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Abstract
Westudy fundamental groups of compact Sasakimanifolds and show that compared toKähler
groups, they exhibit rather different behaviour. This class of groups is not closed under taking
direct products, and there is often an upper bound on the dimension of a Sasaki manifold
realising a given group. The richest class of Sasaki groups arises in dimension 5.
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1 Introduction

Sasaki geometry is often considered as the odd-dimensional analogue of Kähler geometry.
In this paper we examine this analogy with regard to the fundamental group. It is well
known now that Kähler groups, that is the fundamental groups of compact Kähler manifolds,
form a very special subclass of of the class of all finitely presentable groups; cf. [2]. In their
foundational monograph [9] on Sasaki geometry, Boyer and Galicki suggested that one study
Sasaki groups, that is, fundamental groups of compact Sasakimanifolds, systematically. They
noted that groups with virtually odd first Betti number cannot be Sasaki, and then suggested
that perhaps the analogy with Kähler groups might stop there, cf. [9, p. 236]. Nevertheless,
in the papers written on Sasaki groups since then, the point of view taken was usually that
of pushing the analogy further, by proving that certain constraints known for Kähler groups
also apply to Sasaki groups; see Chen [14], Biswas et al. [5, 6] and Kasuya [28–30].

In this paper we will also prove some results which extend the analogy between the
Kähler and Sasaki cases. However, our main point is that Sasaki groups actually behave
rather differently from Kähler groups. The reason that many results about Kähler groups
extend to Sasaki groups is that within certain restricted classes of groups all Sasaki groups
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Fig. 1 Kähler and projective groups

are in fact Kähler, and, therefore, within those classes of groups one does not encounter the
important differences between the Kähler and Sasaki situations.

1.1 Kähler and projective groups

Let us denote by Kn the class of fundamental groups of closed Kähler manifolds of complex
dimension n, and by Pn ⊂ Kn the subclass of groups realised by smooth complex projective
algebraic varieties. By taking products with CP1 one sees that there are natural inclusions
Kn ⊂ Kn+1 and Pn ⊂ Pn+1. The latter inclusion is in fact an equality for n ≥ 2 because of
the Lefschetz hyperplane theorem. We therefore denote Pn≥2 by P . It is an open question
whether the inclusion Kn ⊂ Kn+1 is ever strict for n > 1.

For n = 1 we have K1 = P1, since every compact Riemann surface is an algebraic
curve. These fundamental groups are just the orientable surface groups. A classical result of
Kodaira says thatK2 = P , and a recent result of Claudon et al. [15] givesK3 = P . Therefore,
K2 = K3, a statement for which no direct proof is known, other than arguing that both sides
equal P .

We can summarise all this information in the diagram of inclusions depicted in Fig. 1.
The class of Kähler groups is the union of all theKn . There is a strict horizontal inclusion

Kn � Kn+1 for some n ≥ 3 if and only if one1 of the vertical inclusions is strict, meaning
that there would be more Kähler groups than projective ones. If this were the case, then
the smallest dimension in which a Kähler group could arise as the fundamental group of a
closed Kähler manifold would be an interesting invariant of (non-projective) Kähler groups.
Claudon, Höring and Lin2 have conjectured that all Kähler groups are projective, cf. [15,
Conjecture 1.1], which would mean that there are no vertical strict inclusions in this diagram.

Finally note that the classes of Kähler or projective groups are both closed under taking
subgroups of finite index, and that they are also closed under direct products.

1.2 Sasaki and projective groups

Let us denote by Sn the class of fundamental groups of closed Sasaki manifolds of dimension
n. Taking coverings shows that this is closed under passing to subgroups of finite index.
However, there is no obvious way to realise direct products, since the Cartesian product of
two Sasaki manifolds is of even dimension, and therefore certainly not Sasaki. This problem
not only obstructs the realisation of direct products of groups, it also means that there is no
straightforward way to get an inclusion of Sn into Sm for a larger m, be it n + 2 or some
larger value.

It is known from work of Kasuya [29] that these issues cannot be resolved when n = 3.
The Sasaki 3-manifolds with infinite fundamental groups are essentially the circle bundles

1 And, therefore, infinitely many.
2 And perhaps others as well.
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with non-zero Euler classes over surfaces of positive genus, cf. Geiges [20]. They are not
1-formal, and, in fact, have non-trivial Massey triple products defined on H1. Now Kasuya
[29, Theorem 1.1] proved that Sasaki manifolds of dimension≥ 5 are 1-formal, equivalently
the Malcev algebra of a Sasaki group is quadratically presented. Therefore no infinite group
in S3 will occur in Sn for any n ≥ 5. The same conclusion holds for any direct product of
groups that has an infinite factor from S3.

Kasuya’s result suggests that groups in S3 are completely unlike high-dimensional Sasaki
groups, and one might hope that once one discards the 3-dimensional case, things will be
more or less uniform, as expected by analogy with the Kähler case. Of course, Kasuya’s
result about 1-formality further strengthens the analogy between Kähler groups and high-
dimensional Sasaki groups.

Our first result is that in all odd dimensions there are Sasaki groups which do not occur
in any larger dimension, so that the 3-dimensional case is actually not special in this regard.

Theorem 1 Every Sn contains groups which are not contained in any Sm with m > n.

This means that the problem caused by the absence of products in the Sasaki category
cannot be resolved, and there is no inclusion between the Sn going up in dimension. How-
ever, we can adapt the Lefschetz hyperplane theorem to obtain an inclusion going down in
dimension:

Theorem 2 There is an inclusion Sn ⊂ Sn−2 for all n ≥ 7.

By the previous theorem, all these inclusions are strict. The combination of the two
theorems shows that S5 is the union of all Sn≥5, and that it is strictly larger than any union
taken by leaving out S5. It is somewhat counterintuitive that the largest and most interesting
class of fundamental groups occurs in a rather small dimension, in fact the smallest dimension
beyond the exceptional n = 3.

We also show that projective groups are Sasaki in all dimensions > 3.

Theorem 3 The class Sn of Sasaki groups of dimension n contains all projective groups for
every n ≥ 5.

Without control on the dimension, this was proved previously by Chen [14, Proposi-
tion 1.2.]. His argument does not yield themost interesting case ofS5. Note that by Theorem 1
all the inclusionsP ⊂ Sn in Theorem 3 are strict. For Sasaki groups the analog of the diagram
in Fig. 1 is the diagram in Fig. 2, summarizing our discussion so far, and leaving S3 out in
left field in splendid isolation.

In light of this diagram it seems interesting to investigate the intersection of all the Sn

for n ≥ 5. This intersection contains all the projective groups, and one might be tempted to
conjecture that it equals P . However, Theorem 3 is true not only for the fundamental groups
of smooth complex projective algebraic varieties, but also for the potentially larger class of
orbifold fundamental groups of cyclic polarised projective orbifolds in the sense of Ross
and Thomas [40, Definition 2.7.], see Remark 13 below. Therefore, at least these groups are
contained in all Sn for n ≥ 5.

Fig. 2 Sasaki and projective groups
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1.3 Extending restrictions on Kähler groups to Sasaki groups

By Theorem 3 all projective groups are Sasaki, and, therefore, if all Kähler groups are
projective, then all Kähler groups are Sasaki. However, there are many Sasaki groups which
are not Kähler, for example all the ones constructed in the proof of Theorem 1 have this
property, see Sect. 4. Nevertheless, within certain restricted classes of groups it turns out that
all Sasaki groups are in fact projective. In this direction we will prove the following:

Theorem 4 In the following classes of groups all Sasaki groups in S5 are projective:

(1) torsion-free groups with trivial centre,
(2) torsion-free hyperbolic groups,
(3) torsion-free Schreier groups,
(4) fundamental groups of non-positively curved closed manifolds of rank one,
(5) fundamental groups of compact locally symmetric spaces of non-compact type,
(6) fundamental groups of three-manifolds.

This applies in particular to fundamental groups of manifolds of constant negative cur-
vature, see Corollary 25. The philosophy behind Theorem 4 also explains other results that
have been proved about Sasaki groups. For example, a posteriori, the recent result of Biswas
and Mj [5] can be paraphrased as saying that Sasaki groups of deficiency at least 2 must
be projective, compare [33]. For torsion-free groups this is an immediate consequence of
Statement 3 in Theorem 4.

There are other restrictions on Kähler groups that can be extended to the Sasaki case, but
that do not fit neatly into this philosophy. A case in point is the following Sasaki analog of
the well known theorem of Johnson and Rees [27] about Kähler groups.

Theorem 5 Let �1 and �2 be two groups. Assume fi : �i −→ Qi are non-trivial quotients
with |Qi | = mi < ∞ for both i = 1, 2. Then the following two statements hold:

(a) �1 ∗ �2 is not Sasaki,
(b) moreover, for any group H the product (�1 ∗ �2) × H is not Sasaki.

1.4 Structure of the paper

In Sect. 2 we introduce notation and recall some facts on the topology of Sasaki manifolds
that are crucial for our arguments. Section3 is dedicated to the relationship between Sasaki
and projective groups, in particular it contains the proofs of Theorems 2 and 3. We also
explain how the proof of Theorem 3 adapts to K -contact manifolds. In Sect. 4 we discuss
Sasaki groups which are not projective, and not even Kähler, and which can only be realised
as Sasaki groups on manifolds with explicit dimension bounds. This in particular proves
Theorem 1. Finally Sect. 5 contains the proofs of Theorems 4 and 5, and some corollaries
and applications.

2 Sasaki manifolds and the associated group extensions

We begin with some definitions and known results; for a more comprehensive treatment we
refer to the monograph by Boyer and Galicki [9]. Unless otherwise stated, all manifolds are
assumed to be smooth, closed and oriented.
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A K-contact structure (M, η, φ) on a manifold M consists of a contact form η and an
endomorphism φ of the tangent bundle TM satisfying the following properties:

• φ2 = − Id+R ⊗ η where R is the Reeb vector field of η,
• φ|D is an almost complex structure compatiblewith the symplectic formdη onD = ker η,
• the Reeb vector field R is Killing with respect to the metric g(·, ·) = dη(φ·, ·)+η(·)η(·).

Given such a structure one can consider the almost complex structure I on the Riemannian
cone

(
M × (0,∞), t2 g + dt2

)
given by

• I = φ on D = ker η,
• I (R) = t∂t .

A Sasaki structure is a K-contact structure (M, η, φ) such that the associated almost complex
structure I on the Riemannian cone is integrable.

An important example of a Sasaki (resp. K-contact) structure is obtained by the Boothby–
Wang fibration M over a Kähler (resp. almost-Kähler) manifold (X , ω) with ω representing
an integral class [7], that is, the principal S1-bundle π : M −→ X with Euler class [ω] and
connection 1-form η such that π∗(ω) = dη.

A contact form is called regular (respectively quasi-regular, irregular) if its Reeb foliation
is such. Rukimbira [41] proved that any irregular Sasaki structure can be deformed to a quasi-
regular one. Moreover, the geometry of quasi-regular structures is described by the following
(cf. [9, Theorem 7.5.1]):

Theorem 6 (Structure Theorem) Let (M, η, φ) be a quasi-regular Sasaki structure and let
|X | be the space of leaves of the Reeb folation. Then |X | carries the structure of a projective
orbifold X with an integral Kähler class [ω] ∈ H2

orb(X; Z), and π : M −→ X is the principal
S1-orbibundle with connection 1-form η such that π∗ω = dη. Moreover, if η is regular then
π : M −→ X is a principal S1-bundle over a smooth projective manifold.

The orbifold homotopy, homology and cohomology groups are defined using Haefliger’s
classifying space [22], cf. [9, Section 4.3].

Since the leaf holonomy groups of the Reeb foliation are always cyclic, the orbifold X is a
cyclic orbifold. In particular, it is normal and Q-factorial. Moreover, because M is a smooth
manifold, the cohomology class of ω being integral means that X is a polarised orbifold in
the sense of Ross and Thomas [40, Definition 2.7]. Throughout this paper, the only orbifolds
we consider are these cyclic polarised orbifolds. Starting from one of these orbifolds, one
has the following converse to the structure theorem (cf. [9, Theorem 7.5.2]), arising from the
orbifold version of the Boothby–Wang construction.

Theorem 7 Let X be a cyclic projective orbifold equipped with a polarisation defined by an
integral Kähler class [ω] ∈ H2

orb(X; Z). Then the total space of the principal S1-orbibundle
π : M −→ X with Euler class [ω] is a manifold that can be equipped with a quasi-regular
Sasaki structure such that π∗ω = dη, where η is the contact form.

In this particular case the total space of the orbibundle is actually smooth, because we
started with a polarised cyclic orbifold in the sense of Ross and Thomas [40, Definition 2.7],
whichmeans in particular that all local uniformizing groups inject into S1, so that smoothness
of the total space follows from [9, Lemma 4.2.8].

The Structure Theorem 6 together with Rukimbira’s result [41] implies that the funda-
mental group of a Sasaki manifold M always fits into the long exact sequence of homotopy
groups associated to the principal S1-orbibundle π : M → X , namely:

. . . −→ πorb
2 (X)

∂−→ π1(S1) −→ π1(M) −→ πorb
1 (X) −→ 0.
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Thus π1(M) fits into a short exact sequence of the following type:

0 −→ C = coker∂ −→ π1(M) −→ πorb
1 (X) −→ 0. (1)

The group C is a – possibly trivial – cyclic subgroup of the centre of π1(M) determined by
the Euler class e = [ω] ∈ H2

orb(X; Z) since the map ∂ factors as

πorb
2 (X) Z ∼= π1(S1)

Horb
2 (X; Z)

∂

ψ
〈−;e〉 (2)

where 〈−; e〉 is the evaluation of the Euler class and ψ is the Hurewicz homomorphism;
see for instance [24].

Remark 8 Let Bπorb
1 (X) be the classifying space constructed from the orbifold classifying

space BX by attaching cells of dimension larger than 2. The inclusion map ι : BX −→
Bπorb

1 (X) induces an isomorphism

ι∗ : H1(Bπorb
1 (X); Z) −→ H1

orb(X; Z)

and an injective homomorphism

ι∗ : H2(Bπorb
1 (X); Z) ↪→ H2

orb(X; Z).

In the case where C ∼= Z in (1) one can identify the Euler class e ∈ H2
orb(X; Z) of the

principal S1-orbibundle p : M −→ X with the characteristic class c ∈ H2(πorb
1 (X); Z) of

the central extension via the pullback of the inclusion ι : BX −→ Bπorb
1 (X).

Let us now give some more details about the extension (1). In particular, we want to
relate the orbifold fundamental group πorb

1 (X) to a genuine projective group. Note that the
map p : B X −→ X from the orbifold classifying space to the underlying topological space
induces a surjective map p∗ at the level of fundamental groups. Moreover, the kernel of p∗ is
normally generated by loops around the irreducible divisors D contained in the singular set
of X . These loops represent torsion elements of order m, the ramification index of D. There-
fore, the kernel K of the map p∗ : πorb

1 (X) −→ π1(X) is generated by (possibly infinitely
many) torsion elements. Now the cohomology of K with coefficients in R is trivial in all
positive degrees becauseR ism-divisible for allm. Thus the Lyndon–Hochschild–Serre spec-
tral sequence of K ⊂ πorb

1 (X) yields an isomorphism H∗(πorb
1 (X); R) ∼= H∗(π1(X); R).

Moreover, X admits a resolution of singularities which does not change the fundamental
group by a result of Kollár, see [31, Theorem 7.5.2]. Thus the real cohomology ring of
πorb
1 (X) is that of a projective group. Notice that whenever C �= Z we have an isomorphism

H∗(πorb
1 (X); R) ∼= H∗(π1(M); R). In this instance π1(M) itself has the real cohomology

ring of the projective group π1(X). We summarize this discussion in a lemma for future
reference.

Lemma 9 For any quasi-regular structure π : M −→ X on a Sasaki manifold M one has
the diagram

K

0 C � πorb
1 (X) 0

π1(X)

π∗

p∗

(3)
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where � = π1(M) and C is cyclic. Moreover, π1(X) is a projective group and the kernel
K of p∗ is generated by torsion elements so that H∗(πorb

1 (X); R) ∼= H∗(π1(X); R). If in
addition C �= Z, then H∗(π1(X); R) ∼= H∗(�; R).

We will also need the following.

Lemma 10 Let π : M −→ X be the principal orbibundle associated to a quasi-regular
Sasaki structure. Then there is a non-degenerate skew-symmetric bilinear pairing

H1(πorb
1 (X); R) × H1(πorb

1 (X); R) −→ R (4)

which factors through the cup product

H1(πorb
1 (X); R) × H1(πorb

1 (X); R)
∪−−→ H2(πorb

1 (X); R).

Proof In the quasi-regular case the basic cohomology ring H∗
B(F; R) of the Reeb fibration,

see [9, Section 7.2], coincides with the orbifold cohomology ring with real coefficients
H∗

orb(X; R). Moreover, the Hard Lefschetz Theorem holds for the basic cohomology of a
Sasaki manifold, see [18] and [9, Theorem 7.2.9]. The claim then follows by composing the
non-degenerate bilinear map coming from the transverse Hard Lefschetz Theorem with the
map ι∗ : H∗(Bπorb

1 (X)) −→ H∗
orb(X) given in Remark 8. ��

Remark 11 This lemma is crucial for the proof of Theorem 5. In [11] a different version of the
Hard Lefschetz Theorem is proved for Sasaki manifolds. However, the non-degenerate bilin-
ear pairing constructed in [11] does not factor through the cup product in group cohomology,
and is therefore not suitable for our purposes.

3 Sasaki groups from projective groups

In this section we prove Theorems 2 and 3, and give some variations on the latter.

3.1 The Lefschetz hyperplane theorem for Sasaki manifolds

In algebraic geometry, the Lefschetz hyperplane theorem is a statement relating the homotopy
groups of a complex projective variety to those of a generic hyperplane section. In the
Sasaki context we consider quasi-regular structures defining orbifold bundles over projective
orbifolds, and then take hyperplane sections of the base orbifold and restrict the orbifold
bundle to such a hyperplane section. The resulting statements can be formulated for higher
homotopy groups as well, but they are easier in that case, and, possibly, less useful. So we
will stick to the discussion of fundamental groups and just prove Theorem 2.

Let� be the fundamental group of a Sasaki manifold M of dimension 2n+1 ≥ 7.Wemay
assume that the Sasaki structure is quasi-regular, and obtain the associated orbifold fibration
π : M −→ X with X a projective orbifold of complex dimension n. Now let Y ⊂ X be a
generic hyperplane section. We denote the inclusion of Y in X by ι, and we let N ⊂ M be
the preimage of Y under π , i.e. the total space of the orbifold circle bundle restricted from
X to Y .

Since X arises as the quotient of the quasi-regular Sasaki structure on M , the local uni-
formizing groups of X are cyclic and inject in S1. Restricting to the suborbifold Y ⊂ X , we
have the same local uniformizing groups with the same injections into S1. In other words, the
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restriction of the polarisation of X to Y is again a polarisation in the sense of Ross and Thomas
[40, Definition 2.7]. Therefore Theorem 7 applies, and N is a smooth Sasaki manifold, rather
than just an orbifold.

This situation gives rise to the following commutative diagram of orbifold homotopy exact
sequences:

πorb
2 (Y )

∂−→π1(S1)−→π1(N )−→πorb
1 (Y )−→ 1

πorb
2 (X)

∂−→π1(S1)−→π1(M)−→πorb
1 (X)−→ 1 .

ι∗

=

ι∗ ι∗

By the Lefschetz hyperplane theorem for orbifolds or Deligne–Mumford stacks [23, Corol-
lary 2.7] the assumption n ≥ 3 implies that the vertical inclusion-induced map

ι∗ : πorb
i (Y ) −→ πorb

i (X)

is an isomorphism for i = 1 and a surjection for i = 2. Therefore, this diagram shows, by the
usual diagram chase, that ι∗ : π1(N ) −→ π1(M) is also an isomorphism. Now N is a Sasaki
manifold of real dimension two less than the dimension of M having the same fundamental
group. This completes the proof of Theorem 2.

Remark 12 It was pointed out to us by J. Kollár that the isomorphism πorb
1 (Y ) −→ πorb

1 (X)

can also be deduced from more classical Lefschetz theorems for quasi-projective varieties.
Indeed, if D ⊂ X is the singular locus of the orbifold X , one can apply Theorem 1.1.3 (ii) of
Hamm–Lê [25] to see that X\D is obtained from its hyperplane section by attaching cells of
dimension ≥ 3. Therefore, they have the same fundamental group. Then the orbifold funda-
mental groups of X and Y are obtained from these fundamental groups of the complements of
the singular loci by introducing the same relations on both sides, so the orbifold fundamental
groups are the same.

3.2 The Boothby–Wang construction with control on the fundamental group

We now prove Theorem 3. Let � be a projective group. Taking products with CP1 in one
direction, and using the Lefschetz hyperplane theorem in the other, one sees that � = π1(X)

where X can be taken as a smooth complex projective variety of (real) dimension 2n for any
n ≥ 2. Then X is equipped with an integral Kähler class [ω] so that the corresponding line
bundle is ample. The blow-up of X at a point, topologically X#CPn , can be endowed with
the integral Kähler class k[ω] − E where E is the Poincaré dual of the exceptional divisor
D and k ∈ N is large enough, so that the corresponding line bundle is ample on the blowup.

Consider now the Boothby–Wang fibration M over X#CPn with Euler class e = k[ω]− E
and the associated long exact sequence

· · · −→ π2(X#CPn)
∂−→ π1(S1) −→ π1(M) −→ � −→ 0.

The exceptional divisor D ∼= CPn−1 contributes a non-torsion spherical class to
H2(X#CPn; Z) on which the Euler class evaluates as ±1. Thus the map ∂ is surjective
by (2), that is, we get the desired isomorphism π1(M) ∼= �. This completes the proof of
Theorem 3.

Remark 13 This proof generalizes to the orbifold setting in the following way. Instead of
starting with a smooth projective variety, we may start with any cyclic projective orbifold
with an integral polarisation. We first blow up a smooth point and modify the polarisation to
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one on the blowup which evaluates as±1 on a projective line in the exceptional divisor. Then
we apply Theorem 7 to this polarisation on the blowup to obtain a Sasaki manifold whose
fundamental group is the orbifold fundamental group of the cyclic orbifold we started with.

Another variation on the proof of Theorem 3 is given by the following:

Proposition 14 Every finitely presentable group is the fundamental group of a closed K -
contact manifold of dimension 2n + 1 for any n ≥ 2.

Without the control on the dimension, this result appears in [6, Theorem 5.2]. The proof
given there is different from ours, and does not prove the case n = 2. The following argument
implements a suggestion of [1, Remark 2.2].

Proof Fix an n ≥ 2 and a finitely presentable group�. By a celebrated theoremofGompf [21]
there exists a closed symplectic 2n-manifold Y such that π1(Y ) = �. Since non-degeneracy
is an open condition in the space of closed forms, there exists a symplectic form on Y
representing a rational class in cohomology. After multiplication with a large integer we may
assume that Y is equipped with a symplectic form ω representing a primitive integral class
[ω].

After possibly replacing Y by its symplectic blow-up at a point, there exists a spherical
class in H2(Y ; Z) on which [ω] evaluates as ±1. Therefore, the Boothby–Wang fibration
over Y with Euler class [ω] is a compact (2n + 1)-dimensional K-contact manifold N with
π1(N ) = �. ��

4 Some non-Kähler Sasaki groups

In this section we construct interesting Sasaki groups which are not Kähler, and use some of
them to prove Theorem 1.

Since S5 is the richest class of Sasaki groups, it makes sense to start in dimension 5.

Proposition 15 Let X be an aspherical algebraic surface, and π : M −→ X the Sasaki
5-manifold obtained by the Boothby–Wang construction using as Euler class [ω] the first
Chern class of an ample line bundle on X. If X has complex Albanese dimension 2, then
π1(M) is not a Kähler group.

Proof Suppose Y is a compact Kähler manifold with fundamental group π1(Y ) = π1(M).
Consider the composition

Y
cY−→ Bπ1(Y ) = M

π−→ X ,

where cY is the classifying map of the universal covering of Y . Both maps induce isomor-
phisms on H1(−; R). However, any four-fold cup product of classes in H1(X; R) lands in
H4(X; R), which is spanned by [ω]2. Since [ω] is killed by π∗, so is [ω]2. Therefore, the
cup-length of degree one classes on Y is strictly less than 4. This means that the image of Y
under its Albanese map αY : Y −→ Alb(Y ) is a curve D, cf. [2, p. 23]. A standard argument
then implies that D is smooth, and the Albanese map has connected fibres, compare [19,
p. 289]. The Albanese image D is necessarily of genus ≥ 2, since the first Betti number of
X , and therefore of Y , is at least 4.

Since the Albanese map has connected fibres, it induces a surjective homomorphism

(αY )∗ : π1(Y ) −→ π1(D).
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However, as D is of genus g ≥ 2, its fundamental group has trivial centre, and so this homo-
morphism factors through the quotient map π∗ : π1(Y ) = π1(M) −→ π1(X) as follows:

1 Z π1(Y )

(αY )∗

π∗
π1(X) 1.

π1(D)

(5)

Since both (αY )∗ and π∗ induce isomorphisms on H1(−; R), so does the diagonal map on
the bottom right. This means that H1(X; R) comes from the curve D, and so the cuplength
is 2, and not 4. This contradicts the assumption that X has real Albanese dimension 4, and
this contradiction finally shows that Y does not exist, and π1(M) is not a Kähler group. ��

There are many examples where this result applies.

Example 16 If we take X to be an Abelian surface, we can arrange π1(M) to be the five-
dimensional integral Heisenberg group. That this is not a Kähler group was first proved by
Carlson and Toledo [13] using a completely different argument.

Remark 17 Carlson andToledo [13] pointed out that the integralHeisenberg groups of dimen-
sion at least 5 are known to be 1-formal, in the sense of having quadratically presentedMalcev
algebra, so there is no obstruction at that level to them being Kähler. Indeed, even if this had
not been known thirty years ago, it now follows via Kasuya’s result [29, Theorem 1.1] from
the fact that they are all Sasaki groups in dimension ≥ 5. The claim in [6, Section 3.1] that
these groups are not 1-formal is based on the use of a different notion of 1-formality, cf. [29,
Remark 3.8].

Example 18 We can also take for X any Cartesian product of curves of positive genus, not
necessarily of genus one. Then π1(M) is no longer nilpotent as in the previous example.

Example 19 Proposition 15 applies whenever X is a Kodaira fibration whose Albanese image
is not a curve. Almost all examples of Kodaira fibrations constructed explicitly do have this
property, compare the discussion in [10] and the references given there.

Finally, we can also apply Proposition 15 to ball quotients of complex dimension 2 whose
Albanese image is also of dimension 2. However, in this case we can prove more, in that we
can allow ball quotients of arbitrary dimension, and we can dispense with the assumption
about the Albanese dimension.

Let G ⊂ PU (n, 1) be a torsion-free cocompact lattice in the isometry group of the n-
dimensional complex ball CHn equipped with the Bergman metric. Then X = CHn/G is a
smooth projective variety, since the Kähler class [ω] of the Bergman metric is the first Chern
class of an ample line bundle. Letπ : M −→ X be the principal circle bundle with Euler class
[ω]. Its total space carries a Sasaki structure obtained by the Boothby–Wang construction.
Since X is aspherical, the fundamental group � = π1(M) is the central extension

1 −→ Z −→ � −→ G −→ 1 (6)

with extension class [ω].
The following statement is known to some experts, cf. for example [39], but since a quick

and clean proof is not readily available in the literature, we give one here.

Proposition 20 The extension � is not a Kähler group.
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Proof In case that n = 1, the manifold M = B� has positive first Betti number, but the
cup product from H1 to H2 vanishes identically. Therefore, � cannot be Kähler by the Hard
Lefschetz Theorem.

We now assume n ≥ 2 and argue by contradiction. So suppose that Y is a compact Kähler
manifold with fundamental group �. Consider the classifying map of its universal covering
composed with the projection from M = B� to X = BG:

Y
cY−→ M

π−→ X .

Since X is negatively curved, the composition π ◦ cY is homotopic to a harmonic map
h : Y −→ X by the Eells–Sampson theorem. Note that on π1(Y ) the induced map h∗ is
just the projection � −→ G with kernel Z. The assumption n ≥ 2 implies that h∗ cannot
factor through a surface group. We now invoke the classification of harmonic maps from
compact Kähler manifolds to ball quotients due to Carlson and Toledo [12, Theorem 7.2].
This says that either the rank of the differential Dh is everywhere ≤ 2, in which case h has
image a closed geodesic or factors through a Riemann surface, or it is holomorphic (after
perhaps conjugating the complex structure on X ). The first case is not possible because
of what we know about h∗ at the fundamental group level, and so we conclude that h is
indeed holomorphic. Since it is non-constant, its image is a positive-dimensional analytic
subvariety of X , on which the appropriate power of the Kähler class [ω] is positive. This
means h∗[ω] �= 0, contradicting the fact that h∗ = c∗

Y ◦ π∗, and [ω] ∈ ker(π∗) by the Gysin
sequence. This contradiction proves the claim. ��

We can now prove Theorem 1.

Proof of Theorem 1 For every n, there do exist torsion-free cocompact lattices G in the isome-
try group of the n-dimensional complex ballCHn equipped with the Bergmanmetric; see for
example Borel [8]. As above, we let X be the corresponding ball quotient with fundamental
group G, and π : M −→ X the Sasaki manifold which is the total space of the circle bundle
with Euler class [ω]. Then the fundamental group of M is the Sasaki group described by the
extension (6). To prove Theorem 1 we show that if N is any compact Sasaki manifold whose
fundamental group is the group � = π1(M), then dim(N ) ≤ 2n + 1.

As usual we may assume the Sasaki structure on N to be quasi-regular, and consider the
quotient map N −→ Z , where Z is a projective orbifold. We obtain the corresponding exact
sequence

1 −→ C −→ � −→ πorb
1 (Z) −→ 1. (7)

Since � is torsion-free, C cannot be non-trivial and finite. Moreover, if C were trivial,
then � = πorb

1 (Z), and using torsion-freeness again, this would show that � is projective,
contradicting Proposition 20. Thus C must be infinite cyclic. Since the centre C(�) of � is
infinite cyclic, consisting of the copy of Z on the left in (6), we conclude that C is a finite
index subgroup of C(�).

Assume first thatC = C(�). Thenπorb
1 (Z) = G, and since G is torsion-free, we conclude

π1(Z) = G. Moreover, Remark 8 shows that the circle bundle N −→ Z is the pullback of
M −→ X under the classifying map cZ : Z −→ X . On X , the (n + 1)st power of the Euler
class vanishes for dimension reasons, but this Euler class pulls back to a Kähler class on Z .
Therefore, dimC(Z) ≤ n, which implies dim(N ) ≤ 2n + 1.

If C ⊂ C(�) has index k > 1, then we divide (6) by C , and obtain

1 −→ C(�)/C = Zk −→ �/C = πorb
1 (Z) −→ G −→ 1.
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Again the extension class of (7) in H2(πorb
1 (Z); Z) ⊂ H2(Z; Z) is a pullback from

BG = X , showing that its (n + 1)st power vanishes. Since it is a Kähler class, we obtain the
same dimension bound as before. This completes the proof. ��

Remark 21 For n = 1, the above proof shows that the fundamental groups of 3-manifolds
which are circle bundles with non-zero Euler classes over surfaces of genus ≥ 2 are not
Sasaki groups in dimensions ≥ 3. The same argument also applies to circle bundles over the
torus. As mentioned in the introduction, this conclusion also follows from Kasuya’s result
about 1-formality [29, Theorem 1.1]. In the proof of Theorem 4 below we will generalize
the statement from these circle bundles to all 3-manifolds with infinite fundamental groups.

5 Further restrictions on Sasaki groups

In this section we prove Theorems 4 and 5, and we discuss some applications and variations.

5.1 About Theorem 5

For the proof we use the following lemma.

Lemma 22 ([32]) Let �1 and �2 be two groups. Assume fi : �i −→ Qi is a non-trivial
quotient with kernel Ki and |Qi | = mi < ∞ for i = 1, 2. Then the free product �1 ∗ �2

admits a finite index subgroup with odd first Betti number.

Proof Consider the following composition

�1 ∗ �2
πab−−→ �1 × �2

f1× f2−−−−→ Q1 × Q2.

By the Kurosh subgroup theorem, the kernel of this homomorphism has the form Fm ∗ K
where Fm is the free group on m = (m1 − 1)(m2 − 1) generators and K is a free product of
subgroups isomorphic to the Ki . Now let f : Fm −→ Q be a finite quotient with |Q| = d .
Extend f trivially on K to get a homomorphism f̄ : Fm ∗ K −→ Q. Then the kernel of f̄
has the form Fn ∗ K ∗ · · · ∗ K where n = 1+ d(m − 1) and K appears d many times. Thus,
ker( f̄ ) is a finite index subgroup in �1 ∗ �2 and

b1(ker( f̄ )) = n + db1(K ) = 1 + d(m − 1 + b1(K )).

By picking d even we get a finite index subgroup of �1 ∗ �2 with odd first Betti number. ��

We are now ready to prove Theorem 5. Clearly part a follows directly from Lemma 22,
so we only have to prove part b. Set � = (�1 ∗�2)× H . The proof is divided into two cases.

5.1.1 Case 1: b1(H) is even

By Lemma 22, there exists a finite index subgroup � ⊂ �1 ∗ �2 with b1(�) odd. Hence, the
group � × H is a finite index subgroup of � with odd first Betti number. Thus � cannot be
Sasaki.
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5.1.2 Case 2: b1(H) is odd

In this case b1(�1 ∗�2) > 0. Then we can assume that the first Betti number of�1 is positive,
and so�1 has finite quotients of arbitrarily large order. The first step in the proof of Lemma 22
provides a finite index subgroup of �1 × �2 of the form Fm ∗ G. Moreover, the rank m of
Fm can be chosen to be arbitrarily large by using suitable quotients of �1 (and some fixed
quotient of�2). Since the class of Sasaki groups is closed under taking finite index subgroups,
we can assume � = (Fm ∗ G) × H with m > b1(H).

Let M be a compact Sasaki manifold with π1(M) = �. Consider a quasi-regular Sasaki
structure π : M −→ X and let

0 −→ C −→ � −→ πorb
1 (X) −→ 0

be the associated central extension. Since C is mapped to the centre of �, it must be mapped
into H . It follows that

πorb
1 (X) = (Fm ∗ G) × (H/C).

Now H1(πorb
1 (X); R) is endowedwith a skew-symmetric non-degenerate bilinear pairing

by Lemma 10. Moreover, this factors through the cup product, i.e.

H1(πorb
1 (X); R) × H1(πorb

1 (X); R) H2(πorb
1 (X); R) R .

∪ (8)

Therefore, for this pairing H1(Fm) is an isotropic subspace in H1(πorb
1 (X)) ∼= H1(Fm)⊕

H1(G)⊕ H1(H/C)which is orthogonal to H1(G). Since b1(H/C) = b1(H), the inequality
m > b1(H) = b1(H/C) contradicts the non-degeneracy of the skew-symmetric pairing.
This contradiction proves that � is not a Sasaki group. We have now completed the proof of
Theorem 5.

5.2 About Theorem 4

We now go through the different cases in Theorem 4 giving the proofs, and, in some cases,
further applications.

Statement 1

Triviality of the centre means that C has to be trivial. Torsion-freeness then implies that
the kernel K in (3) is trivial, and so � is isomorphic to the projective group π1(X). This
completes the proof in this case.

Napier and Ramachandran [38] proved that the Thompson group F and its generalisations
Fn,∞ and Fn are not Kähler. Since these groups are torsion-free with trivial centre, we obtain:

Corollary 23 The Thompson group F and its generalisations Fn,∞ and Fn are not Sasaki
groups.

Statement 2

Since Sasaki groups have even first Betti numbers, an infinite Sasaki group cannot be cyclic.
Therefore we may assume that our hyperbolic group is not virtually cyclic. Then by [35,
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Lemma 3.5] its centre is finite. By torsion–freeness the centre is trivial, and so Statement 1
applies.

Statement 3

Recall from [16, Definition 3.1] that a group is Schreier if every finitely generated normal
subgroup is either finite or of finite index. For a Sasaki group � being Schreier means that C
cannot be infinite cyclic. For it it were so, then it would have to be of finite index, so that �
would be virtually infinite cyclic. Once C cannot be infinite, torsion-freeness again proves
that � is isomorphic to the projective group π1(X).

Llosa Isenrich [36, Corollary 3.2.9] proved that any torsion-free Schreier andKähler group
with virtually positive first Betti number is an orientable surface group of genus ≥ 2. Thus
we obtain:

Corollary 24 Any torsion-free Sasaki and Schreier group with virtually positive first Betti
number is an orientable surface group of genus ≥ 2.

Statement 4

Let N be a closed Riemannian manifold of non-positive curvature with fundamental group
π1(N ) = � a Sasaki group. By the Cartan–Hadamard theorem, � is torsion-free. Since � is
Sasaki it cannot be cyclic, so we may assume that N is of dimension ≥ 2.

The notion of rank for an abstract group was introduced by Ballmann and Eberlein [4],
who proved that for the fundamental groups of closed manifolds of non-positive sectional
curvature the rank agrees with the geometric rank of the Riemannian metric defined via
spaces of parallel Jacobi fields. The rank is additive under Cartesian products of manifolds
respectively direct products of groups, and is invariant under passage to finite coverings
respectively to finite index subgroups. The assumption that N be of rank one therefore
implies that N is locally irreducible and that � is irreducible (any direct factor of � would
be infinite because the group is torsion-free).

The irreducibility of N and the assumption dim N ≥ 2 imply that N has no Euclidean
local de Rham factor, so that by the result of Eberlein [17, p. 210f], the centre of � is trivial.
Therefore Statement 1 applies to give the proof in this case.

Of course, if the sectional curvature of N is strictly negative, then the triviality of the
centre follows directly from Preissmann’s theorem. However, there are manymore manifolds
of non-positive curvature and rank one than there are negatively curved manifolds.

Since the fundamental groups of closed real hyperbolic manifolds of dimension ≥ 3 are
known not to be Kähler by a result of Carlson and Toledo [12, Theorem 8.1], we conclude:

Corollary 25 No fundamental group of a closed real hyperbolic manifold of dimension ≥ 3
is Sasaki.

With the added assumption or arithmeticity, this also appears in the statement of [6,
Proposition 5.4]. However, the proof given there, while using some of the same arguments
we use, seems elliptical and not quite to the point.

Statement 5

For N to be a locally symmetric space of non-compact type means that its universal cover-
ing Ñ is a globally symmetric space without compact or Euclidean factors in its de Rham
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decomposition. Thus π1(N ) is torsion-free. The absence of a Euclidean de Rham factor again
implies triviality of the centre via the result of Eberlein [17, p. 210f]. Therefore Statement 1
applies.

Statement 6

Suppose that � ∈ S5 is the fundamental group of a 3-manifold N . Since all finite groups are
projective by a classical result of Serre, cf. [2, p. 6], we only have to consider infinite groups
�.

By a result of Jaco [26], finite presentability of � implies that we may take N to be
compact, possibly with non-empty boundary. Since this does not change the fundamental
group, we cap off any spherical boundary components by balls.

Next, we may assume N to be prime. For if it were not prime, its fundamental group �

would be a non-trivial free product. Since 3-manifold groups are residually finite,3 Lemma 22
would show that� has virtually odd first Betti number, which is impossible since� is Sasaki.

Moreover, being Sasaki, � cannot be virtually cyclic, and so the prime manifold N is
irreducible by the sphere theorem, cf. [37]. This in particular implies that N is aspherical and
� is torsion-free. Thus, if the centre of � is trivial, the conclusion follows from Statement 1.

If the centre of � is not trivial, then N is Seifert fibered, cf. [3, Theorem 2.5.5]. After
passing to a suitable finite covering, respectively a finite index subgroup of �, we may then
assume that N is a circle bundle over a compact orientable surface S. If S has non-empty
boundary, then the Euler class of the circle bundle is trivial, and the total space N has odd first
Betti number, which is impossible for a Sasaki group �. So S must be closed, and the Euler
class of the circle bundle N −→ S must generate H2(S). Since � is not virtually cyclic, S
has positive first Betti number b1(S) = b1(N ). As explained in Remark 21, these groups can
actually not be Sasaki in dimensions ≥ 5.

This completes the proof of Statement 6. Combining this statement with the result of [34]
yields the following conclusion:

Corollary 26 Any infinite group in S5 that is also the fundamental group of a 3-manifold is
an oriented surface group.
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