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Abstract: The synthesis of nitrogen-based heterocycles has always been considered essential in
developing pharmaceuticals in medicine and agriculture. This explains why various synthetic ap-
proaches have been proposed in recent decades. However performing as methods, they often imply
harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry
is undoubtedly one of the most promising technologies currently used for reducing any possible
environmental impact, addressing the worldwide interest in counteracting environmental pollution.
Following this line, we propose a new mechanochemical protocol for synthesizing various hetero-
cyclic classes by exploiting thiourea dioxide (TDO)’s reducing proprieties and electrophilic nature.
Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all
the advantages brought by a green technique such as mechanochemistry, we plot a route towards a
more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
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1. Introduction

Heterocycles are ubiquitous in biologically active compounds, natural products, and
common pharmaceuticals [1–9], representing a highly privileged structural motif. For
example, common biocides [10], fungicides [11], antitumoral agents [12,13], and anal-
gesics [14–16], to mention a few, contain a benzimidazole or benzothiazole moiety in their
structure. Furthermore, the benzimidazole scaffold represents a benchmark for synthesiz-
ing new potential agents against various cancer or infectious diseases, even those that still
cannot be effectively treated [17,18]. This is due to the benzimidazole ring’s astonishing
proprieties that simultaneously possess a hydrophobic unit and two hydrogen-bonding
domains (Figure 1) [19].
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1. Introduction 
Heterocycles are ubiquitous in biologically active compounds, natural products, 

and common pharmaceuticals [1–9], representing a highly privileged structural motif. 
For example, common biocides [10], fungicides [11], antitumoral agents [12,13], and an-
algesics [14–16], to mention a few, contain a benzimidazole or benzothiazole moiety in 
their structure. Furthermore, the benzimidazole scaffold represents a benchmark for 
synthesizing new potential agents against various cancer or infectious diseases, even 
those that still cannot be effectively treated [17,18]. This is due to the benzimidazole 
ring’s astonishing proprieties that simultaneously possess a hydrophobic unit and two 
hydrogen-bonding domains (Figure 1) [19]. 
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Figure 1. Benzimidazole features with common benzimidazole pharmaceutical scaffolds. 
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Accordingly, several endeavors have been dedicated to the synthesis of such com-
pounds. Among all the reported methods, those using either formaldehyde or an appro-
priate surrogate reagent have proven to be efficient and valuable choices for preparing
different heterocycles containing the benzimidazole core [20–26]. However, these strategies
usually suffer from some limitations, such as employing additives, e.g., metal catalysts,
harsh reaction conditions, or toxic solvents (Scheme 1).
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In this context, thiourea dioxide (TDO), a solid surrogate for formaldehyde, could
allow us to overcome many of the shortcomings mentioned above. TDO is a cheap and com-
mercial compound commonly employed in textile industries for bleaching processes [27].
Moreover, it has also been exploited in the past for analytical measurements [28–30]. Finally,
it can also be synthesized, as pioneered by Barnett (Scheme 2) [31], Lai [32], and Kluttz [33],
and different studies have already been published concerning both its electrophilic and
reducing nature [34–39].
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As a matter of fact, TDO is insoluble in most organic solvents as well as in water, and
its reactivity can be triggered by raising the temperature. Because of this, it is typically
used in mixtures of methanol and basic or heated water [40,41].

In 2021, Wu’s team documented benzimidazoles’ synthesis through thiourea dioxide’s
(TDO, 1) electrophilic character in a solvent-based process [42]. The procedure was carried
out in water at 60 ◦C, providing around ten benzimidazoles in satisfactory yields. A solvent
screening was also made on the control reaction, proving how the insolubility of TDO in
organic solvents made it unreactive compared to the employment of hot water. In addition,
the use and removal of solvents during a chemical synthesis represents a significant portion
of organic pollution and process energy consumption.

Benzimidazoles are generally synthesized from aniline derivatives, which in turn
are often prepared from the corresponding nitrobenzenes. Furthermore, the synthetic
methods to produce anilines still involve classical methodologies, and there is currently a
worldwide interest in proposing new synthetic routes to improve the sustainability and
applicability of such a process [43–46]. Reducing an aromatic nitro moiety usually requires
an acid environment in the presence of a metal [47–50] or the employment of gaseous
hydrogen [51–54]. Despite performing satisfactorily, these methodologies have concerns
that must be addressed. Starting from metals, this procedure is usually run under an acidic
environment [54–58], and consequently, it may not be applied to substrates sensitive to
such conditions.

Furthermore, the use of metals is often associated with various risks concerning
human health and the environment due to their well-established toxicity. For example,
with molecular gaseous hydrogen, its use is related to an explosion hazard because of
its high reactivity [55,56]. Since this procedure is exergonic (∆rG◦ < 0), a high amount of
heat is typically released during an industrial process [57]. Such heat generation can be
challenging to remove and may also induce expensive cooling costs or lower the reaction
yields due to reactor hot spots [58,59]. Other methods rely on electrochemistry [59,60],
enzymatic processes [56], rare-earth elements [61], and hydrogen transfer reagents [61–64],
all of which need specific reaction conditions and advanced equipment. Few reductions
in a basic environment have been described in literature [65–67]; the most recurrent one
is undoubtedly the employment of Zn powder in the presence of NaOH for synthesizing
azobenzene [68]. Unfortunately, a basic environment generally implies other sub-products
formed during the redox process [57,67,69]. Their presence complicates the obtention of
the corresponding anilines, making the entire procedure complex and cumbersome.

On the contrary, the reducing processes of TDO are associated with the release of
nontoxic side products, mainly urea and sodium sulfite [37].

The abovementioned drawbacks prompted us to assess the feasibility of grinding
the reaction under solvent-free conditions. Indeed, ball-milling remains an impressive
technology in this regard [69–72]. Many mechanochemical strategies described astonishing
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advantages such as high reaction efficiency, the prevention of harsh reaction conditions,
and the minimization of organic solvents [73–75].

As part of our ongoing interest in green synthesis via mechanochemistry [47,48], we
evaluated whether heat could be easily replaced by mechanical energy, thus enabling access
to higher and more sophisticated reactivities.

2. Results and Discussion
2.1. TDO as a Reducing Agent

Firstly, the reducing properties of TDO (Compound 1) on nitrobenzenes were explored
to outline and screen all the mechanochemical parameters for this step. Considering the
few existing techniques for reducing nitrobenzene with TDO [76,77], we had to lay the
groundwork for a methodology with a broader applicability. We set the mechanochemical
procedure on a 1.0 mmol scale using nitrobenzene as a reference substrate. We milled TDO
1 (1.0 mmol), nitrobenzene 2a (1.0 mmol), and NaOH (1.0 mmol) for 1.0 h inside a 10 mL
stainless steel (SS) vessel equipped with two balls (Ø = 7 mm, 2.67 g) of the same material
(Scheme 3).
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Unfortunately, we detected the only presence of the starting material through a GC-MS
analysis (Table 1, entry 1). Several process parameters have been investigated to overcome
these failures, and the whole optimization process is summarized in Table 1. To begin, we
raised the ratio of 1 and NaOH (Table 1, entries 2 and 3), which allowed us to convert 2a
into aniline 3a with a 21% yield (Table 1, entry 3). Then, prompted by these results, we tried
to increase both the reaction time and the reducing mixture equivalents (TDO and NaOH).
In the first case, the yield was even lower in a 2 h milling with a 5% yield (GC-analysis),
probably due to the higher reactivity of the formed aniline with the redox intermediates
(Table 1, entry 4). In the latter one, 2a was consumed entirely, but the conversion to the
desired product 3a increased slightly together with other process intermediates (Table 1,
entry 5). Lastly, we ran the reducing process at 70 ◦C to accelerate the kinetics of the
reaction, but we only obtained the corresponding symmetric diazobenzene (PhN=NPh,
Table 1, entry 6).

Therefore, after all these failed attempts, we considered using drops of different sol-
vents to run a Liquid-Assisted Grinding (LAG) [78–82] in a 90 min procedure. Consistently,
less polar (decane or toluene) and polar solvents (acetone or isopropanol) did not permit
a reasonable conversion rate (Table 1, entries 7–10). Lastly, methanol and water were
used, as in analogous solvent-based procedures. However, in this case, the ratio of sol-
vent/reagents was drastically cut down compared to the already reported methodologies
(LAG, η = 0.44 µL/mg). In contrast to that which is usually found for solvent-based proce-
dures, methanol used under LAG conditions produced a complex mixture of aniline and
nitrobenzene reduction process intermediates (Table 1, entry 11). Water, instead, led to
excellent yields of 3a (Table 1, entry 12). Its amount, however, was found to be a critical
parameter, since the conversion rate dramatically dropped when η = 0.22 µL/mg (Table 1,
entry 13). Contrarily, a little increase in the reaction time of up to 2 h allowed for a quantita-
tive conversion of 2a to 3a (Table 1, entry 14). Concerning the bases, weaker ones such as
sodium carbonate and sodium bicarbonate did not allow for a comparable result (Table 1,
entries 15 and 16), proving that NaOH plays a crucial role in the mechanochemical process—
consistent with the findings of Hawkes for similar reactions in solution [83]. Lowering the
NaOH amount negatively affected the reaction performance as well (Table 1, entry 17).
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Table 1. Optimization process for the reduction of 2a to 3a.

Entry TDO eq. Base eq. Reaction Time (h) Additives b Yields a

1 1 1 1 / 0%

2 3 6 1 / 2%

3 6 6 1 / 21%

4 6 6 2 / 5%

5 10 10 2 / 29%

6 c 6 6 2 / 0%

7 3 6 1.5 Decane 2%

8 3 6 1.5 Toluene 4%

9 3 6 1.5 i PrOH 3%

10 3 6 1.5 Acetone 5%

11 d 3 6 1.5 MeOH Complex
Mixture

12 3 6 1.5 H2O 89%

13 e 3 6 1.5 H2O 0%

14 3 6 2 H2O 97%

15 f 3 6 1.5 H2O 20%

16 g 3 6 1.5 H2O 1%

17 h 3 3 2 H2O <5%
All the reactions were carried out with the same experimental parameters unless otherwise specified: nitrobenzene
(1.0 mmol), compound 1 (1.0–10.0 mmol), and NaOH (1.0–10.0 mmol) in a SS jar (10.0 mL) equipped with two
balls (SS, Ø = 7.0 mm, 2.67 g) at a frequency of 30 Hz. a The yields were calculated by GC-MS analysis. b The
additive quantity was 250 µL. c The reaction was run at 70 ◦C; the only product obtained was the corresponding
azobenzene. d The desired product was obtained only in traces. e The amount of water was reduced to 125 µL.
The main product found was azoxybenzene; the remaining peaks were attributed to nitrobenzene f Na2CO3 was
used instead of NaOH. g NaHCO3 was used instead of NaOH. h The SM presence was not detected, and the 1H
NMR spectra presented signals that cannot be attributed to specific compounds. i The main spotted product
was identified as hydrazobenzene; the rest of the mixture was composed of azoxybenzene, azobenzene, and
N-phenylhydroxylamine.

With the optimized conditions in hand, we extended the entire procedure to other
nitrobenzenes to validate this mechanochemical process. In the case of activated substrates
2b and 2c, the process smoothly proceeded to a complete conversion within 2 h, and for
more complex substrates like 2s, the process was completed in only 3 h (Scheme 4).
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Scheme 4. Mechanochemical synthesis of anilines from the corresponding nitrobenzenes. The yields
were calculated by GC-MS analysis: a 120 min reaction time, b 180 min of reaction time.
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Reducing instead 2-nitroaniline 2d, many unpredicted outcomes showed up, as sum-
marized in Table 2. In this case, we synthesized the o-phenylenediamine 3d with a 37%
yield in 90 min without LAG (Table 2, entry 1). Such different behavior can be ascribed to
the positive effects of an EDG. Unexpectedly, prolonging the reaction time to 2 h under neat
grinding conditions resulted in the formation of the corresponding benzimidazole, albeit
in low yields (Table 2, entry 2). For the sake of completeness, we also tried to reduce in
neat conditions other substrates having a comparable charge distribution (Table 2, entries
3 and 4). With 2-nitro anisole, we obtained the corresponding aniline in a 54% isolated
yield. At the same time, the employment of 2-nitro phenol resulted in a mixture of various
unidentified products, likely generated by the high phenoxide reactivity.

Table 2. Optimization process for the reduction of 2d to 3d.
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Entry TDO eq. Base eq. Reaction Time (h) Additives b Yields a

1 3 6 1.5 / 37%

2 c 3 6 2 / 45%

3 d 3 6 2 / 54%

4 e 3 6 2 / Complex
mixture

5 f 3 6 2 MeOH 0%

6 3 6 2 H2O 98%

7 g 3 3 2 H2O 1%
All the reactions were carried out with the same experimental parameters unless otherwise specified: 2-nitroaniline
2d (1.0 mmol), compound 1 (3.0 mmol), and NaOH (3.0–6.0 mmol) in a SS jar (10.0 mL) equipped with two
balls (SS, Ø = 7.0 mm, 2.67 g) at a frequency of 30 Hz. a The yields were calculated by GC-MS analysis.
b The additive quantity was 250 µL. c The o-phenylenediamine reacted with 1 and formed the benzimidazole
4d, yielding 20% and other unidentified subproducts. d The starting material was 2-nitro anisole. e The starting
material was 2-nitro phenol. f The signals in the spectra were attributed to 2-((2-nitrophenyl)diazinyl)aniline and
2,2′-(hydrazine-1,2-diyl)dianiline. g The 2-nitroaniline 2d and benzimidazole 4d were detected with a yield of 75%
and 24%, respectively.

To better understand several critical details of the process, we have to better focus
on several points of the process. First, under LAG conditions, the presence of methanol
resulted in the concurrent formation of 3d and various reaction intermediates. At the
same time, water use was associated with the synthesis of the desired product with a
nearly quantitative yield in 2 h (Table 2, entries 5 and 6). These different outcomes can be
reconducted to the role covered by water as a better proton source. On the other hand,
water, to some extent, also inhibits the final cyclization pathway that leads to benzimidazole
formation. The reduction in the nitro group and the construction of the benzimidazole
ring both consume TDO, with the latter being kinetically faster. As a result, any attempt
to decrease the NaOH equivalents failed because of the high reactivity of the formed o-
phenylenediamine towards TDO that was still present in the reaction medium (Table 2,
entry 7). Once these issues are focused on, we can draw conclusions based on the above and
after a long, meticulous exploratory study. Six equivalents of NaOH promote the sluggish
kinetics of the reduction reaction to the detriment of the cyclization reaction, resulting in a
complete reduction of the nitro group (Table 2, entry 6).

Once we understood the reactivity of 2-nitroanilines, we also extended this process
to other 2-nitroaniline derivatives (Scheme 5). As a result, o-phenylenediamines 3e and
3f were successfully synthesized in a 2 h ongoing process, whereas the substrates 3g–j



Molecules 2023, 28, 2239 7 of 18

and 3o–p needed a longer reaction time of 3 h. These outcomes were utterly in line with
Hammett’s parameters and steric hindrance on the aromatic ring of the starting materials.
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2.2. TDO as an Electrophile

Having clarified the role of TDO 1 as a reducing agent, we thoroughly analyzed its ap-
plication as a “green” solid replacement for formaldehyde for synthesizing aza-heterocycles.
Its electrophilicity is connected to the presence of the two nitrogen atoms depleting the
central carbon atom in terms of electron density. Furthermore, an excellent leaving group
such as the sulfur moiety makes the whole molecule more prone to a nucleophilic attack.
We accomplished the heterocycle synthesis by establishing two separate procedures: a
single-step process based on the employment of phenylenediamines (procedure A) and a
double-step methodology starting from 2-nitroanilines (procedure B).

2.2.1. Procedure A

The reactivity of phenylenediamines toward compound 1 has already been reported
in the literature for solvent-based processes restricted to a few very reactive substrates. [42].
We investigated the mechanosynthesis of heterocycles from less reactive substrates, in this
case, the ones that possess a lower electron density in their aromatic ring (Scheme 6). All
the reactions were conducted using a LAG, where water was used as the additive (η = 0.44).
Starting from the o-phenylenediamines 3l–n, we obtained the corresponding heterocycles
in low yields due to the low reactivity of such compounds. Deactivating groups either on
the ring or on the nitrogen atom drastically affected the ring closure process, as evidenced
by the poor yields obtained for compounds 4l–n. Remarkably, diamines 3q and 3r enabled
access to molecular framework of biological interest in poor to good yields [84–86].
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2.2.2. Procedure B

With the optimal conditions for reducing 2-nitroanilines in hand, we wondered
whether a double-step methodology could be feasible. Bearing in mind that a basic en-
vironment consumes compound 1 for forming the reducing species, we realized that we
needed to add an additional amount of it for running the second step. In addition, we
added a small quantity of water, because the process was proved to perform poorly through
neat grinding, as formerly stated. After these considerations, we shaped the procedure to
convert 2-nitroanilines into aza-heterocycles (Scheme 7). The first step was run under fine-
tuned conditions, so the newly formed o-phenylenediamine was ready for the forthcoming
ring closure step. This last stage was successfully accomplished with a refill of 1 (3.0 mmol)
and water (250 µL, η = 0.44), and it was run for further 2 h for the substrates 2d–f. The
2-nitroanilines 2g–k and 2o–p required a longer reaction time of 3 h instead.
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The reaction proceeded well in all the considered cases and provided benzimidazoles
4d–4j in near-quantitative yields except for compounds 4k and 4p (Scheme 7).

To assess the green footprint of this mechanochemical procedure, we calculated the
green metrics for our methodology and compared them with a previously reported solvent-
based process. The results highlight a substantial improvement, in a green chemistry
framework, of the proposed mechanochemical technique concerning the solvent-based
approach (see the paragraph “Green Metrics” in the Supplementary Materials for fur-
ther details).

To further demonstrate the potentialities of the developed mechanochemical protocol,
various trials on a larger-scale reaction (from 2 mmol up to 5 mmol) were conducted. As
illustrated in Scheme 8, the mechanochemical solvent-free reaction of 2a (5.0 mmol) with
1 (30.0 mmol), NaOH (30.0 mmol), and water (1.5 mL) at 30 Hz for 4 h gave product 4a in a
satisfactory product yield of 91%, showing the robustness of the present method and how
it could be feasibly adapted for a possible scale-up process.
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determined on the isolated product.

All the syntheses presented are easy to accomplish and proceed with a first redox
process followed by a final ring closure and aromatization step (Scheme 9). The reducing
ability of compound 1 has been widely described, and it exploits the formation of sulfoxylic
acid [36–38,87,88]. However, such a chemical species can be formed only from the tautomer
of compound 1, aminoiminomethanesulfinic acid (AIMS), usually only observed in an
aqueous medium (Scheme 9, pathway 1) [89–92]. After being formed, it is converted to its
more stable form, sodium hydrogen sulfoxylate, by the remaining equivalents of NaOH
(Scheme 9, pathway 2). It is hard to imagine that a species such as sodium sulfoxylate could
be formed due to the low acidity of sodium hydrogen sulfoxylate [87]. This last compound
is then ready to participate in the redox process and will be reduced to gaseous sulfur
dioxide (Scheme 9, pathway 3).
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Nonetheless, we cannot completely rule out the presence of sodium dithionite and
sodium bisulfite as reducing agents. The former can be formed by TDO degradation [39,93],
and the sulfur dioxide may generate the latter in the presence of water [94]. Ultimately,
adding fresh TDO to the reaction medium allowed the ring to be closed to the correspond-
ing aromatic heterocycle (Scheme 9, pathway 4).

Concerning water (250 µL) used to perform the LAG process (η = 0.44), it plays three
fundamental roles in the mechanochemical redox reaction. Firstly, it enables the formation
of the active tautomer AIMS, as described by Dittmer [91] and Krug [92]. Secondly, the
complete consumption of 1 to sodium sulphoxylate in a strong basic environment avoids
other collateral processes such as the auto condensation of TDO to cyclic derivatives, as
reported in the literature [95]. Thirdly, the presence of water might prevent the formation
of other undesired redox intermediates, because it acts as a proton donor [96]. Lastly,
it probably permits sodium hydroxide to participate extensively in concert with TDO
due to its high solubility in water. This may also explain the poorer performance of the
mechanochemical process when methanol is employed for a LAG approach.

To conclude, we also studied the reactivity of hydrazobenzene under our optimized
conditions. Unfortunately, conducting the reaction with 1 mmol of hydrazobenzene with
TDO (3 mmol), NaOH (6 mmol), and water (250 µL) only yielded the starting material
as described by Huang [77]. Therefore, the entire redox process is wholly described in
Scheme 10.

Molecules 2023, 28, x FOR PEER REVIEW 10 of 18 
 

 

 
Scheme 9. Mechanochemical reaction steps under LAG condition. Water (250 µL, η = 0.44) was 
added in one single shot at the start of the reaction. 

Concerning water (250 µL) used to perform the LAG process (η = 0.44), it plays three 
fundamental roles in the mechanochemical redox reaction. Firstly, it enables the for-
mation of the active tautomer AIMS, as described by Dittmer [91] and Krug [92]. Second-
ly, the complete consumption of 1 to sodium sulphoxylate in a strong basic environment 
avoids other collateral processes such as the auto condensation of TDO to cyclic deriva-
tives, as reported in the literature [95]. Thirdly, the presence of water might prevent the 
formation of other undesired redox intermediates, because it acts as a proton donor [96]. 
Lastly, it probably permits sodium hydroxide to participate extensively in concert with 
TDO due to its high solubility in water. This may also explain the poorer performance of 
the mechanochemical process when methanol is employed for a LAG approach. 

To conclude, we also studied the reactivity of hydrazobenzene under our optimized 
conditions. Unfortunately, conducting the reaction with 1 mmol of hydrazobenzene with 
TDO (3 mmol), NaOH (6 mmol), and water (250 µL) only yielded the starting material as 
described by Huang [77]. Therefore, the entire redox process is wholly described in 
Scheme 10. 

 
Scheme 10. The assumed redox mechanism for the mechanochemical reduction of nitrobenzene 2a 
into aniline 3a. 
Scheme 10. The assumed redox mechanism for the mechanochemical reduction of nitrobenzene 2a
into aniline 3a.

Considering the ring closure step, the electrophilic nature intrinsic to compound
1 makes possible the formation of a heterocycle (Scheme 11a,b). We firmly support the
idea that, in the presence of NaOH, cyanimide cannot be formed by the degradation of
compound 1 [97]. Therefore, the only possible pathway for heterocycle synthesis is the
release of formamidine through a dismutative process (Scheme 11a pathway 1) [98,99].
After undergoing a nucleophilic attack from the o-phenylenediamine, formamidine allows
the generation of an N-arylformamidine intermediate that will go through a second nu-
cleophilic attack from the other nitrogen atom (Scheme 11a, pathway 2). The resulting
2-amino dehydrobenzimidazole then extrudes the NH2 moiety as ammonia for forming
the benzimidazole structure (Scheme 11a, pathway 3).
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Nevertheless, we cannot rule out a reaction mechanism based on the supposed car-
benoid structure of TDO as well [89,100–102] (Scheme 11b). In this case, the reaction
mechanism initially follows a diverse pathway based on the minor charge separation be-
tween the two moieties of TDO (Scheme 11b, pathway 1) [90,103]. Then, after forming an
N-arylformamidine intermediate, the process continues as mentioned above (Scheme 11b,
pathway 1).

We ruled out a possible deamination approach from the corresponding 2-aminobenzimi-
dazole for the following reasons. Firstly, when we milled commercial 2-aminobenzimidazole
in the presence of NaOH, we did not see any change in the starting material’s nature.
Secondly, the thermodynamic stability of such a substrate prevents any structure alteration
under our mild conditions [104]. Thirdly, its synthesis should be associated with an unlikely
dehydrogenative process in our reaction medium. Finally, once the entire process is finished,
the desired product needs to be extracted from the reaction mixture.

Along with the newly synthesized heterocycle, other subproducts were formed. We
think their presence was due to the degradative processes of compound 1, as already
documented [95,105,106]. Hence, a short silica pad was made to obtain the desired product
in high purity.
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3. Materials and Methods
3.1. Materials

Commercially available reagents were purchased from Acros (Geel, Belgium), Aldrich
(Darmstadt, Germania), Strem Chemicals (Newburyport, MA, USA), Alfa-Aesar (Haverhill,
MA, USA), and TCI Europe (Zwijndrecht, Belgium) and used as received. All of the
reactions were monitored by thin-layer chromatography (TLC) performed on glass-backed
silica gel 60 F254, 0.2 mm plates (Merck, Darmstadt, Germania), and compounds were
visualized under UV light (254 nm) or using cerium ammonium molybdate solution with
subsequent heating. The eluents were technical grade. The mechanochemical reactions
were performed using a Retsch Mixer Mill MM 500 VARIO apparatus (horizontal vibratory
mill). The reagents were milled using a stainless steel grinding jar (10 mL) equipped with
two balls (Ø = 7.00 mm, 2.67 g) of the same material. The 1H- and 13C-NMR spectra were
recorded on a Bruker (Billerica, MA, USA) Avance III HD 600 MHz NMR spectrometer
at 298 K. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and
are referred to as the residual hydrogen in the solvent (CDCl3, 7.27 ppm or DMSO-d6
2.54 ppm). Carbon chemical shifts are expressed in parts per million (ppm, δ scale) and are
referenced to the carbon resonances of the NMR solvent (CDCl3, 77.0 ppm or DMSO-d6
39.5 ppm). GC-MS analyses were performed on an Agilent 5977B MS interfaced to the GC
7890B equipped with a DB-5ms column (J & W, New Brighton, UK). Yields refer to pure,
isolated materials.

3.2. General Procedure A for Anilines and o-Phenylenediamines 3a–j, 3o–p, 3s Synthesis from
2-Nitroanilines 2a–j, 2o–p, 2s

A 10 mL stainless steel jar equipped with two stainless steel milling balls (7 mm
diameter, 2.67 g) was filled with nitrobenzenes 2a–j, 2o–p, 2s (1.0 mmol), NaOH (6.0 mmol),
1 (3.0 mmol), and 250 µL of distilled water. The vessel was then closed, and the mechanochem-
ical reaction was conducted, ranging from 60 to 180 min at 30 Hz. Whenever necessary,
further purification through flash column chromatography was performed. Lastly, the
solvent was removed under reduced pressure to afford the pure anilines 3a–j, 3o–p, 3s.

3.3. General Procedure B for Heterocycles 4l–n, 4q–r Synthesis from o-Phenylenediamines
3l–n, 3q–r

A 10 mL stainless steel jar equipped with two stainless steel milling balls (7 mm
diameter, 2.67 g) was filled with o-phenylenediamines 3l–n, 3q–r (1.00 mmol), 1 (2.00 mmol),
and 200 µL of distilled water. The vessel was then closed, and the mechanochemical reaction
was conducted, ranging from 60 min to 180 min at a frequency of 30 Hz. At the end of the
reaction, an additional silica pad (SiO2, heptane/ethyl acetate/methanol = 1:1:0→6:3:1)
was made to purify the reaction mixture. Lastly, the solvent was removed under reduced
pressure to afford the pure heterocycle 4l–n, 4q–r.

3.4. General Procedure C for Heterocycles 4d–k, 4p Synthesis from 2-nitroanilines 2d–k, 2p

A 10 mL stainless steel jar equipped with two stainless steel milling balls (7 mm diameter,
2.67 g) was filled with 2-nitroanilines 2d–k, 2p (1.0 mmol), NaOH (6.0 mmol), 1 (3.0 mmol),
and 250 µL of distilled water. The vessel was then closed, and the mechanochemical reaction
was conducted, ranging from 60 to 180 min at 30 Hz. After that, an additional refill of
1 (3.0 mmol) was made, and 60 µL of distilled water and the mechanochemical reaction
was made to run ranging from 60 to 180 min at a frequency of 30 Hz. At the end of the
reaction, an additional silica pad (SiO2, heptane/ethyl acetate/methanol = 1:1:0→6:3:1)
was made to purify the reaction mixture. Lastly, the solvent was removed under reduced
pressure to afford the pure heterocycle 4d–k, 4p.

4. Conclusions

This work has thoroughly explained a mechanochemical protocol for synthesizing
heterocycles, rediscovering a solid reagent as thiourea dioxide (TDO). Not only did the dual
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nature of such a compound allow us to propose both reducing and ring closure procedures,
but it also allowed us to merge these two processes in a one-pot technique starting from
2-nitroanilines. By avoiding a mixture of methanol and basic water like in the in-solution
methods, we were also able to deeply analyze the already-known reducing properties of
TDO, as has never been reported. The reaction is easy to perform and allows for the obtain-
ment of the desired products with yields ranging from low to excellent. In addition, this
methodology provided an alternative pathway for synthesizing scaffolds of biological and
pharmaceutical interest, such as benzimidazole derivatives, and valuable building blocks
with a potential application in drug design, such as perimidines and imidazopyridines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052239/s1, including general information, synthesis
of compounds, green chemistry metrics calculations (Scheme S1: Mechanochemical preparation of 4d,
Scheme S2: Microwave preparation of benzimidazole 4d, Scheme S3: MgSO4 drying ability, Figure S1:
DOZN™ score for the mechanochemical synthesis of 4d, Figure S2: DOZN™ score for the microwave
synthesis of 4d) and spectra. References [107–124] are cited in the Supplementary Materials.
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