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Abstract—The long-term, continuous analysis of electroen-
cephalography (EEG) signals on wearable devices to automat-
ically detect seizures in epileptic patients is a high-potential
application field for deep neural networks, and specifically for
transformers, which are highly suited for end-to-end time series
processing without handcrafted feature extraction. In this work,
we propose a small-scale transformer detector, the EEGformer,
compatible with unobtrusive acquisition setups that use only
the temporal channels. EEGformer is the result of a hardware-
oriented design exploration, aiming for efficient execution on tiny
low-power micro-controller units (MCUs) and low latency and
false alarm rate to increase patient and caregiver acceptance.

Tests conducted on the CHB-MIT dataset show a 20% re-
duction of the onset detection latency with respect to the state-
of-the-art model for temporal acquisition, with a competitive
73% seizure detection probability and 0.15 false-positive-per-
hour (FP/h). Further investigations on a novel and challenging
scalp EEG dataset result in the successful detection of 88% of
the annotated seizure events, with 0.45 FP/h.

We evaluate the deployment of the EEGformer on three com-
mercial low-power computing platforms: the single-core Apollo4
MCU and the GAP8 and GAP9 parallel MCUs. The most efficient
implementation (on GAP9) results in as low as 13.7 ms and 0.31
mJ per inference, demonstrating the feasibility of deploying the
EEGformer on wearable seizure detection systems with reduced
channel count and multi-day battery duration.

Index Terms—deep learning, electroencephalography, time
traces, transformer, wearable

I. INTRODUCTION

Epilepsy is a common neurological disorder causing the
recurrence of seizures temporarily compromising brain func-
tion. Wearable seizure-detecting solutions could enable prompt
interventions from caregivers during or immediately after the
seizures to reduce their impact and provide physicians with
more reliable information for optimizing therapy. Currently,
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seizure detectors approved by health authorities only detect
generalized convulsive seizures, which account for less than
20% of all seizures, relying on other signals than electroen-
cephalography (EEG) despite the fact that the latter provides
the hallmark of the brain’s epileptic activity [1]. This is due
to the lack of unobtrusive and non-stigmatizing EEG sys-
tems suitable for very long-term monitoring [2], which could
potentially leverage our capacity to detect all seizure types.
Moreover, despite analyses in epilepsy monitoring units being
essential for identifying seizure types, long-term recording in
ambulatory patients also appears as a significant challenge that
needs to be addressed to improve the estimation of seizure
occurrence and the notification of seizure events.

While several artificial intelligence models have been tested
for the detection of seizures based on complete, high-electrode
count EEG acquisition setups, there is still a need for efficient
solutions targeting the wearable domain and managing to reach
the required accuracy standards based on low-channel count
disguisable acquisition devices. In particular, minimizing false
alarms appears as the major goal to enable long-term mon-
itoring [3]. In this work, we assess the performance as a
seizure detector of the EEGformer model, first presented in [4].
The EEGformer is a compact transformer model for online
epilepsy monitoring, designed to target low-power devices
causing minimal discomfort to the patient [5, 6], thanks to
a small acquisition setup limited to the temporal channels, a
memory footprint of 50.6K parameters and a complexity of
14.7MOPS. EEGformer operates on the raw EEG signal, and
it represents an adaptable solution combining data-driven fea-
ture extraction and classification. EEGformer targets wearable
epileptic seizure devices for everyday life use. As such, it
focuses on minimizing the false alarm rate, as requested by
patients and caregivers [3].

A brief outline of the contents of the paper is given in
the following. After revising in Section II the state of the art
of EEG processing and epilepsy monitoring approaches, Sec-
tion III presents the architectural description of EEGformer. In
Section IV, we assess its performance on the state-of-art CHB-
MIT dataset [7, 8], considering the most typical performance
metrics. Particularly, we target minimizing the false alarm rate
and the onset detection latency.

Given the encouraging results of this first assessment, Sec-
tion V presents a novel scalp-EEG epilepsy dataset recorded
at Epilepsy Monitoring Units (EMUs), for which no signal
cutting and reduction has been made in order to preserve
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the natural unbalance of seizure events vs normal state. We
evaluate the EEGformer on this new dataset, discussing the
challenges of training a classifier on the data typically available
in clinical practice. The comparison with the state of the
art of seizure detectors is discussed in Section VI. Finally,
in Sections VII-A and VII-B we deploy the EEGformer on
three resource-constrained platforms suitable for low-power
continuous health monitoring, exploiting parallel execution to
speed up the computations and reduce the energy consumption
of the monitoring device.

This work significantly extends the preliminary results pre-
sented in [4]. The main novel contributions of this paper are:

• presentation of a novel scalp-EEG dataset for epilepsy
monitoring, providing a test benchmark close to the
clinical practice;

• first-time seizure-detection assessment on the novel
dataset, achieving detection of 88% of the annotated
seizure events and reaching 0.45 FP/h with the EEG-
former;

• demonstration of state-of-the-art performance on the
CHB-MIT dataset for systems with a small number of
electrodes (4), detecting 73% of the seizure events while
guaranteeing an FP/h rate as low as 0.15 (with 5 out of
8 tested patients exhibiting zero false alarms);

• first-time implementation of EEGformer on two parallel
ultra-low-power architectures of the GAP family of pro-
cessors: GAP8 and GAP9;

• new state-of-the-art energy efficiency for a transformer
embedded implementation on a parallel RISC-V archi-
tecture, reaching 13.7ms inference time and 0.31 mJ/in-
ference energy consumption, approx. 5× lower than the
implementation on the Apollo4 platform [4].

II. RELATED WORK

A rich literature describes the EEG processing solutions
targeting the epilepsy monitoring task [9, 10, 11], and the best-
performing approaches reach up to perfect sensitivity, with
a false alarm rate limited to 0.04 FP/h, considering subject-
specific models, and acquisition from a large number of
channels spread over the whole surface of the head [12]. How-
ever, long-term monitoring in normal life conditions requires
non-stigmatizing wearable devices, where the acquisition is
limited to minimal recording setups with a reduced number of
channels. As such, approaches based on full electrode coverage
are impractical. In fact, for wearable long-term monitoring
scenarios (which is the main target of this paper), the following
constraints apply:

• compact detection model size, to fit on an embedded
platform, and low energy consumption suitable for long-
term monitoring on low-power wearable devices;

• low number of acquisition channels, placed on the tempo-
ral region, as required for compact and easily concealable
wearable solutions [5, 6, 13];

• minimized false alarms, even at the expense of lower
sensitivity, to guarantee that the final user will be able
and willing to use the device [2, 3, 14];

• minimized detection latency to promptly issue alarms.

Accurate seizure detection becomes even more challenging
when this set of constraints is applied. In the following,
we limit the state-of-the-art (SoA) discussion to works con-
tributing to this challenge, by presenting solutions based on
a reduced acquisition setup, exploiting less than 8 channels
localized in the temporal region.

Several works explored seizure detection based on reduced
channel count EEG acquisition during at-home real-time mon-
itoring [15, 16] or in-hospital recording [17]. The authors
of [17] presented a behind-the-ear recording system, feeding
a subject-specific Support Vector Machine (SVM), and tested
it on the data collected from 54 patients by the University
Hospital Leuven. Long-term monitoring through 2-channels
subcutaneous acquisition was presented in [15], where a
residual Convolutional Neural Network (CNN) classifier was
trained and tested on 490 days of EEG recordings from
9 patients with epilepsy and 12 control healthy patients.
Similarly, the authors of [16] examined the EEG recordings
of 102 patients, acquired with a single-channel headband and
including 364 seizure events, exploiting a CNN classifier for
seizure detection. These relevant contributions have the merit
of assessing their proposed systems on real-life monitoring
scenarios, showing how a generally limited performance is
achieved, especially in terms of event-level seizure detection
sensitivity. However, a direct comparison with these results
is not feasible, due to the private nature of the referenced
datasets.

Limited channel count acquisition was also emulated on the
open-source CHB-MIT dataset. An example is represented by
the work of [18], where a K-nearest-neighbor (KNN) classifier
working only on the data acquired from 5 selected channels
was considered. However, this solution is not unobtrusive, as
the data of the complete acquisition setup was considered in
order to guide the channel selection. Furthermore, a common
issue is represented by a low specificity value, incompatible
with a comfortable user experience [2, 3].

Suboptimal specificity is also reported in the works of [19,
20] and [21]. In particular, the authors of [19] exploited dis-
crete wavelet transform pre-processing on only 2 acquisition
channels and classification based on the Random-Forest (RF)
model, whereas [20] presented an energy-efficient wearable
seizure detection system, based on 8-channel frontal lobe
acquisition and an SVM classifier, and [21] presented a CNN
model with 4 convolutional layers, applied to statistical and
power features extracted after tunable Q-wavelet.

Our main reference for the detection task based on low-
channel count acquisition is provided by the work of [22],
which was able to reach perfect sensitivity and specificity for
some patients on the CHB-MIT dataset, with subject-specific
training and careful exploration and tuning of the signal
windowing. The best results were obtained with the RF and
AdaBoost (AB) classifiers, applied on features representing
the energy after 4-level Haar-wavelet decomposition of the
signal acquired only by the temporal channels. However, these
promising numbers were obtained on a very small subset of
the CHB-MIT data.

The main limitations of the listed works will be quanti-
tatively discussed in Section VI. In general, although well-
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suited for truly wearable long-term monitoring as relying on a
reduced set of acquisition channels, these solutions still report
a too-high number of false positives [19, 20, 21] and long
detection latency [22] compared to the approach presented
in this paper. Furthermore, removing the complexity of the
feature extraction step and relying on data-driven features
would be of interest to enhance the adaptability to new subjects
and datasets.

To address these challenges, in [4] we presented
EEGformer, a transformer model for subject-specific seizure
detection based on raw EEG signals from temporal chan-
nels, assessing its performance on the CHB-MIT benchmark
dataset and demonstrating its deployment on a single-core low-
power microcontroller (Apollo4). In comparison with the other
transformer-based seizure detectors from the literature, it does
not rely on a full acquisition setup [23, 24, 25]. Furthermore,
these solutions exploit complex architectures, stacking 4 or 6
encoder blocks [24, 25], or three parallel encoder towers [23],
and thus are not suitable for efficient wearable deployment.

The EEGformer satisfies the efficiency constraints of com-
pact and wearable monitoring solutions, with a complexity
and memory footprint suitable for efficient execution on tiny
microcontroller units, and an energy consumption compatible
with low-power long-term monitoring (see Section VII). The
proposed model aims at reducing the false-alarm rate and the
onset detection latency of existing solutions [19, 20, 21, 22].

In this work, we examine in more depth the preliminary
results of [4], by extending the assessment of the EEGformer
to a novel dataset, demonstrating performance aligned with
similar solutions at the state-of-the-art tested on private clinical
data [15, 16], especially in terms of event-level sensitivity,
and with a comparable tree-based approach presented in
Section VI-B. Moreover, to the best of our knowledge, this
paper presents the first deployment of a transformer-based
algorithm for non-obstructive seizure monitoring on parallel
microcontrollers, targeting two RISC-V multi-processor plat-
forms, where state-of-the-art time for inference and energy
efficiency were achieved.

III. EEGFORMER

In the following, we describe our proposed seizure detector
model, EEGformer. Since we target an unobtrusive acquisition
setup, we only consider data acquisition from the temporal
channels (F7-T7, T7-P7, F8-T8, T8-P8, according to the 10-
20 international system), which is compatible with using non-
stigmatizing wearable EEG devices such as over-ear head-
phones, headbands, or e-glasses [13, 22]. We translated the
epilepsy monitoring problem into the periodic classification of
the raw EEG signal, avoiding the need for handcrafted feature
extraction, into a non-seizure or a seizure class.

The EEGformer architecture is based on a Vision Trans-
former ([26]), where the input image is replaced by a 4-
row matrix of consecutive samples, acquired with a 256Hz
sampling rate. Each row in the input matrix corresponds to
one of the channels of interest. Figure 1 provides a general
overview of our classification system, whereas Table I de-
scribes the general network topology considered for the design

TABLE I: Parameters and topology of the EEGformer.

Stage Layer Parameters1

Embedding stage

Convolution0 Input: 4×W× 1, Kernel: K×1
Output: E×S’×1, Stride: K

Convolution1 Input: E×S’×1, Kernel: K×1
Output: E×S×1 Stride: K

Add Pos. Encoding Input/Output: E×S×1

Encoder stage

Layer Norm Input/Output: E×S×1

Multi-Head-Attention Embedding: E, Sequence: S
q,k,v projections: d, Heads: H

Layer Norm Input/Output: E×S×1

Dense0 Input: E×S×1
Output: h×S×1

Dense1 Input: h×S×1
Output: E×S×1

Layer Norm Input/Output: E×S×1

Classification stage Reduce Mean Input: E×S×1, Output: E
Dense2 Input: E, Output: 2

1 In the EEGformer W=2048, K=5, E=32, S’=405, S=81, d=32, H=8, and h=128.

TABLE II: Classification performance and complexity of the
design points considered for the EEGformer parameter explo-
ration.

Parameter Model Accuracy Footprint MOPS

Window size

w2 K5 H8 h128 99.33 66 kB 2.4
w4 K5 H8 h128 99.44 87 kB 5.6
w8 K5 H8 h128 99.5 150 kB 14.7
w16 K5 H8 h128 99.27 355 kB 43.3

Kernel size w8 K10 H8 h128 99.39 61 kB 2.1
w8 K3 H8 h128 99.55 585 kB 73.3

# Heads w8 k5 H4 128 99.39 87 kB 8.7
w8 K5 H16 128 99.44 275 kB 26.7

Hidden size w8 K5 H8 64 99.44 146 kB 14
w8 K5 H8 h256 99.5 158 kB 16

of the EEGformer, inspired to [27]. The network architecture
is composed of three main processing stages. The first em-
bedding stage performs data preparation to adapt the matrix
of EEG samples for transformer-based processing. According
to the experience of Bioformers [27], the embedding stage
is configured as a sequence of two 1D-convolutional layers,
applying non-overlapped filtering kernels of size K to the
input signal. The output of this convolution block has size
E × S, where E is the number of output channels and S is
the resulting data length, which is reduced based on the size
K of the filtering kernels. This mechanism thus resembles the
image decomposition into a sequence of embedded patches,
which is performed in [26], where S is interpreted as the
sequence length and E as the size of the embedded patches. A
set of learned positional weights is also added to the flattened
sequence of patches to encode ordering information.

The core of the algorithm is the encoder stage, introduc-
ing the most relevant transformer mechanism: the attention
layer [28], indicated as MHA (Multi-Head-Attention) in Fig-
ure 1. First, three linear projections of the data are computed,
called query q, key k and value v, each of size d. The
attention matrix is obtained as the dot-product between these
projections, according to Equation 1, resulting in a set of
attention scores reflecting the mutual relevance between two
points in the examined window.

Attention(q,k, v) = Softmax(
qkT

√
d
)v (1)

MHA enhances the detecting power of the attention mecha-
nism with multiple parallel threads, indicated as heads, per-
forming independent projections of the input, and recovering
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Fig. 1: Architecture of the EEGformer. The Multi-Head-Attention layer is indicated as MHA.

200 400 600

99.2

99.4

99.6

w2

w4

w16

k10

k3

H4
H16h64

w8 k5 H8 h128
h256

Footprint [kB]

A
cc

ur
ac

y

kernel size K
# heads H
hidden size h
window size w
512kB constraint

Fig. 2: Design points explored for EEGformer architecture
definition. The selected point representing EEGformer is high-
lighted in black. The different curves represent the perfor-
mance resulting from the selection of the parameters explored:
window size, kernel size, number of heads, and hidden layer
size. Shaded grey area: outside of the 512 kB feasibility region.

the input dimensionality with an additional final linear pro-
jection. The attention layer is typically followed by a feed-
forward network and their sequence can be replicated multiple
times, into a stack of encoder blocks. As it can be noticed from
Table I, we considered a single encoder block, where the two
main sublayers, the MHA and the feed-forward network, are
combined with Layer Normalization and residual connections
to their respective input. Each Dense layer in the feed-forward
network is combined with GELU activation.

Finally, the classification stage evaluates the mean of the
sequence resulting from the encoder processing and applies a
Multi-Layer Perceptron (MLP) to compute the output prob-
abilities. In the general topology considered, the MLP is
collapsed into a single Dense layer.

The EEGformer model was implemented in TensorFlow
Keras [29] and designed based on the general architecture
in Table I, where the main parameters were selected with
an exploration considering the working memory (SRAM)
typically available on tiny MCUs (we set a maximum footprint
of 512KB), and the seizure detection performance, evaluated
on the CHB-MIT dataset, referencing subject 1 (further details
on the assessment are given in Section IV). The accuracy is
evaluated, based on its standard definition, as the ratio of cor-
rectly classified windows over the overall number of processed
windows. The outcome of the exploration is summarized in the
plot of Figure 2, where the evaluated design points are placed
based on their accuracy and footprint.

We started from the evaluation of the input window size,

defining a set of possible values w = {2s, 4s, 8s, 16s}. The
remaining parameters were kept fixed, and equal to K = 5,
H = 8, and h = 128. A window of w = 8s resulted in the best
accuracy and was considered for the rest of the exploration.
As a second parameter, we tuned the kernel size, considering
values of K = 3 (i.e., increasing the sequence length and the
number of operations performed in each attention head) and
K = 10. The first choice resulted in storage requirements non-
compatible with the footprint constraint, whereas an accuracy
drop was observed when increasing the kernel size. Hence,
K = 5 was kept for the following explorations. Similarly, we
evaluated the impact of reducing or increasing the number of
parallel heads H = {4, 16}, and the size of the hidden layer
in the feed-forward network h = {64, 256}.

The two best-performing combinations obtained are high-
lighted in Table II, which also reports a detailed analysis
of the memory footprint and computational complexity of
the evaluated models (for each of the explored parameter
configurations). Table II and Fig. 2 also reveal that no further
performance improvement is obtained by increasing the com-
plexity through the choice of H and h, which have a limited
impact on the network complexity, especially compared to
w and K. The parameters selected for the EEGformer are
detailed in Table I and result in a topology having 50.6K
parameters, with a memory footprint of 150 kB and requiring
the execution of 14.7 MOPS.

IV. ASSESSMENT ON CHB-MIT DATASET

We consider in this section the CHB-MIT Scalp EEG
dataset for seizure detection [7, 8], which has been an im-
portant reference for researchers over the years and provides
a meaningful common benchmark to set the state-of-the-art
context. As a reminder, we target to maximize specificity, since
having nearly zero false alarms is a strict requirement for the
acceptance of continuous monitoring devices by patients and
caregivers [2, 3, 14].

Dataset description. The CHB-MIT dataset is an open-
source collection of scalp EEG recordings from 23 pediatric
patients, curated by the Children’s Hospital Boston and the
Massachusetts Institute of Technology. It provides a list of
records of different duration, and a summary file reporting
the expert annotations about the time of occurrence of seizure
events. The data is collected with a 256Hz sampling frequency,
including 18 to 23 channels.

Training strategy. As a first step, we have compared two
training strategies, respectively consisting of a single-phase
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subject-specific training or of a two-phase approach, with a
global subject-independent pre-training and subject-specific
fine-tuning. In the single-phase solution, we perform 100
epochs of training, whereas, in the two-phase one, we dedicate
100 epochs to the first phase and 50 additional epochs to the
second. To evaluate the detection performance, we define a
test set obtained with the leave-one-out strategy, consisting of
one record among those available for the test patient. Then
we randomly split the remaining data between a training set
and a validation set, with an 8:2 ratio. We alternatively test all
the seizure records of the considered subject. The training and
validation data are represented by non-overlapped windows of
signal, whereas for a more detailed performance evaluation, we
consider test data obtained as sliding windows of 8s length,
overlapped with 2s intervals.

The comparison between the two strategies has taken patient
CHB 1 as a test subject and has included the records provided
for patients CHB 2 to 8 in the pre-training data.

In Table III we compare the two approaches. Observing the
exploration results, we highlight the positive effect of the pre-
training phase in improving the specificity of the detection,
reflected in a 0 FP/h rate. This advantage does not compromise
the percentage of seizure episodes detected, which is still
100%.

Detection performance assessment. We evaluate at this
point, referring to the two-phase strategy, the detection per-
formance of the EEGformer. The assessment covers a subset
of 8 patients, whose seizure records are tested with the
leave-one-out approach, after a pre-training phase, including
the data of the other patients who are not the test subject.
Exploiting a typical approach to filter out isolated errors in
the classification, we post-process the inference output with a
majority voting method, considering a buffer of 3 classified
windows for the EEGformer. Moreover, considering that after
a seizure episode the EEG signals appear as altered for several
minutes, we neglect any FP registered within 15 minutes after
the annotated end of the event.

We summarize in Table IV the performance metrics ob-
tained with a comprehensive evaluation of 40 records including
a seizure. EEGformer allows detecting 73% of the examined
seizure events (32/44), with 65.5% average segment-level
sensitivity (570 False Negatives (FNs) registered over 1652
seizure windows tested). This detection rate was obtained
while preserving high specificity values, with 5/8 patients
exhibiting 100% specificity.

Figure 3 shows a boxplot of the distribution of the event-
level FP/h trend across the 40 tests performed. We achieved a
median value of 0 FP/h, which is the false alarm rate registered
in over 80% of the left-out records tested, with 5/40 outliers.
Considering consecutive false positives as single events, we
obtained a state-of-the-art false alarm rate of 0.15 FP/h, with
the great majority of subjects exhibiting no false alarms at
all. The maximum duration is reported in the corresponding
column in Table IV and is mostly affected by two long-lasting
EEG artifacts.

Among the performance metrics in Table IV, we report
the detail of the event-level sensitivity on single patients: on
6/8 subjects, 100% of the annotated events are successfully

CHB-MIT our dataset
0

2

4

6

FP
/h

Fig. 3: Record-wise FP/h on the CHB-MIT dataset and our
dataset with the EEGformer.

detected, while the overall sensitivity is compromised by the
poor performance obtained on patient CHB 6, presenting
seizures lasting on average less than 16s. Finally, we also
report the average onset detection latency: for every test,
the latency value is evaluated based on the number of FNs
registered at the beginning of the seizure, multiplied by the
time interval between successive windows (which is 2s in
our sliding test approach) and incremented to account for the
majority voting delay.

TABLE III: EEGformer training strategy evaluation on the
CHB-MIT dataset, with 2s test evaluation period.

Event-level Segment-level FP/hSensitivity Sensitivity Specificity
w/o Pre-Training 100% 95.4% 99.9% 0.9

Pre-Training 100% 86.6% 100% 0

TABLE IV: Seizure detection on the CHB-MIT dataset with
EEGformer.

Patient
Segment-level Event-level Average

Sens Spec Sens FP/h; Detection
FP Event [s] Latency

CHB1 80.5% 100% 100% ; 7/7 0 ; 0s 9.4s
CHB2 63.5% 99.3% 100% ; 3/3 1.8 ; 38s 11.3s
CHB3 75.5% 100% 100% ; 7/7 0 ; 0s 16.9s
CHB4 26.2% 99.9% 50% ; 2/4 0.3 ; 28s 21s
CHB5 79.8% 100% 100% ; 5/5 0 ; 0s 21.2s
CHB6 0% 100% 0% ; 0/10 0 ; 0s -
CHB7 72% 100% 100% ; 3/3 0 ; 0s 16.7
CHB8 70% 99.9% 100% ; 5/5 0.8 ; 6s 14s
overall 65.5% 99.9% 73% ; 32/44 0.15 ; 38s 15.2s

V. ASSESSMENT ON A PRIVATE DATASET

The results of the assessment conducted on the CHB-MIT
dataset are very encouraging, showing the EEGformer can
provide a good trade-off between sensitivity and specificity.
Nevertheless, this dataset depicts a scenario that deviates
considerably from a typical monitoring use case. To further
assess the performance of EEGformer, we refer in this section
to a novel dataset curated by the Lausanne University Hospital
(CHUV), as a detection scenario that aligns more closely with
practical clinical settings.

Dataset description. This dataset is acquired as a part of the
currently running Pedesite study1, during routine clinical eval-
uations at the in-hospital EMU, where patients are investigated
in order to record and characterize their epileptic seizures.
Patient monitoring lasts from 2 consecutive days up to two
weeks. All the recording period is available. Approval for

1a project funded by the Swiss National Foundation that aims at developing
innovative wearable solutions for seizure detection
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TABLE V: Composition of our dataset from Lausanne CHUV.

Pat. Recording # Seizure ID and durationduration Seizures
0 4d 10h 59min 3 1: 5min 2s; 2: 3min 4s; 3: 16min 19s

1 3d 20h 32min 7 4: 1min 15s; 5: 1min 54s; 6: 54s
7: 1min 26s; 8: 1min 11s; 9: 16s; 10: 29s

2 2d 21h 58min 5 11: 2min 14s; 12: 2min 54s; 13: 3min 15s
14: 2min 18s; 15: 2min 7s

3 3d 20h 13min 3 16: 1min 49s; 17: 2min 44s; 18: 3min 56s

4 3d 18h 23min 4 19: 1min 10s; 20: 1min 2s
21: 1min 12s; 22: 1min 5s

5 5d 19h 23min 3 23: 2min 17s; 24: 3min 2s; 25: 2min 39s

TABLE VI: Seizure detection on our dataset with EEGformer.

Patient
Segment-level Event-level Det Latency;

Sens Spec Sens FP/h ; Seizure
FP event [s] Duration

0 43.6 99.9 100 ; 3/3 0.2 ; 30s 34s ; 8min 8s
1 42.1 99.9 57 ; 4/7 0.1 ; 44s 43.5s ; 1min 3s
2 62.6 99.6 100 ; 5/5 0.9 ; 55s 57.8s ; 2min 34s
3 66 99.3 100 ; 3/3 0.6 ; 14min 4s 1min 6s;2min 50s
4 79 99.5 100 ; 4/4 0.5 ; 3min 50s 18.5s ; 1min 7s
5 29.1 99.8 100 ; 3/3 0.4 ; 42s 44.7s ; 7min 58s

overall 50.2 99.7 88 ; 22/25 0.45 ; 14min 52s 38.1s ; 2min 38s
AB [22] 71.5 95.7 92 ; 23/25 9.4 ; 4s 50.9s ; 2min 38s

retrospective data analysis with a waiver of informed consent
due to the retrospective nature of the study was obtained from
the local Ethical Committee of the University of Lausanne
(study nr 2021-01419). The study report conforms to the
STROBE statement for the report of observational cohort
studies.

The dataset used in the present analysis is a subset of
6 patients from the overall study that has been curated by
the CHUV. Table V summarizes the data provided for the
examined patients, identified in column 1 with progressive ID
numbers: for each one, we list the duration of the available
EEG recordings and the number of annotated seizure events,
as well as the duration of the seizures recorded. The data was
acquired with an SD LTM PLUS 642 at 1024 Hz sampling
frequency, with a setup of up to 24 Compumedics disposable
Ag/AgCl sintered electrodes. A team of expert neurologists
annotated the onset and end of the seizure events. However, it
is important to note that the exact onset is at times uncertain
due to several factors, including: 1) the epileptic discharge
can occur in deep brain regions several seconds before it is
detectable on scalp EEG, 2) similarly, clinical manifestations
might not be present at seizure onset, and 3) EEG artifacts
might obscure the seizure onset. It can also be difficult to
precisely identify when the seizure ends. Due to these issues,
we consider an uncertainty of 20s in the following.

Seizure detection with EEGformer. In the following, we
analyze the performance obtained with EEGformer. As we
are targeting unobtrusive devices, we select only the data
acquired from the 4 temporal channels, down-sampled with
a ratio of 4:1 to adapt it to the expected input dimensions
reported in Figure 1, corresponding to an 8s window of the
signal. As we did for the CHB-MIT dataset, we performed
leave-one-out tests for cross-validation, including in the test
set a significant number of non-seizure records. For each test
record, we repeated the same train-test schedule:

2https://micromedgroup.com/products/brainquick/brainquick-ltm/

• global pre-training on the seizure records of all subjects,
excluding the test patient;

• subject-specific fine-tuning on the test patient, including
all the training seizure records and at least three non-
seizure records;

• test on the left-out record.
In this case, both training phases were conducted for 100
epochs, exploiting a weighted loss function to remedy the
imbalance between seizure and non-seizure samples affecting
the dataset. We also removed from the training and testing data
the 15 minutes following the seizure occurrence, as during this
interval, the signal is often unstable and affected by artifacts.

Table VI summarizes the detection performance for each of
the patients after post-processing based on majority voting was
applied. As can be derived from a general comparison with
Table IV, this dataset represents a harder detection challenge
than the CHB-MIT one. We will discuss in the following
the possible reasons for this increased complexity, which sug-
gested the selection of a different and slightly more complex
averaging approach: we extended the averaging period to 15s
around the examined window of signal and evaluated inference
more frequently (one inference per second), to have more
information available during the voting.

Furthermore, to recover the best detection sensitivity while
still being able to filter out random FPs, we rely on an
asymmetric voting criterium, defining a non-seizure and a
seizure state. In the non-seizure state, an output seizure
classification requires half of the windows in the voting buffer
to be classified as seizure; then, once the voted output results
in a seizure, a seizure state is entered, where only 1 over 4 of
the buffered windows are required to be seizures for an out-
put seizure classification. Finally, considering the uncertainty
interval declared for the dataset annotations (labels have an
uncertainty of ±20 seconds), we excluded from the reported
results the FPs occurring within 20s before the annotated
onset, or alternatively the FNs occurring within 20s after the
annotation. We finally report the event-level FP/h rate, where
consecutive false positives are considered as a single event.

While the segment-level sensitivity value exceeds 60% only
for 3/6 subjects, 88% of the examined seizure events were
detected (22/25), with the exception of seizures 6, 9, and
10 of patient 1, having the shortest duration in the dataset.
The segment-level sensitivity value results from 1774 FNs
registered over 3560 seizure windows tested. Table VI also
reveals that most of the seizures are detected with some
delay, resulting in an increased average onset detection latency
compared to the results reported in Table IV. Figure 3 reports
on the right the record-wise event-level FP/h rate, in the
134 tests performed (23 seizure records and 111 non-seizure
records), whose average duration is 3h and 45 min. The
median value is 0.2 FP/h, compared to the 0 FP/h obtained
on the CHB-MIT.

Discussion. We identify two reasons for the degradation
of the expected detection performance: the uncertainty of
the annotations and the presence of multiple unlabelled EEG
artifacts. Both non-ideal characteristics are most likely present
in a practical clinical scenario. While the presence of artifacts
mostly affects the performance assessment during the test

This article has been accepted for publication in IEEE Transactions on Biomedical Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2024.3357509

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

TABLE VII: Summary of scalp EEG-based seizure detection processing SoA, based on signal acquisition from a reduced
number of channels (< 8).

Work Subjects Channels Pre-processing Detector Event-level Segment-level FP/h
Sensitivity Sensitivity Specificity

CHB-MIT dataset

Zeng et al. [18] 23 5 a
Kurtosis

KNN - 99.77% 99.88% -channel selection
wavelet

Zanetti et al. [19] 23 2
Discrete

RF - 96.6% 92.5% 0.7 bwavelet
transform

Zhan et al. [20] 23 8 spectral energy SVM - 92.5% 80.1% -
Ingolfsson et al. [22] 8 4 wavelet energy AdaBoost 86% (38/44) 72% 99.9% 0.5 (4s) c

Mingkan et al. [21] 16 8 Tunable Q CNN 98.90% (90/91) - 97.87% -wavelet
this work 8 4 - Transformer 73% (32/44) 65.5% 99.9% 0.15 (38s) c

proprietary clinical datasets

Vandecasteele et al. [17] 54 4
Kurtosis,

SVM - 63.4% - 0.88 (10s) cEntropy,
Power,...d

Remvig et al. [15] 21 2 - CNN 86% (81/94) - - 0.08 - 0.5 e

Japaridze et al. [16] 102 1 - CNN 79% - - 0.59 (2s) c

this work 6 4 - Transformer 88% (22/25) 50.2% 99.7% 0.45 (844s)3

a Relies on 5 channels after a selection among all channels.
b Evaluated as FP/(FP+TP)×3600, where TP represents the number of True Positives.
c Maximum duration of the False Positive event. When not reported, it is assumed equal to the input window size.
d Zero-crossing, Skewness, Kurtosis, RMS amplitude, Total Power, Peak frequency, Power in frequency bands, Sample entropy, Shannon entropy, Spectral entropy,

Power asymmetry in frequency bands.
e The paper reports a range of FP/h values evaluated on the data of different patients, with a minimum of 0.08 FP/h, and a maximum of 0.5 FP/h.

phase, causing a higher false-alarm rate which could be
recovered and limited with the use of an artifact detector, the
uncertainty of the labeling of the signal has also a significant
impact on the training of the classifier. If some of the samples
listed for one of the classes belonged to the other, the learning
process would also be affected.

At the same time, removing altogether from the training
material the windows falling within the uncertainty interval
around the onset would aggravate the class imbalance, and,
what matters most, remove the earliest stages of the seizure
from the learning process, thus possibly compromising the
possibility of early detection.

VI. COMPARISON WITH THE STATE OF THE ART

We discuss in this section how the EEGformer compares
to the state-of-the-art low-channel count seizure detectors
described in the literature. To this end, we consider both the
CHB-MIT and our novel datasets. Table VII summarizes the
most relevant works presenting epilepsy monitoring based on
reduced acquisition setups.

A. CHB-MIT dataset

In the first section of the Table, we list the most relevant
works based on the CHB-MIT dataset (see Sect. II). Despite
the remarkable sensitivity values achieved with the seizure
detectors of [19] and [20] (96.6% and 92.5%, respectively),
they also result in a limited specificity (92.5% and 80.1%,
respectively). A similar trade-off is presented in the work
of [21], where the successful detection of 98.9% of the
occurred seizure events was obtained with a specificity value
limited to 97.87% and a non-negligible 2.13% FP percent-
age. On the other hand, despite providing a better balance
between a 99.77% sensitivity and 99.88% specificity, the work

of [18] relies on a complete acquisition setup (large number
of channels) and therefore its performance cannot be directly
compared to small-channel-count solutions.

As frequent false alarms would compromise user experience
and the practical use of the device [2, 3], we consider as a
main reference [22], which reported up to 100% sensitivity and
specificity on some of the examined patients, and demonstrated
the highest specificity when evaluated on a larger scale, with
an average 99.9% specificity and 72% sensitivity, a false
alarm rate of only 0.5 FP/h, and an average onset detection
latency of 19.2s. Moreover, to enrich the comparison, we
also implemented two CNN models specifically designed
for the seizure detection task based on low-channel count
acquisition setups and optimized on the CHB-MIT dataset (see
below). We designed these custom models in order to enable
a direct comparison with the performance of the EEGformer,
considering the same test and post-processing strategy.

Specifically, we first designed a CNN model (CNN B) to
directly process the raw EEG signal, providing performance
comparable with the topology proposed in [16] for the clas-
sification of the data from patients CHB 1 and CHB 6 of the
CHB-MIT dataset (not shown). Unlike the model in [16], our
custom CNN works on EEG signal segments of 8s length, in
alignment with the test scenario considered for EEGformer.
Furthermore, we considered a CNN performing classification
on energy features obtained with wavelet decomposition (CNN
C), replicating the pre-processing strategy exploited in [22]
and providing comparable accuracy in the classification of the
data from patient CHB 1. Both models were implemented in
PyTorch [30] and trained with the two-step strategy evaluated
for the EEGformer, thus benefiting from the global pre-training
phase. The training process exploited the Adam optimizer, 5e-
5 learning rate, and batch size 16. The first pre-training phase
was conducted for 100 epochs, while 50 epochs were exploited
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TABLE VIII: CNN detectors considered for the comparison.

Layer CNN B CNN C
Op Input Kernel Op Input Kernel

0 Conv0 4x2048x1 32x5x1 Conv0 4x8x8 16x3x1
1 MaxPool 32x405x1 - Conv1 16x8x8 32x3x1
2 Conv1 32x203x1 32x5x1 Conv2 32x8x8 64x3x1
3 MaxPool 32x102x1 - Conv3 64x8x8 64x3x1
4 FC0 32x51x1 200x1x1 Conv4 64x8x8 64x3x1
5 FC1 200x1x1 2x1x1 MaxPool 64x8x8 -
6 - - - FC0 64x4x4 2x1x1

TABLE IX: Performance comparison on CHB-MIT dataset
considering acquisition from temporal channels.

Model
Segment-level Event-level Average

Sens Spec Sens FP/h ; Detection
FP event [s] Latency

EEGformer 65.5 99.9 73 ; 32/44 0.15 ; 38s 15.2s
CNN B 65.4 99.9 73 ; 32/44 0.34 ; 42s 18.2s
CNN C 53.5 99.7 68 ; 30/44 0.53 ; 80s 22.6s

AB ([22]) 72 99.9 86 ; 38/44 0.5 ; 4s 19s

for the subject-specific fine-tuning step.
1) CNN on raw EEG signal: This CNN operates on raw

EEG signals. The model design inherits some of the take-
outs of the exploration conducted for the EEGformer: the
input is arranged into windows of 8s length and the first
convolutional layer replicates the one successfully exploited in
the EEGformer embedding stage for the input dimensionality
reduction. The architectural details are described in the left
half of Table VIII (CNN B): the model consists of two
convolutional layers (Conv#), followed by Rectified Linear
Units (ReLU) activation functions, a MaxPooling and two
Fully Connected (FC#) layers. Its complexity is lower than
the EEGformer’s (2.22 MOPs), while its storage requirements
are higher (325 KB of parameters with 8-bit representation),
although still suitable for our target platforms.

2) CNN on pre-processed input features: Table VIII shows
a second CNN model, CNN C, whose input is obtained from
the windowed signal with Haar-wavelet decomposition. We
will consider it in the following as a reference to define the
impact of feature extraction on detection performance. The
architecture exploits a sequence of 5 convolutional layers,
followed by ReLu activation, and finally a MaxPooling layer
and an FC module. This sequence of operations is applied to
a 3D tensor, of shape (channels, height, width) (C,H,W). Each
input item is obtained evaluating the energy of 8 wavelet levels
on 8 successive window frames (each of 8s duration), partially
overlapped with 1s step size. The computational complexity
(12.5 MOPs) is comparable to the EEGformer’s and should be
considered in addition to the online pre-processing for feature
extraction. On the other hand, the storage requirements (105.3
KB) are lower than the first CNN example.

3) Discussion: We provide in Table IX the comparison of
the EEGformer performance with the CNN-based detectors
described in the previous sections and with the SoA AB
model for seizure detection based on low-channel count ac-
quisition [22]. The reported results refer to the same subset of
the CHB-MIT dataset and to a comparable testing and post-
processing strategy: the output of the AB model is filtered with
3 windows majority voting, while averaging over 5 successive
windows was considered for the CNN models, to obtain a
higher specificity.
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Fig. 4: Receiver Operating Characteristic for the EEGformer,
considering classification performance of the set of considered
patients on the CHB-MIT dataset. The red point highlights
the EEGformer working point designed to minimize the False
Positive Rate, whereas we report in black the sensitivity-
specificity trade-off at a lower specificity level, i.e. 92.5%,
as in [19], bringing to 79% event-level sensitivity, with the
detection of all the seizure events in all patients except 6.

No significant performance degradation resulted from the
elimination of the feature-extraction step, which is required
both by the CNN C detector and by the SoA AB detector.
Overall, the EEGformer reaches quality metrics comparable
to the state-of-the-art reference for unobtrusive detection re-
stricted to the temporal channels, introducing a 20% reduction
in the average onset detection latency. Other works, like [31],
report a lower detection latency, however at the price of
higher false alarms, thereby making the solution not acceptable
for practical settings. Considering the more general scenario
reported in Table VII, the low sensitivity value is mostly
impacted by the performance obtained on patient CHB 6 (see
also column 4 of Table IV), which is not included in the set
of tested patients in [21]. Excluding the results obtained on
this patient, the event-level sensitivity reaches 94%, thereby
approaching the performance of alternative models with lower
specificity, providing a reliable detection rate. To complete
the assessment of EEGformer detection performance, we pro-
vide in Figure 4 the Receiver Operating Characteristic curve,
obtained evaluating different thresholds in the range [0,1] to
discriminate a seizure prediction from a non-seizure predic-
tion. The plot refers to a cumulative analysis of the segment-
level sensitivity and specificity over all the leave-one-record-
out tests performed on the eight patients considered from the
CHB-MIT dataset. Figure 4 reveals that the results reported
in Table VII for the EEGformer correspond to a region of
the plot aimed at the minimization of the False Positive Rate
(evaluated as 1 − Specificity = FP/(FP + TN)). Higher
sensitivity reaching over 90%, can be obtained at the price
of a reduced specificity. However, as this work targets long-
monitoring devices, where minimal false alarm rates have to be
preserved, a similar trade-off would not encourage the practical
use of the device. Due to this reason, we also did not make
extensive use of approaches to balance the number of training
instances from the two classes, to avoid compromising the
specificity in favor of a higher sensitivity.

Improvements are still needed to reach the performance
achievable with access to complete acquisition setups (100%
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sensitivity and 0.04 FP/h in [12]). Nonetheless, the perfor-
mance achievable with EEGformer indicates that minimal
channel-count systems are a viable solution for monitoring
outside of EMUs. The EEGformer is compliant with the main
constraints of long-term monitoring highlighted in Section II.
It is distinguished by its minimized false alarm rate and detec-
tion latency, which guarantee timely alarm responses without
compromising on accuracy. Moreover, the unobtrusiveness
of the required acquisition setup, along with the compact
computational workload, make EEGformer especially suitable
for integration into wearable devices for long-term monitoring.

B. Comparison to a tree-based approach on clinical dataset

As previously mentioned, since our dataset represents a very
novel resource, there is still no state of the art on it. Hence, to
compare EEGformer to other approaches, we consider the AB,
which is the current SoA reported for the CHB-MIT dataset
[22]. Table VI reports in the last row the performance achieved
with AB on our data. When evaluated on a dataset different
from CHB-MIT, considered during its development, AB shows
lower specificity and higher FP/h, indicating that further opti-
mizations are required. The comparison to EEGformer further
confirms that our model holds promise for the successful
implementation of epilepsy detection on wearable devices with
minimal false positives and fast detection times.

Finally, the bottom section of Table VII compares the
performance of EEGformer to other models on proprietary
clinical datasets. Firstly, we notice that the achieved perfor-
mance is generally lower than the one reported on works
based on the CHB-MIT dataset. At the same time, despite
the numbers being not directly comparable (due to the dif-
ferent datasets considered for the evaluation), the event-level
sensitivity achieved by EEGformer is higher than the values
reported by [15] and [16] on their respective tasks (where
86% and 79% of the occurred seizure events were detected).
In terms of false alarm rates, a comparable performance was
obtained with respect to [15] (for which the false alarms vary
from 2 FP/day to 13 FP/day based on the target patient) and
[16], whereas nearly 2× less false positives are achieved with
respect to [17].

VII. DEPLOYMENT

Finally, we show how EEGformer can be efficiently ex-
ploited to provide real-time detection on low-power health
monitoring devices, describing its implementation on three
different resource-constrained hardware targets. The selection
of the platforms considered is oriented to demonstrate that
EEGformer is suitable for efficient execution on single-core
and multi-core devices, with different levels of available com-
putational resources and technological maturity. We regulate
the frequency and voltage to optimize the energy efficiency
on all targets. We used the Quantlab software package [32] to
perform quantization up to 8-bit precision, thus reducing the
memory footprint of the model and enabling efficient byte-
level processing with no accuracy drop (not shown). Since
the targeted platforms do not support sub-byte arithmetic,

more aggressive quantization schemes appear as not beneficial,
as they would not enable significant efficiency gains, while
they would adversely impact accuracy [33]. To speed up
the execution of the model, we use the implementation of
Integer Softmax, LayerNorm, and GELU from I-BERT [34],
where non-linear operands are replaced with their polynomial
or iterative approximations. Hence, we avoid the expensive
dequantization and exponential computation normally required
to implement those non-linear layers. As reported in Table X,
the final memory footprint of the model is 150 kB, considering
the buffers required for the storage of the intermediate results.

A. Deployment on Apollo4

As a first deployment target, we considered the Ambiq
Ultra-Low-Power Apollo4 MCU [35]. This power-efficient
platform, requiring 5µA/MHz, embeds a 32-bit ARM Cortex-
M4 processor accessing a 2MB MRAM and a 1.8 MB
SRAM and allows for application-oriented frequency tuning.
The technical details about the implementation, based on the
CMSIS-NN library [36], are provided in [37]. We report the
inference metrics in the first column of Table XI. Having tuned
the frequency to 96MHz, we measured 405 ms inference time
and 1.79mJ energy consumption, based on the average power
consumption measured with the Keysight N6715C analyzer.

B. Deployment on GAP: exploit parallelism

The intrinsic parallel nature of the transformer workload
offers great opportunities for efficient inference through par-
allel computation. The landscape of edge-processing plat-
forms offers heterogeneous computing units, providing parallel
and/or hardware-aided computational power. We evaluated the
effects of exploiting parallel computations moving to the GAP
family of processors by Greenwaves, representing IoT modules
optimized for machine learning applications. We first deployed
the EEGformer on the GAP8 processor, and finally targeted
the more recent GAP9, which demonstrated the best accuracy
vs energy efficiency performance in tiny-ML benchmarks
[44, 45].

The GAP8 embeds 9 RISC-V parallel processors, one acting
as a control processor, and 8 constituting the computing clus-
ter, whose voltage and working frequency can be modulated
based on the application requirements. The memory hierarchy
includes a 512KB L2 shared memory and a small 64KB L1
memory, local to the computing cluster, with multiple DMAs
allowing for autonomous and power-efficient data transfers. It
is based on the TSMC 55 nm LP technology, enabling a clock
frequency of up to 250 MHz. Leveraging the parallel nature
of transformer-based inference, we exploited the increased
computational power provided by the 8 parallel cores.

As it is shown in Figure 6, the MHA layer represents
the main computational workload. It is parallelized along the
heads dimension, according to the implementation described
in [37], allowing for an almost linear speedup with the number
of cores, as reported in Figure 8. Table XI reports in columns
2 and 3 the inference performance, referring to 65MHz clock
frequency, and 1V supply voltage. Even though the GAP8
platform is not more energy efficient than the Apollo4 for
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Fig. 5: Inference performance at different frequencies for single-core and multi-core execution on GAP9.

TABLE X: State of the art for epilepsy monitoring hardware implementations on programmable cores.

Manzouri et al. [38] Heller at al. [39] Burrello et al. [40] Lee et al. [41] Ingolfsson et al. [22] this work
EEG type intracranial intracranial intracranial intracranial surface surface

Model RF CNN HD CNN AB transformer
Platform MSP430FR5994 MSP430FR serie Quentin [42] custom RISC-V BioWolf [43] GAP9

# Channels 1-4 4 4-64 2 4 4
Footprint >256kB 18.8kB 10.3-17.8kB 5kB1 4kB 150kB
Frequency 16MHz 8 MHz 187MHz 1MHz 100MHz 240MHz

Time/Inference N.R. 0.5s 11ms1 12ms 0.88ms2 13.7ms
Total power 0.2 - 1.12mW 0.8mW N.R. 0.1mW 27.92mW 22.9mW

Total energy/Inference 0.2 - 0.8mJ 0.8mJ 0.02-0.29mJ 0.95µJ 24.57µJ 0.31mJ
1 Estimated based on the reported data.
2 Numbers including feature extraction, inference execution requires 0.17-0.25mW/channel in [38], and 57µs and 1.3µJ in [22].

TABLE XI: Inference performance on hardware.

Apollo4 GAP8 GAP9
1 core 1 core 8 cores 1 core 8 cores

Frequency 96 MHz 65MHz 65MHz 240MHz 240MHz
Time/inf 405ms 283.9ms 62.2ms 72ms 13.7ms

Total Power 4.4mW 10mW 18.1mW 12.9mW 22.9mW
Energy/inf 1.79mJ 2.9mJ 1.2mJ 0.93mJ 0.31mJ

single core execution, the available parallelism allows for
over 3× speedup (limited by the less parallel operands in the
network), resulting in an energy consumption per inference
30% lower than the one required for execution on the Apollo4.

The GAP9 processor is fabricated as a more advanced
technological node, based on the TSMC 22 nm LP technology
and reaching up to 400MHz working frequency. The comput-
ing cluster includes an additional supervising core, and the
memory hierarchy is based on a 1.6MB L2 memory and a
128KB L1 memory. Columns 4 and 5 of Table XI report the
inference performance on GAP9 measured at 240MHz clock
frequency and 1.8V supply voltage.

As shown in the plots in Figure 5b and 5c, this configuration
represents the most power efficient setup for the platform: the
power consumption is reduced by a factor of 2 for parallel
execution on 8 cores, resulting in 1.5× energy saving. The
parallel execution on the computing cluster allows us to
reach an inference time equal to 22% of the one required
by GAP8 and results in 82% energy savings over the first
Apollo4 implementation. The measurements were performed
with a Power Profiler Kit II (PPK2) connected to the GAP9
Evaluation Kit. The measurement setup is shown in Figure 7b.

0 20 40 60 80 100

1 core

Percentage Inference Time

Conv Add LayerNorm MHA

MatMul Gelu ReduceMean

Fig. 6: Percentage inference time distribution for the different
operators in EEGformer on GAP9 and 1 core execution.
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GAP9DC-DC
(RAR)

All Core
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Source

5V USB

1.8V

0.65V

GPIO

GND

Memories

PPK2

(a) (b)

Fig. 7: (a) System-level overview of how the PPK2 current
supply is connected to the GAP9 Evaluation Kit. (b) Photo
of the GAP9 Evaluation Kit with measurement connections.
The measurement is performed running the cluster domain of
GAP9 at the most energy-efficient point of 240 MHz.

C. Discussion

In the following, we compare the efficiency of our deploy-
ment solution with the state of the art. We limit the compar-
ison to programmable solutions, based on MCUs, which are
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execution on the GAP processors.

inherently less efficient, yet more flexible, than highly special-
ized ASIC systems. Table X reports recent works presenting
energy-efficient systems for wearable epilepsy monitoring. The
analysis of the results reported in the Table highlights how
our proposed implementation is aligned with the performance
achieved in the works of [38, 39, 40] in terms of energy
consumption per inference, with the work of [40] reporting
the best numbers for a reduced acquisition setup.

We note that the systems proposed in [38, 39, 40, 41] work
with intracranial EEG, which is inherently less noisy. The
detector exploited in [38] is based on a simple RF model,
where most of the memory requirements are represented by the
need to store the training data for inference execution. On the
other hand, [40] and [39] exploit detectors of lower complexity
compared to the EEGformer, based on Hyperdimensional
computing (HD) and CNN.

Even higher efficiency is achieved in the work of [41],
which presents a tiny CNN for the classification of the EEG
signal of six rats. This interesting work achieves as low as
0.95µJ per inference, with a custom specialized co-processor,
based on RISC-V and exploiting a custom instruction set.
Nonetheless, the device embeds a tiny 6kB SRAM memory,
which limits the range of possible deployable detectors, and
the targeted tasks cannot be directly compared.

The solution presented in reference [22] stands out as the
most energy-efficient general-purpose approach in the compar-
ison. It relies on a very lean AB model for detection, which
requires minimal inference execution time. In contrast to [22],
our solution aims to achieve a lower false positive/healthy rate
and faster onset detection latency through a more complex
algorithm. Consequently, despite the system’s power consump-
tion being over 1.2× lower, the EEGformer model dissipates
significantly more energy per inference, exceeding the energy
dissipation of reference [22] by one order of magnitude.

Nevertheless, our proposed solution is still executable in
real-time and is comparable with some existing ASIC im-
plementations, whose energy consumption per classification
ranges from as low as 2.73µJ per classification [46] up to
0.17mJ per classification [47].

VIII. CONCLUSION

We presented EEGformer, a transformer-based seizure de-
tector designed to enable efficient long-term monitoring of
the raw EEG signal with unobtrusive devices, recording only
from the temporal channels. We first assessed its detection

performance through cross-validation and leave-one-out tests
on the open-source CHB-MIT dataset, and compared its per-
formance to state of the art of seizure detectors based on
low-channel count acquisition. EEGformer sets a new state-
of-the-art 15.2s average onset detection latency for temporal-
channels-only detection and detects 73% of the considered
seizure events while achieving 0 FP/h in 35/40 of the tests
performed (more than 60% of the considered patients do not
experience false alarms).

Furthermore, we presented a novel dataset, containing con-
tinuous recordings lasting on average 3 days. We evaluated
EEGformer on this new realistic benchmark for clinical prac-
tice, showing it is able to detect 88% of the annotated seizure
events with only 0.45 FP/h.

We finally considered the deployment on three edge-
processing platforms, the Apollo4 MCU and two GAP proces-
sors. With the first implementation, we show how the memory
footprint and the computational complexity of the EEGformer
can be accommodated on a tiny MCU, and executed efficiently
with 405ms and 1.79mJ per inference, at 96MHz operating
frequency. Parallelizing the inference workload on multiple
cores on the GAP8 and GAP9 processors allows further benefit
from parallel execution, reaching up to 82% energy savings. To
conclude, the EEGformer represents an efficient transformer-
based detector targeting low-power and low-channel count
continuous monitoring systems.

Future work will focus on further improving the event-level
sensitivity and detection latency while preserving or further
improving specificity. In addition, further studies should in-
clude a more general exploration of the transformer topology,
considering the effects of exploiting overlapping filtering ker-
nels in the first embedding stage, and especially of including
the decoder structure, to consider previous history when elab-
orating on each EEG window. Finally, EEGformer represents
a promising seizure model to be tested on wearable devices for
real-time seizure detection in hospital or ambulatory settings.
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Bonhage, A comparison of machine learning classifiers for
energy-efficient implementation of seizure detection, Frontiers
in Systems Neuroscience 12 (2018).
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