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A B S T R A C T

An original experimental device coupled with an optimization technique, for determining the
thermal diffusivity (𝛼diff) of solid materials, has been devised and experimentally validated.
The inverse problem of the classical Fourier heat equation in transient condition is numerically
supervised by an optimization procedure for the initial and boundary conditions from measure-
ments. Imperfect adiabaticity on the insulated lateral surfaces is explained by modeling heat loss
correction functions with additional time dependent Robin conditions. The optimization model
identifies the optimal values of the heat transfer coefficients and of 𝛼diff by minimizing the
residual function between the model predictions and the experimental data. Incorporating the
heat loss corrections in the solution of the heat equation significantly improves the estimation of
the 𝛼diff. Indeed, the time profile of the surface temperatures measured for a specimen of PPMA
material is well reflected by the simulated curves. The estimated 𝛼diff is in good agreement
with an experimental inter-comparison of eleven laboratories equipped with Laser Flash, hot
disk, and hot bridge certified devices. Our results reveal a reliable capability of the model to
identify the 𝛼diff value that explains the functional dependence underlying the experimental
observations. The error lies in the range 5% or 34%, depending on whether the heat losses are
accounted or not.

1. Introduction

The thermal characterization of a material becomes a fundamental target in those applications where the heat conduction is
subject to specific requirements concerning the spatial distribution and time evolution of the temperature and of the heat flux.

The knowledge of the thermal properties becomes essential when the heat conduction has a critical bearing on the realistic
estimation of the achievement and profitability of a given project, in terms of both energy saving, cost and operative requirements [1–
5]. In this sense, nowadays it is a fundamental requirement the knowledge of the density and the specific heat to account for the
transient evolution of the thermal power exchanges and, hence, of the thermal diffusivity as the parameter that governs the speed
of heat diffusion in transient problems. The thermal diffusivity is a measure of the change in temperature induced by the heating
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Nomenclature

Symbols

𝑎, 𝑏, 𝑐, 𝑑 Geometrical coordinates of the specimen’s edges [m]
ℎ𝑐|𝑑 Surface heat transfer coefficient, between the surrounding environment and the lateral insulated surfaces

of the specimen [W/m2K]
 Jacobian operator
𝑚 Number of time steps inside T
𝑛1 Number of space steps along the 𝑥-coordinate of the spatial mesh
𝑛2 − 2 Number of space steps along the 𝑦-coordinate of the spatial mesh
𝑝 Spatial position covered by a generic point of the specimen
 3D spatial domain composed by the set of the geometrical point covered by the specimen
𝑇 Temporal duration of the measurements [s]
𝑥, 𝑦, 𝑧 Spatial coordinates [m]

Greek symbols

𝛼 Thermal diffusivity [m2/s]
𝜆 Thermal conductivity [W/mK]
𝜗(𝑝, 𝜏) or 𝜗(𝑥, 𝑦, 𝜏) Spatial distribution of the temperature as a function of the time, numerically determined [K]
𝜗′(𝑥𝑖, 𝑦𝑗 , 𝜏) Experimental value of the temperature, measured for a position at 𝑖th 𝑥, 𝑗th 𝑦 and at a generic instant

𝜏 [K]
𝜏 Time [s]
𝛺 2D spatial domain composed by the set of the geometrical position covered by the point of the specimen

in the 𝑥𝑦-plane

Subscripts

𝑎 Refers to a quantity related to the lateral surface of the specimen at 𝑥 = 𝑎
𝑏 Refers to a quantity related to the lateral surface of the specimen at 𝑥 = 𝑏
𝑐 Refers to a quantity related to the lateral surface of the specimen at 𝑥 = 𝑐
𝑑 Refers to a quantity related to the lateral surface of the specimen at 𝑥 = 𝑑
𝓁 Refers to a quantity recursively evaluated by the optimization model at step 𝓁th
opt Refers to an optimal value, numerically determined by the optimization model

source over the time, which can be reconstructed by solving the differential heat equation [6,7]. Determining the thermal diffusivity
is a challenging task because it belongs to a class of inverse problems [8] for which the parameter to be estimated is very sensitive to
the measured data required for its computation. Before going on with the description of our investigation, it is relevant to mention
popular techniques and technologies that have been employed for determining the thermal diffusivity of a given material. Some
examples are laser flashes [9], laser interferometers [10] and photothermal techniques [11,12], which however require relatively
complex and quite expensive instrumentation [13,14]. The hot wire technique [15–17] is a standard transient solution and was
specifically devised for liquids [18,19]. Subsequently, the technique was integrated for application to solid polymers [20,21].
Moreover, this technique exhibits a better sensitivity and it is reliable for thermal diffusivity determination [19,22]. The Hot Disk
technique [23,24] is the most well-known, and it has also reached an appropriate commercial maturity. It is a contact technique
based on the transient plane source method, that measures the response function of a hot sensor when it is arranged between
two identical specimens. This procedure can be used for a variety of materials, but realizing a good thermal contact between
the sensor and the two specimens is essential for an effective measurement. In recent studies, the problem of predicting thermal
diffusion parameters was performed for diverse applications and by using different techniques. For example, in [25] simulated
thermal images were used to predict thermal diffusion parameters during microwave heating procedure, in [26] coupling controlled
environmental forcing and a transient plane source method were employed for building insulation material applications, and the
Ångstrom method was used in [27] to measure the heat diffusivity for the vapor chambers and in [28] to numerically obtain the
temperature distribution for the polymers.

Besides the above mentioned experimental techniques, there are also many mathematical strategies that have been implemented
or modeling the response of measurement devices. Several mathematical schemes are based on inverse problem procedure [8,25,29–
3] and consist of two fundamental steps. Firstly, the specific solution that arises from a priori and suitable initial and boundary
onditions is analytically or numerically determined. Secondly, the derived solution is compared to the one experimentally acquired
nder the same conditions. These schemes are termed as direct solution methods [29,30,34]. They determine the values of the
2

hermal transport properties for which the time evolution of the measured temperature optimally matches the heat conduction
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solution for the prescribed boundary and initial conditions. Many models were developed for a finite or a semi-infinite geometry,
where the theoretical aspects are reduced to a mono dimensional formalism. In these cases, the experimental apparatus should be
arranged in order to realize an approximation of such symmetry [28]. Indeed, the accuracy of the optimal value of the estimated
thermal diffusivity quantity is, in general, significantly affected by the deviation between the mathematical representation of
the boundary and initial conditions, that are conceptually assumed a priori, and the physical realization of the correspondent
conditions [35–37]. In a recent study [38], a multi-block lattice Boltzmann method was adopted to predict the thermal contact
resistance at the interface of two solids. Moreover, in [39] the authors modeled heat transfer of an aluminum rod in a much-
simplified experimental environments settings with finite domains using Green’s function techniques in three dimensions. Their work
showed the utility of inversion method to simultaneously determine the thermal diffusivity and coefficient of thermal expansion for
thermally conductive solid materials. Another kind of investigation was conducted in [40], where the authors studied the potential
of an entangled porous metallic wire material as thermal insulation material employing numerical and experimental evaluation. The
experimental results performed using laser thermal analyzer showed an increase in effective thermal conductivity of the metallic wire
with increasing temperature. The numerical model results were found to be in good agreement with the experimental results. In [41]
a partial differential system is converted into ordinary differential equations by using the transformations in order to characterize the
thermal parameters in a fluid flow with variable conductivity and diffusivity. In addition to these techniques, in [42] it is proposed a
low-cost Gaussian shape laser-spot step heating method to measure the thermal diffusivity for solids. Employing this technique, the
authors showed that thermal diffusivity for materials ranging from good thermal conductors to thermal insulators, including thick
and thin samples can be obtained with high accuracy and precision. In [43] the thermal performance of phase change materials
(PCM) embedded with fins and metal foam is investigated. The theoretical model therein proposed reveals that the melting rate
becomes higher as the ratio of thermal diffusivity increases among other parameters.

The overarching objective of the present investigation is to develop a low-cost yet simple to use method for estimating the
ffective thermal diffusivity of a solid material. The technique is based on an optimized direct solution method applied to a 3D regular
eometry and make use of a low-cost apparatus in which the lateral surfaces of the specimen are kept insulated and the opposite
argest sides are subjected to modulable heat sources for generating a suitable thermal field as the test of the specimen is in progress.
he heat equation in transient condition is numerically solved, considering a 2D formalism by assuming a symmetric geometry.
he model is refined and improved by modeling heat loss correction functions, to account for the uncertainty about the lack of
perfect adiabaticity on the insulated lateral surfaces. Therefore, heat transfer coefficients at lateral surfaces are introduced by

dditional suitable Robin conditions and are then subject to a globally optimization together with the value of the thermal diffusivity.
ncorporating the heat loss correction functions, in the solution of the heat equation, significantly improves the estimation of the
hermal diffusivity. The experimental apparatus, supervised by the optimization model, has been successfully tested on a PMMA
pecimen, which can be considered as a reference material since its thermal properties have been widely studied [44]. Moreover,
he data on PMMA are available in the scientific literature since it is broadly employed in many applications of engineering [45,46].
ndeed, this material adequately fulfills the assumptions adopted in the present study for reducing the 3D to a 2D problem. In this case
tudy, the experimental profile of the time evolution of the surface temperature is well reflected by the simulated curve generated
y the model. The estimated values of the thermal diffusivity are compared with the current literature and with the measured values
elivered by an experimental investigation [46] consisting of an inter laboratory comparison of eleven laboratories equipped with
aser flash, hot disk and hot bridge certified devices. The obtained results are quite satisfactory, especially considering the low-cost
quipment used in this study.

. Geometry, initial and boundary conditions

Let us consider the rectangular cuboid domain representing the geometry of a given specimen

 =
{

𝑝 = (𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑, 𝑒 ≤ 𝑧 ≤ 𝑓
}

.

The 6 faces of its closure surface will be denoted by 𝜕𝑎 , 𝜕𝑏 , 𝜕𝑐 , 𝜕𝑑 , 𝜕𝑒 , and 𝜕𝑓 , where

𝜕𝑎|𝑏 =
{

𝑝 = (𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∶ 𝑥 = 𝑎|𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑, 𝑒 ≤ 𝑧 ≤ 𝑓
}

,

𝜕𝑐|𝑑 =
{

𝑝 = (𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑦 = 𝑐|𝑑, 𝑒 ≤ 𝑧 ≤ 𝑓
}

,

𝜕𝑒|𝑓 =
{

𝑝 = (𝑥, 𝑦, 𝑧) ∈ 𝑅3 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑, 𝑧 = 𝑒|𝑓
}

.

• the faces 𝜕𝑎 and 𝜕𝑏 , in contact with the two reservoirs of thermal energy, will be denoted respectively as the hot and the
cold side;

• the rest of the boundary lateral surface 𝜕𝑐 , 𝜕𝑑 , 𝜕𝑒 , and 𝜕𝑓 , are surrounded by a guard section of insulating material.

et us consider the 2D restriction of the domain  by fixing 𝑧 = 𝑒, that is

𝛺 =
{

𝑝 = (𝑥, 𝑦) ∈ 𝑅2 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑
}

.

he description of each face of 𝛺 is evident from the definition above.
Let 𝜗(𝑃 , 𝜏) designate the temperature at a given point 𝑃 and at a given time 𝜏. The temperature when the specimen is in thermal

quilibrium with the surrounding environment can be considered as representative of the initial condition. The expected solution 𝜗
s subject to satisfy

lim 𝜗 (𝑝, 𝜏) = 𝜗 , 𝑝 ∈ 𝛺, (2.1)
3

𝜏→0+ 0



Case Studies in Thermal Engineering 40 (2022) 102533R. Baccoli et al.

W

p

w
b

s

3

w

w

d

t

where 𝜗0 represents the initial value of the temperature of the specimen.
Two kind of boundary conditions are considered:

(a) the time evolution of the surface temperatures on the hot and the cold side of the specimen, 𝜑𝑎(𝜏) and 𝜑𝑏(𝜏);
(b) the time evolution of the heat loss at the lateral surfaces 𝜕𝑐,𝑑𝛺, for which the heat exchanged with the surrounding environment,

according to Newton’s law, is assumed to be a linear function of the temperature difference between the surfaces and the
surrounding medium, that is,

− 𝑘𝜕𝜗
𝜕𝑦

|

|

|

|𝜕𝑐|𝑑𝛺
= ℎ𝑐|𝑑

[

𝜗 (𝑝, 𝜏) − 𝜗0
]

, 𝑝 ∈ 𝜕𝑐|𝑑𝛺, (2.2)

where ℎ𝑐|𝑑 denotes the combined or the effective heat transfer coefficients which simultaneously account for the convection
and the radiation exchanges. More specifically, ℎ𝑐|𝑑 denotes the coefficients |ℎ𝑐 | and |ℎ𝑑 | on the faces 𝜕𝑐𝛺 and 𝜕𝑑𝛺 respectively.
The sign of these coefficients depends on the normal vector orientation on the faces.

e remark that the initial temperature 𝜗0 and the surface temperature 𝜑𝑎(𝜏) and 𝜑𝑏(𝜏), are experimentally measured quantities.
Let 𝑘 [W/mK] be the thermal conductivity of the substance that fills the reference infinitesimal volume, 𝜌 [kg/m3] the density at

oint 𝑃 of the specimen and 𝑐𝑝 the specific heat at constant pressure. Let 𝛼 = 𝑘
𝜌𝑐𝑝

designate the thermal diffusivity of the specimen
under consideration. The following scheme summarizes the mathematical framework for estimating the thermal diffusivity of a
given specimen

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
𝛼
𝜕𝜗(𝑝, 𝜏)
𝜕𝜏

= 𝛥𝜗(𝑝, 𝜏), 𝑝 ∈ 𝛺,

lim
𝜏→0+

𝜗 (𝑝, 𝜏) = 𝜗0, 𝑝 ∈ 𝛺,

𝜗 (𝑝, 𝜏) = 𝜑𝑎|𝑏(𝜏), 𝑝 ∈ 𝜕𝑎|𝑏𝛺,
𝜕𝜗
𝜕𝑦
|

|

|𝜕𝑐|𝑑𝛺
= 𝛽𝑐|𝑑

[

𝜗 (𝑝, 𝜏) − 𝜗0
]

, 𝑝 ∈ 𝜕𝑐|𝑑𝛺,

(2.3)

here the parameter 𝛽𝑐|𝑑 = ℎ𝑐|𝑑∕𝑘 represents the ratio between the heat transfer coefficient and the thermal conductivity on the
oundary lateral surfaces 𝜕𝑐|𝑑𝛺. We observe that in the first line of Eq. (2.3) we used the more common symbol 𝛥 instead of ∇2 to

denote the Laplace operator.
At this point, our aim is to estimate the parameters 𝛼 and ℎ𝑐|𝑑 , by numerically solving Eq. (2.3), as shown in the following

ection.

. Finite differences scheme and the inverse problem of the heat equation

Let us consider the two dimensional heat equation

1
𝛼
𝜕𝜗(𝑥, 𝑦, 𝜏)

𝜕𝜏
=
𝜕2𝜗(𝑥, 𝑦, 𝜏)

𝜕𝑥2
+
𝜕2𝜗(𝑥, 𝑦, 𝜏)

𝜕𝑦2
, (3.1)

ith 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑐, 𝑑] and 𝜏 ≥ 0. The considered boundary Dirichlet time depending conditions are given by

𝜗(𝑎, 𝑦, 𝜏) = 𝜑𝑎(𝑦, 𝜏), 𝜗(𝑏, 𝑦, 𝜏) = 𝜑𝑏(𝑦, 𝜏), 𝑦 ∈ [𝑐, 𝑑], (3.2)

hile the Neumann boundary conditions are represented by the equations
𝜕𝜗(𝑥, 𝑐, 𝜏)

𝜕𝑦
= 𝛽𝑐

[

𝜗 (𝑥, 𝑐, 𝜏) − 𝜗0
]

,
𝜕𝜗(𝑥, 𝑑, 𝜏)

𝜕𝑦
= 𝛽𝑑

[

𝜗 (𝑥, 𝑑, 𝜏) − 𝜗0
]

, (3.3)

for 𝑥 ∈ [𝑎, 𝑏] and where 𝛽𝑐 = |ℎ𝑐 |∕𝑘 and 𝛽𝑑 = |ℎ𝑑 |∕𝑘 are the ratio between the absolute value of the heat transfer coefficient and the
thermal conductivity on the boundary lateral surfaces 𝜕𝑐𝛺 and 𝜕𝑑𝛺 respectively.

Let 𝜗
(

𝑥𝑖, 𝑦𝑗 , 𝜏𝜇
)

= 𝜃𝜇𝑖𝑗 and consider the mesh

𝑥𝑖 = 𝑎 + 𝑖𝑟𝑥, 𝑖 = 0, 1,… , 𝑛1 + 1,

𝑦𝑗 = 𝑐 + 𝑗𝑟𝑦, 𝑗 = 0, 1,… , 𝑛2 − 1,

where 𝑟𝑥 = 𝑏−𝑎
𝑛1+1

and 𝑟𝑦 = 𝑑−𝑐
𝑛2−1

are the space steps and let 𝑟𝜏 = 𝑇
𝑚 be the time step. Using a backward time, centered space finite

ifferences method (implicit Euler), we obtain for 𝜇 = 1,… , 𝑚 the linear equation

1
𝛼

⎛

⎜

⎜

⎝

𝜃𝜇𝑖,𝑗 − 𝜃
𝜇−1
𝑖𝑗

𝑟𝜏

⎞

⎟

⎟

⎠

=
𝜃𝜇𝑖−1,𝑗 − 2𝜃𝜇𝑖,𝑗 + 𝜃

𝜇
𝑖+1,𝑗

𝑟2𝑥
+
𝜃𝜇𝑖,𝑗−1 − 2𝜃𝜇𝑖,𝑗 + 𝜃

𝜇
𝑖,𝑗+1

𝑟2𝑦
(3.4)

hat, by setting 𝑟2𝑥 = 𝑟2𝑦 = 𝑟2, can be rewritten as the equation

− 𝜃𝜇 − 𝜃𝜇 +
(

1 𝑟2 + 4
)

𝜃𝜇 − 𝜃𝜇 − 𝜃𝜇 = 1 𝑟2 𝜃𝜇−1. (3.5)
4

𝑖−1,𝑗 𝑖,𝑗−1 𝛼 𝑟𝜏 𝑖,𝑗 𝑖,𝑗+1 𝑖+1,𝑗 𝛼 𝑟𝜏 𝑖,𝑗
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Substituting 𝜈 = 1
𝛼
𝑟2

𝑟𝜏
, it is possible to write the equation

− 𝜃𝜇𝑖−1,𝑗 − 𝜃
𝜇
𝑖,𝑗−1 + (𝜈 + 4) 𝜃𝜇𝑖,𝑗 − 𝜃

𝜇
𝑖,𝑗+1 − 𝜃

𝜇
𝑖+1,𝑗 = 𝜈𝜃𝜇−1𝑖,𝑗 , (3.6)

alid at the internal points of the 2D regular domain, i.e., for 𝑖 = 1,… , 𝑛1 and 𝑗 = 1,… , 𝑛2−2. For 𝑖 = 0 and 𝑖 = 𝑛1+1 we must impose
he Dirichlet conditions, and for 𝑗 = 0 and 𝑗 = 𝑛2 −1 we must impose the Neumann boundary conditions given by the following two
quations, deriving from a one-sided second order discretization of (3.3)

{

3𝜃𝜇𝑖,0 − 4𝜃𝜇𝑖,1 + 𝜃
𝜇
𝑖,2 = 2𝑟𝛽𝑐

[

𝜗(𝑥𝑖, 𝑐, 𝜏𝜇) − 𝜗0
]

𝜃𝜇𝑖,𝑛2−3 − 4𝜃𝜇𝑖,𝑛2−2 + 3𝜃𝜇𝑖,𝑛2−1 = 2𝑟𝛽𝑑
[

𝜗(𝑥𝑖, 𝑑, 𝜏𝜇) − 𝜗0
] (3.7)

or 𝑖 = 1,… , 𝑛1 and 𝜇 = 1,… , 𝑚.
We can write the following pentadiagonal linear system

⎧

⎪

⎨

⎪

⎩

𝑇𝜽𝜇1 − 𝐽𝜽𝜇2 = 𝒃̃𝜇1 ,

− 𝐽𝜽𝜇𝑖−1 + 𝑇𝜽
𝜇
𝑖 − 𝐽𝜽

𝜇
𝑖+1 = 𝒃𝜇𝑖 , 𝑖 = 2,… , 𝑛1 − 1,

− 𝐽𝜽𝜇𝑛1−1 + 𝑇𝜽
𝜇
𝑛1

= 𝒃̃𝜇𝑛1 ,
(3.8)

or 𝜇 = 1,… , 𝑚, with

𝑇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

3 −4 1
−1 𝜈 + 4 −1

−1 𝜈 + 4 ⋱
⋱ ⋱ −1

−1 𝜈 + 4 −1
1 −4 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝜽𝜇𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜃𝜇𝑖,0
𝜃𝜇𝑖,1
⋮

𝜃𝜇𝑖,𝑛2−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

= diag(0, 1,… , 1, 0). By setting

2𝑟𝛽𝑐
[

𝜗(𝑥𝑖, 𝑐, 𝜏𝜇) − 𝜗0
]

= 𝛽𝜇𝑖𝑐 and 2𝑟𝛽𝑑
[

𝜗(𝑥𝑖, 𝑑, 𝜏𝜇) − 𝜗0
]

= 𝛽𝜇𝑖𝑑 ,

he right-hand side vectors can be written as

𝒃𝜇𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

𝜈𝜃𝜇−1𝑖,1

⋮

𝜈𝜃𝜇−1𝑖,𝑛2−2

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛽𝜇𝑖𝑐
0

⋮

0

𝛽𝜇𝑖𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑖 = 1,… , 𝑛1, (3.9)

nd 𝒃̃𝜇1 = 𝒃𝜇1 + 𝐽𝜽𝜇0 , 𝒃̃𝜇𝑛1 = 𝒃𝜇𝑛1 + 𝐽𝜽
𝜇
𝑛1+1

.
Then, in matrix form,

𝐴𝜽𝜇 = 𝒃𝜇 , 𝜇 = 1,… , 𝑚,

ith

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑇 −𝐽
−𝐽 𝑇 ⋱

⋱ ⋱ −𝐽
− 𝐽 𝑇

⎞

⎟

⎟

⎟

⎟

⎠

, 𝜽𝜇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜽𝜇1
𝜽𝜇2
⋮

𝜽𝜇𝑛1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝒃𝜇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒃̃𝜇1
𝒃𝜇2
⋮

𝒃̃𝜇𝑛1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

here 𝜽𝜇𝑖 , 𝒃
𝜇
𝑖 ∈ R𝑛2 and 𝒃𝜇 ∈ R𝑛1(𝑛2−1).

The finite difference scheme computes a numerical value of 𝜃 in any point and time instant covered by the considered mesh.
he rest of this section, is devoted to describe how 𝛼, ℎ𝑐 and ℎ𝑑 can be estimated.

If we now consider an auxiliary set of test points 𝑥̃𝑖, 𝑖 = 1,… , 𝑘, on the lateral surfaces of the specimen, the following error
unction between the numerical and the experimental values of the temperature can be formulated for an optimization procedure:

𝜓
(

𝛼, ℎ𝑐 , ℎ𝑑
)

= ‖

‖

‖

𝜃𝑐,𝑑
(

𝛼, ℎ𝑐 , ℎ𝑑
)

− 𝜃′𝑐,𝑑
‖

‖

‖

2
, (3.10)

here 𝜃𝑐,𝑑
(

𝛼, ℎ𝑐 , ℎ𝑑
)

is the k-dimensional vector representing the temperature calculated by Eqs. (3.5) and (3.7) at the auxiliary test
oints (𝑥̃𝑖, 𝑐) or (𝑥̃𝑖, 𝑑), while 𝜃′𝑐,𝑑 represents the experimental temperature acquired at the same points and at a given instant 𝜇𝑟𝜏 .

In order to identify the expected value of 𝛼, the residual function 𝜓
(

𝛼, ℎ𝑐 , ℎ𝑑
)

must be minimized. Let 𝛼𝓁 , ℎ𝑐,𝓁 and ℎ𝑑,𝓁 designate
starting value to onset the iterative optimization procedure. Let us introduce the following first order approximation of the residual

unction of Eq. (3.10)

𝜃𝑐,𝑑
(

𝛼, ℎ𝑐 , ℎ𝑑
)

− 𝜃′𝑐,𝑑 ≅ 𝜃𝑐,𝑑
(

𝛼𝓁 , ℎ𝑐,𝓁 , ℎ𝑑,𝓁
)

− 𝜃′𝑐,𝑑 +
[ 𝜕𝜃𝑐,𝑑

𝜕𝛼
𝜕𝜃𝑐,𝑑
𝜕ℎ𝑐

𝜕𝜃𝑐,𝑑
𝜕ℎ𝑑

]
⎡

⎢

⎢

𝛼 − 𝛼𝓁
ℎ𝑐 − ℎ𝑐,𝓁

⎤

⎥

⎥

(3.11)
5
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where the additional subscript ‘‘𝓁’’ on symbols corresponds to an initial guess value and the last two terms in brackets are the
columns of the Jacobian operator  applied to the functions 𝜃𝑐,𝑑 .

The linearized least squares problem can be solved by the normal equation


(

𝜃𝑐,𝑑
)𝑇 

(

𝜃𝑐,𝑑
) (

 − 𝓁
)

= 
(

𝜃𝑐,𝑑
)𝑇

[

𝜃′𝑐,𝑑 − 𝜃𝑐,𝑑
(

𝛼𝓁 , ℎ𝑐,𝓁 , ℎ𝑑,𝓁
)

]

, (3.12)

here

𝓁 =
⎡

⎢

⎢

⎣

𝛼𝓁
ℎ𝑐,𝓁
ℎ𝑑,𝓁

⎤

⎥

⎥

⎦

,  =
⎡

⎢

⎢

⎣

𝛼
ℎ𝑐
ℎ𝑑

⎤

⎥

⎥

⎦

enote the vectors of the optimization parameters.
From Eq. (3.12) we obtain the following iteration function:

𝓁+1 = 𝓁 +
(

𝜃𝑐,𝑑
)−1 

(

𝜃𝑐,𝑑
)𝑇

[

𝜃′𝑐,𝑑 − 𝜃𝑐,𝑑
(

𝛼𝓁 , ℎ𝑐,𝓁 , ℎ𝑑,𝓁
)

]

, (3.13)

here 
(

𝜃𝑐,𝑑
)

= 
(

𝜃𝑐,𝑑
)𝑇 

(

𝜃𝑐,𝑑
)

. Since an explicit representation of the Jacobian of 𝜃𝑐,𝑑 is not available, an approximation of it
y a finite difference scheme can be used to iteratively improve the initial guess in an attempt to converge to an optimal solution.
he algorithm selects the search direction along which an improvement of the objective functions 𝜓

(

𝛼, ℎ𝑐 , ℎ𝑑
)

might be obtained.
t each iteration the solver updates the optimization parameters, considering their values inside a space for which the constraints
re satisfied within the constraint tolerance value (𝜖1). The algorithm uses two tolerances as possible stopping criteria:

(a) the step size tolerance (𝜖2), is a lower bound on the size of a step, meaning the size of the change in location where the
objective function is evaluated;

(b) the objective function tolerance (𝜖3), is a lower bound on the change in the value of the objective function during a step.

f the solver attempts to adopt a step size that is smaller than the 𝜖2 tolerance or the improvement of the objective function, at a
pecific iteration, is smaller than the 𝜖3 tolerance, the iterations end.

If the constraints are satisfied to within the 𝜖1 tolerance, the accuracy of the detected solution, at the end of the iterations, is
stablished by the so called first-order optimality measure. The first-order optimality measure is a measure of the gradient of the
bjective functions 𝜓(𝛼, ℎ𝑐 , ℎ𝑑 ) and corresponds to infinity norm of ∇

(

𝜓
(

𝛼, ℎ𝑐 , ℎ𝑑
))

,
‖

‖

‖

∇
(

𝜓(𝛼, ℎ𝑐 , ℎ𝑑 )
)

‖

‖

‖∞
= max

𝑖
∇
(

𝜓(𝛼, ℎ𝑐 , ℎ𝑑 )
)

𝑖. (3.14)

The analytical expression of the first order optimality measure should be zero in correspondence of the optimal values of the design
parameters, namely:

‖

‖

‖

∇
(

𝜓(𝛼, ℎ𝑐 , ℎ𝑑 )
)

‖

‖

‖∞
= 0. (3.15)

owever, the solver considers numerically satisfied this condition even to within a certain tolerance 𝜖4. Therefore, the inequality
‖

‖

‖

∇
(

𝜓(𝛼, ℎ𝑐 , ℎ𝑑 )
)

‖

‖

‖∞
< 𝜖4, (3.16)

s considered as a numerical approximation of the analytical expression of (3.15). The accuracy of the results obtained by the
erformed simulations is correlated to the following key tolerances values:

• constraint tolerance value (𝜖1 = 10−4);
• step size tolerance (𝜖2 = 10−3);
• objective function tolerance (𝜖3 = 10−7);
• optimality tolerance (𝜖4 = 10−6).

In Fig. 1 is depicted a flow chart scheme representing the essential structure of the simulation and optimization program.

. Experimental apparatus for thermal diffusivity measurements

In the present study an experimental apparatus for subjecting a solid specimen to a temperature gradient with variable time
volution has been developed. The system is well visualized in Fig. 2.

It consists of three main modules. The first consists of two Peltier cells with a nominal thermal power of 100 W. The Peltier
ells are electrically powered by two control boards (the second module) that modulates the power intensity to be supplied to the
eltier cells. The electrical controllers are fully driven by an application (third module) developed in the Labview environment. The
eating modules operate both as source and as sink for pumping and removing heat from the cold and hot side of the specimen.
he lateral boundary surfaces are guarded by an insulating material, whose thermal conductivity is equal to 0.034

[

W∕mK
]

and the
thickness is equal to 8 ⋅ 10−2 [m]. The workable area surface of the heating modules is equal to 230 × 122 ⋅ 10−6

[

m2].
Additional aluminum plates of 10 mm in thickness are integrated as a part of the main plate of the heating modules and they

re equipped by four thermo-resistances sensors (PT 1000) of Class DIN, a maximum error of that is equal to 0.08𝐾 at 0 ◦C. The
6

alues of the temperature sensors are used as feedback signals for adjusting the thermal power according to the selected set point
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Fig. 1. Flow chart scheme representing the essential structure of the simulation and optimization program.

values on the cold and hot side. Another thermo-resistance PT1000 is placed outside the device in order to measure the surrounding
ambient temperature, and the same temperature is used for the pre-test calibration of the thermocouple’s sensor.

Moreover, two custom heat flux meters (HFMs), with a measuring area equal to 230 × 122 ⋅ 10−6
[

m2] and with a nominal
sensitivity equal to 4.14 and 4.04

[

W
m2mV

]

are assembled side to side on the two aluminum plates. The other opposite sides of the
HFMs are then arranged in direct contact with the two opposite faces of the specimen, for measuring the heat fluxes (HFs) across
them. The measures of the HFs are then compared to each other, when the steady state regime is fully developed, in order to verify
the unidirectional distribution throughout the specimen. The discrepancy between the two values of the HFs is indicative of the
heat losses across the lateral surfaces in steady state condition. The electrical signals provided by the two HFMs are acquired with
a resolution of 24 bit, at a rate of 75 [Sample/s] and with a sensitivity of 0.02 ◦C. Since the acquisition system is limited by a
maximum value of the input signal equal to 80 [mV], as a consequence of it, a heat flow value greater than 𝑞̇max = 331.2

[

W
m2

]

,
cannot be measurable. Considering the approximating assumption of a semi-infinite solid, whose boundary is subject to a constant
heat power equal to 𝑞̇max, a limit value of the thermal diffusivity-time product coefficient arises from the following inequality

(𝛼 ⋅ 𝜏) ≳ 𝜋

[(

𝜗sp − 𝜗′0
)

𝑘
]2

(4.1)
7

2𝑞̇max
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Fig. 2. Experimental Apparatus for thermal diffusivity measurement.

where 𝜗sp is the value of the temperature assumed as set point at the boundary, 𝜏 is the instant at which the temperature at the
boundary achieves the 𝜗sp value.

Four additional T thermocouple sensors are incorporated inside the HFMs. Two of them acquire the absolute surface’s temperature
of the specimen, while the others two are connected in differential configuration for measuring directly the temperature difference
among the specimen, in order to reduce the error.

During the experiment the sample is sandwiched in between the two HFMs and the whole system are hold tightly together, by
means of a self-made screwing clamp system for ensuring a good thermal contact; see Fig. 4.

The following scheme for modeling the lateral heat losses has been developed and implemented in the optimization model.
The heat exchanges between the lateral surfaces and the surrounding environment can be locally expressed as:

−𝑘𝜕𝜗
𝜕𝑦

|

|

|

|𝑦=𝑐
= ℎ𝑐

[

𝜗′𝑐 (𝑥, 𝜏) − 𝜗
′
0
]

and − 𝑘𝜕𝜗
𝜕𝑦

|

|

|

|𝑦=𝑑
= ℎ𝑑

[

𝜗′𝑑 (𝑥, 𝜏) − 𝜗
′
0
]

(4.2)

according to whether the heat flux across the lateral surface 𝑦 = 𝑐 or 𝑦 = 𝑑 is considered.
𝜗(𝑥, 𝜏) represents the temperature distribution on the lateral surfaces. Since measuring the temperatures at each point 𝑥 = 𝑥𝑖

might be quite difficult, a first order approximation can be considered in place of them:

⎧

⎪

⎨

⎪

⎩

𝜗𝑐 (𝑥, 𝜏)

𝜗𝑑 (𝑥, 𝜏)
≅ 𝜗(0)

(

𝑥𝑖
)

=
𝜗 (𝑎, 𝜏) − 𝜗 (𝑏, 𝜏)

𝑏 − 𝑎
𝑥𝑖 +

𝑎𝜗 (𝑏, 𝜏) − 𝑏𝜗 (𝑎, 𝜏)
𝑏 − 𝑎

.

In Fig. 3 the spatial distribution of the temperature on a lateral surface of the specimen is schematically represented. It is worthwhile
noting that, even if 𝜗𝑐 (𝑥, 𝜏) and 𝜗𝑑 (𝑥, 𝜏) could be in general different, however the first order approximations of them, for symmetry
reasons, have the same value 𝜗(0). Moreover, the combined heat transfer coefficients ℎ should hold their different subscripts for
reminding us that they could have different values, because the surrounding environment could have a not uniform bearing on the
specimen.

5. Experimental results

In the present study a preliminary experimental investigation for evaluating the behavior of the developed apparatus has been
carried out on a specimen made of poly methyl methacrylate (PMMA). This material represents an acceptable approximation of
the assumptions mentioned in the previous paragraph. This material is also attractive because the scientific literature collects many
studies in which the thermal diffusivity is delivered within a restricted range of values. Rohde et al. in [46] have performed an inter
8
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Fig. 3. First order approximation of the spatial distribution of the temperature on the lateral surface.

Fig. 4. Specimen of PMMA under test, sandwiched between the Peltier cells by means of the screwing clamp system for ensuring a good thermal contact.

laboratory comparison on the measured values of the thermal diffusivity of a PMMA specimen. Eleven independent and blinded

certificated laboratories have obtained different values for 𝛼 at room temperature, settled between 20 ÷ 40 ◦C. The range over
9
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Table 1
Reference values of the PMMA material at 25 ◦C reported in [46].
Density Diffusivity Conductivity

1188 kg∕m3 0.113 mm2∕s 0.193 W/mK

Fig. 5. Time evolution of the surface temperature at the hot and cold side of the specimen. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

hich the measured values of 𝛼 fall is restricted to a maximum and minimum value, respectively equal to

𝛼max = 0.13 ⋅ 10−6
[

m2

s

]

and 𝛼min = 0.095 ⋅ 10−6
[

m2

s

]

and the average value is equal to

𝛼ave ≈ 0.113 ⋅ 10−6
[

m2

s

]

.

n Table 1 are reported the characteristic values to which we can refer for PMMA material at 25 ◦C [46].
The specimen of PMMA has been arranged inside the main module of the system as illustrated in Fig. 4, where it appears

andwiched between two aluminum plates and clumped by a screwing system.
All the thermocouple sensors are initially calibrated, and the environment temperature is used as initial condition of the specimen.
Once the two set points are adjusted 10 ◦C degrees above and below the ambient temperature, the specimen is then progressively

eated and cooled.
In Fig. 5 are depicted the time evolutions of the temperatures at both sides of the specimen when the heating and cooling modules

espectively operate as source and as sink of heat. The evolution spans from the initial conditions, exhibiting a transient behavior,
p to the achievement of the steady state conditions. The instant for which the transient regime can be considered extinguished is
emarked with the label 𝜏1. For 𝜏 > 𝜏1, the heat flux and the temperatures on the opposite sides of the specimen can be approximated
o a constant value since their running average values exhibits small temporal variations, the deviations ranging from 0.5% to 1%.
he following observations warrant consideration since explain why the representation provided in Fig. 5 is extended up to including
he steady regime, despite the experimental data occurred after 𝜏1 are not suitable for estimating the thermal diffusivity. It should
e noted that the mathematical scheme, expressed by the combination of Eqs. (3.6) and (3.7), involves the parameters 𝛽𝑐 and
𝑑 , that denote the ratio of the heat transfer coefficients ℎ𝑐 and ℎ𝑑 over the thermal conductivity 𝜆 of the specimen. Therefore,
he quantities that are directly subjected to optimization, in addition to 𝛼, are in effect 𝛽𝑐 and 𝛽𝑑 . Consequently, the optimization
rocedure identifies the optimal values 𝛽𝑐,opt and 𝛽𝑑,opt, rather than the optimal values ℎ𝑐,opt and ℎ𝑑,opt. However, the optimal values
f the heat transfer coefficients might be derived from 𝛽𝑐,opt and 𝛽𝑑,opt by using the following simple relations:

ℎ𝑑,opt = [𝜆 ⋅ 𝛽]𝑑,opt (5.1)

ℎ𝑐,opt = [𝜆 ⋅ 𝛽]𝑐,opt (5.2)

rovided that the value of the thermal conductivity be a known quantity, eventually even derived from additional circumstances.
ndeed, the unknown value of the thermal conductivity in the previous equations, can be then evaluated by using the heat flux and
10

he temperatures extracted during a time interval where 𝜏 is greater than 𝜏1, and the quantities can be considered stationary.
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Fig. 6. Experimental and calculated time evolution curves of the temperature at the auxiliary point at the lateral surface. The vertical axis represents the
easured and calculated temperature at auxiliary point.

In Fig. 6 is represented the experimental temperature measured at a selected auxiliary point 𝑃 (𝑥̂, 𝑐), belonging to the lateral
urface at 𝑦 = 𝑐. The experimental time profile is depicted with the red dot curve. The numerical resolution of Eqs. (3.7) and
3.10) provides a simulated temperature at the same point 𝑃 , when numerical values of 𝛼, ℎ𝑐 and ℎ𝑑 are a priori assigned.

In Fig. 6, examples of calculated temperature time profiles are depicted with different colors and styles (dash–dot orange, black,
lue, gray and green). The orange curve corresponds to an initial assignment of the guess values of the optimization parameters
qual to:

𝛼𝑙 = 0.5 ⋅ 10−6
[

m2

s

]

, ℎ𝑐 = ℎ𝑑 = 0
[ W
m2K

]

(that corresponds to an ideal adiabatic guard section). Only the optimal values of 𝛼, ℎ𝑐 and ℎ𝑑 provide a calculated curve overlapped
to the experimental data (depicted with the red dotted curve). The blue curve represents the optimal calculated temporal profile
that minimize the error function of Eq. (3.7). The optimal values of the explanatory parameters are equal to:

𝛼opt = 0.107 ⋅ 10−6
[

m2

s

]

, ℎ𝑐,opt = 0.4
[ W
m2K

]

and ℎ𝑑,opt = 0.45
[ W
m2K

]

.

The difference between the optimal calculated value of the thermal diffusivity and the reference value, indicated in Table 1, is
ower than 5%

100
|

|

|

𝛼ref − 𝛼opt
|

|

|

𝛼ref
< 5%. (5.3)

he green dash–dot curve corresponds to the optimal profile when the heat loss correction factors are neglected, therefore an ideal
diabaticity at lateral surfaces is assumed. The discrepancy with respect to the experimental curve is significantly greater than the
revious curve that incorporates the heat losses. The corresponding error is lower than 34

100
|

|

|

𝛼ref − 𝛼opt−adiab
|

|

|

𝛼ref
< 34%. (5.4)

. Conclusion and further developments

In the present research study, an optimization technique, coupled with an experimental apparatus, for determining the thermal
iffusivity of solid materials, has been devised and experimentally validated. The solving approach belongs to a class of direct
olution methods in which the solution of the inverse problem of the heat equation in transient conditions is numerically supervised
11
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by an optimization model. Modeling the heat losses, caused by the imperfect adiabaticity at the insulated sides of the specimen,
with auxiliary Robin conditions has proved an effective strategy for significantly improving the estimation of the thermal diffusivity.
The devised technique makes use of a low-cost apparatus for generating a suitable thermal field and extracting the experimental
data while the test of the specimen is in progress. The measurement apparatus has been tested on a specimen made of PMMA since
it can be considered an acceptable approximation of the isotropic, homogeneous conduction model to which the classical Fourier
equation is founded. The following conclusions can be drawn from the present experimental investigation on thermal diffusivity
measurements of a solid material.

1. The optimization procedure developed identifies an optimal value of the thermal diffusivity that changes according to whether
the heat losses are taken or not into account.

2. Incorporating the heat loss correction in the solution of the heat equation significantly improves the estimation of the thermal
diffusivity value.

3. The estimated thermal diffusivity is in good agreement with the measured values delivered by an experimental investi-
gation [46] consisting in an inter-laboratory comparison of eleven laboratory equipped with Laser Flash, hot disk and
hot bridge apparatus. The error between the optimal value and the reference average value of 𝛼ref delivered by an inter
laboratory comparison of eleven certified measurements turns out to be lower than 5%. The experimental profile of the
surface temperature broadly matches the simulated curves generated by the model.

4. The observed results reveal a reliable capability of the model to identify the thermal diffusivity value that explain the relation
among the functional dependence underlying the experimental observations.

5. The obtained results are quite reasonable considering the low-cost equipment used in this study.

The study constitutes a valuable contribution for those that are involved in classical heat transfer concepts under transient conditions.
Specifically, incorporating the heat transfer coefficients into a global optimization procedure, simultaneously with the thermal
diffusivity value, deserve consideration.

The obtained results can be considered satisfactory considering that the model is based on the approximating assumption of the
2D formalism. The accuracy could be susceptible to further improvements if the optimization is performed globally over an error
function in which more than one additional surface temperatures and/or heat fluxes are accounted for. This exploratory investigation
suggests that it could be convenient and fruitful to perform further refinement of the research by extending the numerical inversion
of the heat equation to a 3D formalism for characterizing non-homogeneous media. Moreover, the uniqueness of the optimal solution,
over the domain of the explanatory variables (𝛼, ℎ𝑐 , ℎ𝑑), deserves consideration for future investigations.
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