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SoK: The Threat of Offensive Al to Organizations

Abstract—AlI has provided us with the ability to automate
tasks, extract information from vast amounts of data, and
synthesize media that is nearly indistinguishable from the real
thing. However, positive tools can also be used for negative
purposes. In particular, cyber adversaries can use Al to enhance
their attacks and expand their campaigns.

Although offensive AI has been discussed in the past, there is a
need to analyze and understand the threat in the context of orga-
nizations. For example, how does an Al-capable adversary impact
the cyber kill chain? Does AI benefit the attacker more than
the defender? What are the most significant Al threats facing
organizations today and what will be their impact on the future?

In this SoK, we explore the threat of offensive AI on
organizations. First, we present the background and discuss
how AI changes the adversary’s methods, strategies, goals, and
overall attack model. Then, through a literature review, we
identify 33 offensive AI capabilities which adversaries can use
to enhance their attacks. Finally, through a user study spanning
industry and academia, we rank the AI threats and provide
insights on the adversaries.

Index Terms—Offensive Al, APT, organization security,
adversarial machine learning, deepfake, Al-capable adversary

I. INTRODUCTION

For decades, organizations, including government agencies,
hospitals, and financial institutions, have been the target of
cyber attacks [1]-[3]. These cyber attacks have been carried
out by experienced hackers that has involved manual effort.
In recent years there has been a boom in the development
of artificial intelligence (AI), which has enabled the creation
of software tools that have helped to automate tasks such
as prediction, information retrieval, and media synthesis.
Throughout this period, members of academia and industry
have utilized AI' in the context of improving the state of
cyber defense [4]-[6] and threat analysis [7]-[9]. However,
Al is a double edged sword, and attackers can utilize it to
improve their malicious campaigns.

Recently, there has been a lot of work done to identify and
mitigate attacks on Al-based systems (adversarial machine
learning) [10]-[15]. However, an Al-capable adversary can
do much more than poison or fool a machine learning model.
Adversaries can improve their tactics to launch attacks that
were not possible before. For example, with deep learning
one can perform highly effective spear phishing attacks by
impersonating a superior’s face and voice [16], [17]. It is also
possible to improve stealth capabilities by using automation
to perform lateral movement through a network, limiting
command and control (C&C) communication [18], [19].
Other capabilities include the use of Al to find zero-day
vulnerabilities in software, automate reverse engineering,

'In this paper, we consider machine learning to be a subset of Al
technologies.

exploit side channels efficiently, build realistic fake personas,
and to perform many more malicious activities with improved
efficacy (more examples are presented later in section IV).

A. Goal

In this work, we provide a survey of knowledge (SoK) on
offensive Al in the context of enterprise security. The goal of
this paper is to help the community (1) better understand the
current impact of offensive Al on organizations, (2) prioritize
research and development of defensive solutions, and (3)
identify trends that may emerge in the near future. This work
isn’t the first to raise awareness of offensive Al. In [20]
the authors warned the community that Al can be used for
unethical and criminal purposes with examples taken from
various domains. In [21] a workshop was held that attempted
to identify the potential top threats of Al in criminology.
However, these works relate to the threat of Al on society
overall and are not specific to organizations and their networks.

B. Methodology

Our SoK was performed in the following way. First, we
reviewed literature to identify and organize the potential
threats of Al to organizations. Then, we surveyed experts
from academia, industry, and government to understand
which of these threats are actual concerns and why. Finally,
using our survey responses, we ranked these threats to gain
insights and to help identify the areas which require further
attention. The survey participants were from a wide profile
of organizations such as MITRE, IBM, Microsoft, Airbus,
Bosch, Fujitsu, Hitachi, and Huawei.

To perform our literature review, we used the MITRE
ATT&CK? matrix as a guide. This matrix lists the common
tactics (or attack steps) which an adversary performs when
attacking an organization, from planning and reconnaissance
leading to the final goal of exploitation. We divided the tactics
among five different academic workgroups from different
international institutions based on expertise. For each tactic in
the MITRE ATT&CK matrix, a workgroup surveyed related
works to see how Al has and can be used by an attacker to
improve their tactics and techniques. Finally, each workgroup
cross inspected each other’s content to ensure correctness and
completeness.

C. Main Findings
From the Literature Survey.

o There are three primary motivations for an adversary to
use Al: coverage, speed, and success.

Zhttps://attack.mitre.org/matrices/enterprise/
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o Al introduces new threats to organizations. A few
examples include the poisoning of machine learning
models, theft of credentials through side channel analysis,
and the targeting of proprietary training datasets.

o Adversaries can employ 33 offensive Al capabilities
against organizations. These are categorized into seven
groups: (1) automation, (2) campaign resilience, (3)
credential theft, (4) exploit development, (5) information
gathering, (6) social engineering, and (7) stealth.

o Defense solutions, such as Al methods for vulnerability
detection [22], pen-testing [23], and credential leakage
detection [24] can be weaponized by adversaries for
malicious purposes.

From the User Study.

o The top three most threatening categories of offensive
Al capabilities against organizations are (1) exploit
development, (2) social engineering, and (3) information
gathering.

o 24 of the 33 offensive Al capabilities pose significant
threats to organizations.

« For the most part, industry and academia are not aligned
on the top threats of offensive Al against organizations.
Industry is most concerned with Al being used for reverse
engineering, with a focus on the loss of intellectual
property. Academics, on the other hand, are most
concerned about Al being used to perform biometric
spoofing (e.g., evading fingerprint and facial recognition).

« Both industry and academia ranked the threat of using Al
for impersonation (e.g., real-time deepfakes to perpetrate
phishing and other social engineering attacks) as their
second highest threat. Jointly, industry and academia
feel that impersonation is the biggest threat of all.

e Evasion of intrusion detection systems (e.g., with
adversarial machine learning) is considered to be the least
threatening capability of the 24 significant threats, likely
due to the adversary’s inaccessibility to training data.

o Al impacts the cyber kill chain the most during the
initial attack steps. This is because the adversary has
access to the environment for training and testing of
their AI models.

« Because of an AI’s ability to automate processes, adver-
saries may shift from having a few slow covert campaigns
to having numerous fast-paced campaigns to overwhelm
defenders and increase their chances of success.

D. Contributions

In this SoK, we make the following contributions:

« An overview of how Al can be used to attack organiza-
tions and its influence on the cyber kill chain (section III).

e« An enumeration and description of the 33 offensive
Al capabilities which threaten organizations, based on
literature and current events (section IV).

« A threat ranking and insights on how offensive Al impacts
organizations, based on a user study with members from
academia, industry, and government (section V).

o A forecast of the AI threat horizon and the resulting
shifts in attack strategies (section VI).

II. BACKGROUND ON OFFENSIVE Al

Al is intelligence demonstrated by a machine. It is often
associated as a tool for automating some task which requires
some level of intelligence. Early AI models were rule based
systems designed using an expert’s knowledge [25], followed
by search algorithms for selecting optimal decisions (e.g.,
finding paths or playing games [26]). Today, the most popular
type of Al is machine learning (ML) where the machine can
gain its intelligence by learning from examples. Deep learning
(DL) is a type of ML where an extensive artificial neural
network is used as the predictive model. Breakthroughs in DL
have led to its ubiquity in applications such as automation,
forecasting, and planning due to its ability to reason upon
and generate complex data.

A. Training and Execution

In general, a machine learning model can be trained on data
with an explicit ground-truth (supervised), with no ground-
truth (unsupervised), or with a mix of both (semi-supervised).
The trade-off between supervised and non-supervised
approaches is that supervised methods often have much better
performance at a given task, but require labeled data which can
be expensive or impractical to collect. Moreover, unsupervised
techniques are open-world, meaning that they can identify
novel patterns that may have been overlooked. Another train-
ing method is reinforcement learning where a model is trained
based on reward for good performance. Lastly, for generating
content, a popular framework is adversarial learning. This
was first popularised in [27] where the generative adversarial
network (GAN) was proposed. A GAN uses a discriminator
model to ‘help’ a generator model produce realistic content by
giving feedback on how the content fits a target distribution.

Where a model is trained or executed depends on the
attacker’s task and strategy. For example, the training and exe-
cution of models for reconnaissance tasks will likely take place
offsite from the organization. However, the training and exe-
cution of models for attacks may take place onsite, offsite, or
both. Another possibility is where the adversary uses few-shot
learning [28] by training on general data offsite and then fine
tuning on the target data onsite. In all cases, the adversary will
first design and evaluate their model offsite prior to its usage
on the organization to ensure its success and to avoid detection.

For onsite execution, an attacker runs the risk of detection
if the model is complex (e.g. a DL model). For example
when the model is transferred over to the organization’s
network or when the attacker’s model begins to utilize
resources, it may trigger the organization’s anomaly detection
system. To mitigate this issue, the adversary must consider a
trade-off between stealth and effectiveness. For example the
adversary may (1) execute the model during off hours or on
non-essential devices, (2) leverage an insider to transfer the
model, or (3) transfer the observations off-site for execution.

There are two forms of offensive Al: Attacks using Al and
attacks against Al. For example, an adversary can (1) use



TABLE I
EXAMPLES OF WHERE A MODEL CAN BE TRAINED AND EXECUTED IN AN
ATTACK ON AN ORGANIZATION

Execution
Offsite Onsite

Training

Offsite Onsite Example

. . Vulnerability detection

. ° Side channel keylogging
. ° Channel compression for exfiltration
. ° Traffic shaping for evasion

. . ° Few-shot learning for record tampering

*Onsite refers to being within the premisis or network of the organization

Al to improve the efficiency of an attack (e.g., information
gathering, attack automation, and vulnerability discovery) or
(2) use knowledge of Al to exploit the defender’s Al products
and solutions (e.g., to evade a defense or to plant a trojan
in a product). The latter form of offensive Al is commonly
referred to as adversarial machine learning.

B. Attacks Using Al

Although there are a wide variety of Al tasks which can
be used in attacks, we found the following to be the most
common:

Prediction This is the task of making a prediction based
on previously observed data. Common examples
are classification, anomaly detection, and regression.
Examples of prediction for an offensive purpose includes
the identification of keystrokes on a smartphone based
on motion [29]-[31], the selection of the weakest link in
the chain to attack [32], and the localization of software
vulnerabilities for exploitation [22], [33], [34].

Generation This is the task of creating content that fits a
target distribution which, in some cases, requires realism in
the eyes of a human. Examples of generation for offensive
uses include the tampering of media evidence [35], [36],
intelligent password guessing [37], [38], and traffic shap-
ing to avoid detection [39], [40]. Deepfakes are another
instance of offensive Al in this category. A deepfake is a
believable media created by a DL model. The technology
can be used to impersonate a victim by puppeting their
voice or face to perpetrate a phishing attack [16].

Analysis This is the task of mining or extracting useful
insights from data or a model. Some examples of analysis
for offense are the use of explainable Al techniques [41] to
identify how to better hide artifacts (e.g., in malware) and
the clustering or embedding of information on an organi-
zation to identify assets or targets for social engineering.

Retrieval This is the task of finding content that matches
or that is semantically similar to to a given query. For
example, in offense, retrieval algorithms can be used
to track an object or an individual in a compromised
surveillance system [42], [43], to find a disgruntled
employee (as a potential insider) using semantic analysis
on social media posts, and to summarize lengthy
documents [44] during open source intelligence (OSINT)
gathering in the reconnaissance phase.

Decision Making The task of producing a strategic plan or
coordinating an operation. Examples of this in offensive
Al are the use of swarm intelligence to operate an
autonomous botnet [45] and the use of heuristic attack
graphs to plan optimal attacks on networks [46].

C. Attacks Against Al - Adversarial Machine Learning

An attacker can use its Al knowledge to exploit ML
model vulnerabilities violating its confidentiality, integrity,
or availability. Attacks can be staged at either training
(development) or test time (deployment) through one of the
following attack vectors:

Modify the Training Data. Here the attacker modifies the
training data to harm the integrity or availability of the
model. Denial of service (DoS) poisoning attacks [47]-[49]
are when the attacker decreases the model’s performance
until it is unusable. A backdoor poisoning attack [50],
[51] or trojaning attack [52], is where the attacker teaches
the model to recognize an unusual pattern that triggers
a behavior (e.g., classify a sample as safe). A triggerless
version of this attack causes the model to misclassify a
test sample without adding a trigger pattern to the sample
itself [53], [54]

Modify the Test Data. In this case, the attacker modifies
test samples to have them misclassified [55]-[57]. For
example, altering the letters of a malicious email to have
it misclassified as legitimate, or changing a few pixels in
an image to evade facial recognition [58]. Therefore, these
types of attacks are often referred to as evasion attacks.
By modifying test samples ad-hoc to increase the model’s
resource consumption, the attacker can also slow down
the model performances. [59].

Analyze the Model’s Responses. Here, the attacker sends
a number of crafted queries to the model and observes
the responses to infer information about the model’s
parameters or training data. To learn about the
training data, there are membership inference [60],
deanonymization [61], and model inversion [62] attacks.
For learning about the model’s parameters there are
model stealing/extraction [63], [64], and blind-spot
detection [65], state prediction [66].

Modify the Training Code. This is where the attacker
performs a supply chain attack by modifying a library
used to train ML models (e.g., via an open source project).
For example, a compromised loss (training) function that
inserts a backdoor [67].

Modify the Model’s Parameters. In this attack vector, the
attacker accesses a trained model (e.g., via a model zoo
or security breach) and tamper its parameters to insert
a latent behavior. These attacks can be performed at the
software [68], [69], [69] or hardware [70] levels (a.k.a.
fault attacks).

Depending on the scenario, an attacker may not have full

knowledge or access to the target model:

« White-Box (Perfect-Knowledge) Attacks: The attacker
knows everything about the target system. This is the



worst case for the system defender. Although it is not
very likely to happen in practice, this setting is interesting
as it provides an empirical upper bound on the attacker’s
performance.

« Gray-Box (Limited-Knowledge) Attacks: The attacker
has partial knowledge of the target system (e.g., the
learning algorithm, architecture, etc.) but no knowledge
of training data or the model’s parameters.

« Black-Box (Zero-Knowledge) Attacks: The attacker
knows only the task the model is designed to perform and
which kind of features are used by the system in general
(e.g., if a malware detector has been trained to perform
static or dynamic analysis). The attacker may also be able
to analyse the model’s responses in a black-box manner
to get feedback on certain inputs.

In a black or gray box scenario, the attacker can build a
surrogate ML model and try to devise the attacks against it as
the attacks often transfer between different models. [55], [71].

An attacker does not need to be an expert at machine
learning to implement these attacks. Many can be acquired
from open-source libraries online [72]-[75].

III. OFFENSIVE Al VS ORGANIZATIONS

In this section, we provide an overview of offensive Al in
the context of organizations. First we review a popular attack
model for enterprise. Then we will identify how an Al-capable
adversary impacts this model by discussing the adversary’s
new motivations, goals, capabilities, and requirements. Later
in section IV, we will detail the adversary’s techniques based
on our literature review.

A. The Attack Model

There are a variety of threat agents which target
organizations. These agents are cyber terrorists, cyber
criminals, employees, hacktivists, nation states, online
social hackers, script kiddies, and other organizations like
competitors. There are also some non-target specific agents,
such as certain botnets and worms, which threaten the security
of an organization. A threat agent may be motivated for
various reasons. For example, to (1) make money through
theft or ransom, (2) gain information through espionage,
(3) cause physical or psychological damage for sabotage,
terrorism, fame, or revenge, (4) reach another organization,
and (5) obtain foothold on the organization as an asset for
later use [76]. These agents not only pose a threat to the
organization, but also its employees, customers, and the
general public as well (e.g., attacks on critical infrastructure).

In an attack, there may be number of attack steps which
the threat agent must accomplish. These steps depend on the
adversary’s goal and strategy. For example, in an advanced
persistent threat (APT) [77]-[79], the adversary may need to
reach an asset deep within the defender’s network. This would
require multiple steps involving reconnaissance, intrusion,
lateral movement through the network, and so on. However,
some attacks can involve just a single step. For example,
a spear phishing attack in which the victim unwittingly

provides confidential information or even transfers money.
In this paper, we describe the adversary’s attack steps using
the MITRE ATT&CK Matrix for Enterprise® which captures
common adversarial tactics based on real-world observations.
Attacks which involve multiple steps can be thwarted if
the defender identifies or blocks the attack early on. The
more progress which an adversary makes, the harder it is for
the defender to mitigate it. For example, it is better to stop
a campaign during the initial intrusion phase than during
the lateral movement phase where an unknown number of
devices in the network have been compromised. This concept
is referred to as the cyber kill chain. From an offensive
perspective, the adversary will want shorten and obscure the
kill chain by being as to be as efficient and covert as possible.
In particular, operation within a defender’s network usually
requires the attacker to operate through a remote connection
or send commands to compromised devices (bots) from a
command and control (C2). This generates presence in the
defenders network which can be detected over time.

B. The Impact of Offensive Al

Conventional adversaries use manual effort, common tools,
and expert knowledge to reach their goals. In contrast, an
Al-capable adversary can use Al to automate its tasks,
enhance its tools, and evade detection. These new abilities
affect the cyber kill chain.

First, let’s discuss why an adversary would consider using
Al in its offensive on an organization.

1) The Three Motivators of Offensive Al: In our survey, we
found that there are three core motivations for an adversary
to use Al in an offensive against an organization: coverage,
speed, and success.

Coverage. By using Al, an adversary can scale up its
operations through automation to decrease human labor
and increase the chances of success. For example, Al can
be used to automatically craft and launch spear phishing
attacks, distil and reason upon data collected from OSINT,
maintain attacks on multiple organizations in parallel, and
reach more assets within a network to gain a stronger
foothold. In other words, Al enables adversaries to target
more organizations with higher precision attacks with a
smaller workforce.

Speed. With AI, an adversary can reach its goals faster. For
example, machine learning can be used to help extract
credentials, intelligently select the next best target during
lateral movement, spy on users to obtain information
(e.g., perform speech to text on eavesdropped audio), or
find zero-days in software. By reaching a goal faster, the
adversary not only saves time for other ventures but can
also minimize its presence (duration) within the defender’s
network.

Success. By enhancing its operations with Al, an adversary
increases its likelihood of success. Namely, ML can be
used to (1) make the operation more covert by minimizing

3https://attack. mitre.org/
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or camouflaging network traffic (such as C2 traffic) and
by exploiting weaknesses in the defender’s Al models
such as an ML-based intrusion detection system (IDS),
(2) identify opportunities such as good targets for social
engineering attacks and novel vulnerabilities, (3) enable
better attack vectors such as using deepfakes in spear
phishing attacks, (4) plan optimal attack strategies, and (5)
strengthen persistence in the network through automated
bot coordination and malware obfuscation.

We note that these motivations are not mutually exclusive.
For example, the use of Al to automate a phishing campaign
increases coverage, speed, and success.

2) Al-Capable Threat Agents: 1t is clear that some
Al-capable threat agents will be able to perform more
sophisticated Al attacks than others. For example, state
actors can potentially launch intelligent automated botnets
where hacktivists will likely struggle in accomplishing the
same. However, we have observed over the years that Al has
become increasingly accessible, even to novice users. For
example, there are a wide variety of open source deepfakes
technologies online which are plug and play*. Therefore, the
sophistication gap between certain threat agents may close
over time as the availability to Al technology increases.

3) New Attack Goals: In addition to the conventional attack
goals, Al-capable adversaries have new attack goals as well:

Sabotage. The adversary may want to use its knowledge of
Al to cause damage to the organization. For example,
it may want to alter ML models in the organization’s
products and solutions by poisoning their dataset to alter
performance or by planting a trojan in the model for later
exploitation. Moreover, the adversary may want to perform
an adversarial machine learning attack on an Al system.
For example, to evade detection in surveillance [58] or to
tip financial or energy forecasts models in the adversary’s
favor. Finally, the adversary may also use generative Al to
add or modify evidence in a realistic manner. For example,
to modify or plant evidence in surveillance footage [80],
medical scans [35], or financial records [36].

Espionage. With Al, an adversary can improve its ability to
spy on organizations and extract/infer meaningful informa-
tion. For example, they can use speech to text algorithms
and sentiment analysis to mine useful audio recordings
[81] or steal credentials through acoustic or motion side
channels [82], [83]. Al can also be used to extract latent
information from encrypted web traffic [84], and track
users through the organization’s social media [85]. Finally,
the attacker may want to achieve an autonomous persistent
foothold using swarm intelligence [18].

Information Theft. An Al-capable adversary may want
to steal models trained by the organization to use in
future white box adversarial machine learning attacks.
Therefore, some data records and proprietary datasets may
be targeted for the sake of training models. In particular,
audio or video records of customers and employees may

“https://github.com/datamllab/awesome-deepfakes- materials

be stolen to create convincing deepfake impersonations.
Finally, intellectual property may be targeted through Al
powered reverse engineering tools [86].

4) New Attack Capabilities: Through our survey, we have
identified 33 offensive Al capabilities (OAC) which directly
improve the adversary’s ability to achieve attack steps.
These OACs can be grouped into seven OAC categories: (1)
automation, (2) campaign resilience, (3) credential theft, (4)
exploit development, (5) information gathering, (6) social
engineering, and (7) stealth. Each of these capabilities can be
tied to the three motivators introduced in section III-B1.

In Fig. 1, we present the OACs and map their influence on
the cyber kill chain (the MITRE enterprise ATT&CK model).
An edge in the figure means that the indicated OAC improves
attacker’s ability to achieve the given attack step. From the
figure, we can see that offensive Al impacts every aspect of
the attack model. Later in section IV we will discuss each of
these 33 OACs in greater detail.

These capabilities are materialized in one of two ways:

Al-based tools are programs which performs a specific task
in adversary’s arsenal. For example, a tool for intelligently
predicting passwords [37], [38], obfuscating malware code
[87], traffic shaping for evasion [39], [40], [88], puppeting
a persona [16], and so on. These tools are typically in the
form of a machine learning model.

Al-driven bots are autonomous bots which can perform
one or more attack steps without human intervention, or
coordinate with other bots to efficiently reach their goal.
These bots may use a combination of swarm intelligence
[45] and machine learning to operate.

IV. SURVEY OF OFFENSIVE Al CAPABILITIES

In section III-B4 we presented the 33 offensive Al
capabilities. We will now describe each of the OACs in
order of their 7 categories: automation, campaign resilience,
credential theft, exploit development, information gathering,
social engineering, and stealth.

A. Automation

The process of automation gives adversaries a hands-off
approach to accomplishing attack steps. This not only reduces
effort, but also increases the adversary’s flexibility and enables
larger campaigns which are less dependent on C2 signals.

1) Attack Adaptation: Adversaries can use Al to help adapt
their malware and attack efforts to unknown environments
and find their intended targets. For example, identifying
a system [89] before attempting an exploit to increase the
chances of success and avoid detection. In Black Hat’18, IBM
researchers showed how a malware can trigger itself using DL
by identifying a target’s machine by analysing the victim’s
face, voice, and other attributes. With models such as decision
trees, malware can locate and identify assets via complex rules
like [90], [91]. Instead of transferring screenshots [92]-[95]
DL can be used onsite to extract critical information.
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Fig. 1. The 33 offensive Al capabilities (OAC) identified in our survey,
directly helps the attacker achieve the indicated attack step.

2) Attack Coordination: Cooperative bots can use Al to
find the best times and targets to attack. For example, swarm
intelligence [96] is the study of autonomous coordination
among bots in a decentralized manner. Researchers have
proposed that botnets can use swarm intelligence as well. In
[18] the authors discuss a hypothetical swarm malware and
in [19] the authors propose another which uses DL to trigger
attacks. Al bots can also communicate information on asset
locations to fulfill attacks (e.g., send a stolen credential or
relevant exploit to a compromised machine).

3) Next hop targeting: During lateral movement, the ad-
versary must select the next asset to scan or attack. Choosing
poorly may prolong the attack and risk detection by the
defenders. For example, consider a browser like Firefox which
has 4325 key-value pairs denoting the individual configura-
tions. Only some inter-plays of these configurations are vul-
nerable [97], [98]. Reinforcement learning can be used to train
a detection model which can identify the best browser to target.
As for planning multiple steps, a strategy can be formed by
using reinforcement learning on Petri nets [46] where attackers
and defenders are modeled as competing players. Another
approach is to use DL [99], [100] to explore “attack graphs”
[101] that contain the target’s network structure and the vul-
nerabilities. Notably, the Q-learning algorithms have enabled
the approach to work on large-scale enterprise networks [102].
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mapped to the MITRE enterprise ATT&CK model. An edge indicates that the OAC

4) Phishing Campaigns: Phishing campaigns involve
sending the same emails or robo-phone calls in mass. When
someone falls prey and responds, the adversary takes over
the conversation. These campaigns can be fully automated
through AI like Google’s assistant which can make phone
calls on your behalf [103]-[105]. Furthermore, adversaries
can increase their success through mass spear phishing
campaigns powered with deepfakes, where (1) a bot calls a
colleague of the victim (found via social media), (2) clones
his/her voice with 5 seconds of audio [106], and then (3)
calls the victim in the colleague’s voice to exploit their trust.

5) Point of Entry Detection: The adversary can use Al
to identify and select the best attack vector for an initial
infection. For example, in [107] statistical models on an
organization’s attributes were used to predict the number of
intrusions it receives. The adversary can train a model on
similar information to select the weakest organizations (low
hanging fruits) and the strongest attack vectors.

6) Record Tampering: An adversary may use Al to tamper
records as part of their end-goal. For example, ML can be
used to impact business decisions with synthetic data [108],
to obstruct justice by tampering evidence [80], to perform
fraud [36] or to modify medical or satellite imagery [35].
As shown in [35], DL-tampered records can fool human
observers and can be accomplished autonomously onsite.



B. Campaign Resilience

In a campaign, adversaries try to ensure that their
infrastructure and tools have a long life. Doing so helps
maintain a foothold in the organization and enables reuse of
tools and exploits for future and parallel campaigns. Al can
be used to improve campaign resilience through planning,
persistence, and obfuscation.

1) Campaign Planning: Some attacks require careful plan-
ning long before the attack campaign to ensure that all of the
attacker’s tools and resources are obtainable. ML-based cost
benefit analysis tools, such as in [109], may be used to identify
which tools should be developed and how the attack infras-
tructure should be laid out (e.g., C2 servers, staging areas, etc).
It could also be used to help identify other organizations that
can be used as beach heads [76]. Moreover, ML can be used to
plan a digital twin [110], [111] of the victim’s network (based
on information from reconnaissance) to be created offsite for
tuning Al models and developing malware.

2) Malware Obfuscation: ML models such as GANs
can be used to obscure a malware’s intent from an analyst.
Doing so can enable reuse of the malware, hide the attacker’s
intents and infrastructure, and prolong an attack campaign.
The concept is to take an existing piece of software and
emit another piece that is functionally equivalent (similar
to translation in NLP). For example, DeepObfusCode [87]
uses recurrent neural networks (RNN) to generate ciphered
code. Alternatively, backdoors can be planted in open source
projects and hidden using similar manners [112].

3) Persistent Access: An adversary can have bots establish
multiple back doors per host and coordinate reinfection
efforts among a swarm [18]. Doing so achieves a foothold
on an organization by slowing down the effort to purge the
campaign. To avoid detection in payloads deployed during
boot, the adversary can use a two-step payload which uses ML
to identify when to deploy the malware and avoid detection
[113], [114]. Moreover, a USB sized neural compute stick®
can be planted by an insider to enable covert and autonomous
onsite DL operations.

4) Virtualization Detection: To avoid dynamic analysis
and detection in sandboxes, an adversary may try to have the
malware detect the sandbox before triggering. The malware
could use ML to detect a virtual environment by measuring
system timing (e.g., like in [115]) and other system properties.

C. Credential Theft

Although a system may be secure in terms of access
control, side channels can be exploited with ML to obtain
a user’s credentials and vulnerabilities in Al systems can be
used to avoid biometric security.

1) Biometric spoofing: Biometric security is used for
access to terminals (such as smartphones) and for performing
automated surveillance [116]—[118]. Recent works have shown
how AI can generate “Master Prints” which are deepfakes

Shttps://software.intel.com/content/www/us/en/develop/articles/intel-
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of fingerprints that can open nearly any partial print scanner

(such as on a smartphone) [119]. Face recognition systems

can be fooled or evaded with the use of adversarial samples.

For example, in [58] where the authors generated colorful

glasses that alters the perceived identity. Moreover, ‘sponge’

samples [59] can be used to slow down a surveillance camera
until it is unresponsive or out of batteries (when remote).

Voice authentication can also be evaded through adversarial

samples, spoofed voice [120], and by cloning the target’s

voice with deep learning [120].

2) Cache mining: Information on credentials can be found
in a system’s cache and log dumps, but the large amount of
data makes finding it a difficult task. However, the authors
of [121] showed how ML can be used to identify credentials
in cache dumps from graphic libraries. Another example is
the work of [24] where an ML system was used to identify
cookies containing session information.

3) Implicit key logging: Over the last few years researchers
have shown how Al can be used as an implicit key-logger by
sensing side channel information from a physical environment.
The side channels comes in one or a combination of the
following aspects:

Motion. When tapping on a phone screen or typing on a
keyboard, the device and nearby surfaces move and vibrate.
A malware can use the smartphone’s motion sensors to
decipher the touch strokes on the phone [29], [30] and
keystrokes on nearby keyboards [31]. Wearable devices
can be exploited in a similar way as well [122], [123].

Audio. Researchers have shown that, when pressed, each
key gives of it’s own unique sound which can be used to
infer what is being typed [82], [124]. Timing between key
strokes is also a revealing factor due to the structure of the
language and keyboard layout. Similar approaches have
also been shown for inferring touches on smartphones
[83], [125], [126].

Video. In some cases, a nearby smartphone or compromised
surveillance camera can be used to observe keystrokes,
even when the surface is obscured. For example, via eye
movements [127]-[129], device motion [130], and hand
motion [131], [132].

4) Password Guessing: Humans tend to select passwords
with low entropy or with personal information such as dates.
GANSs can be used to intelligently brute-force passwords by
learning from leaked password databases [37]. Researchers
have improved on this approach by using RNNs in the
generation process [133]. However, the authors of [38] found
that models like [37] do not work well on Russian passwords.
Instead, adversaries may pass the GAN personal information
on the user to improve the performance [134].

5) Side Channel Mining: ML algorithms are adept at ex-
tracting latent patterns in noisy data. Adversaries can leverage
ML to extract secrets from side channels emitted from crypto-
graphic algorithms. This has been accomplished on a variety of
side channels including power consumption [135], [136], elec-
tromagnetic emanations [137], processing time [138], cache
hits/misses [115]. In general, ML can be used to mine nearly



any kind of side channel [139]-[146]. For example, credentials
can be extracted from the timing of network traffic [147].

D. Exploit Development

Adversaries work hard to understand the content and
inner-workings of compiled software to (1) steal intellectual
property, (2) share trade secrets, (3) and identify vulnerabilities
which they can exploit.

1) Reverse Engineering: While interpreting compiled
code, an adversary can use ML to help identify functions and
behaviors, and guide the reversal process. For example binary
code similarity can be used to identify well-known or reused
behaviors [148]-[154] and autoencoder networks can be used
to segment and identify behaviors in code, similar to the
work of [7]. Furthermore, DL can potentially be used to lift
compiled code up to a higher-level representation using graph
transformation networks [155], similar to semantic analysis in
language processing. Protocols and state machines can also be
reversed using ML. For example, CAN bus data in a vehicles
[156], network protocols [157], and commands [158], [159].

2) Vulnerability Detection: There are a wide variety of
software vulnerability detection techniques which can be
broken down into static and dynamic approaches:

Static. For open source applications and libraries, the
attacker can use ML tools for detecting known types of
vulnerabilities in source code [34], [160]-[163]. If its a
commercial product (compiled as a binary) then methods
such as [7] can be used to identify vulnerabilities by
comparing parts of the program’s control flow graph to
known vulnerabilities.

Dynamic. ML can also be used to perform guided input
‘fuzzing’ which can reach buggy code faster [22], [164]-
[169]. Many works have also shown how Al can mitigate
the issue of symbolic execution’s massive state space [33],
[170]-[173].

E. Information Gathering

Al scales well and is very good at data mining and
language processing. These capabilities can be used by an
adversary to collect and distil actionable intel for a campaign.

1) Mining OSINT: In general, there are three ways in
which Al can improve an adversary’s OSINT.

Stealth. The adversary can use Al to camouflage its probe
traffic to resemble benign services like Google’s web
crawler [9]. Unlike heavy tools like Metagoofil [174], ML
can be used to minimize interactions by prioritizing sites
and data elements [175], [176].

Gathering. Network structure and elements can be identified
using cluster analysis or graph-based anomaly detection
[177]. Credentials and asset information can be found
using methods like reinforcement learning on other
organizations [178]. Finally, personnel structure can
be extracted from social media using NLP-based web
scrappers like Oxylabs [179].

Extraction. Techniques like NLP can be used to translate
foreign documents [180], identify relevant documents

[181], [182], extract relevant information from online
sources [183], [184], and locate valid identifiers [85].

2) Model Theft: An adversary may want to steal an Al
model to (1) obtain it as intellectual property, (2) extract
information about members of its training set [60]-[62], or (3)
use it to perform a white-box attack against an organization.
As described in section II-C, if the model can be queried
(e.g., model as a service -MAAS), then its parameters [63],
[64] and hyperparameters [185] can be copied by observing
the model’s responses. This can also be done through
side-channel [186] or hardware-level analysis [187].

3) Spying: DL is extremely good at processing audio and
video, and therefore can be used in spyware. For example, a
compromised smartphone can map an office by (1) modeling
each room with ultrasonic echo responses [188], (2) using
object recognition [189] to obtain physical penetration info
(control terminals, locks, guards, etc), and (3) automatically
mine relevant information from overheard conversations
[181], [190]. ML can also be used to analyze encrypted
traffic. For example it can extract transcripts from encrypted
voice calls [191], identify applications [192], and reveal
internet searches [84].

F. Social Engineering

The weakest links in an organization’s security are its
humans. Adversaries have long targeted humans by exploiting
their emotions and trust. Al provides adversaries will
enhanced capabilities to exploit humans further.

1) Impersonation (ldentity Theft): An adversary may want
to impersonate someone for a scam, blackmail attempt, a
defamation attack, or to perform a spear phishing attack
with their identity. This can be accomplished using deepfake
technologies which enable the adversary to reenact (puppet)
the voice and face of a victim, or alter existing media content
of a victim [16]. Recently, the technology has advanced to the
state where reenactment can be performed in real-time [193],
and training only requires a few images [194] or seconds
of audio [106] from the victim. For high quality deepfakes,
large amounts of audio/video data is still needed. However,
when put under pressure, a victim may trust a deepfake even
if it has a few abnormalities (e.g., in a phone call) [195].
Moreover, the audio/video data may be an end-goal and
inside the organization (e.g., customer data).

2) Persona Building: Adversaries build fake personas on
online social networks (OSN) to connect with their targets.
To evade fake profile detectors, a profile can be cloned and
slightly altered using AI [196]-[198] so that they will appear
different yet reflect the same personality. The adversary can
then use a number of Al techniques to alter or mask the
photos from detection [199]-[202]. To build connections, a
link prediction model can be used to maximize the acceptance
rate [203], [204] and a DL chatbot can be used to maintain
the conversations [205].

3) Spear Phishing: Call-based spear phishing attacks can
be enhanced using real-time deepfakes of someone the victim
trusts. For example, this occured in 2019 when a CEO was



scammed out $240k [17]. For text-based phishing, tweets
[23] and emails [134], [206], [207] can be generated to attract
a specific victim, or style transfer techniques can be used to
mimic a colleague [208], [209].

4) Target Selection: An adversary can use Al to identify
victims in the organization who are the most susceptible to
social engineering attacks [32]. A regression model based on
the target’s social attributes (conversations, attended events,
etc) can be used as well. Moreover, sentiment analysis can be
used to find disgruntled employees to be recruited as insiders
[81], [210]-[213].

5) Tracking: To study members of an organization,
adversaries may track the member’s activities. With ML, an
adversary can trace personnel across different social media
sites by content [85] and through facial recognition [214].
ML models can also be used on OSN content to track a
member’s location [215]. Finally, ML can also be used to
discover hidden business relationships [216], [217] from the
news and from OSNs as well [218], [219].

G. Stealth

In multi step attacks, covert operations are necessary to
ensure success. An adversary can either use or abuse Al to
evade detection.

1) Covering tracks: To hide traces of the adversary’s
presence, anomaly detection can be performed on the logs
to remove abnormal entries [220], [221]. CryptoNets [222]
can also be used to hide malware logs and onsite training
data for later use. To avoid detection onsite, trojans can be
planted in DL intrusion detection systems (IDS) in a supply
chain attack at both the hardware [70], [223] and software
[52], [224] levels. DL hardware trojans can use adversarial
machine learning to avoid being detected [225].

2) Evading HIDS (Malware Detectors): The struggle
between security analysts and malware developers is a
never-ending battle, with the malware quickly evolving and
defeating detectors. In general, state-of-the-art detectors are
vulnerable to evasion [226]-[228]. For example, adversary
can evade an ML-based HIDS that performs dynamic analysis
by splitting the malware’s code into small components
executed by different processes [229]. They can also evade
ML-based detectors that perform static analysis by adding
bytes to the executable [230] or code that does not affect
the malware behavior [114], [231]-[234]. Modifying the
malware without breaking its malicious functionality is not
easy. Attackers may use Al explanation tools like LIME [41]
to understand which parts of malware are being recognized
by the detector and change them manually. Tools for evading
ML-based detection can be found freely online °.

3) Evading NIDS (Network Intrusion Detection Systems):
There are several ways an adversary can use Al to avoid
detection while entering, traversing, and communicating over
an organization’s network. Regarding URL-based NIDSs, at-
tackers can avoid phishing detectors by generating URLS that
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do not match known examples [235]. Bots trying to contact
their C2 server can generate URLs that appear legitimate to
humans [236], or that can evade malicious-URL detectors
[237]. To evade traffic-based NIDSs, adversaries can shape
their traffic [39], [40] or change their timing to hide it [238].

4) Evading Insider Detectors: To avoid insider detection
mechanisms, adversaries can mask their operations using
ML. For example, given some user’s credentials, they can use
information on the user’s role and the organization’s structure
to ensure that operation performed looks legitimate [239].

5) Evading Email Filter: Many email services use machine
learning to detect malicious emails. However, adversaries can
use adversarial machine learning to evade detection [240]-
[243]. Similarly, malicious documents attached to emails,
containing malware, can evade detection as well (e.g., [244]).
Finally, an adversary may send emails to be intentionally
detected so that they will be added to the defender’s training
set, as part of a poisoning attack [245].

6) Exfiltration: Similar to evading NIDSs, adversaries must
evade detection when trying to exfiltrate data outside of the
network. This can be accomplished by shaping traffic to match
the outbound traffic [88] or by encoding the traffic within
a permissible channel like Facebook chat [246]. To hide the
transfer better, an adversary could use DL to compress [247]
and even encrypt [248] the data being exfiltrated. To minimize
throughput, audio and video media can be summarized to
textual descriptions onsite with ML before exfiltration.
Finally, if the network is air gapped (isolated from the
Internet) [249] then DL techniques can be used to hide data
within side channels such as noise in audio [250].

7) Propagation & Scanning: For stealthy lateral movement,
an adversary can configure their Petri nets or attack graphs
(see section IV-A3) to avoid assets and subnets with certain
IDSs and favour networks with more noise to hide in.
Moreover, Al can be used to scan hosts and networks covertly
by modeling its search patterns and network traffic according
to locally observed patterns [88].

V. USER STUDY & THREAT RANKING

In our literature review (section IV) we identified the
potential offensive Al capabilities (OAC) which an adversary
can use to attack an organization. However, some OACs may
be impractical, where others may pose much larger threats.
Therefore, we performed a user study to rank these threats
and understand their impact on the cyber kill chain.

A. Survey Setup

We surveyed 22 experts in both subjects of Al and
cybersecurity. Our participants were CISOs, researchers,
ethics experts, company founders, research managers, and
other relevant professions. Exactly half of the participants
were from academia and the other half were from industry
(companies and government agencies). For example, some of
our participants were from MITRE, IBM Research, Microsoft,
Airbus, Bosch (RBEI), Fujitsu Ltd., Hitachi Ltd., Huawei
Technologies, Nord Security, Institute for Infocomm Research
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(I2R), Purdue University, Georgia Institute of Technology,
Munich Research Center, University of Cagliari, and the
Nanyang Technological University (NTU). The responses of
the participants have been anonymized and reflect their own
personal views and not the views of their employers.

The survey consisted of 204 questions which asked the
participants to (1) rate different aspects of each OAC, (2)
give their opinion on the utility of Al to the adversary in the
cyber kill chain, and (3) give their opinion on the balance
between the attacker and defender when both have Al We
used these responses to produce threat rankings and to gain
insights on the threat of offensive Al to organizations.

Only 22 individuals participated in the survey because
Al-cybersecurity experts are very busy and hard to reach.
However, assuming there are 100k eligible respondents in the
population, with a confidence level of 95% we calculate that
we have a margin of error of about 20%. Moreover, since we
have sampled a variety of major universities and companies,
and since deviation in the responses is relatively small, we
believe that the results capture a fair and meaningful view of
the subject matter.

B. Threat Ranking

In this section we measure and rank the various threats of
an adversary which can utilize or exploit Al technologies to
enhance their attacks. For each OAC the participants were
asked to rate four aspects on the range of 1-7 (low to high):

Profit (P): The amount of benefit which a threat agent gains
by using Al compared to using non-Al methods. For
example, attack success, flexibility, coverage, automation,
and persistence. Here profit assumes that the Al tool has
already been implemented.

Achievability (A): How easy is it for the attacker to use
Al for this task considering that the adversary must
implement, train, test and deploy the Al

Defeatability (D): How easy is it for the defender to detect
or prevent the Al-based attack. Here, a higher score is bad
for the adversary (l1=hard to defeat, 7=easy to defeat).

Harm (H): The amount of harm which an Al-capable
adversary can inflict in terms of physical, physiological,
or monetary damage (including effort put into mitigating
the attack).

We say that an adversary is motivated to perform an attack
if there is high profit P and high achievability A. Moreover, if
there is high P but low A or vice versa, some actors may be
tempted to try anyways. Therefore, we model the motivation
of using an OAC as M = %(P + A). However, just because
there is motivation, it does not mean that there is a risk. If the
Al attack can be easily detected or prevented, then no amount
of motivation will make the OAC a risk. Therefore, we model
risk as R = % where a low defeatability (hard to prevent)
increases R and a high defeatability (easy to prevent) lowers
R. Risk can also be viewed as the likelihood of the attack
occurring, or the likelihood of an attack success. Finally, to
model threat, we must consider the amount of harm done to

the organization. An OAC with high R but no consequences
is less of a threat. Therefore, we model our threat score as
L(P+ A) M

T=H ) =H D= HR (1
Before computing 7', we normalize P, A, D, and H from the
range 1-7 to 0-1. This way, a threat score greater than 1 indi-
cates a significant threat because for these scores (1) the adver-
sary will attempt the attack (M > D), and (2) the level of harm
will be greater than the ability to prevent the attack (% <HCK<L
1). We can also see from our model that as an adversary’s moti-
vation increases over defeatability, the amount of harm deemed
threatening decreases. This is intuitive because if an attack is
easy to achieve and highly profitable, then it will be performed
more often. Therefore, even if it is less harmful, attacks will
occur frequently so the damage will be higher in the long run.

1) OAC Threat Ranking: In Fig. 2 we present the average
P, A, D, and H scores for each OAC. In Fig. 3 we present
the OACs ranked according to their threat score 7, and
contrast their risk scores R to their harm scores H.

The results show that 23 of the OACs (72%) are considered
to be significant threats (have a 7' > 1). In general
we observe that the top threats mostly relate to social
engineering and malware development. The top three OACs
are impersonation, spear phishing, and model theft. These
OACs have significantly larger threat scores than the others
because they are (1) easy to achieve, (2) have high payoffs, (3)
are hard to prevent, and (4) cause the most harm (top left of
Fig. 2). Interestingly, the use of Al to run phishing campaigns
is considered a large threat even though it has a relatively high
D score. We believe this is because, with Al, an adversary
can both increase the number and quality of the phishing
attacks. Therefore, even if 99% of the attempts fail, some
will get through and cause the organization damage. The least
significant threats were scanning and cache mining which
are perceived to have have little benefit for the adversary
because they pose a high risk of detection. Other low ranked
threats include some on-site automation for propagation,
target selection, lateral movement, and covering tracks.

2) Industry vs Academia: In Fig. 4 we look at the average
threat scores for each OAC category, and contrast the opinions
of members from academia to those from industry.

In general, academia views Al as a more significant
threat to organizations than industry. One can argue that the
discrepancy is because industry tends to be more practical
and grounded in the present, where academia considers
potential threats thus considering the future. For example,
when looking at the threat scores from academia, all of
the categories are considered significant threats (I' > 1).
However, when looking at the industry’s responses, the
categories of stealth, credential theft, and campaign resilience
are not. This may be because these concepts have presented
(proven) themselves less in the wild than the others.

Regardless, both industry and academia agree on the
top three most threatening OAC categories: (1) exploit
development, (2) social engineering, and (3) information
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Fig. 3. Survey results: the offensive Al capabilities ranked according to
their threat scores.

gathering. This is because, for these categories, the attacker
benefits greatly from using Al (P), can easy implement the
relevant Al tools (A), the attack causes considerable damage
(H), and there is little the defender can do to prevent them
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Fig. 4. Survey results: the offensive AI capability categories ranked
according to their average threat scores. The scores from industry and
academia participants are also presented separately.

(D) (indicated in Fig. 2). For example, deepfakes are easy to
implement yet hard to detect in practice (e.g., in a phone call),
and extracting private information from side channels and
online resources can be accomplished with little intervention.

Surprisingly, both academia and industry consider the use of
Al for stealth as the least threatening OAC category in general.
Even though there has been a great deal of work showing
how IDS models are vulnerable [39], [230], IDS evasion
approaches were considered the second most defeatable OAC
after intelligent scanning. This may have to do with the
fact that the adversary cannot evaluate its Al-based evasion
techniques inside the actual network, and thus risks detection.

Overall, there were some disagreements between industry
and academia regarding the most threatening OACs. The
top-10 most threatening OACs for organizations (out of 33)
were ranked as follows:



Industry’s Perspective Academia’s Perspective

1) Reverse Engineering 1) Biometric Spoofing
2) Impersonation 2) Impersonation

3) AI Model Theft 3) Spear Phishing

4) Spear Phishing 4) Al Model Theft

5) Persona Building 5) Mining OSINT

6) Phishing Campaigns 6) Spying

7) Information Sharing 7) Target Selection

8) Malware Obfuscation 8)
9) Vulnerability Detection  9)
10) Password Guessing 10)

We note that academia views biometric spoofing as the top
threat, where industry doesn’t consider it in their top 10. We
think this is because the latest research on this topic involves
ML which can be evaded (e.g., [58], [119]). In contrast to
academia, industry views this OAC as less harmful to the or-
ganization and less profitable to the adversary, perhaps because
biometric security is not a common defense used in organiza-
tion. Regardless, biometric spoofing is still considered the 4-th
highest threat overall (Fig. 3). Another insight is that academia
is more concerned about the use of ML for spyware, side-
channels, target selection, and attack adaptation than industry.
This may be because these are topics which have long been
discussed in academia, but have yet to cause major disruptions
in the real-world. For industry, they are more concerned with
the use of Al for exploit development and social engineering,
likely because these are threats which are out of their control.

Additional figures which compare the responses of industry
to academia can be found online’.

C. Impact on the Cyber Kill Chain

For each of the 14 MITRE ATT&CK steps, we asked the
participants whether they agree or disagree® to the following
statements: (1) It more beneficial for the attacker to use Al
than conventional methods in this attack step, and (2) Al
benefits the attacker more than Al benefits the defender. The
objective of these questions were to identify how Al impacts
the kill chain and whether Al forms any asymmetry between
the attacker and defender.

In Fig. 5 we present the mean opinion scores along with
their standard deviations (additional histograms can be found
online”). Overall, our participants felt that Al enhances the
adversary’s ability to traverse the kill chain. In particular, we
observe that adversary benefits considerably from Al during
the first three steps. One explanation is that these attacks are
maintained offsite and thus are easier to develop and have
less risk. Moreover, we understand from the results that there
is a general feeling that defenders do not have a good way to
preventing adversarial machine learning attacks. Therefore, Al
not only improves defense evasion but also gives the attacker
a considerable advantage over the defender in this regard.

Our participants also felt that an adversary with Al has a
somewhat greater advantage over a defender with Al for most
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Fig. 5. Survey results: Mean opinion scores on whether (1) it is more benefi-
cial for the adversary to use Al over conventional methods, and (2) Al benefits
attackers more than Al benefits defenders. The scores range from -3 to +3.

attack steps. In particular, the defender cannot effectively uti-
lize Al to prevent reconnaissance except for mitigating a few
kinds of social engineering attacks. Moreover, the adversary
has many new uses for Al during the impact step, such as the
tampering of records, where the defender does not. However,
the participants felt that the defender has an advantage when
using Al to detect execution, persistence, and privilege esca-
lation. This is understandable since the defender can train and
evaluate models onsite whereas the attacker cannot.

VI. DISCUSSION

In this section, we share our insights on our findings and
discuss the road ahead.

A. Insights, Observations, & Limitations

Top Threats. It is understandable why the highest ranked
threats to organizations relate to social engineering attacks
and software analysis (vulnerability detection and reverse
engineering). It is because these attacks are out of the
defender’s control. For example, humans are the weakest
link, even with security awareness training. However, with
deepfakes, even less can be done to mitigate these social
engineering attacks. The same holds for software analysis
where ML has proven itself to work well with languages
and even compiled binaries [154]. As mentioned earlier,
we believe the reason academia is the most concerned
with biometrics is because it almost exclusively uses ML,
and academia is well aware of ML’s flaws. On the other
hand, industry members know that organizations do not
often employ biometric security. Therefore, they perceive Al
attacks on their software and personnel as the greatest threats.
The Near Future. Over the next few years, we believe that
there will be an increase of offensive Al incidents, but only at
the front and back of the attack model (recon., resource devel-
opment, and impact —such as record tampering). This is be-
cause currently Al cannot effectively learn on its own. There-
fore, we aren’t likely to see botnets that can autonomously and
dynamically interact with a diverse set of complex systems
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(like an organization’s network) in the near future. Therefore,
since modern adversaries have limited information on the
organizations’ network, they are restricted to attacks where the
data collection, model development, training, and evaluation
occur offsite. In particular, we note that DL models are large
and require a considerable amount of resources to run. This
makes them easy to detect when transferred into the network or
executed onsite. However, the model’s footprint will become
less anomalous over time as DL proliferates. In the near future,
we also expect that phishing campaigns will become more
rampant and dangerous as humans and bots are given the
ability to make convincing deepfake phishing calls.

Al is a Double Edged Sword. We observed that Al technolo-
gies for security can also be used in an offensive manner. Some
technologies are dual purpose. For example, the ML research
into disassembly, vulnerability detection, and penetration test-
ing. Some technologies can be repurposed. For example,
instead of using explainable Al to validate malware detection,
it can be used to hide artifacts. And some technologies can be
inverted. For example, an insider detection model can be used
to help cover tracks and avoid detection. To help raise aware-
ness, we recommend that researchers note the implications of
their work, even for defensive technologies. One caveat is that
the ‘sword’ is not symmetric depending on the wielder. For
example, generative Al (deepfakes) is better for the attacker,
but anomaly detection is better for the defender.

B. The Industry’s Perspective

Using logic to automate attacks is not new to industry —
for instance, in 2015, security researchers from FireEye [251]
found that advanced Russian cyber threat groups built a mal-
ware called HAMMERTOSS that used rules based automation
to blend its traffic into normal traffic by checking for regular
office hours in the time zone and then operating only in that
time range. However, the scale and speed that offensive Al
capabilities can endow attackers can be damaging.

According to 2019 Verizon Data Breach report analysis of
140 security breaches [252], the meantime to compromising an
organization and exfiltrating the data ranges is already in the
order of minutes. Organizations are already finding it difficult
to combat automated offensive tactics and anticipate attacks to
get stealthier in the future. For instance, according to the final
report released by the US National Security Commission on
Al in 2021 [253], the warning is clear “The U.S. government
is not prepared to defend the United States in the coming
artificial intelligence (AI) era.” The final report reasons that
this is “Because of Al, adversaries will be able to act with
micro-precision, but at macro-scale and with greater speed.
They will use Al to enhance cyber attacks and digital disin-
formation campaigns and to target individuals in new ways.”

Most organizations see offensive Al as an imminent
threat — 49% of 102 cybersecurity organizations surveyed by
Forrester market research in 2020 [254], anticipate offensive
Al techniques to manifest in the next 12 months. As a result,
more organizations are turning to ways to defend against
these attacks. A 2021 survey [255] of 309 organizations’

business leaders, C-Suite executives found that 96% of the
organizations surveyed are already making investments to
guard against Al-powered attacks as they anticipate more
automation than what their defenses can handle.

C. What’s on the Horizon

With ATD’s rapid pace of development and open accessibility,
we expect to see a noticeable shift in attack strategies on orga-
nizations. First, we foresee that the number of deepfake phish-
ing incidents will increase. This is because the technology (1)
is mature, (2) is harder to mitigate than regular phishing, (3)
is more effective at exploiting trust, (4) can expedite attacks,
and (5) is new as phishing tactic so people are not expecting
it. Second, we expect that Al will enable adversaries to target
more organizations in parallel and more frequently. As a result,
instead of being covert, adversaries may chose to overwhelm
the defender’s response teams with thousands of attempts for
the chance of one success. Finally, as adversaries begin to use
Al-enabled bots, defenders will be forced to automate their
defences with bots as well. Keeping humans in the loop to
control and determine high level strategies is a practical and
ethical requirement. However, further discussion and research
is necessary to form safe and agreeable policies.

D. What can be done?

Attacks Using Al Industry and academia should focus on
developing solutions for mitigating the top threats. Personnel
can be shown what to expect from Al-powered social
engineering and further research can be done on detecting
deepfakes, but in a manner which is robust to a dynamic
adversary [16]. Moreover, we recommend research into
post-processing tools that can protect software from analysis
after development (i.e., anti-vulnerability detection).

Attacks Against AI. The advantages and vulnerabilities of
Al have profoundly questioned their widespread adoption,
especially in mission-critical and cybersecurity-related tasks.
In the meantime, organizations are working on automating
the development and operations of ML models (MLOps),
without focusing too much on ML security-related issues. To
bridge this gap, we argue that extending the current MLOps
paradigm to also encompass ML security (MLSecOps) may be
a relevant way towards improving the security posture of such
organizations. To this end, we envision the incorporation of
security testing, protection and monitoring of AI/ML models
into MLOps. Doing so will enable organizations to seamlessly
deploy and maintain more secure and reliable AI/ML models.

VII. CONCLUSION

In this SoK we first explored, categorized, and identified
the threats of offensive Al against organizations (sections
II and III). We then detailed the threats and ranked them
through a user study with experts from the domain (sections
IV and V). Finally, we provided insights into our results and
gave directions for future work (section VI). We hope this
SoK will be meaningful and helpful to the community in
addressing the imminent threat of offensive Al
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