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Abstract: In the context of precision agriculture (PA), geomatic surveys exploiting UAV (unmanned
aerial vehicle) platforms allow the dimensional characterization of trees. This paper focuses on the use
of low-cost UAV photogrammetry to estimate tree height, as part of a project for the phytoremediation
of contaminated soils. Two study areas with different characteristics in terms of mean tree height
(5 m; 0.7 m) are chosen to test the procedure even in a challenging context. Three campaigns are
performed in an olive grove (Area 1) at different flying altitudes (30 m, 40 m, and 50 m), and one
UAV flight is available for Area 2 (42 m of altitude), where three species are present: oleander,
lentisk, and poplar. The workflow involves the elaboration of the UAV point clouds through the
SfM (structure from motion) approach, digital surface models (DSMs), vegetation filtering, and a
GIS-based analysis to obtain canopy height models (CHMs) for height extraction based on a local
maxima approach. UAV-derived heights are compared with in-field measurements, and promising
results are obtained for Area 1, confirming the applicability of the procedure for tree height extraction,
while the application in Area 2 (shorter tree seedlings) is more problematic.

Keywords: UAV; photogrammetry; precision agriculture (PA); local maxima algorithm; SfM; QGIS;
CHM; environmental monitoring

1. Introduction

Precision agriculture (PA) is defined as a particular agricultural management strategy
based on the observations, measurements, and responses of a set of quantitative and
qualitative variables affecting agricultural production [1]. The first step in the PA approach
is the acquisition and collection of data from different sensors, such as optical multispectral
and geophysical ones, to obtain a deep characterization of plants and monitor a crop [2].
Therefore, PA commonly includes a wide range of techniques and methodologies that need
to be properly combined to develop increasingly sustainable agricultural management [3,4].
In this regard, the combination of data from different sources is bound to the proper
management of the reference system, commonly handled through geographic information
systems (GISs), which are highly suitable tools for multidisciplinary studies [5,6]. Among
all, geophysics and geomatics techniques represent fundamental support tools for PA
applications, giving essential information for cultivation protection and monitoring [7].

In particular, geophysical analyses involve the study of the chemical characteristics
of plants and the shallow part of the subsoil, using ad hoc instruments, such as georadar
systems [8,9]. On the other hand, geomatic techniques allow obtaining quantitative param-
eters describing the plants, in terms of height, crown extension, and volume. The use of
global navigation satellite systems (GNSSs) in the agricultural field dates back to the 90s,
with the development of farm machines equipped with GNSS receivers. However, the use
of GNSS instruments to acquire field measurements cannot ensure high-density datasets
without resulting in very time-consuming and expensive surveys [10]. Therefore, in this
context, they are commonly employed as a support for other techniques. In the early 2000s,
drones became the new major players in precision agriculture, being a very useful platform
to transport different types of sensors (i.e., LiDAR, multi-spectral, and optical cameras).
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Indeed, the main advantages of using unmanned aerial vehicles (UAVs) are related to the
fast performance and lower costs compared to other geomatic techniques [11,12].

Several studies addressed the use of UAV remotely sensed data for forestry or agri-
cultural applications, mainly relying on LiDAR (light detection and ranging) datasets or
multi-spectral imagery [9,13–20]. Moreover, most of the applications are framed in for-
est environments, where tall and dense trees are present, and the main focus is crown
identification and classification [14,15,17,21–24]. On the other hand, recent studies have
been conducted over areas with lower vegetation, using photogrammetric or LiDAR data
sources [16,25–30]. In particular, tree height extraction exploiting UAV-acquired imagery
has been addressed by several researchers, with different specific characteristics of the
observed plants, providing promising results [14,21,23,31,32]. Compared with LiDAR point
clouds, photogrammetric data are known to be generally noisier and less accurate since
they do not provide information about the terrain surface but only the upper layer [14].
Conversely, information representing the ground level can be retrieved from LiDAR data by
exploiting multi-return echoes penetrating the canopy [33,34]. This fact commonly ensures
a better accuracy of the ground representation, which is crucial for a fair reconstruction
of the 3D structure of vegetation [14]. Nevertheless, this benefit is obtained with more
expensive instruments, requiring also more advanced carrying platforms.

Whatever the employed technique, analysis in the agricultural field generally relies
on raster-based methods, through canopy height models (CHM), or others combining
point clouds and raster data [35–37]. A CHM represents tree crowns and their heights
from the ground; hence, it is commonly obtained as the difference between a digital
surface model (DSM) and a related digital terrain model (DTM). The reference DTMs
can be generated by exploiting automatic filters to identify the points representing the
ground surface. Originally, the algorithms for vegetation filtering were designed for
LiDAR datasets, although they can be employed also for photogrammetric applications [24].
Indeed, different software implements automatic filters for the vegetation that yet lead to
better performances in forests rather than in areas with low trees [14,25–27]. However, fruit
farmland or vineyards are characterized by the presence of sparse trees and relatively low
heights, ranging approximately from 1 m to 4 m [38]. A similar situation concerns soils
contaminated by pollutants or heavy metals undergoing phytoremediation or reclamation
by planting trees or shrubs that can improve the chemical and physical characteristics
of the soils and reduce the pollution level [39,40]. These latter contexts are commonly
characterized by very low vegetation, in the order of half a metre, and height extraction
applications in these contexts are poorly available in the literature, except for LiDAR. Some
possible limitations of the SfM algorithm for the extraction of the height of low trees are
addressed in the study by Matsuura et al. (2023) [41], developing a stereo-matching-based
methodology applied for relatively low trees (50–60 cm).

This paper presents the first results of research concerning the use of aerial pho-
togrammetry acquired by low-cost UAVs to retrieve dimensional parameters of the trees,
in particular their height. This study belongs to a wider project aimed at finding algo-
rithms and procedures for analysing and monitoring soils contaminated with heavy metals
and undergoing phytoremediation processes, based on the definition of dimensional, geo-
physical, and chemical parameters. The final purpose is to define specific algorithms
for different soils, plant species, and microbial populations, allowing the identification
of the optimal conditions for the contaminated site’s restoration. To this aim, two study
areas, named “Area 1” and “Area 2”, with different characteristics in terms of mean tree
height (Area 1: 5 m; Area 2: 0.70 m) are chosen to carry out the geomatic surveys to test
the applicability of the procedure even in a challenging context of shorter trees seedlings.
Three low-cost UAV campaigns are performed in Area 1, with different flying altitudes
to evaluate the impact of the images’ resolution (ground sampling distance—GSD), while
only one UAV survey is performed in Area 2. Starting from the photogrammetric datasets,
the implemented workflow involves the elaboration of the reference digital terrain model
(DTM), the dense point clouds, and the digital surface models (DSMs) and a GIS-based



Drones 2024, 8, 106 3 of 14

procedure for the extraction of tree heights based on a local maxima approach. Finally,
the accuracy of the tree heights is assessed through a statistical analysis exploiting the
availability of field measurements.

2. Materials and Methods
2.1. Study Areas

Two different study areas were chosen for the analysis, having different characteristics,
especially in terms of mean tree height. The analysis aimed to test the possibility of applying
the same method of height extraction in different conditions to evaluate possible limitations
of the procedure. The first site, named “Area 1”, is part of an olive grove extended for about
1.2 hectares located in the South of Sardinia, Italy (Figure 1a). Approximately 80 olive trees
cover the area following a precise configuration along separated rows, and the tree heights
range between 3 m and 6 m (5 m on average). This area was chosen as the optimal case
study for our application, considering the mean tree heights, the canopy extension, and
the density of the foliage. The second site, hereafter called “Area 2”, consists of nearly
600 young trees placed along 26 rows with 2–3 m of inter-distance extending for about half
a hectare (Figure 1b). Since the planting of the area was part of a requalification project
that started a few months before the survey, here, the plants’ heights are generally very
low, ranging between 10 cm and 140 cm and sometimes with leaf-off conditions. Moreover,
the plantation in Area 2 involves three different plant species, having different typical
characteristics in terms of foliage and mean heights: about 50 cm, 70 cm, and 85 cm for
lentisk, poplar, and oleander, respectively. We want to stress that this second study area is
particularly challenging due to the poor growth of the plants at the survey epoch.
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Figure 1. National and local contextualization of the study areas located in the South of Sardinia,
Italy. (a) refers to Area 1 (olive grove site); (b) refers to Area 2 (plantation of poplar, lentisk, and
oleander). Basemap: Google Satellite. The map was generated using Qgis software (version 3.28.15)
and the coordinates are aligned to the ETRS89-ETRF2000-UTM32 reference system (EPSG: 6707).

2.2. UAV Photogrammetric Surveys

In Area 1, three UAV campaigns were performed using a very low-cost Mini 3—DJI
drone equipped with an RGB sensor on the same day under the same weather conditions
(Figure 2a). Three different flight altitudes were set, namely, 50 m, 40 m, and 30 m, for
flights 1, 2, and 3, respectively. The flights were manually guided ensuring a resulting
forward and side overlapping of 80% and 70%, respectively. A total of 6 GCPs were evenly
distributed, 4 at the edges and 2 in the centre of the area. A good distribution of GCPs
is of high importance not only for the image orientation but also for the prevention of
block deformation effects that may result from the remaining systematic errors in the
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camera calibration [42,43]. The GCPs were surveyed using a single Trimble R8 GNSS
receiver operating in NRTK mode for the georeferencing process. The GCP coordinates
in terms of Northing and Easting aligned to the ETRF2000-UTM32N reference system
(EPSG: 6707) were obtained exploiting the Sardinian SARNET network [44]. Moreover,
ellipsoidal heights were converted into orthometric ones using ConveRgo software [45],
which exploits the ITALGEO05 geoidheight grid (GK2 format) [46].
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Figure 2. Tree rows and UAV campaigns in the study areas: (a) refers to Area 1; (b) refers to Area 2,
during the GNSS-NRTK survey of the GCPs.

The UAV survey in Area 2, hereafter called “Flight a”, was carried out using a Phantom-
DJI 4 drone equipped with RGB sensors and flying 42 m high. In this case, forward and side
overlapping of 80% and 70%, respectively, were ensured through an automatic planning of
the flight. The GCP survey followed the same method as the first site for a total of 7 points
evenly distributed over the area, 4 at the corners and 3 in the centre (Figure 2b).

The GCPs were materialized on the ground using red and white circular targets with
a diameter of 20 cm for both the surveyed sites (Figure 3). The shape and size of the targets
were planned to be visible on images acquired flying up to 80 m high.
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The main parameters of the four UAV surveys are summarized in Table 1, whereas
Table 2 shows the characteristic parameters of the employed cameras for Area 1 and Area 2.
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Table 1. Summary of the UAV flight parameters for Area 1 and Area 2.

Site Flight Name Date and Time of the Survey Flying
Altitude (m)

Flight Path
Pattern GSD n GCPs n Frames

(Nadiral)

Area 1

1 14 December 2023
From 11:13:49 to 11:28:22 50 North-South 1.61 cm/pix 6 118

2 14 December 2023
From 11:34:23 to 11:43:51 40 North-South 1.14 cm/pix 6 86

3 14 December 2023
From 11:49:56 to 11:55:42 30 North-South 0.53 cm/pix 6 59

Area 2 a 3 January 2023
From 10:01:22 to 10:15:22 42 NE-SW 1.07 cm/pix 7 345

Table 2. Camera parameters.

Site Sensor Size (Pixels) Focal Length (mm) Full-Frame Equivalent Pixel Size on the Sensor (µm)

Area 1 12 MP 24 2.64

Area 2 12.4 MP 20 2.41

2.3. UAV Data Processing

Acquired images were processed using Agisoft Metashape software version 2.0.4 [47].
Metashape is a commercial software package widely used by the research community
and by geomatics professionals to produce orthophotos, digital elevation models, and 3D
models. Metashape implements the structure from motion (SfM) algorithm and multi-
view stereo (MVS) techniques. The SfM algorithm allows fully automatic orientation of
the images and reconstruction of a sparse model of the scene. The poses of the images,
the spatial positions of the tracks, and the cameras’ calibration parameters were globally
optimized with bundle block adjustment [48–50]. Moreover, Metashape software uses
a hierarchical strategy for SfM reconstruction called HSfM, which is a natural extension
of the incremental SfM (ISfM) [51]. MVS techniques were used to calculate the dense
point cloud and to create three-dimensional models, serving as the base for the DSMs
and orthophotos [38,52].

For each UAV dataset, we followed the workflow implemented in the software, con-
sisting of the following steps: image import, image alignment, generation of the sparse
point cloud, optimization of the image alignment, elaboration of the dense point cloud,
and georeferencing. A total of 118, 86, 59, and 345 nadiral frames were acquired for
Flights 1, 2, 3, and Flight “a”, respectively (Table 1), and all the images were aligned in the
first step. The dense points clouds were processed by choosing high-quality parameters,
which for Metashape software results in a preliminary downscaling of the image size by a
factor of 4, 2 times by each side.

The dense point clouds were georeferenced using 6 GCPs for the flights of Area
1 and 7 GCPs for the flight of Area 2. The SD (standard deviation) and the minimum and
maximum values of the georeferencing accuracies are reported in Table 3.

Table 3. Standard deviation (SD), minimum and maximum values of the georeferencing accuracy.
Values are expressed in centimetres.

Site Flight Name n GCPs SD (cm) (X; Y; Z) Min; Max Accuracy (cm) X Min; Max Accuracy (cm) Y Min; Max Accuracy (cm) Z

Area 1
1 6 1.4; 2.8; 2.3 −1.2; 2.4 0.3; 5.4 −3.3; 2.9
2 6 0.9; 2.5; 6.5 −0.4; 1.6 −3.8; 2.8 −8.5; 1.6
3 6 6.1; 7.9; 7.2 −9.5; 2.8 −3.0; 13.3 −3.0; 11.3

Area 2 a 7 1.8; 0.8; 2.2 −1.8; 4.0 −1.3; 1.1 −1.7; 2.2
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According to Table 3, high SD values related to Flight 3 in Area 1 are evident, and their
possible sources were investigated. Although the analysis of the multiple GCPs on the
images and their collimation did not result in any outcomes, we chose to use this dataset
and verify its response to the methodology.

Table 4 reports the number of points in each point cloud and the size of the corresponding
file; the dense point cloud of Flight 1 is shown in Figure 4 as an example.

Table 4. Point cloud characteristics in terms of number of points and file size.

Site Flight N Points File Size

Area 1
1 82 million 2.30 GB
2 104 million 2.52 GB
3 95 million 2.31 GB

Area 2 a 105 million 2.55 GB
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For each UAV survey, the dense point clouds were interpolated using the Cloud-
Compare software package (version 2.12.14) [53] obtaining the corresponding DSM, with
20 cm of pixel dimension. Afterward, the applied methodology aimed at extracting the
tree heights from the availability of a digital terrain model of the area provided by an
external data source, using UAV-derived data to produce the reference DTM. This choice
was possible also considering the negligible slope gradient of the terrain at both the chosen
sites. Indeed, although CHMs originate from a normalization of the heights, minor terrain
slopes ensure independent DTM processing without running into significant errors due to
the interpolation process [10]. Nevertheless, bearing in mind the different characteristics
between the two case studies in terms of tree heights and crown extensions, slightly dif-
ferent filtering procedures were used to produce the reference DTM. Indeed, Area 1 has
mature olive trees with very defined canopies, while Area 2 includes at least small bushes.
For this reason, the common automatic filtering operations, i.e., the inbuilt classification
algorithms provided by the Agisoft Metashape and CloudCompare software, were not
usable on the second site. In Area 1, the automatic filter implemented by CloudCompare
software (Cloth Simulation Filter—CSF) was applied to split the UAV dense point clouds
into “ground” and “off-ground” points. The following parameters were chosen for CSF
processing: cloth resolution 1.0; max iterations 1000; and classification threshold 0.5. The
vegetation filtering of the second dataset was manually carried out by exploiting the open-
source LAStool package [54] implemented in Qgis software [55]. A clipping operation
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of the dense point cloud was performed, leading to the removal of the crowns from the
original point cloud. After the filtering step, the DTMs of the two sites were generated by
interpolating the ground points using the Rasterize tool in CloudCompare, choosing 20 cm
of pixel dimension.

2.4. GIS-Based Approach for Tree Height Extraction

The maps of height variation have been computed as the differences between each
DSM and the related DTM, using the Raster Calculator tool in Qgis software:

CHM = DSM − DTM, (1)

where the result represents the canopy height model (CHM) [33].
Finally, CHM maps were analysed in the GIS environment through a local maxima

approach. In particular, the CHM values within trees’ individual neighbourhoods have
been identified using the Zonal Statistic tool in Qgis software. This tool enables computing
different statistics concerning the raster pixels included in selected regions. According to
the local maxima approach, the maximums of the pixel retrieved values are the candidates
to correspond to tree tops and thus can be selected as UAV-derived tree heights. Since
both Area 1 and Area 2 have very defined plantation rows, there were no issues related to
multiple matches of trees tops, which can happen for more structurally complex vegetation
structures [56]. Therefore, maximum values were extracted and assigned to individual trees
for the following analysis. Figure 5 graphically shows the complete workflow to extract the
tree heights.
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2.5. Field Measurements of Tree Heights and Statistical Analysis

All the UAV surveys were coupled with in-field measurements to be used for the
validation process. In particular, the height of every single tree was directly measured
using a metric rod. Field values were matched with the trees’ positions by exploiting a
GIS-based procedure, obtaining a complete description of the area in terms of plant row, ID
number, plant species (for Area 2), and plant height. Hereafter, we refer to these values as
“field measurements”.

The accuracy of the tree height determination was assessed by computing different
statistics. Residuals (r) showing the differences between each i-th UAV extracted height
and the related field measurement collected in the field have been considered, as presented
by Equation (2).

ri = hest,i − hmeas,i, (2)

where hest and hmeas are the UAV heights and the measured ones, respectively. Minimum,
maximum, mean, and standard deviation (SD) of the residuals were computed for each
flight, together with values related to the 50% and 90% percentiles. Moreover, in order to



Drones 2024, 8, 106 8 of 14

represent the relationship between errors and related trees heights, the average value of the
relative errors (r%) was computed for each flight, following Equation (3).

r% =

∑n
i=1

ri
/

hmeas,i

n
·100, (3)

where n is the number of trees.
Finally, the deviation between in-field values and extracted trees heights was provided

through the root mean square error (RMSE), as shown in Equation (4).

RMSE =

√
∑n

i=1(hest,i − hmeas,i)
2

n
, (4)

The results are graphically presented using frequency distribution histograms of the
residuals, and the relationship between the extracted and measured heights is reported in
the form of scatter plots with linear regression lines. Indeed, the R2 parameters of each
linear regression can be employed for the accuracy assessment. Furthermore, box and
whisker plots were generated to have a graphical representation of the variances of both
the estimated and measured trees heights.

3. Results

The main statistics of the residual values between extracted and measured heights for
each flight are reported in Table 5.

Table 5. Residuals between estimated tree heights and measured values: minimum, maximum and
mean values, standard deviations, and 50% and 90% percentiles are given for each flight. Values are
expressed in metres.

Site Flight Min (m) Max (m) Mean (m) SD (m) 50%ile (m) 90%ile (m)

Area 1
1 −1.13 0.70 −0.34 0.34 0.38 0.72
2 −1.30 1.37 −0.26 0.44 0.31 0.87
3 −0.42 1.46 0.14 0.28 0.16 0.49

Area 2 a −1.37 −0.04 −0.62 0.24 0.57 0.96

Concerning Area 1, the results are within the expected method’s accuracy obtained
for higher trees or in forestry contexts since the mean absolute values of the residuals
range between 14 cm and 34 cm. As expected, the lower the flying altitude, i.e., the lower
the GSD, the better coherence we found with the field measurements, from Flights 1 to 3.
In particular, Flight 3 (30 m of flight altitude) shows very promising results, with 90%
of the residuals below 50 cm. This result was also unexpected due to the high values
of the RMSE related to the georeferencing process (Table 3). Nevertheless, a difference
between the three flights arises since the former tend to underestimate the tree heights,
while the third slightly overestimates their values (considering the field measurements as a
reference in the comparison, as in Equation (2)). This fact is also evident from the frequency
distribution histograms of the residuals in Figure 6a and should be further investigated
to understand possible sources of this behaviour. Although Flight 3 involved a slightly
smaller area compared with the previous ones, with a total of 41 identified trees, we can
observe an almost normal distribution of the differences close to zero-centred. Finally, the
relation between the residuals and the corresponding “real” height value (from the field
measurement) has been analysed through the r% parameter. Very similar values are found
for Flights 1 and 2, equal to 8.7% and 8.8%, respectively, whereas for Flight 3, r% is equal to
5.5%. These outcomes confirm the good results for the first site, meaning that the errors,
i.e., the residuals in the height determination, are low compared to the absolute tree heights.
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This is further proved by the RMSE values, resulting in 0.47 m, 0.51 m, and 0.37 m, for
Flights 1, 2, and 3, respectively.
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The situation is different in Area 2, where Table 5 and Figure 6b show that val-
ues are entirely shifted toward the negatives, with a mean value of about minus 60 cm,
i.e., nearly 30 cm more than the highest flight on Area 1 (Flight 1). This fact was expected
from a first graphical inspection of the dense point cloud where plants were barely visible,
mainly due to their very low heights, which affected the whole procedure. As a first aspect,
independently of the following elaborations, it was difficult to obtain a good representation
of shorter tree seedlings from the photogrammetric dense point cloud, considering the
limited extension of the canopies and the foliage. Secondly, low heights negatively impact
vegetation filtering, which cannot exploit automatic tools but rather requires a manual
procedure. As a final point, comparing DSMs and DTMs, both of which derive from
interpolation processes entraining sources of uncertainty, requires proper accuracies to
enable small variations to be detected. Reasonably, these aspects mutually influence each
other as well as the plant heights that are both the origin of the problem and the reason
why the method is unusable in this context. Indeed, even if the field measurements are
known to have accuracies lower than the cm-level, the obtained differences are comparable
or sometimes higher than the actual tree heights in the area. Moreover, the same outcome
is confirmed by the RMSE value, equal to 0.67 m.

Figure 7 shows the box and whisker plots of the estimated and measured tree heights
for the three flights in Area 1. The minimum, maximum, and median values of the two
datasets are highlighted, showing the higher variability in the estimated values compared
to the measured ones as well as the underestimation trend for the first two flights, which is
inverted in the case of Flight 3. Note that since the statistics related to the residuals already
revealed the behaviour in Area 2, we decided not to show box charts for the second site.

The relationship between the estimated and measured tree heights for the three flights
performed in Area 1 is presented in Figure 8. Looking at the linear regression lines, we
can say that overall, the models, i.e., the estimated height values, are able to replicate
the observed samples. Flight 1 and Flight 3 exhibit similar coefficients of determination
(R2 = 0.67; R2 = 0.65), whereas the value is slightly lower for Flight 2 (R2 = 0.50). Similar
considerations of the previous charts are made for Figure 8 relating to Area 2.
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4. Discussion and Conclusions

To date, the monitoring and management of agricultural lands is a topic of high
interest in the context of environmental protection and precision agriculture (PA), also due
to the European Common Agricultural Policy (CAP) [57,58]. Indeed, there is a growing
development in related research where geomatic surveys play a fundamental role.

This study focuses on the use of photogrammetric data to retrieve dimensional pa-
rameters of trees. The preliminary results of the tree height estimation from imagery
acquired with low-cost UAV platforms are presented. The proposed methodology is based
on photogrammetric processing exploiting the SfM technique, coupled with a GIS-based
analysis. This analysis is straightforward and mainly based on open-source software, such
as CloudCompare and Qgis, making again the whole procedure very flexible. Two study
areas were chosen, named “Area 1” and “Area 2”, and a total of four UAV flights were
performed. Starting from the UAV dense point clouds, the reference DTMs were produced
by applying automatic filtering procedures or implementing a manual classification of
ground and vegetation. The canopy height models obtained as differences between each
DSM and the related DTM were analysed in the GIS environment using a local maxima
approach choosing ad hoc regions as individual investigation areas around each tree. Thus,
the candidate tree tops, corresponding to the maximum CHM pixel values, were identi-
fied and the related heights were considered in the analysis. The availability of in-field
measurements concurrent with the UAV surveys supported the validation process and the
statistical analysis, allowing for the method’s accuracy assessment.

In Area 1, the comparison with the field measurements provided promising results,
with mean absolute residuals ranging between 14 and 34 cm. The best values are related
to the campaign with 30 m of flying altitude, proving that the image resolution (GSD) is a
fundamental parameter to obtain higher quality in the photogrammetric products. This
fact is also supported by other studies, such as [22,29]. In particular, Pourreza et al. [29]
used a DJI Phantom 4 flying at different altitudes (25 m, 50 m, and 100 m) over an area with
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tree heights comparable to ours, confirming that accuracy is negatively dependent on the
flight altitudes. Moreover, all the flights in Area 1 exhibit 50% of the residuals lower than
38 cm, and the frequency distribution histograms of the residuals follow almost normal
distributions. Results in the first site are also coherent with the outcomes of a similar study
by Zarco-Tejada et al. [28], where they obtained an RMSE of 35 cm for tree heights ranging
between 1.16 m and 4.38 m. Concerning the coefficients of determination related to the
tree height estimation, their higher value (R2 = 0.83 versus our R2 = 0.67) could be related
to the difference in the field measurements used for the validation. Indeed, we are aware
that the use of a metric rod inevitably suffers from the weather conditions, in particular
the wind, the tree characteristics in terms of foliage and the crown’s extension and the
subjective nature affecting the observations. Birdal et al. [26] found an RMSE equal to
28 cm for trees ranging between 1.2 m and 7.1 m, which is also consistent with our findings,
whereas their R2 parameter is significantly higher (0.95). Similar results can be found
in [14,21,23,31], whose findings outline RMSE and R2 values comparable to ours in contexts
of higher trees. However, results of the different flights in the first site exhibit differ-
ent behaviours, since Flights 1 and 2 generally underestimate the trees’ heights, while
Flight 3 tends to overestimate. Since results of other studies generally confirm the under-
estimation trend of UAV extracted heights [21,29], this fact requires further investigation,
which will be developed in future studies.

As expected, the context in Area 2 entailed different conclusions since the mean value
of the residuals is about −60 cm, i.e., sometimes higher than the actual tree heights in the
area. Even if the flight altitude was comparable with the one of Flight 1, the mean value
of the residuals is 30 cm higher. This fact is reasonably not only due to the altitude rather
than to the “absolute” height of the individual trees that made the whole procedure very
challenging. Indeed, we want again to stress the complexity of the context chosen in the
case of Area 2, where tree heights are always below 1.5 m and the foliage is poorly grown.
We identified three main aspects impacting this outcome: (i) goodness of the photogram-
metric dense cloud in representing shorter tree seedlings; (ii) manual vegetation filtering;
and (iii) impact of the interpolation in the DSM and DTM generation and differencing.
Although the obtained results make the methodology not usable for this range of heights,
bearing in mind the presence of different plant species in Area 2, we tried to relate the
results with this parameter. However, no evidence has arisen, unless a slightly better be-
haviour of the lentisk compared with the other two species (poplar, oleander), but probably
reliable results would require higher plants to allow their differentiation by foliage and
crown extensions.

Overall, the obtained results confirm the suitability of UAV photogrammetric data
acquired from low-cost instruments for tree height extraction. The implementation of the
same procedure to multitemporal datasets acquired at low-flight altitudes could allow even
the determination of the rate of growth of trees over medium–long temporal scales. These
become key data in the analysis of phytoremediation processes when assessing the plant’s
health and the effectiveness of the chosen restoration method. Moreover, since the usage of
low-cost UAV equipment is easily accessible even for non-specialist users, the possibility
of easily adopting the same workflow represents a benefit for all those involved in the
agricultural field. Nevertheless, the application of the same methodology in the context of
shorter tree seedlings requires further investigation, and possible future development of
this research may involve UAV campaigns at lower flying altitudes and an intermediate
case study of Area 2 after the plants’ growth.

Finally, it should be highlighted that this research is framed in the context of a wider
project, “Tecnologie di CARatterizzazione Monitoraggio e Analisi per il ripristino e la
bonifica (CARMA)”, involving both geomatics and geophysical data [59]. Thus, the pre-
sented study is the first step to reaching the project’s goals of integrating geometric, bio-
chemical, and geophysical data in a single workflow to assess tree health and rates of
growth. Considering this multidisciplinary context, future developments may involve
the employment of more advanced technologies, such as LiDAR, to improve the accuracy,
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especially in areas with shorter tree seedlings. In addition, future analysis will exploit both
nadiral and oblique images, as suggested in [26,29]. Indeed, the use of oblique images leads
to improvements in the final accuracy since they allow the point cloud to better capture the
ground points under and around trees, resulting in enhanced classification processes.
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