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Machine learning approach in diagnosing Takotsubo 

cardiomyopathy: the role of the combined evaluation of atrial and 

ventricular strain, and parametric mapping.    

 

Abstract 

Background: CMR with LGE is key diagnostic tool in differential diagnosis between non-ischemic 

cause of cardiac chest pain. Some patients are not eligible for a gadolinium contrast enhanced 

CMR; in this scenario the diagnosis remains challenging without invasive examination. Our 

purpose was to derive a machine learning model integrating some non-contrast CMR parameters 

and demographic factors to identify Takotsubo cardiomyopathy (TTC) in subjects with cardiac 

chest pain. 

 

Material and methods: three groups of patients were retrospectively studied: TTC, acute 

myocarditis, and structural healthy controls. Global and regional left ventricular longitudinal (LS), 

circumferential (CS), and radial strain (RS) analysis included were assessed. Reservoir (εs), conduit 

(εe), and booster (εa) bi-atrial functions were evaluated by tissue-tracking. Parametric mapping 

values were also assessed in all the patients. Five different tree-based ensemble learning algorithms 

were tested concerning their ability in recognizing TTC in a fully cross-validated framework. 
 

Results: The CMR-based ML ensemble model, by using the Extremely Randomized Trees 

algorithm with Elastic Net feature selection, showed sensitivity of 92% (95% CI 78 - 100), 

specificity of 86% (95% CI 80 - 92) and area under the ROC of 0.94 (95% CI 0.90 – 0.99) in 

diagnosing TTC. Among non-contrast CMR parameters, the Shapley additive explanations analysis 

revealed that left atrial (LA) εe and εe strain rate were the top imaging markers in identifying TTC 

patients. 
 

Conclusions: Our study demonstrated that using a tree-based ensemble learning algorithm on non-

contrast CMR parameters and demographic factors enables to identify subjects with TTC with good 

diagnostic accuracy.  



 

Translational outlook: 
Our results suggest that non-contrast CMR features can be implemented in a ML model to 

accurately identify TTC subjects. This model could be a valuable tool for aiding in the diagnosis of 

subjects with a contraindication to the contrast media. Furthermore, the left atrial conduit strain and 

strain rate were imaging markers had strong impact on TTC identification. Further prospective and 

longitudinal studies are needed to validate these findings and assess predictive performance in 

different cohorts, such as those with different ethnicities, social backgrounds and undergoing 

different treatments.   

Keywords: Myocardial strain; Takotsubo; CMR; Machine learning; Ensemble Learning; Feature 

Selection; Cross-validation. 

Abbreviations  
CMR cardiac magnetic resonance  

ML machine learning 

AM acute myocarditis 

LS longitudinal strain 

CS circumferential strain 

RS radial strain 

εs Reservoir strain  

SRs Reservoir strain rate  

εe Conduit strain  

SRe Conduit strain rate  

εa Booster strain  

SRa Booster strain rate  

LVEF Left Ventricle Ejection Fraction 

FS feature selection 

TTC Takotsubo syndrome 

LOO leave-one-out 



CV cross-validation  

LV left ventricle 

CMR-FT cardiac magnetic resonance feature tracking 

LA left atrium  

RA right atrium 

 
 

Key points 

• CMR-derived parameters were supposed to have high discriminatory power in identifying 

Takotsubo cardiomyopathy. 

• Many CMR-derived features were selected and implemented in a tree-based ML ensemble 

model to recognize TTC patients. 

• Left atrial strain parameters proved to be the best non-contrast CMR markers in making 

TTC diagnosis. 

 

Introduction 

In the Emergency Department, acute chest pain of cardiac origin is a common compliant in 

daily practice which can arise either from ischemic or non-ischemic disease. The first step is 

consistent with diagnosing or ruling out ST elevation myocardial infarction and non-ST elevated 

myocardial infarction. As a second step, non-ischemic causes of cardiac chest pain should be 

considered as well, such as Takotsubo cardiomyopathy (TTC) and acute myocarditis (AM). Making 

a differential diagnosis between the two is often challenging 1,2. However, that is crucial, because of 

its impact on the management and outcome of the patients 1,3. Although the reference standard for 

the diagnosis of TTC is represented by coronary angiogram with ventriculography, several non-

invasive imaging modalities can useful in the work-up of TTC as well 1,2,4. Among them, cardiac 

magnetic resonance imaging (CMR), following the ESC guidelines5, is progressively gaining more 



and more importance 4,6,7. The specific CMR criteria for the diagnosis of TTC were the combination 

of typical wall motion abnormalities, myocardial edema, and the absence of evidence of LGE4. 

In clinical practice, CMR acquired with late-gadolinium enhancement (LGE) are often contra-

indicated due to concomitant renal disease, to prevent a life-threatening complication after contrast 

medium administration, namely nephrogenic systemic fibrosis.  

 In addition to established diagnostic imaging criteria, recent studies have demonstrated the 

importance of left ventricular and atrial strain parameters in identifying patients with TTC2,8. 

Myocardial strain is a non-contrast quantitative method that use cine images in the routinely 

acquired CMR examination allowing to quantify the degree of myocardial deformation in different 

orientations9. Myocardial strain imaging has been shown to be a reliable diagnostic tool for both 

systolic and diastolic evaluation in different cardiac disease, such as hypertrophic 

cardiomyopathies, dilated cardiomyopathies, myocarditis, and Takotsubo cardiomyopathy10, 9,11,12. 

Strain analysis offers additional information over the traditional ejection fraction or cardiac 

chamber dimension and provides a sub-clinical assessment of myocardial function9. In particular, 

strain analysis can detect myocardial abnormalities in patients with preserved/recovery EF and wall 

motion abnormalities, or in case of an absence of myocardial tissue alterations (i.e edema) for a 

CMR examination delayed due to the lack of scanner accesibility13. 

Cau et al demonstrated a difference in myocardial strain parameters between TTC and AM 

helping in the differential diagnosis of these two cardiac diseases2. 

Given the possible overlap of symptoms, laboratory data, and electrocardiography changes 

between TTC and AM1, may be challenging. Machine learning (ML), a sub-field of Artificial 

Intelligence whose field of application is steadily growing with several applications in 

cardiovascular imaging 14,15, has the potential to identify and analyze such complex relationships.  

In this paper we compared five different tree-based ensemble learning methods, which were 

applied to solve the problem of discriminating between TTC and AM in subjects with acute chest 

pain using a CMR protocol without intravenous contrast administration.  A fully cross-validated 



pipeline was developed to perform feature selection, training, and evaluation of ML models in an 

unbiased manner. We hypothesized that non-contrast CMR-derived parameters can accurately and 

reliably characterize the complexity of the disease and that a ML algorithm could leverage those 

features	to diagnose TTC. 

 
Material and Methods 

The data collection and protocols used in this study were approved by the Institutional review 

board, and individual patient consent was waived because of the retrospective nature of the study. 

Study population  

In this retrospective single-center study we searched in our database all the patients who 

underwent CMR between March 3rd, 2017, and February 7th, 2021, because of clinical suspicion of 

AM or apical ballooning TTC. A total of 43 subjects were finally included in the study cohort. Of 

those, 18 and 14 were TTC and AM subjects respectively, and 11 were structural healthy controls. 

TTC diagnosis was made using the current definition as reported in the Position Statement 

of the European Society of Cardiology Heart Failure Association 3. The diagnostic criteria include 

regional wall motion abnormalities not limited to a single epicardial vascular distribution territory. 

The disease onset is usually preceded by a stressful trigger, culprit atherosclerotic coronary disease 

as assessed at invasive catheterization is usually absent, new ECG abnormalities are present, 

elevated serum natriuretic peptide and a small increase in cardiac troponin are often detected. LV 

dysfunction full recovery is typically noted at follow-up 3. Conversely, the diagnosis of AM was 

made clinically according to that reported in the Position Statement of the European Society of 

Cardiology Working Group on Myocardial and Pericardial Diseases 16. Endomyocardial biopsy was 

not performed. Exclusion criteria were subjects under 18 years of age, contraindication to CMR 

(implantable devices, severe claustrophobia), history of severe renal disease with a eGFR < 30 

mL/min/1.73 m2, and coronary artery disease. The control group comprised structural healthy 

subjects who had CMR to rule out scar related ventricular tachycardia. Institutional Review Board 



approval for this study was obtained and informed consent was waived because of its retrospective 

nature.  

A flowchart demonstrating the application of inclusion and exclusion criteria is provided in 

Figure 2. 

 

CMR acquisition  

CMR scans were performed after hospital admission with a mean delay of 4.1 ± SD 2.6 days 

using a 1.5 T scanner system (Philips Achieva dStream, Philips Healthcare, Best, The Netherlands). 

8 channels anterior cardiac coil array was used. Cine-CMR examinations were electrocardiogram 

triggered and performed during breath-hold expiration manoeuvres. Thirty phases were derived for 

each cardiac cycle. CMR protocol included functional sequences, such as cine bright blood steady-

state free precession (SSFP) on the short axis and long axes (2 chambers, 3 chambers and 4 

chambers); and morphological and tissue characterization sequences, such as T2 Short Tau 

Inversion Recovery (STIR) on both short and long axes, T1 mappings and T2 mapping acquisitions. 

Details of CMR sequence parameters are included in the Supplementary Methods. 

 

CMR image post-processing  

We used the commercially available software Circle CVI42 (CVI42, Circle Cardiovascular 

Imaging Inc., Calgary, Canada) for cardiac MRI feature tracking (CMR-FT) data analysis. Offline 

CMR-FT analyses were conducted for evaluation of peak global longitudinal strain (GLS), global 

radial strain (GRS), and global circumferential strain (GCS) in a 16-segment software-generated 2D 

model. Concerning GLS, data on myocardial strain were derived from two-, three- and four-

chambers long-axis views. Regarding GRS and GCS, data on myocardial strain was derived from 

apical, mid-ventricular, and basal short-axis views in all the patients. On all images, the epi- and 

endocardial borders were traced in end-diastole. After that, an automatic computation was triggered, 



by which the applied software algorithm automatically outlined the border throughout the cardiac 

cycle. The quality of the tracking and contouring was visually validated and manually corrected 

when needed. 

CMR-FT analyses of atrial deformation were conducted offline. LA and RA endocardial borders 

were manually traced on long axis view of the cine images when the atrium was at its minimum 

volume. In particular, the four-, three-, and two-chamber views were used to derive LA longitudinal 

strain. LA appendage and pulmonary veins were excluded from segmentation. RA longitudinal 

strain was based on the four-chamber view only. After manual segmentation, the software 

automatically tracked the myocardial borders throughout the entire cardiac cycle. The quality of the 

tracking and contouring was visually validated and manually corrected by a radiologist with 3 years 

of experience in cardiac imaging. There are three peaks in the strain curve, including reservoir, 

conduit, and booster strain. Accordingly, their corresponding strain rate (SR) parameters were 

included. 

Global and regional native T1 mapping were assessed on the same commercial post-processing 

software (CVI42, Circle Cardiovascular Imaging Inc., Calgary, Canada) by manually tracing 

endocardial and epicardial contours. A 10% safety margin was automatically set for both borders to 

prevent contamination from the blood pool and neighbouring tissues. Finally, the reference point 

was set at the RV insertion to generate a 16-segment AHA model. 

 

Blinded CMR interpretation 

To determine the accuracy of the human diagnostic evaluation of the non-contrast CMR analysis, 

we performed a dedicated blinded evaluation of all enrolled patients. The non-contrast CMR images 

were reviewed by an experienced radiologist with 3 years of training in cardiovascular imaging who 

was blinded to clinical history. The reviewer categorized his interpretation based on the level of 

confidence for each diagnosis of TTC, rated using a 4-point Likert scale (1=no confidence, 4=high 



confidence). The time required for each evaluation was also recorded and compared to the overall 

time taken by the model, which encompasses feature selection, training, and prediction.  

 

 Machine Learning 

Machine learning models were trained to identify TTC subjects integrating multiple 

variables. In particular, forty-two CMR-derived variables on atrial and ventricular strain and 

parametric mapping and 2 demographic variables (age and gender) were available for feature 

selection and model derivation (full list provided in Supplementary Table 1).  

 Tree-based ensemble algorithms 

Tree-based ensembles can handle high-dimensional data and classify each subject 

into multiple classes natively. Additionally, they can estimate any (possibly nonlinear) 

relationship due to their non-parametric nature. 

We selected three bagging ensembles - Random Forest 17, Extremely Randomized 

Trees 18 and a plain bagging classifier of decision trees 19 - and two boosting ensembles, 

Adaptive Boosting  and Extreme Gradient Boosting. In brief, ensemble learning consists in 

producing a strong estimator by combining the predictions of multiple, weaker estimators 

that are generally weaker when considered in isolation20. Random forests, extremely 

randomized trees and the plain bagging of decision trees derive the estimator by fitting 

decision trees on different bootstrap resamples of the data set and combine individual 

predictions to obtain the final ensemble prediction. Adaptive boosting and extreme gradient 

boosting build the ensemble sequentially; at each iteration, a weak estimator is fitted on 

samples having different weights according to the performance of the previous weak learner 

(additional details are provided in the Supplementary Methods). Each algorithm was used 

to compute individualized probability of TTC, considering multiple variables. 

Model Building 



Figure 1 shows the steps involved in building and validating ML models using 

nested leave-one-out (LOO) cross-validation. First, 42 subjects were randomly selected for 

constituting the training set used for variable selection and model building; the remaining 

subject was used for testing the resulting model; second, feature selection was performed on 

the training set; in greater detail, another LOO procedure was used to derive 42 feature sets 

(one for each subject in the training set) and the union of all sets (all features selected at 

least once) was computed; third,  the model was built using the selected variables; fourth, 

the independent subject that was set aside at the start of the procedure was classified into 

TTC, AM or control. The LOO procedure was repeated for each subject, each time using 42 

subjects for variable selection and model building and one subject for validation; this 

ensured that each subject was used exactly once for validation. In the end, each subject was 

predicted using a model trained with all other subjects. Once finished, the predictions from 

the 43 models were pooled and used to assess predictive performance in diagnosing TTC. 

This process was repeated for every ensemble algorithm. The LOO protocol is detailed in 

Supplementary Figure 1. Due to the small sample size, we refrained from tuning 

algorithm’s hyperparameters and used default values (see Supplementary Table 2 for 

specific values). 

LOO maximizes data available for training and testing, hence reducing overfitting 

and avoiding overlap between data used to select features and build models, reduces 

variance in the estimation of generalization error and limits bias when estimating predictive 

performance of models.  

Repeated leave-10-out analysis 

To further assess the robustness of our methodology, we repeated the analysis 100 

times, each time shuffling the dataset and setting aside roughly 10 subjects as the 

independent test set and using the remaining subjects for variable selection and model 



building. Stratified sampling was performed to ensure each class had the same frequency in 

both training and test data.  

Feature Selection 

Feature selection was performed using regularized regression with elastic net 

penalty, which  zeroes the coefficients of less predictive features while handling possible 

redundancy in the feature set21,22. Only features with non-zero coefficients were selected for 

model training (additional details are provided in the Supplementary Methods). Once the 

nested LOO procedure was finished, the final set of variables was computed as the 

intersection of the 43 sets; thus, we considered only features selected at every round of the 

CV protocol. 

Feature Importance 

To inspect the impact of the features included in the ML model, we analyzed the 

predictions from the repeated leave-10-out analysis and used the Shapley Additive 

Explanations (SHAP) framework to derive average importance scores. SHAP exploits a 

game theoretic approach to attribute individual contributions of features to model 

predictions23. Additional details are provided in the Supplementary Methods.  

 

 

Statistical analysis 

In this study, continuous data were described as the mean ± SD. Homogeneity of variance 

across groups was assessed through Levene’s test. Normality of residuals was assessed through 

Shapiro-Wilks’s test. One-way ANOVA, Kruskal-Wallis H and Mann-Whitney U tests were used 

for comparison between groups of continuous variables, as appropriate. For categorical variables, 

we used the Chi-squared test. The overall performance of ML models was assessed with the area 

under the receiver operating characteristics (AUROC) and precision-recall (AUPR) curves. 



Sensitivity and specificity were also reported (additional details on performance evaluation are 

given in the Supplementary Methods). The DeLong test24 was used to test for statistically 

significant differences between AUC. Calibration was assessed through Brier score and observed 

vs. predicted plot. Multiple testing correction was done via Benjamini-Hochberg procedure to 

control the false discovery rate. A Padj value < .05 was considered significant. Confidence intervals 

at 95% significance level were computed using the efficient Wilson score method with continuity 

correction30 for proportions and the percentile method for pooled mean scores of the repeated 

analysis. All statistical analyses were performed with the R software version 4.1.0 (R Foundation 

for Statistical Computing, Vienna, Austria) and Python version 3.9. 

 

Results  

Patient demographics and CMR parameters. 

A total of 32 symptomatic subjects were screened. Of those, 18 were TTC (17 females, 

mean age 69±10 years.) and 14 patients were AM (5 females, 43±16 years). Additionally, 11 

structural healthy subjects (7 females, 50±9 years) who underwent CMR imaging to rule our scar 

related tachycardia were included as controls (Figure 2). Baseline characteristics of included 

patients are summarized in Table 1. 

 

Model comparison and predictive performance 

AUCs for the repeated leave-10-out analysis are reported in Figure 1.  All models showed 

excellent capabilities in identifying TTC patients among AM and structural controls, except the 

adaptive boosting. Of note, the extremely randomized trees outperformed all other models in terms 

of AUROC (0.94, 95% CI [0.90 – 0.99], P < .001 vs all) and sensitivity (91.6%, 95% CI [78 – 100], 

P < .001 vs all, Figure 3). The AUPR was also excellent (0.92, 95% CI [0.85 – 0.98]). The model 



also showed good calibration with a Brier score of 0.11 (95% CI [0.08 – 0.13], Supplementary 

Figure 2). For this reason, it was selected as the final model. 

The reader’s AUCs were worse than the models’ (AUROC of 0.52 and AUPR of 0.43). 

Reader’s calibration was substandard, with a Brier score of 7.3 (95% CI [5.6 – 9]). Using a reader’s 

diagnostic evaluation of 2 (Youden’s index) or greater as a threshold to classify all subjects as TTC, 

the sensitivity was 83% (95% CI [58 – 96]) and specificity was 24% (95% CI [10 – 46]). At the 

Youden’s index, the extremely randomized trees model had a sensitivity of 93 (95% CI [92 – 94]) 

and a specificity of 82%, 95% CI [80 – 83]. In the leave-one-out analysis the performance were 

similar, except for the random forests’ AUROC and sensitivity that were higher than those of 

extremely randomized trees, although not significant (0.97 vs 0.96, P = .66 and 100% vs 94%, P = 

1.0 respectively, Supplementary Figure 3 and 4).  

To further assess the effectiveness of the feature selection, we evaluated the extremely 

randomize trees model in the repeated leave-10-out analysis without performing feature selection. 

The AUROC for the reduced feature set was significantly greater than that for the whole feature set 

(0.94 vs 0.93, P < .001, Supplementary Figure 5A). Sensitivity and specificity were similar, 

although the model derived using all features had slightly higher sensitivity (91.8 vs 91.6, P < .001, 

Supplementary Figure 5B). 

Finally, we compared the time needed to produce a diagnosis. On average, the reader needed 

586 s (SD 52) compared to 0.26 s (SD 0.004) for the model, which encompasses the time needed 

for feature selection, training and prediction (Supplementary Figure 6).  

 

Important variables for identifying TTC 

The 13 features identified by the feature selection are shown in Figure 4A ranked by decreasing 

impact on identifying TTC patients according to SHAP values. Box-whisker plots showing inter-

group differences and pairwise comparisons are reported in Supplementary Figure 7.  



Overall, age, left atrial (LA) conduit strain and strain rate had the most impact on identifying TTC. 

Greater age and LA conduit rate and smaller LA Conduit rate values had more impact on 

identifying TTC subjects (Figure 4B). The S-shaped relationships between LA conduit strain and 

strain rate (x-axis) and SHAP values (y-axis) for LA conduit and LA conduit rate are shown in 

Figure 4C and 4D. 

 

Discussion 

In the present study, we have demonstrated that a tree-based ML ensemble algorithm trained 

with non-contrast CMR measurements and demographic information was able to identify patients 

with TTC accurately when they are mixed with patients with AM and structural healthy controls.  

The incremental diagnostic performance of an ML-based model in the diagnosis of cardiac 

diseases has been demonstrated in previous studies25–27,28. Baeßler et al investigated texture analysis 

of non-contrast T1-weighted CMR images using ML-based approaches in patients with 

hypertrophic cardiomyopathy showing a sensitivity of 94% and a specificity of 90% of the 

proposed model in distinguish patients with hypertrophic cardiomyopathy from controls28. 

Gopalakrishnan et al. evaluated a ML-based model that uses CMR parameters to differentiate 

cardiomyopathies from a cohort of 83 pediatric patients demonstrating an accuracy of 80,72 % with 

an area under the curve of 0.8029.  

To the best of our knowledge, this is the first work focused on an ML-based model that 

combines demographic and non-contrast CMR parameters (including atrial and ventricular strain 

measurements and parametric mapping features) to discriminate between TTC and AM.  

  In the light of the ESC guidelines, CMR with LGE has acquired a growing role to facilitate 

the differential diagnosis between ischemic and non-ischemic origin of chest pain, identifying the 

underlying cause and reducing the need of invasive coronary angiography5. In the clinical setting, 

some patients are not eligible for a gadolinium contrast enhanced CMR; therefore, a non-contrast 

CMR may be of diagnostic support in the differential diagnosis of these patients. The ability of the 



ML model to correctly classify patients with TTC could allow a diagnosis in individuals with a 

contraindication to the contrast media and reduced associated costs.  

Among non-contrast CMR parameters, the SHAP analysis revealed that left atrial (LA) 

conduit strain and strain rate were the imaging markers with highest impact for TTC identification. 

The LA plays a key role in maintaining left ventricular filling. Several studies have highlighted the 

LA significant pathophysiological contribution in different cardiomyopathies 30–32. Hinojar et Al. 

investigated LA contractile function using CMR-FT in seventy-five patients with hypertrophic 

cardiomyopathy 30. They demonstrated that LA longitudinal function is impaired also in HCM 

patients with normal LA volume and LV filling pressure in comparison with the structural healthy 

control group, thus suggesting that LA deformation parameters are sensitive parameters since the 

early state of the disease 30. LA strain impairment was reported also in patients with myocarditis 

31,32. Similar LA strain impairment was reported in patients with TTC 8,33. In this respect, Backhaus 

et Al. demonstrated altered LA reservoir and conduit functions in TTC patients 33. In spite of the 

pathophysiology of the disease not being fully explained,  LA dysfunction is reported in TTC 

patients. It may be caused either by direct atrial involvement or may be secondary to LV 

dysfunction 34. Our data are consistent with that reported in literature 8,33,35. They show that LA 

conduit strain and strain rate may identify TTC patients among those with acute chest pain via an 

ML model. LA conduit represents the most sensitive marker of exercise intolerance in patients with 

heart failure and preserved ejection fraction, reflecting an increased stiffness and decreased 

elastance of LA, as shown by Von Roeder et Al. 36. In addition, an association between LA conduit 

function and early LV filling was noted 36. A potential “atrial myopathy” in TTC patients, beyond 

the well-known LV involvement, was intrinsically suggested 36.  

Finally, our model outperformed clinical reader’s diagnoses with an average increase in 

AUROC of 0.42 (80%), in sensitivity of 0.08 (10%) and in specificity of 0.618 (257%). Model 

calibration was also better (0.11 vs 7.3), but still suboptimal due to slight overestimations of the 

observed frequencies in the first deciles and slight underestimations in the last deciles. The model 



was also much faster, taking, on average, 0.26 seconds for feature selection, training and making 

the prediction, against 560 seconds needed by the clinical reader to make a diagnosis.   

The following study limitations should be acknowledged and addressed in future research 

before the presented method can be employed in clinical practice. First, the relatively small sample 

size and the cross-sectional nature of the study. However, we enrolled exclusively very 

homogenous TTC patients with the classic apical ballooning. Second, although we have taken 

precautions when training models and estimating generalization performance, our model may still 

have overfit the data. To guard against overfitting, we employed nested cross-validation to select 

features with diagnostic value, train algorithms and evaluate performance on the same cohort, by 

considering non-overlapping subsets of the data and thus reducing the bias in performance 

estimation37. The promising results of our study could prompt further prospective trials including a 

larger number of patients to confirm our findings. In fact, deriving a ML model that performs well 

in the general population would likely require a much larger cohort to capture the heterogeneity and 

nuances of takotsubo syndrome. Third, in our study the predictive value of strain and parametric 

mapping parameters for adverse cardiovascular events was not assessed at follow-up. Further 

longitudinal studies are warranted to evaluate the association of these CMR parameters with patient 

outcome. Fourth, given the retrospective nature of our work, the control group includes patient with 

a negative CMR examination and considered “structurally” healthy. Further prospective studies that 

include healthy volunteers are warranted to confirm our results. Fifth, the impairment in strain and 

parametric mapping measurements in patients with TTC would have probably been different if 

CMR had been performed within a shorter period of time, ideally the same day of hospital 

admission. This may have potentially influenced the ML algorithms’ performance and should be 

further tested in the future. Finally, although our model only took a fraction of the time needed by 

the clinical reader to make a diagnosis, the variable extraction process is lengthy (30 minutes on 

average). We compared the time to diagnosis of the model trained on variables extracted from non-

contrast CMR examinations to that of the clinical reader that directly interpreted the CMR 



examinations. The rationale for this choice was to acquire reader’s diagnoses in an environment that 

was as similar as possible to ordinary clinical practice. Considering the time needed to extract 

variables, the overall model time to diagnosis is, on average, 1800 seconds, almost three times 

slower than the reader. However, the model’s performance are significantly higher. In future 

studies, a deep learning system able to analyse and automatically extract variables from non-

contract CMR scans could be developed and compared to classical ML algorithms trained on 

variables extracted by the radiologists. 

 

Conclusion 

We demonstrated that a tree-based ML ensemble algorithm integrating demographic factors 

with non-contrast CMR parameters could accurately identify TTC in patients with cardiac chest 

pain, and as such, it could be an additional support to the clinician in identifying TTC in subjects 

with cardiac chest pain. 
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Figure legends  

Figure 1. Summary of steps involved in machine learning (ML) analysis and performance of 

ML models. (A) ML analysis involved a leave-one-patient-out (LOO) cross-validation (1) where 

42 patients were used to perform feature selection (2) using regularized regression with elastic net 

penalty, (3) ith model building and (4) prediction of TTC and AM for the validation patient. (5) 

Each patient was used exactly once as test and overall predictions for the 43 patients are used to 

evaluate prediction performance. CMR indicates cardiovascular magnetic resonance. (B-C) 

Receiver-operating characteristics and precision-recall curves reporting performance of reader and 



ML models on identifying TTC patients from repeated leave-10-out testing. AdaBoost indicates 

adaptive boosting; Bagging, bagging of decision trees; XGBoost, extreme gradient boosting; RF, 

random forests and ExtraTrees, extremely randomized trees. 

Figure 2. Patient flowchart. Inclusion and exclusion criteria for patients included in the study. 

CMR indicates cardiac magnetic resonance; TTC, takotsubo syndrome and AM, acute myocarditis. 

Figure 3.  Diagnostic performance of ML models from repeated leave-10-out testing. 

Sensitivity and specificity (solid bars) and 95% CI (whiskers) are presented for both ML models 

and the reader. Abbreviations as in Figure 1. 

Figure 4. Feature importance for the ML model based on the reduced feature set for identifying 

TTC patients according to SHAP values. Plots showing the contribution of each feature of the final 

set to model’s predictions according to SHAP values. (A) Global feature importance; features are 

sorted decreasingly by impact according to the mean absolute SHAP, for each variable (solid bars). 

(B) Relationships between features values and impact on model prediction (violin plots). Higher 

values of LA Conduit Rate contributed positively to predicting TTC, whereas the opposite was 

observed for LA Conduit. (C-D) Detailed trends of impact on TTC prediction for LA Conduit and 

LA Conduit rate. Smaller values of LA Conduit and higher values of LA Conduit Rate have greater 

impact on predicting TTC.		

 

 

 

 

 

 

 

 



Tables  

  Takotsubo Myocarditis Control P Padj 

Demographics           
Age (mean ± std) (yr) 69 ± 11 44 ± 16 50 ± 10 <.001 <.001 
Gender (female = 29) 94.4 (17/18) 64.3 (9/14) 63.6 (7/11) 0.052 0.076 

Ventricle Functions           
LVEF 58.71 ± 8.9 58.11 ± 5.03 59.24 ± 4.88 0.79 0.79 
EDV LV/BSA 72.37 ± 16.03 90.42 ± 18.14 78.84 ± 12.49 0.011 0.021 
ESV LV/BSA 29.86 ± 9.63 38.57 ± 11.85 32.12 ± 6.13 0.049 0.073 
SV LV/BSA 42.49 ± 11.14 51.88 ± 7.37 46.74 ± 8.75 0.029 0.049 
RVEF 59.36 ± 5.85 55.77 ± 4.17 55.66 ± 2.96 0.056 0.076 
EDV RV/BSA 57.12 ± 12.61 87.76 ± 18.77 75.84 ± 19.27 <.001 <.001 
ESV RV/BSA 23.36 ± 6.1 38.85 ± 10.35 33.97 ± 9.67 <.001 <.001 
SV RV/BSA 32.56 ± 7.33 48.86 ± 9.98 42.29 ± 11.36 <.001 <.001 

Ventricular Strain (L)           
Basal RS 42.76 ± 11.15 35.7 ± 10.64 29.86 ± 17.7 0.021 0.037 
Mid RS 31.3 ± 8.81 27.21 ± 6.9 27.61 ± 16.14 0.304 0.346 
Apical RS 24.64 ± 9.25 27.42 ± 12.99 40.68 ± 23.86 0.012 0.022 
Global RS 30.31 ± 7.35 28.44 ± 7.32 36.14 ± 6.59 0.031 0.05 
Basal CS -20.07 ± 2.63 -18.1 ± 3.02 -19.86 ± 3.11 0.142 0.17 
Mid CS -18.07 ± 3.39 -18.17 ± 2.45 -19.62 ± 2.16 0.322 0.355 
Apical CS -17.61 ± 4.85 -20.35 ± 5.37 -24.61 ± 2.81 0.001 0.003 
Global CS -16.02 ± 9.13 -18.46 ± 2.61 -20.56 ± 2.17 0.055 0.076 
Basal LS -16.76 ± 3.75 -10.96 ± 3.17 -16.78 ± 2.16 <.001 <.001 
Mid LS -13.07 ± 2.99 -11.66 ± 2.34 -18.0 ± 2.91 <.001 <.001 
Apical LS -14.03 ± 2.66 -14.88 ± 2.21 -17.57 ± 3.15 0.006 0.013 
Global LS  -12.91 ± 2.62 -12.45 ± 2.24 -17.76 ± 1.82 <.001 <.001 

Atrial Strain (L)           
LA Reservoir 24.89 ± 5.92 30.15 ± 7.19 35.6 ± 3.95 <.001 <.001 
LA Reservoir Rate 1.11 ± 0.32 1.47 ± 0.35 1.53 ± 0.25 0.001 0.003 
LA Conduit 10.66 ± 4.46 16.32 ± 6.27 21.49 ± 4.91 <.001 <.001 
LA Conduit Rate -0.98 ± 0.41 -1.92 ± 0.72 -1.88 ± 0.4 <.001 <.001 
LA Booster 14.71 ± 6.21 12.39 ± 3.86 13.19 ± 2.13 0.774 0.79 
LA Booster Rate -1.65 ± 0.49 -1.52 ± 0.43 -1.74 ± 0.32 0.459 0.494 

Atrial Strain (R)           
RA Reservoir 35.91 ± 22.69 28.26 ± 9.61 38.67 ± 9.19 0.084 0.107 
RA Reservoir Rate 2.19 ± 1.48 1.59 ± 0.5 1.95 ± 0.62 0.486 0.51 
RA Conduit 21.31 ± 15.12 17.85 ± 6.0 24.3 ± 9.8 0.236 0.276 
RA Conduit Rate -1.68 ± 1.0 -1.45 ± 0.35 -2.2 ± 0.8 0.046 0.072 
RA Booster 14.93 ± 8.77 9.68 ± 5.53 13.37 ± 4.82 0.114 0.141 
RA Booster Rate -2.06 ± 1.23 -1.26 ± 0.7 -1.45 ± 0.6 0.076 0.1 

Mapping           
Global T1 1141.78 ± 67.45 1058.3 ± 95.58 1031.26 ± 76.59 <.001 <.001 
Basal T1 1110.42 ± 83.4 1046.14 ± 84.06 1030.83 ± 78.27 0.004 0.009 
Mid T1 1138.15 ± 67.62 1055.02 ± 108.76 1017.18 ± 78.13 0.001 0.003 
Apical T1 1209.82 ± 99.69 1080.54 ± 109.37 1053.01 ± 82.27 <.001 <.001 
Global T2 63.85 ± 4.47 60.08 ± 5.92 54.82 ± 3.9 <.001 <.001 
Basal T2 58.7 ± 4.17 60.73 ± 5.74 54.68 ± 4.08 0.01 0.02 



Mid T2 63.18 ± 5.15 58.17 ± 6.5 53.31 ± 2.79 <.001 <.001 
Apical T2 70.38 ± 5.91 61.35 ± 6.61 56.47 ± 6.92 <.001 <.001 

Table 1. Baseline characteristics of takotsubo, myocarditis and structural healthy control patients. 

Both raw and adjusted P values of inter-group comparison tests are reported, using bold and 

underlined notation for P values that remained statistically significant after adjustment. EDV 

indicates end-diastolic volume; LV, left ventricle; BSA, body surface area; ESV, end-systolic 

volume; SV, systolic volume; LVEF, left ventricle ejection fraction; RVEF, right ventricle ejection 

fraction; RS, radial strain; CS, circumferential strain; LS, longitudinal strain; LA, left atrium; RA, 

right atrium; Padj indicates adjusted P value after multiple testing correction. 
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