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This chapter will present a review of Human Machine Interaction techniques for
industrial applications. A set of recent HMI techniques will be provided with
emphasis on multimodal interaction with industrial machines and robots. This list
will include Natural Language Processing techniques and others that make use of
various complementary interfaces: audio, visual, haptic or gestural, to achieve a
more natural human-machine interaction. This chapter will also focus on provid-
ing examples and use cases in fields related to multimodal interaction in manufac-
turing, such as augmented reality. Accordingly, the chapter will present the use of
Artificial Intelligence and Multimodal Human Machine Interaction in the context
of STAR applications.
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4.1 Introduction

Since the beginning of the 20th century, automation played a fundamental role
in the manufacturing industry (Wang, 2019). Starting from the sixties, robots
were introduced in factories speeding up the manufacturing process. Initially there
were strict boundaries between robots’ and humans’ work-spaces. In order to
avoid injuries, workers were not allowed to enter in the robots’ working space.
Unfortunately, this rigid organization has its limitations. Both robots and humans
excel in different areas and a proper collaboration between them can result in
a more efficient assembling process. Robots are faster, stronger and more pre-
cise in repetitive assembling tasks, while humans are better in decision making
and they can easily adapt to unexpected situations. The exponential improve-
ments achieved in the 21st century in AI, perception algorithms and robot con-
trol, gradually allowed for a shared work-space between human workers and
robots.

Robots use on-board and external sensors to be aware of their surrounding
environment. The data output of sensors range from simple single dimension data
(contact sensors, ultrasonic distance sensors) to complex high dimensions data
(microphones, lidar sensors, RGB cameras, depth cameras). In order to have a better
interaction with human workers and other machines in the factory, robots need to
merge the information received by every kind of sensor available. This multimodal
interaction exists in both ways: while interacting with robots, human workers must
not be limited to a restricted group of modalities and devices (keyboards, mouse,
screen), but they should be able to use all the modalities made available by their
bodies (speech, vision, gestures, touch).

The goal of this chapter is to present the various types of multimodal interaction
in industrial environments. After introducing the problem of multimodal interac-
tion we will present some examples of modalities for a natural interaction between
human workers and robots/machines such as speech (intended also as Natural Lan-
guage Processing of text obtained using speech-to-text tools) and vision. We will
then make a step further to the idea of multimodal interaction introducing the con-
cept of Extended Reality (XR), where a human is able to remotely control a robot
sharing its sensory stimuli.

More specifically, the remainder of this chapter is organized as it follows.
Section 4.2 includes all the possible kinds of multimodal interaction between
humans and machines. Section 4.3 describes how NLP techniques can be employed
within the manufacturing domain. Section 4.4 illustrates human motion recog-
nition and prediction for human robot interaction in manufacturing industry.
Section 4.5 illustrates XR technologies which include augmented, mixed and
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virtual reality. Moreover, a use case showing the application of virtual reality to
remote-control a humanoid robot within the manufacturing domain is presented
as well. Finally, Section 4.6 concludes the paper.

4.2 Multimodal Interaction

Since the presentation of the famous Put-That-There (Bolt, 1980), innumerable
papers have been written about the advantages and disadvantages, problems and
solutions aroused from the natural interaction between humans and machines.
Multimodal Interaction discipline is based on the idea that human communica-
tion is multimodal. Thus, if hoping to interact with machines in the same way as it
is done with humans, the interaction must not be limited to a group of modalities
and devices, as it has been done until now, using mainly keyboard and mouse as
data input and graphical representations as data output.

Some authors (Waibel et al., 1996) point out that it is not advisable to reduce
the interaction exclusively to human ↔ machine. They classify the multimodal
interaction interfaces in five different classes:

• Human → Machine: in an unidirectional way, as data input mode. For exam-
ple, a user dictating a text to the computer or giving orders to a robot (without
receiving any complex feedback).

• Human ↔ Machine: in a bidirectional and interactive way between the
human and the machine, like, for example, in a route planner.

• Human ↔ Multimedia Data: as the extraction of data from multimedia
information. For example, the extraction of meaningful images and the tran-
scription of text from video-recorded news, for the subsequent search by a
human.

• Human ↔ Machine ↔ Human: where the machine mediates in the interac-
tion between two humans that do not have the same knowledge, lack part of
the context or simply because they are far from each other and cannot interact
directly.

• Human ↔ Human (observed and assisted by machine): it is not mediated by
a machine, but there exists one for assisting the user. For example, a system
that records and transcribes meetings which can be searched later looking for
actions defined in previous meetings.

In (Alonso and Torres, 2010) the authors extended the list to support a new
category: Human ↔ Multiple Machines, where the user interacts in a multimodal
way with a group of programmable machines, such as robots, using different media
and devices, and collaborates with all of them.
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This theoretical classification, essential to understand multimodal interaction,
is somewhat diluted in practice, especially after the emergence of XR technologies.
Anyway, the six classes are relevant to the manufacturing industry, and all have been
addressed in a certain degree in the literature related to Artificial Intelligence (AI)
and Human Machine Interaction (HMI) in recent years.

For example, Roitberg et al. (Roitberg et al., 2015) present an interesting
approach for improving the efficiency of Human-Robot interaction. This approach
is based on multimodal interfaces, and is focused on the industrial environment.
Their research is based on monitoring and interpreting human operations, using
video depth information provided by different sensors. They use Microsoft Kinect
v2 for skeleton tracking, Asus Xtion PRO for object tracking and Leap Motion for
hand and finger pose tracking.

Liu et al. (Liu et al., 2018) focus on multimodal human ↔ robot collaboration,
especially in repetitive and dangerous tasks. They suggest that the more modalities
are included and fused, the more robust the collaboration will be. For this pur-
pose, they present an architecture and a use case for operator-robot collaboration in
which body motion recognition, hand motion recognition and speech commands
recognition are combined.

Concerning the use of multimodal interaction for operator training,
(Vélaz et al., 2014) analysed the influence of four interaction technologies and
modalities (including mouse, haptic systems and 2D and 3D position capture) for
the learning of a procedural assembly task. Among its conclusions it is worth noting
that the results showed that the differences between the training performed with
these interaction technologies were not significantly different from the traditional
training performed by the operators.

Another significant example of multimodal interaction with multiple machines
that could be extrapolated to the manufacturing sector is the coordination of
multiple unmanned aerial vehicles. Several authors (e.g.: Cacace et al., 2016b,
Cacace et al., 2016a) are working on the coordination of machines, using the infor-
mation obtained through different modalities to solve interaction and coordination
problems.

The improvement of recognition thanks to multimodal interaction has been
proven in many studies (e.g.: Kettebekov et al., 2002, Oviatt et al., 2003) where
the benefits of multimodal HMI were demonstrated for completing the available
information and improve the recognition ratio using supporting modalities.

4.3 Employment of Natural Language Processing
Within Manufacturing

Natural Language Processing (NLP) is a subset of AI that helps identifying key ele-
ments from human instructions, extract relevant information and process them in a
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manner that machines can understand. Integrating NLP technologies into the sys-
tem helps machines understand human language and mimic human behaviour. For
example, Amazon’s Echo, Microsoft’s Cortana and Apple’s Siri make an extensive
use of NLP technologies to interact with the users.

NLP technologies speed up the operation of a whole system cutting down the
response time. Imagine a scenario where a manufacturing company hires a data
scientist to collect and analyse all the machine readings, reporting any sort of prob-
lems. One disadvantage to this scheme is that by the time the management reads
the report one problem might have happened causing damage to the entire process.
If a robot with sensors and NLP technologies embedded is employed, this might
remotely access the machines and detect in real time any change or problem pro-
viding an action to be executed. The robot might even communicate with users
and accept input in natural language. Therefore, by leveraging NLP technologies,
the middleman can be cut out while at the same time keeping the system effective.

Within the manufacturing industry the NLP might be adopted for the following
tasks:

• Process Automation: The use of NLP technologies in the manufacturing
process allows the automatic execution of repetitive tasks like paperwork and
report analysis (e.g., Cristian et al., 2019). Besides, it benefits the workflow
of the entire process as each employee can be focused on tasks which require
human intervention and capabilities. Authors in (Kang et al., 2019) devel-
oped the feedback generation method based on Constraint-based Modeling
(CBM) coupled with NLP and domain ontology, designed to support formal
manufacturing rule extraction. In detail, the developed method identifies the
necessity of input text validation based on the predefined constraints and pro-
vides the relevant feedback to help the user modify the input text, so that the
desired rule can be extracted.

• Inventory Management1: Analysing data about the sales of certain prod-
ucts is essential to assess the correct decisions for a company to optimize
and maximize profits. By leveraging NLP technologies the resulting ben-
efits are: (1) the entire process becomes more comprehensive; (2) it is
more difficult to incur errors related to the analysis of sales; (3) it is easier
to analyse the manufactured products and discard those with low quality
without affecting the supply chain and sales. On a different level, authors
in (Vicari and Gaspari, 2020, Carta et al., 2021) have employed NLP and
Machine Learning techniques to automatically identify patterns, sentiment
or other elements within a text which might be correlated to the stock
variation.

1. https://cmr.berkeley.edu/2021/01/managing-supply-chain-risk/

https://cmr.berkeley.edu/2021/01/managing-supply-chain-risk/
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• Emotional Mapping: Sentiment analysis and emotion detection
(Atzeni et al., 2018, Atzeni and Recupero, 2020) are one of the most excit-
ing features of NLP. Early NLP systems allowed organizations to collect
speech-to-text communication without accurately determining its full mean-
ing. Today, NLP approaches can sort and understand the nuances and emo-
tions in human voices and text, giving organizations unparalleled insight.
Learning customer expectations is a very important element in manufactur-
ing. NLP technologies permit to identify emotions and opinions of customers
(Dridi et al., 2019, Recupero et al., 2015) and provide actions to improve
products and the selling process. Knowing the expectations of customers is
key to build a longer relationship and create engagement with them.

• Operation Optimization: Furthermore, NLP technologies can be employed
to trace the performance of equipment, identifying potential inefficiency.
This enables a detailed monitoring of the machinery and taking measures
to improve the overall system operability. A review of machine learning
approaches for the optimization of production processes covers the major-
ity of relevant literature from 2008 to 2018 dealing with machine learning
and optimization approaches for product quality or process improvement in
the manufacturing industry (Weichert et al., 2019).

4.4 Human Motion Recognition and Prediction
for Human Robot Interaction in Manufacturing

In order to safely interact with humans, robots need to understand human inten-
tions and predict their movements. With the ability to recognise and to predict
human actions, industrial robots are able to avoid dangerous collisions and to
improve collaborative work anticipating some actions (i.e. passing to the worker
the proper tool based on the predicted worker’s action).

4.4.1 Video Action Recognition and Prediction

Human action recognition is a complex task that needs as much information as
possible about the subject performing the action. RGB and depth cameras are the
most suitable sensors for this task: a video sequence of a human performing an
action carries information about his visual appearance, the context of the action
and the motion of his body.

In order to recognise human actions from images, two steps are needed:
action representation and action classification (Kong and Fu, 2018). Tradition-
ally, handcrafted features are used to represent the actions (Jia and Yeung, 2008,
Yuan et al., 2016), and standard classifiers are used to recognise the action
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(e.g. SVN, k-means). The representation of the actions can vary from low level fea-
tures (edges, corners) to high level ones (body shape, skeletal information). Choos-
ing the optimal handcrafted features that best suit the task of action recognition
can be tricky. Automatically extracted features are often more robust and achieve
better performances. The recent increase in computational power brought to the
rise of Convolutional Neural Networks (CNNs). CNNs are a type of Deep Arti-
ficial Neural Networks (DNNs) where for each of the several layers is applied a
convolution between 2D weights kernels and the 2D channels of the previous
layer. The output of each layer are 2D feature maps extracted from the previous
layer (low level features for the initial layers and high level ones for the last layers).
With their deep structure and with enough training data, CNNs are able to gen-
erate features for action recognition that outperform handcrafted ones. CNNs are
frequently used to extract features to represent actions, achieving state-of-the-art
results (Kong and Fu, 2018, Özyer et al., 2021).

CNNs are data driven models and one of their drawbacks is the need of big
labelled datasets with high quality images. The following are some examples of
popular datasets for video action recognition, for a more exhaustive list please refer
to (Kong and Fu, 2018, Özyer et al., 2021):

• UCF-101 (Soomro et al., 2012): One of the most used datasets for video
action recognition. UCF-101 is a large dataset with 13,320 different YouTube
videos from 101 categories. This dataset has high variability in camera angles,
actors and backgrounds.

• YouTube-8M (Abu-El-Haija et al., 2016): This is a very large multi-label
video classification dataset (8 million videos for a total of 500K hours).
The videos are extracted from YouTube and they are annotated with 4800
machine-generated labels.

• The Kinetics Human Action Video Dataset (Kay et al., 2017): This
dataset contains 306,245 YouTube clips of 10s each. The clips are grouped
in 400 human action classes and are taken from different YouTube videos.

• Moments in Time (Monfort et al., 2019): A large-scale human annotated
dataset with one million videos of 3 seconds corresponding to dynamic
events. Each video is labeled with one among 339 different classes.

While it is possible to recognize action from static images, they lack informa-
tion about the motion during time. CNNs need to be extended in order to use
the time information of video sequences. The most common approaches are the
followings:

• 3D CNNs: These networks are a particular type of CNNs composed by mul-
tiple layers of 3D convolutions obtained using 3D kernels. Receiving as input
a sequence of frames stacked in one dimension, 3D CNNs are able to extract
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features related both to space and time. S. Ji et al. (Ji et al., 2012) used 3D
CNNs to recognize human actions in the real-world environment of airport
surveillance videos. The authors compared their model with the state-of-the-
art algorithms at the time achieving superior performance.

• Multi-stream networks: This type of architecture classifies its input merging
together the output of several CNNs. Each CNN receives a different type
of input. K. Simonyan and A. Zisserman (Simonyan and Zisserman, 2014)
proposed a two-stream CNN for action recognition. The first stream received
as input a single RGB frame, while the second stream received as input the
multi-frame optical flow, carrying temporal information of the action. The
authors tested the network on the UCF-101 dataset obtaining state-of-the-art
results.

• Recurrent neural networks (RNNs): RNNs are special artificial neural net-
work with internal loops in the connection between layers. Their special
structure makes them able to keep a memory of the past and to generate
an output based on the sequence of the most recent inputs received. J. Yue-
Hei Ng et al. (Yue-Hei Ng et al., 2015) introduced an hybrid network that
joins together CNNs with RNNs. Their model is composed by GoogLeNet
convolutional layers followed by 5 LSTM layers. In the paper the authors per-
form several ablation studies on a video recognition task showing advantages
and disadvantages of using recurrent layers.

Video action recognition is the problem of recognising the action performed
by a subject based on a video sequence of the entire movement. The problem
of predicting the action performed based only on a video of an initial portion
of the action is called action prediction. The most recent action/motion predic-
tion systems tend to use the combination of CNNs and RNNs (Lee et al., 2017),
better suited for the analysis of video sequences. In Human Robot Collaboration
(HRC) scenarios, the prediction of the type of action performed by the human
might not be enough. Often the robot needs to know the full body motion
during the next action performed by the human in order to successfully per-
form the collaborative task. Recently some researchers were able to predict the
next frames of a motion based on the action to be performed and past frames
(Finn et al., 2016, Jung et al., 2019).

For a Robot interacting with a dynamic environment, it is of primary impor-
tance being able to model the surroundings and to predict how the environ-
ment evolves through time. With a faithful representation of the environment, the
robot is able to detect unexpected behaviours and to correct its actions accord-
ingly. This idea is borrowed from cognitive science: in the Predictive Coding
(Rao and Ballard, 1999) cognition theory, the brain is constantly predicting the
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sensory outcome (top-down process) and comparing it with the actual one. At
the same time the error between predicted and actual sensory stimuli is back-
propagated to the highest layers (bottom-up process) in order to revise and
update the internal predictive models (a similar idea applied to robot control
was studied under the name of Expected Perception (Barrera and Laschi, 2010,
Cauli et al., 2016)). Jun Tani implemented on robotics platforms several models
based on the Predictive Coding paradigm (Tani, 2016). One of the most recent
is the Predictive Visuo-Motor Deep Dynamic Neural Network (P-VMDNN)
(Hwang et al., 2018). This Deep-RNN model can be used both to predict the next
RGB frames and encoders values during a motion, and to recognise an action per-
formed by a human placed in front of the robot.

4.4.2 Video Action Recognition and Prediction for HRC
in Manufacturing

In recent years we are seeing a gradual introduction of shared spaces and collabora-
tive tasks between humans and robots in factories. Human and robotic workers can
collaborate during the assembly process of specific components. In these scenarios,
the robot must predict the human coworker action in order to plan its own motion.
The application of video action recognition models to HRC in manufacturing is
still a relatively new topic (Wang, 2019).

The most straightforward approaches use handcrafted features to represent the
actions. E. Coupeté et al. (Coupeté et al., 2019) extract the skeletal representation
of the upper-torso of a worker from depth images. The sequence of skeletal position
during a motion is given as input to an Hidden Markov Model in order to recognise
the performed gesture. The model is tested in an assembly scenario where a worker
and a robot collaborate to mount a mechanical piece.

A different approach is to automatically extract the best features using a CNN.
P. Wang et al. (Wang et al., 2018) use AlexNet to recognise specific gestures from
a video of a worker assembling an engine. The convolutional layers extract the
features while 3 fully connected layers classify the gesture. The architecture based
the classification only on single frames.

We already mentioned that single images lack information of the temporal evo-
lution of the action. Using both RGB images and optical flow as inputs solves the
problem. Q. Xiong et al. (Xiong et al., 2020) use the two-streams network pro-
posed by (Simonyan and Zisserman, 2014) to recognise the actions from closeup
videos of workers assembling engines’ parts. The network has 2 CNN branches,
one receiving as input RGB images and the other optical flow images. Due to the
small size of the engine block assembly dataset used in the experiment, the authors
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apply transfer learning. They first pretrain the entire network on a bigger generic
action dataset and then they finetune the last layers on the engine block assembly
dataset.

RNNs are other models able to keep temporal information of the recently seen
frames. Z. Liu et al. (Liu et al., 2019) developed a system able to predict the next
action performed by a worker while assembling a computer. A robot passes the
worker the proper tool based on the predicted action. The authors use a CNN as
feature extractor followed by an LSTM layer and a fully connected layer to classify
the next action. The input of the system are the images from a top-down camera
mounted above the working table.

While a fair amount of work on action recognition in manufacturing already
exists, the problem of human motion prediction in HRC needs to be studied in
more details. A robot able to predict in each instant where the body of the human
co-worker will be, can easily avoid collision, spot mistakes and make recovering
actions.

It is clear that CNNs are the most reliable tool for features extraction from
videos. CNNs need a big amount of data to learn properly and be able to generalise.
Unfortunately, not many datasets for video action recognition in factory assembly
scenario exist (Kong and Fu, 2018, Özyer et al., 2021). New specific video datasets
are difficult to generate and the labelling process is highly time consuming. Domain
transfer and simulated datasets are a valid solution to the problem. M. Fabbri et al.
(Fabbri et al., 2018) generated a big dataset for Multi-People Tracking using the
Grand Teft Auto V game engine. Generating a simulated dataset is faster than col-
lecting a real one and labelling is automatic. An action recognition model trained
on a simulated dataset with high variability and realism is able to transfer the knowl-
edge learned in simulation to the real world.

4.5 XR in Manufacturing Industry

XR related technologies are facilitating multimodal interaction in Industry 4.0 and
thus enabling tangible in-site visualisations and interactions with industrial assets
(Simões et al., 2018).

The term XR can be considered as an umbrella for the terms augmented
(AR), mixed (MR) and virtual (VR) reality, which differ in how much real
and virtual content they display and the level of interactivity. As detailed in
Alizadehsalehi et al., 2020 VR is characterised by high virtual content and low
interactivity, while AR is characterised by high real content and higher interactivity.
MR lies in the middle of both, including higher levels of virtual and real content,
and high interactivity.
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4.5.1 Related Work of XR in Industry

The use of XR in industry has been suggested since the early 90’s, where for exam-
ple Thomas and David, 1992 proposed the superimposition of certain information
on real world objects. Since that point there are hundreds of examples of XR aided
manufacturing, Bottani and Vignali present an exhaustive list of them in their arti-
cle “Augmented reality technology in the manufacturing industry: A review of the last
decade” (Bottani and Vignali, 2019).

In addition to the Boeing article (Thomas and David, 1992) already mentioned
above, for example Karlsson et al. (Karlsson et al., 2017) suggest an approach for
the presentation of superimposed information, e.g. information on potential bot-
tlenecks, that can help decision making in manufacturing.

Workforce training is another activity where the use of XR is increasing, espe-
cially after the rise of robotic systems and complex machines in shopfloors. For
example. safety training is another area where multimodal interaction and XR are
absolutely worthwhile. As detailed in Doolani et al., 2020, these systems reduce the
risks of harm that can be caused by machines as well as damage to them, and offer
a platform for learning-by-doing approach that can be used multiple times with-
out worrying about the costs, availability or risks associated with the use of real
machines.

The possibility of remote guidance is another advantage of XR systems in the
manufacturing environment. For example Fast-Berglund et al., 2018 validated a
use case in which the expert uses AR to guide the novice operator in an assem-
bly task and gives directions and corrections in case there is something wrong in
the assembling. Their conclusion is that thanks to the AR being able to give instant
feedback, it makes it practically impossible to do the assembly wrong and therefore
the results are highly positive.

4.5.2 Use Case: Virtual Reality to Remote-control a Robot

In this section we are going to describe the work of authors in Alonso et al., 2021
related to a general-purpose, open-source framework for teleoperating a NAO
humanoid robot through a Virtual Reality (VR) headset. As the proposed architec-
ture is general, it would be straightforward to replace the NAO robot with Kuka2 or
Universal Robot,3 two well known robots used in several production environments
around the world. The architecture presented in Alonso et al., 2021 includes a VR

2. http://www.kuka.com

3. https://www.universal-robots.com

http://www.kuka.com
https://www.universal-robots.com
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interface for the Oculus Rift4 using the Unity game engine to perform robot actions
through the VR controllers and exploits the flexibility of the Robot Operating Sys-
tem (ROS) for the control and synchronization of the robot hardware. This work
gives ideas on potential architecture that can be employed within the manufactur-
ing domain to allow the robots (e.g. Kuka or Universal Robot, both supported by
ROS) to protect workers from repetitive, mundane, and dangerous tasks while also
creating more desirable jobs such as engineering, programming, management and
equipment maintenance. In the following we will show details of the tools used for
their work. Let us first start giving some background information about the Unity,
ROS and NAO software platforms.

Unity 3D5 is a game engine which supports the development of 2D and 3D
games, Virtual and Mixed Reality experiences and simulations.

ROS is an open-source framework for robot software whose architecture includes
Nodes, Messages, Topics, Services, and Actions. Nodes are processes that carry out a
computation. Messages are exchanged by nodes. A node sends a message by posting
it on a certain topic. Services are needed by nodes that need to perform remote
procedure calls. Actions are used to send a request to a node to perform a certain
task for longer time and receive a reply. Then, ROS packages are a collection of
code for easy reuse and stacks are a collection of packages that jointly offer some
functionalities.

The authors employed NAO as the robotic platform but, as already mentioned,
robots such as Kuka or Universal Robots may be employed. The Kuka system soft-
ware is the operating software containing all the basic functions needed for the
deployment of the robot system. Kuka robots come with a control panel with a dis-
play and axis control buttons and a 6D mouse which is used to manually move the
robot. The control panel allows the users to view and create new and modify exist-
ing programs. A rugged computer lies in the control cabinet communicates with
the robot system via the Multi Function Card, which controls the real-time servo
drive electronics. Servo position feedback is transmitted to the controller through
the DSE-Resolver Digital Converter/RDC connection. The software includes two
elements running on parallel – the user interface and program storage. Figure 4.1
shows a Kuka robot palletizing food in a bakery. Universal robots consist of indus-
trial collaborative robot arms (cobots), which are six-jointed robot arms with a very
low weight (from 11 to 33 kilos) with a lifting ability from 3 to 16 kilos. These
cobots can work right alongside personnel with no safety guarding, based on the

4. https://www.oculus.com/rif t/

5. https://unity.com/

https://www.oculus.com/rift/
https://unity.com/
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Figure 4.1. A Kuka robot palletizing food in a bakery (taken from Wikipedia).

results of a mandatory risk assessment.6 The robot arm can run in two operating
modes of the safety functions; a normal and a reduced one. A switch between safety
settings during the cobot’s operation is also possible. Figure 4.2 shows a Universal
Robot lifting an object.

In their work the authors show how through the remotes and the VR headset the
VR interface allows the teleoperation of the NAO and the recording of a movements
sequence for later execution. During the former, the user and the robot are not in
the same room. Therefore, the user exploits the VR interface as a source of input and
for having a visible and understandable representation of the remote robot status.
The recording of a movements sequence allows the user to perform a number of
tasks and save them in certain collections. Whenever needed, they can play them
back.

As the ROS framework allows the development and run on different machines
it is easier and more flexible to support both the storing and the playing of recorded
actions of the robot.

Figure 4.3 illustrates the architecture of the VR system developed by the authors.
It includes three main software components (VR, ROS and Rosbridge) and two
hardware devices (Oculus Rift and NAO). The VR Component leverages the Unity

6. https://www.iso.org/standard/62996.html

https://www.iso.org/standard/62996.html
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Figure 4.2. A Universal Robot lifting an object (taken from https://www.therobotreport
.com/voith-robotics-cuts-ties-franka-emika-adds-universal-robots/).

Figure 4.3. Architecture of the Virtual Reality system. Taken from Alonso et al., 2021.

game engine for displaying the interface on the Oculus Rift. Unity has been cho-
sen for the existing Oculus SDK that facilitates the developing process. The ROS
component controls the robot through the VR simulation or the management of
real hardware. It includes the ROS framework, multiple packages provided by ROS
Nao Drivers, custom Publisher, Subscriber, Action Servers and Service Provider that
have been implemented for supporting the VR control. The Ros Bridge is the con-
nection between the VR and ROS components. It provides the methods for passing

https://www.therobotreport.com/voith-robotics-cuts-ties-franka-emika-adds-universal-robots/
https://www.therobotreport.com/voith-robotics-cuts-ties-franka-emika-adds-universal-robots/
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messages between them, for managing the information serialization and deserial-
ization, and the connection and the delivery through WebSockets.

4.6 Conclusions

In this chapter we have presented various types of multimodal interaction within
the manufacturing domain. First we have introduced the classification of multi-
modal interaction interfaces, indicating all the possible ways a user can interact
with one or multiple machines. Then we briefly described the NLP research area
and how it can be employed to automatically let an independent system (e.g., an
agent or robot) to identify relevant information within the manufacturing. Next, we
examined the ability of robots of recognising and predicting human actions by using
cameras as sensors and deep learning as breakthrough machine learning technology.
We continued discussing the XR related technologies (e.g., augmented, mixed, vir-
tual reality) and how they can facilitate multimodal interaction in Industry 4.0.
Finally, we showed an architecture of a use case where virtual reality technology has
been adopted to remote-control a robot and how this schema can be adapted to be
employed within the manufacturing domain.

Secure, safe, reliable AI systems in manufacturing environments, such as those
investigated in the STAR project, can benefit from all of these technologies in
their goal to make systems more trusted and human-centric. As part of the STAR
project, research will continue on Human Robot Interaction and on knowledge
systems, that benefit from NLP techniques and are accessible through multimodal
interaction.
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