pixels belonging to the

object Γ, is known. In some real images of Berkeley database, the ground-truth is also given. In all

these cases it is possible to validate quantitatively the quality of the results using the Jaccard distance

J between Γ and the region Ω enclosed by the snake, given by

J = 1− |Ω ∩ Γ|
|Ω ∪ Γ|

where |G| denotes the area of region G. Observe that 0 ≤ J ≤ 1 and a value of J close to 0 indicates

a good segmentation.

Table 1 shows the segmentation results obtained for images in Figures 11, 12 and 13, with the default

selection of the parameter α. We use the same sequence of control points P0 to initialize the snake

based on cubic B-splines and on 4-point subdivision scheme. In the case of the B-splines, we compute

initially the sequence of points P̃0 (2.22) such that the corresponding cubic B-spline interpolates

the points P0. Columns 2 and 3 of Table 1 contain the Jaccard distance between Γ and the region

Ω enclosed by the cubic B-spline snake in the initialization step and after convergence, respectively.

256

Image # control points cubic B-spline 4-point

Initialization Segmentation Initialization Segmentation

Synthetic image 26 0.4019 0.0168 0.3935 0.0196

Airplane 23 0.3137 0.0837 0.3099 0.0772

Japanese garden 8 0.5091 0.0471 0.5134 0.0463

Table 1: Jaccard distance for images in Figures 11, 12 and 13.

Similarly, columns 4 and 5 contain the Jaccard distance for the 4 points subdivision snake. We observe

that despite of the different nature of the images, the Jaccard distance in the optimum is very small

for both subdivision snakes, in correspondence with a good segmentation of the target objet.

Initialization Segmentation Initialization Segmentation

Figure 11: Synthethic image corresponding to the results reported in Table 1. a) and b) 4 points

snake, c) and d) cubic B-spline snake.

Initialization Segmentation Initialization Segmentation

Figure 12: Airplane image corresponding to the results reported in Table 1. a) and b) 4 points snake,

c) and d) cubic B-spline snake.

Initialization Segmentation Initialization Segmentation

Figure 13: Japanese garden image corresponding to the results reported in Table 1. a) and b) 4 points

snake, c) and d) cubic B-spline snake.

5.2. Influence of the number of control points

The number of control points has a strong influence in the quality of the segmentation. In general,

increasing the number of control points improves the quality of segmentation, but makes higher the

257

control points cubic B-spline 4-point

Initialization Segmentation Initialization Segmentation

8 0.3630 0.1653 0.3581 0.1873

10 0.3682 0.0637 0.3539 0.0788

12 0.3681 0.0388 0.3411 0.0589

Table 2: Influence of the number of control points in the quality of the segmentation measured by the

Jaccard distance.

computational cost. Table 2 shows that if one selects initial polygons with different number of control

points but approximately the same Jaccard distance, then the better segmentation corresponds to

the snake with the highest number of control points. This result is valid for both subdivision snakes.

Figures 14 and 15 correspond to the results in Table 2 for 8 and 12 control points respectively. The

improvement of the segmentation is evident when we compare Figure 14 b) with Figure 15 b) and

Figure 14 d) with Figure 15 d).

Initialization Segmentation Initialization Segmentation

Figure 14: Images corresponding to the results in Table 2 with 8 control points. a) and b) 4 points

snake, c) and d) cubic B-spline snake.

Initialization Segmentation Initialization Segmentation

Figure 15: Images corresponding to the results in Table 2 with 12 control points. a) and b) 4 points

snake, c)and d) cubic B-spline snake.

5.3. Some results with real images

To show the potential of the subdivision snakes to segment objects in real images, we include in this

section the results corresponding to three images: a cerebral hemorrhage (Figure 16), a cell (Figure

17) and a hail (Figure 18). In general, processing real images is more involved than synthetic images,

since several factors may affect the segmentation procedure. In some cases the boundary of the object

of interest may be blurred, see for instance Figures 16 and 17). In other cases, the object to be

segmented has inhomogeneous intensity values and poor contrast with the background, see Figure

17. Moreover, sometimes a non-uniform illumination makes difficult to capture the boundary of the

258

object, see Figure 18. Despite these difficulties, our method provides reasonable segmentation results,

even without image enhancing in the preprocessing.

Initialization Segmentation Initialization Segmentation

Figure 16: Segmentation of a cerebral hemorrhage.a) and b) 4 points snake, c) and d) cubic B-spline

snake.

Initialization Segmentation Initialization Segmentation

Figure 17: Segmentation of a cell in a sample. a) and b) 4 points snake, c) and d) cubic B-spline

snake.

Initialization Segmentation Initialization Segmentation

Figure 18: Segmentation of a hail.a) and b) 4 points snake, c) and d) cubic B-spline snake.

6. CONCLUSIONS

We have proposed a method for computing the contour of an object in an image using a snake rep-

resented as a subdivision curve. Our method is based on linear and stationary subdivision schemes.

We illustrate its performance developing the computational tool SubdivisionSnake, that computes

the snakes associated with two classical subdivision schemes: the four points scheme and the cubic

259

B-spline. The method profits from the hierarchical nature of subdivision curves, since the unknowns

of the optimization process are the few control points of the subdivision curve in the coarse repre-

sentation, while good approximations of the energies and their derivatives are obtained from the fine

representation.

The evolution of the snake is driven by its control points that are computed minimizing an energy

which is combination of contour-based and region-based energies. We have introduced a new region

energy that guides the snake, maximizing the contrast between the average intensity of the image

within the snake and the average intensity over the complement of the snake in a fixed bounding box.

Explicit expressions of the new region energy functional and its partial derivatives have been provided

and an accurate pixel discretization was also discussed.

Our experiments using synthetic and real images confirm that the proposed method is fast and suc-

cessful. Our flexible computational framework SubdivisionSnake facilitates the interaction with the

snake by letting the user to move directly the control points with the mouse and and to control the

weights associated to the combination of both energy functionals.

The proposed methodology and implementation of our method, which is illustrated in the case of two

popular linear and stationary subdivision schemes, may be extended to non-linear and non-stationary

subdivision schemes, in particular to those subdivision schemes with known formulae for the position

of the limit points and their tangent vectors, see for instance [30], [31]. We could also implement a

multiscale optimization strategy [3], where the snake is optimized in a coarse-to-fine fashion.

An improved version of the computational tool SubdivisionSnake including some non-linear and non-

stationary subdivision schemes and a multiscale optimization strategy will be developed and the link

of the corresponding open source code will be made public.

RECEIVED: JULY, 2019.
REVISED: SEPTEMBER, 2020.

REFERENCES

[1] APPELTON, B. and TALBOT, H. [2005]: ”Globally optimal geodesic active contours”, J. Math.

Imaging Vis., 23(1), 67–86.

[2] Accord.NET Machine Learning Framework [2008 - 2015], version 3.0. http://accord-

framework.net.

[3] BADOUAL, A., SCHMITTER, D., UHLMANN, V., UNSER, M. [2017]: ”Multiresolution Sub-

division Snakes”, IEEE Transactions on Image Processing 26 (3), 1188-1201.

[4] BADOUAL, A., UNSER, M. and DEPEURSINGE, A. [2019]: ”Texture-driven parametric snakes

for semi-automatic image segmentation ”, Computer Vision and Image Understanding 188,

102793.

[5] https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

[6] BRIGGER, P., HOEG, J. and UNSER, M. [2000]: ”B-spline snakes: A flexible tool for parametric

contour detection”, IEEE Trans. Image Processing 9, 1484–1496.

260

[7] BRITTO, A. P. and RAVINDRAN, G. [2007]: ”Review of deformable curves-A retro analysis”,

Inf. Technol. J., 6 (1), 26–36.

[8] BYRD, R., LU, P., NOCEDAL, J. [1995]: ”A limited memory algorithm for bound constrained

optimization”, SIAM Journal on Scientific and Statistical Computing, 16(5),1190–1208.

[9] CASELLES, V., KIMMEL, R. and SAPIRO, G. [1997]: ”Geodesic active contours”, Int. J.

Comput. Vision, 22(1), 61–79.

[10] CHAN, T. F., VESE, L. A. [2001]: ”Active contours without edges”, IEEE Trans. Image

Processing, 10, 266–276.

[11] CHESNAUD, C., REFREGIER, P., BOULET, V. [1999]: ”Statistical region snake-based seg-

mentation adapted to different physical noise models”, IEEE Trans. Pattern Anal. Machine

Intell., 21, 1145–1157.

[12] COHEN, L. D. [1991]: ”On active contour models and balloons”, CVGIP: Imag. Understand.,

53, 211–218.

[13] CONTI, C. , ROMANI, L. and UNSER M. [2015]: ”Ellipse-preserving Hermite interpolation and

subdivision”, J. Math. Anal. Appl. 426, 211-227.

[14] CONTI, C., COTRONEI, M. and ROMANI L. [2017]: ”Beyond B-splines: exponential pseudo-

splines and subdivision schemes reproducing exponential polynomials ”, Dolomites Research

Notes on Approximation, Vol. 10, 31-42 .

[15] DELGADO, R., THEVENAZ, P., SEELEMANTULA, C., UNSER, M. [2012]: ”Snakes with an

ellipse-reproducing property”, IEEE Transactions on Image Processing 21, 1258–1271.

[16] DELGADO, R., THEVENAZ, P., UNSER, M. [2012]: ”Exponential splines and minimal-support

bases for curve representation”, Comput. Aided Geometric Design 29, 109–128.

[17] DELGADO, R., UNSER, M. [2013]: ”Spline-based framework for interactive segmentation in

biomedical imaging”, IRBM, 34 (3), 235–243.

[18] DELGADO, R., UHLMANN, V., SCHMITTER, D., UNSER, M. [2015]: ”Snakes on a Plane: A

perfect snap for bioimage analysis”. IEEE Signal Process. Mag. 32 (1), 41–48.

[19] DYN, N., LEVIN, D., GREGORY, J. A. [1987]: ”A 4-point interpolatory subdivision scheme for

curve design”, Computer Aided Geometric Design 4, 257–268.

[20] DYN, N., LEVIN, D. [2002]: ”Subdivision schemes in geometric modelling”, Acta Numerica

11, 73–144.

[21] DYN, N. [2009]: ”Linear and Nonlinear Subdivision Schemes in Geometric Modeling”, in Founda-

tions of computational mathematics”, Hong Kong 2008, London Math. Soc. Lecture Notes

Cambridge: Cambridge Univ. Press, 363, 68-92.

261

[22] FIGUEIREDO, M. A., LEITÃO, J. M. and JAIN, A. K. [2000]: ”Unsupervised contour repre-

sentation and estimation using B-splines and a minimum description length criterion”, IEEE

Trans. Image Processing 9(6), 1075–1087.

[23] FRAZIER, M. W. [1999]: ”An Introduction to Wavelets Through Linear Algebra”, Springer

Verlag.

[24] GONZALEZ, R. C.,WOODS, R. E., EDDINS, S. L. [2009]: ”Digital Image Processing using

MATLAB”, Gatesmark, 2nd ed.

[25] HUG, J., BRECHBÜHLER, C., SZÈKELY, G. [1999]: ”Tamed Snake: A Particle System for

Robust Semi-Automatic Segmentation”, MICCAI ’99 Proceedings of the Second International

Conference on Medical Image Computing and Computer-Assisted Intervention, Springer-Verlag

London, UK, 106-115.

[26] JACOB, M., BLU, T., UNSER, M. [2001]: ”A unifying approach and interface for spline-based

snakes”, in Proc. SPIE Int. Symp. Medical Imaging: Image Processing, 4322, 340–347.

[27] JACOB, M., BLU, T., UNSER, M. [2004]: ”Efficient energies and algorithms for parametric

snakes”, IEEE Transactions on Image Processing 13, 1231–1244.

[28] KASS, M., WITKIN, A., TERZOPOULOS, D. [1987]: ”Snakes: Active contour models”, Int. J.

Comput. Vis., 1, 321–332.

[29] MCINERNEY, T. [2008]: ”SketchSnakes: Sketch-Line initialized snakes for efficient interactive

medical image segmentation”, Computerized medical imaging and graphics 32 (5), 331–

352.

[30] ROMANI, L., HERNANDEZ, V. and ESTRADA, J. [2016]: ”Exact evaluation of a class of non-

stationary approximating subdivision algorithms and related application ”, IMA J Numerical

Analysis. Vol. 36, Issue 1,380-399.

[31] ROMANI L., BADOUAL, A. and UNSER, M. [2019]: ”Normal-based interpolating subdivision

for the geometric representation of deformable models”, IEEE 16th International Sympo-

sium on Biomedical Imaging (ISBI 2019), 8–11.

[32] SHI, Z., LI, F. [2011]: ”Active subdivision snake scheme”, Applied Mechanics and Materials,

44-47, 3917–3921.

[33] STAIB, L. H., DUNCAN, J. S. [1992]: ”Boundary fitting with parametrically deformable models”,

IEEE Trans. Pattern Anal. Machine Intell. 14, 1061–1075.

[34] STOLLNITZ, E. J., DEROSE, A. D., SALESIN, D. H. [1996]: ”Wavelets for Computer Graphics:

Theory and Applications”, Morgan Kaufmann.

[35] THEVENAZ, P., DELGADO, R., UNSER, M. [2011]: ”The ovuscule”, IEEE Transactions on

Pattern Analysis and Machine Intelligence 33, 382–393.

262

[36] UHLMANN, V., FAGEOT, J. and UNSER, M. [2016]: ” Hermite Snakes With Control of Tan-

gents”, IEEE Transactions on Image Proccessing, Vol. 25, No. 6, 2803–2816.

[37] XU, C., PRINCE, J. (1998) ”Snakes, shapes, and gradient vector flow”, IEEE Trans. Image

Processing 7,359–369.

[38] ZHANG, H., BIAN, Z., GUO, Y., FEI, B. and YE, M. (2003) ”An efficient multiscale approach

to level set evolution”, Proc. 25th Annu. Int. Conf. IEEE Engineering in Medicine and

Biological Society, 694–697.

A MAKING INTERPOLATORY THE CUBIC B-SPLINE SUBDIVISION SCHEME

The rule in (2.19)) not only allows to evaluate the curve on dyadic parameter values, but also to

impose the interpolatory condition to the scheme (see Fig. 3). In fact, starting from P0 a polygon P̃0

can be computed such that if,

r(t) =
∑
j∈Z

p̃0
jϕ (t− j) , (A1)

then r(i) = p0
i .

Let P0 =
{
p0
i ∈ R, p0

i+M = p0
i

}
be an M -periodic sequence of points. From (A1) and (2.19) it is

clear that,

p0
i = r(i) =

1

6
p̃0
i−1 +

4

6
p̃0
i +

1

6
p̃0
i+1, for i ∈ Z. (A2)

This expression can be written in matrix terms as4

P0 = S∞P̃0 (A3)

where S∞ is the circulant matrix with first column b given by,

b =
[
S∞0,0 S∞1,0 . . . S∞M−1,0

]T
=
[

2
3

1
6 0 . . . 0 1

6

]T
. (A4)

Hence from (A3) we obtain

P̃ = (S∞)
−1

P0

and the problem is reduced to compute the inverse of the matrix S∞.

From Fourier Analysis [23] it is known that since S∞ is a circulant matrix, it is diagonalized by the

Fourier basis. More precisely,

S∞ =
(
FM

)−1
DFM , (A5)

where D is a diagonal matrix and FM is the matrix with elements,

FMs,k = e−2skπi/M , s, k = 0, . . . ,M − 1. (A6)

It can be easily verified that, (
FM

)−1
=

1

M
FM

4The symbol S∞ comes from the limit of the subdivision operator S.

263

where FM is the conjugated matrix of FM . Hence, from (A5) it follows,

(S∞)
−1

=
1

M
FM D−1 FM . (A7)

It is also known [23], that the diagonal matrix D has in its diagonal the values of the Fourier transform

of b,

b̂ =
2

3
FM·,0 +

1

6
FM·,1 +

1

6
FM·,M−1, (A8)

where FM·,k , k = 0, . . . ,M − 1 are the column vectors with elements defined in (A6). Thus,

b̂s =
2

3
FMs,0 +

1

6
FMs,1 +

1

6
FMs,M−1

=
2

3
+

1

6
e−2sπi/M +

1

6
e−2(M−1)πi/M

=
2

3
+

1

3
cos(2sπ/M) = b̂M−s (A9)

Since the inverse of a non-singular circulant matrix is also a circulant matrix and as b̂s 6= 0 for all s,

the matrix representing (S∞)
−1

is also circulant. Therefore, we only need to compute its first column

(S∞)
−1
·,0 . From (A7) and (A9) we obtain,

(S∞)
−1
s,0 =

1

M

M−1∑
t=0

b̂−1
s e2stπi/M

=

1
M + 3

M cos(sπ) + 2
M

M
2 −1∑
t=1

(
2
3 + 1

3 cos(2tπ/M)
)−1

cos(2stπ/M), for M mod 2 = 0

1
M + 2

M

bM2 c∑
t=1

(
2
3 + 1

3 cos(2tπ/M)
)−1

cos(2stπ/M), for M mod 2 = 1

(A10)

Remark A1. To compute the entries for the whole matrix we just need to remember that it is circulant

and use (A10).

B COMPUTING THE GRADIENTS OF THE ENERGIES

With the aim to simplify the exposition, the deduction of the expressions for the gradient of the

energies are showed here. Being a similar process to deduce both partial derivatives, we only show

the deduction of the partial derivatives with respect to each x0
j , j = 0, . . . ,M − 1.

B1. Gradient of gradient energy

Deriving directly in (3.4) with respect to x0
j we obtain,

∂Egrad
∂x0

j

= −
∫ M

0

(∂2I

∂x2

∂x

∂x0
j

+
∂2I

∂x∂y

∂y

∂x0
j

)
dy(t)

dt
+
∂I

∂x

∂
(

dy
dt

)
∂x0

j

 dt

+

∫ M

0

((
∂2I

∂x∂y

∂x

∂x0
j

+
∂2I

∂y2

∂y

∂x0
j

)
dx(t)

dt
+
∂I

∂y

∂
(

dx
dt

)
∂x0

j

)
dt. (B1)

264

Taking into account that y(t) and dy(t)
dt don’t depend on x0

j , from (B1) we get,

∂Egrad
∂x0

j

=

∫ M

0

([
∂2I

∂x∂y

∂x

∂t
− ∂2I

∂x2

dy

dt

]
∂x

∂x0
j

+
∂I

∂y

∂
(

dx
dt

)
∂x0

j

)
dt (B2)

From (2.5) and (2.6) it follows,

∂x(t)

∂x0
j

= ϕ(t− j), ∂y(t)

∂y0
j

= ϕ(t− j) (B3)

dx(t)

dt
=

M+1∑
j=−1

x0
jϕ

′
(t− j), dy(t)

dt
=

M+1∑
j=−1

y0
jϕ

′
(t− j) (B4)

where ϕ
′

denotes dϕ
dt . Evaluating the last expressions in t = i

2k , i = 0, . . . , 2kM − 1 it holds

∂x(t)

∂x0
j

∣∣∣∣∣
t= i

2k

= ϕ

(
i

2k
− j
)

=
∂y(t)

∂y0
j

∣∣∣∣∣
t= i

2k

(B5)

∂
(
dx
dt

)
∂x0

j

∣∣∣∣∣
t= i

2k

= ϕ
′
(
i

2k
− j
)

=
∂
(
dy
dt

)
∂y0

j

∣∣∣∣∣∣
t= i

2k

(B6)

Substituting the integral in (B2) by the average of the integrand evaluated in the parameter values

i/2k, i = 0, . . . , 2kM − 1 and using (B5)and (B6) we obtain the following approximation for the

partial derivative of gradient energy with respect to x0
j ,

∂Egrad
∂x0

j

≈ 1

2kM

2kM−1∑
i=0

(
∂2I

∂x∂y

(
r

(
i

2k

))
tkix −

∂2I

∂x2

(
r

(
i

2k

))
tkiy

)
ϕ

(
i

2k
− j
)

+

1

2kM

2kM−1∑
i=0

∂I

∂y

(
r

(
i

2k

))
ϕ

′
(
i

2k
− j
)
. (B7)

In a similar way, deriving (3.4) with respect to y0
j and taking into account that x(t) and dx(t)

dt don’t

depend on x0
j , we obtain the expression for

∂Egrad

∂y0j
.

B2. Gradient of region energy

Recalling that,

∂Ereg
∂x0

j

= −2D

(
∂A

∂x0
j

− ∂B

∂x0
j

)
(B8)

where

A :=
IΩ
|Ω|

(B9)

B :=
IR − IΩ
|R| − |Ω|

(B10)

D := A−B. (B11)

265

Deriving directly in (B9) and (B10) we obtain,

∂A

∂x0
j

=
1

|Ω|
∂IΩ
∂x0

j

− IΩ
|Ω|2

∂|Ω|
∂x0

j

(B12)

∂B

∂x0
j

=
−1

|R| − |Ω|
∂IΩ
∂x0

j

+
IR − IΩ

(|R| − ||Ω|)2

∂|Ω|
∂x0

j

. (B13)

Substituting (B12) and (B13) in (B8) we get,

∂Ereg
∂x0

j

= −2D

[(
1

|Ω|
+

1

|R| − |Ω|

)
∂IΩ
∂x0

j

−

(
IΩ
|Ω|2

+
IR − IΩ

(|R| − |Ω|)2

)
∂|Ω|
∂x0

j

]
. (B14)

Now we compute the partial derivatives involved in (B14) using the Green Theorem as stated in (3.8)

and (3.9).

Deriving in the first equality of (3.8) it follows,

∂IΩ
∂x0

j

= −
∫ M

0

∂I1
∂x

∂x(t)

∂x0
j

y′(t)dt.

Taking into account that, according to Leibniz’s rule in (3.9) (for differentiation under the integral

sign), ∂I1
∂x = I(x(t), y(t)) and ∂x(t)

∂x0
j

= ϕ(t− j), from the previous expression we obtain,

∂IΩ
∂x0

j

= −
∫ M

0

I(r(t))ϕ(t− j)y′(t) dt. (B15)

Since |Ω| =
∫ ∫

Ω
dxdy from (B15) it is clear that,

∂|Ω|
∂x0

j

= −
∫ M

0

ϕ(t− j)y′(t)dt. (B16)

Finally, substituting (B15) and (B16) in (B14) and grouping similar terms we obtain

∂Ereg
∂x0

j

= −2D

∫ M

0

[G−H I(r(t))]ϕ(t− j)y′(t)dt

where

G :=
IΩ
|Ω|2

+
IR − IΩ

(|R| − |Ω|)2
and H :=

1

|Ω|
+

1

|R| − |Ω|
.

We proceed in a similar way to compute
∂Ereg
∂y0

j

.

266

