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QoE Estimation of WebRTC-based Audio-visual

Conversations from Facial and Speech Features
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The utilization of user’s facial- and speech-related features for the estimation of the Quality of Experience

(QoE) of multimedia services is still underinvestigated despite its potential. Currently, only the use of either

facial or speech features individually has been proposed, and relevant limited experiments have been per-

formed. To advance in this respect, in this study, we focused on WebRTC-based videoconferencing, where it is

often possible to capture both the facial expressions and vocal speech characteristics of the users. First, we per-

formed thorough statistical analysis to identify the most significant facial- and speech-related features for QoE

estimation, which we extracted from the participants’ audio-video data collected during a subjective assess-

ment. Second, we trained individual QoE estimation machine learning-based models on the separated facial

and speech datasets. Finally, we employed data fusion techniques to combine the facial and speech datasets

into a single dataset to enhance the QoE estimation performance due to the integrated knowledge provided by

the fusion of facial and speech features. The obtained results demonstrate that the data fusion technique based

on the Improved Centered Kernel Alignment (ICKA) allows for reaching a mean QoE estimation accuracy of

0.93, whereas the values of 0.78 and 0.86 are reached when using only facial or speech features, respectively.
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1 INTRODUCTION

Internet usage has experienced a significant surge in recent years. This upward trend can
be primarily attributed to the rising prominence of video streaming platforms (e.g., YouTube,
Amazon Prime Video, Netflix) and videoconferencing platforms (across various domains, such
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as professional meetings, online education, and social engagements), which have led video
traffic to account for almost 66% of current global Internet traffic [44]. The management of
such high multimedia traffic, combined with the high-quality expectations of users and the
growing level of applications’ interactivity and functional capabilities, has made the integration
of user-centered approaches increasingly important for application and network providers.
Resources in the network and at the server side need to be promptly allocated to the required
multimedia sessions to assure that the target quality levels are reached to not compromise the user
experience. In this regard, the assessment of the Quality of Experience (QoE) plays a crucial
role, since it aims at quantifying the degree of delight or annoyance of the user of an application or

service [32].
Recent studies concerning the subjective assessment of multimedia services have focused on

defining personalized prediction systems to consider users’ individual and personal differences
[45, 50, 57]. Indeed, different users may have different reactions to the same stimuli, since the QoE
depends upon many factors, mainly system-, human-, and context-related [32]. In particular, the
human influence factors, classified as objective factors (e.g., demographics, cultural background)
and subjective factors (user states, such as enjoyment and motivation), are the main elements
of difference among users [47]. Personalized QoE models have the advantage of driving service
management procedures to be better fitted to each end-user’s profile with the potential to increase
service success [61].

To build personalized models, extensive subjective studies are required that consider human
influencing factors, which, however, are affected by relevant limitations: (i) the need to ask for
explicit feedback from the user; (ii) the rating process may be influenced by the rating scale,
which may not reflect well the user’s internal perception of quality; (iii) it is time-consuming and
money-consuming; (iv) it is not suitable for real-time management systems [37]. Accordingly,
alternative unobtrusive (i.e., that do not require user feedback) methods to assess the individual
QoE have emerged, which rely on the physiological bases of perceptual and cognitive processes,
such as electroencephalography, [35] heart rate, and electrodermal activity measurements [15, 18].
Among these techniques, facial expressions and vocal speech characteristics have gathered
particular attention in recent years, because they naturally convey human emotions driven by the
user’s emotional state [27, 33]. Although literature studies are limited in this regard, the design
of QoE estimation models based on facial- and speech-related features is promising. However, to
the best of the authors’ knowledge, none of the state-of-the-art studies has ever integrated facial
and speech features in a QoE estimation model. Indeed, facial features have been commonly used
to estimate video quality [2, 40], whereas speech features have been used to estimate speech
quality [6, 57]. Therefore, further research is needed to confirm the suitability and applicability
of facial and speech features to other multimedia services. This new approach could be added
to the traditional network-based approaches to monitor the QoE when deploying multimedia
services [10].

In this study, we focused on videoconferencing tools based on WebRTC technology, which have
been widely used for audio-visual conversation over the Internet in the past years due to the
COVID-19 pandemic. Also, audio-visual calls naturally require the user to show his face while
speaking, which enables capturing both the facial expressions and vocal speech characteristics. In
Reference [8], we published the results of a subjective test concerning the conversational QoE of a
two-party WebRTC-based audio-visual telemeeting service disturbed by combinations of network
impairments (i.e., delay, jitter, and packet loss). The face and speech of the test participants were
recorded during the test, and they were asked to rate the overall perceived QoE at the end of each
conversation.
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The following are the major contributions of this article:

— We extracted facial and speech features from the participants’ audio-video data collected
during the subjective assessment described in Reference [8], and we performed thorough
statistical analysis to identify the most significant facial- and speech-related features for
QoE estimation.

— We trained ML-based algorithms with the most significant facial features to evaluate the QoE
estimation performance of facial features only. Note that preliminary results are published
in Reference [7].

— We trained ML-based algorithms with the most significant speech features to evaluate the
QoE estimation performance of speech features only.

— We employed data fusion techniques to combine the facial and speech datasets into a single
dataset to train an ML model for enhanced QoE estimation performance due to the integrated
knowledge provided by the fusion of facial and speech features.

The article is structured as follows: Section 2 presents related work. Section 3 describes the
methodology followed. Section 4 and Section 5 present the proposed QoE estimation models based
on facial and speech features, respectively. In Section 6, we exploit data fusion techniques to pro-
pose a QoE estimation model based on integrated facial and speech features. Section 7 concludes
the article.

2 RELATED WORK

Up to this point, QoE management has been approached from various, sometimes complementary,
angles [49]. It involves the utilization of different control points distributed throughout the
delivery process. QoE-centric application management has primarily concentrated on control and
adjustments made at the end-user level and within application hosting or cloud services. This
perspective is often examined from the viewpoint of application providers aiming to enhance
the quality of Over-The-Top (OTT) applications and services. For instance, applications like
adaptive video streaming over HTTP dynamically adjust to changing network conditions to
ensure a consistently high QoE. Conversely, network providers mainly depend on performance
and traffic-monitoring solutions integrated into their access and core networks to gain insights
into the issues experienced by end-users. QoE-oriented network management strategies are
therefore centered on the network provider’s standpoint and involve control mechanisms such as
optimized network resource allocation and efficiency, especially in wireless systems [28]. These
strategies also encompass admission control and QoE-driven routing, among others.

A key component in QoE management is the assessment, which should be able to predict the
level of quality as perceived by the end-user. The outcome is the input to the major procedures
mentioned above. The literature presents many studies concerning the assessment of the QoE for
various multimedia services, such as video streaming [12, 13, 48], VoIP [26], Web browsing [5], and
virtual reality applications [53]. However, studies on WebRTC-based applications are ongoing and
still limited in the literature, in particular, those involving subjective assessments of interactive con-
versations. Vučić et al. focused on the multiparty telemeeting scenario and investigated the impact
of several factors on the QoE, i.e., packet loss and Google Congestion Control [54], bandwidth limi-
tation and video resolution [56], video bitrate and frame rate [55]. Major findings of these studies in-
dicate that: The impact of packet loss on overall QoE was found to differ greatly among participants,
and as long as the audio quality remained satisfactory, most participants provided high-quality
scores; higher video resolutions contribute to better video quality but it requires higher process-
ing system capabilities and may lead to congestion under limited bandwidth conditions. De Moor
et al. [14] combined different network and application distortions into four technical conditions: no
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distortions; distorted audio (CPU usage limited to 20%); distorted video (packet loss ratio of 20%);
and distorted audio and video (delay of 500 ms and jitter of 300 ms). The lowest QoE was perceived
when both audio and video were distorted by delay and jitter. In Reference [21], García et al. consid-
ered seven test conditions: no network impairments, packet loss impairment (15%, 30%, and 45%),
and jitter impairment (25 ms, 50 ms, and 75 ms). It is found that the impact of these impairments
differs for different video genres and that the video QoE tends to be poor when the PLR and jitter
overcome 20% and 25 ms, respectively. Tsiaras et al. [51] evaluated the impact of single network
distortions on the QoE of WebRTC voice calls, namely, delay (150 to 1,600 ms), jitter (0 to 400 ms),
and packet loss (5% to 40%). They calibrate the proposed Deterministic QoE model (DQX) us-
ing the collected subjective results, which outperformed the performance of the traditional ITU E-
model [25] in terms of Mean Opinion Score (MOS) estimation. The achieved results highlight the
greater robustness of WebRTC applications to network impairments (compared to traditional VoIP
applications to which the E-model is the reference QoE model) and to network delay in particular.

A limited number of literature studies explored the relationship between the QoE and
facial/speech-related human emotional responses. With regard to facial expressions, these can be
classified as the six+one basic emotions (i.e., anger, fear, disgust, happiness, surprise, sadness, plus
the neutral emotion) [16] or can be analyzed in terms of the Facial Action Units (AUs) defined by
the Facial Action Coding System (FACS) [17]. The AUs reflect the activation and intensity of
facial muscles and can also be related to basic emotions. In Reference [41], facial expressions were
investigated to predict the quality perception of video meeting participants. A score was given af-
ter each presentation by all participants except the presenter, and it was found that the happier the
speaker was, the happier and less neutral the audience was. Also, the presentations that triggered
wide swings in “fear” and “happiness” among the participants are correlated with a higher rating.
In Reference [2], test participants were asked to watch videos subjected to quality (video resolution)
and network (limited bandwidth) impairments. Then, selected facial-, video-, and network-related
features were used to build various ML-based QoE estimation models. The Pearson correlation

coefficient (PCC) computed between the subjective MOS and estimated MOS achieved 0.79 when
the Random Forest bagging-based algorithm was used. However, the QoE model was trained on
the MOS (and not the individual QoE) and the number of video sequences (8) and testers (14) were
limited. In Reference [40], we have already considered facial expressions and gaze direction to
build an ML-based QoE estimation model for video services impaired by buffering- and blurring-
related distortions. The model achieved a mean QoE estimation accuracy of 0.878 and 0.939 when
training the k-nearest neighbors (k-NN) algorithm with facial features only and with a combina-
tion of facial features and distortion-related features, respectively. Also, the achieved PCC between
subjective MOS and estimated MOS was 0.989. In Reference [7], we have trained ML models with
selected facial features and a Fully Convolutional Network (FCN) with the full facial expression
features dataset. The aim was to let the FCN filters process the facial input matrices and to find the
most relevant information to estimate the QoE. However, the ML model trained on selected facial
features achieved greater QoE estimation accuracy than the FCN accuracy.

Concerning speech, several speech features are indicative of different emotions, such as the
vocal tract features and the prosodic features [29, 38]. Vocal tract features produce different sound
units in different emotions and are represented by the MFCCs (Mel frequency cepstral coeffi-

cients) derived from the cepstral domain. Prosodic features make human speech natural, including
duration, intonation and intensity. In addition, they are represented by acoustic features, such as
pitch frequency features, duration- and energy-related features. All of these speech features are
commonly referred to as Low-Level Descriptors (LLD). In Reference [6], test participants were
asked to rate the QoE perceived when speech communication was impaired by different network
distortions, i.e., delay, bandwidth, and loss rate. Then, three types of speech features (acoustic,
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lexical, and discourse) were extracted from the recorded speech and used to train different ML
algorithms. The Support Vector Machine (SVM) algorithm trained with a combination of the
three kinds of speech features achieved a QoE estimation accuracy of 0.68. Moreover, results
have shown that training with acoustic features only achieved greater QoE estimation accuracy
than training with lexical and discourse features. However, the aggregation of all features slightly
improves the estimation performance. The reason can be that, unlike acoustic features, lexical
features (language-related information) and discourse features (only word repetition was consid-
ered) lack speech-related information (e.g., pitch and tone), which many studies have identified
as indicative of human emotions and thus may be more suitable for estimating the user-perceived
quality. For example, speech produced in a state of fear, anger, or joy becomes loud and fast, with
a higher and broader range in pitch, whereas emotions such as sadness or tiredness generate slow
and low-pitched speech [57]. Afshari et al. conducted a similar study in Reference [1], but they also
considered emotional behaviors in addition to vocal and lexical speech features. The mean QoE
estimation accuracy training the SVM using the fusion of speech- and behavior-related features
achieved 0.828, outperforming the utilization of speech features only (0.721). The SpeechQoE
model is proposed in Reference [57], a personalized QoE assessment model that converts speech-
based cues into a QoE score. The model is built with a Convolutional Neural Network (CNN)

classifier aimed at extracting, from the input time-frequency domain speech spectrogram, explicit
and implicit features that are identified as the most beneficial for QoE classification. Test partici-
pants were asked to rate the QoE perceived when the VoIP communication was impaired by packet
loss rate, latency, and background noise. SpeechQoE achieved a mean QoE estimation accuracy of
91.4%, with at least 90% accuracy for each single ACR class. In Reference [39], we investigated the
quality perceived by employees when conducting remote working activities through implicit emo-
tional responses estimated from the speech of video calls. The Analysis of Variance (ANOVA)

results indicated significant changes in speech features (i.e., a combination of MFCCs, Chroma, and
Mel features) when remote employees perceived different quality levels. In particular, the ANOVA
tests between MFCC and ACR scores, between Chroma features and ACR scores, and between Mel
features and ACR scores produced a p-value < 0.001 across the full ACR quality scale. For MFCC
and Chroma features, the pairwise comparison showed an adjusted p-value < 0.001 only for the
most extreme ACR scores of 1 and 5, while ACR scores 2, 3, and 4 exhibited no significant differ-
ences in means among themselves. For Mel features, the pairwise comparisons revealed an adjusted
p-value < 0.001 for all ACR scores except for the pair 3–4, where the means were not significantly
different from each other. However, it is worth noting that this p-value (0.004) was very close to
the threshold. These findings indicate that by gathering a sufficient amount of data, Mel features
can discern how individuals perceive the quality of a Web call, while MFCC and Chroma features
can aid in distinguishing whether the perceived quality is positive, neutral, or negative. Conse-
quently, these features can be effectively employed to train an ML-based model for estimating the
perceived quality of remote working. Moreover, we have found that good-quality perceptions are
related to neutral and positive emotion polarity, whereas low-quality perceptions are related to
negative emotions.

These literature studies demonstrate the potential of facial- and speech-related features to de-
scribe human emotions driving the user’s QoE perceived when utilizing multimedia services,
which could be used to improve network and client-side QoE Management in streaming services
[30]. In this article, we first investigate the performance of ML-based QoE estimation models
trained on separated datasets of selected facial and speech features. Then, we employed a data
fusion technique to combine the trained separated models into a single ML model for enhanced
QoE estimation performance due to the integrated knowledge provided by the facial and speech
features.
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Fig. 1. The proposed methodology. The dashed lines indicate the collection of ACR scores, which are only
needed for the training phase.

3 METHODOLOGY

This study aims to investigate whether the QoE of users utilizing a WebRTC-based audio-visual
application can be estimated through features extracted from the user’s facial expressions and
speech. The rationale behind this study stands on the fact that the perceived QoE is driven by the
user’s emotions, which are conveyed by facial expressions and speech vocal characteristics.

To this aim, we designed and conducted a subjective quality assessment during which partic-
ipants had to talk with a conversation partner using a WebRTC-based application. The network
was impaired by a combination of different degradation factors to impair the quality of the
audio-visual calls. During the talk, the faces and the speech of the participants were recorded to
collect a data stream for extracting facial expressions and speech features. At the end of the talk,
the participants were asked to rate the perceived QoE. The proposed methodology is illustrated
in Figure 1. The dashed lines indicate the collection of the ACR scores (the subjective ratings
provided by the users; see Section 3.1), which are only needed during the training phase as the
ground truth for identifying the most suitable facial and speech features for estimating the QoE
and for training the ML-based models using the selected significant features. We trained separate
QoE models using facial or speech features. In addition, we relied on a data fusion technique to
train a QoE model based on both facial and speech features.

The developed QoE model can be used during the operational phase for estimating the QoE
based on the observed user’s facial and speech features. The estimated QoE can be used to drive
network and/or service management actions, in particular, when QoE degradation is detected.
Note that such an approach does not preclude the utilization of additional network- and service
quality-related parameters, which may complement the information that is possible to obtain with
our approach. In particular, the QoE estimation provided by our approach can be correlated with
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Fig. 2. The three clusters identified by clustering on the 100 psychoacoustic sharpness features extracted
from the recorded speech of the 20 participants. The PCA was used to reduce feature dimensionality to the
two principal components (PC1 and PC2).

network and service performance indicators to derive a root cause analysis and develop approaches
to predict in advance possible quality issues and to better allocate resources to the deployed
services.

The rest of this section summarizes the conducted subjective experiment and the results
published in Reference [8], which are used as the basis for analysis presented in the following.

3.1 Subjective Experiment

The subjective experiment aimed to assess the conversational quality of WebRTC-based audio-
visual conversations under controlled network conditions. In particular, we considered three net-
work parameters: delay, jitter, and packet loss rate (PLR). The test environment included two
desks, placed in two different rooms, where the test participants were provided with a laptop to
make the WebRTC-based video calls using the Google Chrome browser. We used an access point
to create a dedicated wireless network communication between the two laptops to avoid undesir-
able network distortion provided by the Internet. Moreover, the PyNetem tool (Python network
emulator) was used to impose the desired network conditions on the communication.

Twenty people (11 females and 9 males) participated in the test. They were between the ages of
23–36 years (mean 28.7, standard deviation 4.24). All participants are of European-Italian origin.
We based on the five-level Fitzpatrick skin scale to identify the participants’ skin tones [22]. Among
the male participants, four were identified with a Type II skin tone (light-colored but darker than
fair) and five with a Type III skin tone (golden honey or olive). Among the female participants,
five were identified with a Type II skin tone, five with a Type III skin tone, and one with a Type IV
skin tone (moderate brown). Moreover, we have used the openSMILE software to extract a total of
100 psychoacoustic sharpness features from the recorded speech of the 20 participants. We have
applied the K-means algorithm to these features, which has identified 3 separate clusters, i.e., the
participants can be classified into three separate groups based on their voice sharpness. These clus-
ters are shown in Figure 2 using the Principal Component Analysis (PCA) for reducing feature
dimensionality from 100 to 2, where the 2 principal components (PC1 and PC2) include 75% of the
total features’ variance. Finally, we have computed Analysis of Variance (ANOVA) between the
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Table 1. Test Conditions (TCs) and MOS with 95% CI

TC Delay (ms) Jitter (ms) PLR (%) MOS CI 95%

1 0 0 0 3.89 ±0.404
2 500 0 0 3.67 ±0.511
3 1,000 0 0 3.72 ±0.338
4 500 500 0 3.44 ±0.414
5 1,000 500 0 3.44 ±0.316
6 0 0 15 3.22 ±0.329
7 500 0 15 3.06 ±0.392
8 1,000 0 15 2.72 ±0.207
9 500 500 15 2.33 ±0.344
10 1,000 500 15 2.44 ±0.492
11 0 0 30 2.56 ±0.316
12 500 0 30 2.11 ±0.404
13 1,000 0 30 2.11 ±0.459
14 500 500 30 1.89 ±0.404
15 1,000 500 30 1.44 ±0.352

100 features and the 3 identified clusters, and we have found that the 3 most significant features
(p-value < 0.001), i.e., those suitable to distinguish among different speech sharpness groups, are
pcm_fftMag_psySharpness_sma_de_maxSegLen, pcm_fftMag_psySharpness_sma_de_segLenStddev,
and pcm_fftMag_psySharpness_sma_de_peakMeanRel.

The test participants were divided into pairs and were asked to play the “Who am I?” celebrity
name-guessing conversational task during the video calls. This game consists in guessing
the celebrity chosen by the partner by asking, in turn, yes/no questions to the conversation
partner. Each pair of participants made 15 two-minute-long video calls under different network
conditions. We recorded videos of the participants’ faces and audio of the participants’ speech
during the test sessions. At the end of each conversation, the participants were asked to rate the
perceived QoE using the five-level (Bad, Poor, Fair, Good, and Excellent) single discrete Absolute

Category Rating (ACR) scale, according to the ITU-R Rec. P.800 [24]. Table 1 reports the 15
test conditions (TCs) created from the combination of the three considered network parameters
we used to impair WebRTC communications. We chose those settings after extensive preliminary
tests to be sure that the QoE of the test participants would have been impacted to different
extents during the conversations. These are in line also with the other literature studies focused
on QoE assessment for WebRTC applications, which have considered values of delay, packet loss,
and jitter comparable to those considered in our study [14, 21, 51]. The selected values of delay,
jitter, and packet loss may look worse than expected in normal two-way real-time multimedia
communications. For instance, one-way delays greater than 400 ms or high values of PLR (e.g.,
5%) are considered unacceptable for traditional VoIP services [52]. However, the utilization of
error concealment techniques, such as packet retransmissions and forward error correction

(FEC), makes WebRTC-based applications more robust to network distortions. In particular, our
WebRTC implementation included the Opus in-band FEC to protect the audio streaming, while
the media streaming through the RTCP (Real-time Transport Control Protocol) protocol
was protected by a combination of redundant audio data (RAD), FEC, and retransmission
mechanisms. In addition, the Google Chrome browser used for the experiment implemented the
Google Congestion Control (GCC) algorithm, which adapts the media sending rate to the link
capacity [9]. For these reasons, high values for the network impairment parameters have been
selected, as shown in Table 1, to provide different levels of quality to the test participants.
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Table 1 also shows the corresponding MOS with the 95% confidence interval (CI). Note that
the MOS is the average of the single ACR scores provided by 18 subjects, since 2 out of the 20
participants were identified as outliers. As expected, the MOS decreases as the impact of the net-
work impairments increases. In particular, the PLR had the most negative influence on the QoE
when introduced both alone and in combination with other network impairments. Indeed, almost
sufficient to poor quality was perceived by participants when the packet loss impaired the com-
munication. Delay and jitter also impacted negatively on the QoE, but participants still perceived
sufficient quality when these impairments were even added simultaneously. Naturally, the greatest
QoE was perceived when no impairments were added to the network.

4 QOE ESTIMATION BASED ON THE FACIAL FEATURES

In this section, we first describe how we applied statistical analysis to facial expression features
(Section 4.1). Then, we present the performance of the ML-based QoE models trained on selected
facial features (Section 4.2).

4.1 Statistical Analysis of Facial Expression Features

As we mentioned in Section 3, we recorded the faces of the participants while they were having
audio-visual conversations. We recorded a total of 270 two-minute-long videos at full HD quality
and 30 fps. Then, we used the OpenFace toolkit [3, 4, 60] to extract facial expression features and
gaze direction features from the recorded face images. Concerning facial expressions, the features
were extracted in terms of the facial Action Units (AUs) defined by the Facial Action Coding

System (FACS)1 [17]. The AUs are 35: 18AUc detect the activation of a specific muscle, whereas 17
AUr detect the muscle activation intensity (from 1 to 5). Concerning the gaze direction (GD), the
features were extracted in terms of 6 arrays of coordinates indicating where the gaze was directed.
From each video, we extracted up to 3,600 values (i.e., a feature value per frame) for each of the 41
(6 GD + 35 AUs) facial features. Note that in OpenFace, we set a value of 98% for the face-tracking
confidence, which means that the features’ values were extracted only for the frames where a face
was identified with a confidence higher than 98%. The number of features’ values then varies de-
pending on the number of frames the OpenFace toolkit managed to track of the participant’s face.

The next step concerns the computation of statistics to reduce the data dimensionality and
obtain a single value for each of the 41 features. To this, we considered three statistics:

(S1) We computed the frequency of activation FAUc
for each AUc , the intensity of activation IAUr

for each AUr , and the variance of the GD VGD for each gaze feature, following the equations
provided in Reference [40].

(S2) We computed the mean value μ of each of the 41 facial expression features over the (up to)
3,600 values extracted for each test.

(S3) We computed the standard deviation σ of each of the 41 facial expression features over the
(up to) 3,600 values extracted for each test.

We obtained a total of 11,070 features’ statistics (15 TCs × 18 participants × 41 features) for
S1, S2, and S3. Then, for each statistic, we computed the one-way ANOVA between the features’
statistics (computed for different TCs) and the corresponding ACR scores. Table 2 shows the fea-
tures’ statistics that achieved a p-value < 0.05 for S1, S2, and S3. The results show that S1, S2, and
S3 include, respectively, 9, 6, and 3 features’ statistics that have means statistically significantly
different for different ACR scores. Thus, we can consider these features’ statistics as statistically
significantly relevant for building QoE estimation models. It is interesting to note that S1 and S2

1https://www.cs.cmu.edu/~face/facs.htm
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Table 2. ANOVA Results: Features’ Statistics that Achieved a P-Value < 0.05 for S1, S2, and S3

S1 S2 S3

FAU 06c
, FAU 12c

, FAU 14c
,

FAU 25c
, FAU 26c

, IAU 05r
,

IAU 06r
, IAU 12r

, IAU 26r

μAU 12c
, μAU 26c

, μAU 45c
,

μAU 06r
, μAU 12r

, μAU 26r

σAU 04c
, σAU 26c

, σAU 45c

Table 3. Number of ACR Scores (and Corresponding Facial
Features) before and after Data Augmentation

ACR Collected samples Augmented samples

1 37 105
2 65 121
3 103 103
4 44 101
5 21 99

Total 270 529

statistics regard both AU activation (AUc ) and AU intensity (AUr ), whereas S3 statistics are only
significant for AU intensity. Thus, there are specific facial muscle movements that are found to
be correlated with QoE perception. In particular, AU26 (jaw drop) is present in all statistics, AU06
(cheek raiser) and AU12 (lip corner puller) are present in both S1 and S2 statistics, and AU45 (blink)
is present in both S2 and S3 statistics. However, none of the significant features’ statistics concerns
the eye gaze, which can be excluded as a piece of relevant information for estimating the QoE for
this specific study.

4.2 ML-based QoE Models Based on the Facial Features

Before training the ML-based models with the facial features’ statistics identified in the previous
section, we performed data augmentation to correct the dataset’s class imbalance. Indeed, the ex-
treme scores of the ACR scale were less used than the middle scores to rate the perceived QoE, as
shown in Table 3. Therefore, we employed the adaptive synthetic (ADASYN) algorithm for con-
structing synthetic samples and achieving class over-sampling. In particular, ADASYN attempts
to enhance class balance by adaptively producing new synthetic instances from the minority class,
using linear weighted interpolation between existing minority class examples, to reduce the bias
introduced by the imbalanced data distribution [23]. As shown in Table 3, the gap between the
classes is decreased for the augmented dataset. Moreover, in Figure 3, we compare the variance
of the original facial features’ statistics with the variance of the synthetic facial features’ statistics
produced by ADASYN for the ACR scores 1, 2, 4, and 5. It can be seen that the synthetic samples
follow the same data distribution as the original samples.

We then used the MATLAB software to train different ML algorithms on the augmented dataset
using the significant features’ statistics identified in Section 4.1 to estimate the QoE. In particular,
we considered the following subsets of features (see Table 2) to train the classifiers:

— Subset1: The 9 S1 feature’s statistics.
— Subset2: The 6 S2 feature’s statistics.
— Subset3: The 3 S3 feature’s statistics.
— Subset4: The 18 S1 + S2 + S3 feature’s statistics.

The classifiers aim to find a pattern in the features dataset that describes a correlation between
the facial feature’s statistics and the provided ACR quality score. For all the ML algorithms,
the 70%/30% training/validation rate was used with a 5-fold cross-validation. The k-nearest
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Fig. 3. Variance of the original and synthetic facial expression features’ statistics for the ACR scores 1, 2, 4,
and 5. Note that a logarithmic scale was used for the y-axis.

neighbors (k-NN) and the Support Vector Machine (SVM) were the ML algorithms achieving
the best QoE estimation performance for the four subsets among a set of diverse considered
classifiers (e.g., decision trees, naive Bayes, ensembles, discriminant analysis).

In particular, the optimal classifier settings were as follows:

— Subset1 and Subset2: the k-NN with n = 1, utilizing the Euclidean distance metric and uni-
form weighting distance.

— Subset3: the k-NN with n = 13, utilizing the Euclidean distance metric and the inverse
squared weighting distance.

— Subset4: the SVM with the linear kernel function and a kernel scale of 1.

Table 4 shows the QoE estimation performance achieved by these ML algorithms in terms of
mean accuracy and precision, recall, and F1-score computed for the single ACR scores. It can be
seen that the greatest mean accuracy is achieved when training with all the significant features’
statistics included in Subset4. Also, this subset of features allows the SVM classifier to achieve the
greatest values of precision, recall, and F1-score for the single ACR scores. This result is likely due
because training with a larger number of significant features enables the ML models to achieve
greater classification results. In particular, the recall achieved for the extreme classes (ACR 1 and
5) is close to 1 and decreases towards the middle class (ACR 3), achieving the lowest recall (0.35).
However, intermediate classes (ACR 2 and 4) achieved good recall (around 0.8). This decreasing
trend of the performance towards the middle class can also be observed when the ML algorithms
were trained with the other three subsets of features, although with lower absolute performance
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Table 4. QoE Estimation Performance Achieved by the ML-based
QoE Models Trained with the Facial Features

Subset / Performance ACR score

ML model metric 1 2 3 4 5

Mean Acc. 0.70
Subset1 Precision 0.71 0.72 0.49 0.65 0.86
k-NN Recall 0.80 0.78 0.30 0.75 0.86

F1-Score 0.75 0.75 0.37 0.70 0.86
Mean Acc. 0.60

Subset2 Precision 0.65 0.56 0.30 0.60 0.80
k-NN Recall 0.72 0.57 0.20 0.65 0.88

F1-Score 0.68 0.57 0.24 0.62 0.84
Mean Acc. 0.42

Subset3 Precision 0.45 0.36 0.17 0.38 0.67
k-NN Recall 0.47 0.33 0.16 0.38 0.77

F1-Score 0.46 0.34 0.17 0.38 0.72
Mean Acc. 0.78

Subset4 Precision 0.86 0.71 0.62 0.75 0.89
SVM Recall 0.97 0.79 0.35 0.81 0.98

F1-Score 0.91 0.75 0.45 0.78 0.93

results. In particular, Subset1 allows for achieving the best estimation performance among the first
three subsets, which suggests the statistical method S1 to be the most suitable when considering
facial features. Subset2 achieved the second-best performance, followed by Subset3.

These results can be motivated by the fact that the lower number of significant features included
in Subset2 and Subset3 compared to Subset1 is not compensated by a higher significance. Therefore,
with a lower number of features for training the ML models, it is more difficult to achieve good esti-
mation performance. This outcome is particularly highlighted when training with Subset3, which
only includes three significant features. However, although the features included in Subset2 and
Subset3 alone do not perform very well, they still provide important complementary information
regarding facial features that can be exploited when grouped with the features included in Subset1
to reach enhanced estimation performance (Subset4, which includes all the features). The estima-
tion performance of the ML model trained with all features is only limited by the low classification
recall achieved for the middle class (ACR 3). This may be due to potential overfitting introduced
by synthetic samples representing the minority classes (ACR 1 and 5, in particular). However, the
capability to estimate with good recall if a user is satisfied (ACR 4 and 5) or annoyed (ACR 1 and 2)
compared to the used audio-visual services is of extreme importance, especially if we consider that
the estimation is solely based on the user’s facial expressions and no feedback is requested. Finally,
it is also interesting to note that for the first three subsets, the ML algorithm that achieved the best
classification results was the k-NN, whereas when all the features were considered (Subset4), the
SVM was the best estimator. This outcome would likely depend on the spatial distribution of the
features, which in this case were better separated by the SVM functions, as they work better with
large datasets.

5 QOE ESTIMATION BASED ON THE SPEECH FEATURES

In this section, we first describe how we applied statistical analysis to speech features (Section 5.1).
Then, we present the performance of the ML-based QoE models trained on selected speech features
(Section 5.2).
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Table 5. ANOVA Results: LLDs that Contain
Functional Statistical Features with a P-Value < 0.01

for the Three Speech Files: OS, NRS, and NSS

LLD OS NRS NSS

audspec_lengthL1norm 7 4 1
audSpec_Rfilt 8 49 10
audspecRasta - 7 4
F0final - 2 3
jitterLocal 1 - 9
jitterDDP - - 3
logHNR - 3 2
mfcc_sma 43 20 25
pcm_fftMag 44 16 14
pcm_RMSenergy 3 3 3
pcm_zcr 5 3 -
shimmerLocal - - 4
voicingFinalUnclipped 2 4 8
Total 113 111 86

5.1 Statistical Analysis of Speech Features

As we mentioned in Section 3, we recorded the participants’ speeches while they were having the
audio-visual conversations. Therefore, we considered three versions of the speech files:

— Original Speech (OS): The original speech recorded from the participants during the ex-
perimental test. It contains the silent intervals (when the participant listens to the partner)
and the background noise recorded during the conversation.

— Noise Reduced Speech (NRS): We applied a non-stationary noise reduction method (called
spectral gating) to the original speech file to reduce the background noise. We used the nois-
ereduce2 Python algorithm [42, 43], which reduces noise in time-domain signals by contin-
uously adjusting the predicted noise threshold over time.

— Non-Silent Speech (NSS): We removed the silent intervals from the OS using the librosa3

Python library [36].

Utilizing the OpenSMILE feature extraction toolkit [19, 20], we extracted speech features from
each of the three speech files. In particular, we analyzed speech features over low-level descriptor

(LLD) contours with functionals relying on the ComParE acoustic feature set [46, 59]. For each
speech file, OpenSMILE extracts 64 LLDs specifically related to the energy (4), spectral (55), and
voicing (6) characteristics of the signal. Finally, a total of 6,373 functional statistical features are
computed and provided for the considered LLDs. These features were computed for all three speech
versions: OS, NRS, and NSS.

We obtained a total of 1,720,710 features’ statistics values (15 TCs × 18 participants × 6,373
features) for OS, NRS, and NSS. Then, we performed the one-way ANOVA between the speech
features (grouped for different TCs) and the corresponding ACR scores. Table 5 indicates the LLDs
that contain functional statistical features with a p-value < 0.01 for each of the three speech files.
Note that, compared to Section 4.1, we considered a lower significance level for the p-value in this
case, because the number of speech features is much larger than that of the facial features. Indeed,

2https://pypi.org/project/noisereduce/
3https://github.com/librosa/librosa
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Table 6. Number of ACR Scores (and Corresponding
Speech Features) before and after Data Augmentation

for the Three Speech Files: OS, NRS, and NSS

ACR Collected Augmented Samples

score samples OS NRS NSS

1 37 104 102 107
2 65 107 110 107
3 103 103 103 103
4 44 111 104 105
5 21 104 98 97

Total 270 529 517 519

Fig. 4. Variance of the original and synthetic speech features’ statistics for ACR scores 1, 2, 4, and 5. Note
that a logarithmic scale was used for the y-axis.

even with a lower threshold, we obtained a larger number of speech-significant features as a result
of the ANOVA analysis. In particular, a total of 113, 111, and 86 functional statistical features were
found to be statistically significant for the QoE when considering the OS, NRS, and NSS speech
files, respectively.

5.2 ML-based QoE Models Based on the Speech Features

Similarly to Section 4.2, before training the ML-based models with the speech feature’s statistics
identified in the previous section and summarized in Table 5, we performed data augmentation
using ADASYN to correct the dataset’s class imbalance. The number of ACR scores before and
after data augmentation for each of the three speech files is shown in Table 6. Note that the
number of augmented samples differs for the three speech files, because it also depends on the
different number of significant features found for each speech file. Moreover, in Figure 4, we
compare the variance of the original speech features’ statistics with the variance of the synthetic
speech features’ statistics produced by ADASYN for the ACR scores 1, 2, 4, and 5. It can be seen
that the synthetic samples follow the same data distribution as the original samples.
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Table 7. QoE Estimation Performance Achieved by the ML-based
Models Trained with the Speech Features

Speech file / Performance ACR score

ML model metric 1 2 3 4 5

Mean Acc. 0.83
OS Precision 0.85 0.71 0.76 0.80 0.99

SVM Recall 0.95 0.76 0.52 0.89 0.99
F1-Score 0.90 0.73 0.62 0.85 0.99

Mean Acc. 0.86
NRS Precision 0.98 0.89 0.61 0.99 0.99
SVM Recall 0.93 0.70 0.88 0.83 0.99

F1-Score 0.95 0.78 0.72 0.90 0.99
Mean Acc. 0.85

NSS Precision 0.93 0.79 0.76 0.83 0.93
SVM Recall 0.93 0.85 0.57 0.91 0.98

F1-Score 0.93 0.82 0.65 0.87 0.95

We then used the MATLAB software to train different ML algorithms (e.g., SVM, K-NN, decision
trees, naive Bayes, ensembles, and discriminant analysis) on the augmented datasets using the sig-
nificant features’ statistics identified in Section 5.1 to estimate the QoE. For all the ML algorithms,
the 70%/30% training/validation rate was used with a 5-fold cross-validation.

In particular, we considered the following subsets of features to train the classifiers:

— OS: The 113 significant speech features’ statistics.
— NRS: The 111 significant speech features’ statistics.
— NSS: The 86 significant speech features’ statistics.

The SVM with the linear kernel function and a box constraint level of 1 achieved the greatest
estimation performance for all of the three subsets of features. The k-NN classifier with the Eu-
clidean distance metric achieved the second-best results, followed by the SVM with a cubic kernel
function. Table 7 provides the performance obtained with the best classifier (e.g., the SVM with
the linear kernel) for the three speech files in terms of mean accuracy, and precision, recall, and
F1 scores calculated for every class of ACR scores.

The SVM trained on the NRS’s features’ statistics achieved the greatest mean accuracy, although
comparable to that achieved when training the SVM on the other two sets of features. Moreover,
the single recall for each class of ACR scores is at least 0.70 for NRS, whereas, for OS and NSS,
one of the single recall values (class 3) is lower than 0.60. Therefore, the speech feature’s statistics
extracted from the NRS file are the most suitable for building a QoE estimator. In general, all models
achieved single recall higher than 0.80 for classes 1, 4, and 5, while classes 2 and 3 were the most
difficult to predict for the QoE models. This can be due to the emotional speech features, which
are more informative when the perceived QoE is clearly low or high, whereas it is more difficult to
distinguish between poor and sufficient quality. The same trend was also obtained with the QoE
estimators trained on facial features.

6 QOE ESTIMATION BASED ON THE FACIAL AND SPEECH FEATURES

Previous sections demonstrated that SVM-based models trained on individual datasets of facial-
and speech-related features achieved a mean QoE estimation accuracy of up to 0.78 and 0.86, re-
spectively. In this section, we investigate the utilization of data fusion techniques to implement
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Table 8. Number of ACR Scores (and Corresponding Facial
and Speech Features) before and after Data Augmentation

ACR Collected samples Augmented samples

1 37 108
2 65 108
3 103 103
4 44 106
5 21 96

Total 270 521

a QoE estimation model based on both the facial- and speech-related features with the aim of
enhancing the QoE estimation performance.

6.1 Input Features and Data Augmentation

We define FAC(270,18) the facial features dataset and SP(270,111) the speech features dataset. 270 is
the number of feature samples corresponding to the ACR scores collected during the subjective
test, 18 are the facial features of Subset4 described in Section 4.2, and 111 are the most significant
speech features extracted from the NRS file described in Section 5.2. We define L(270,1) the matrix
of 270 ACR scores (labels).

Before applying data fusion techniques on the FAC and SP datasets, we need to apply the
ADASYN data augmentation technique to reduce the datasets’ class imbalance of the ACR scores.
We cannot rely on the individual augmented datasets discussed in Sections 4.2 and 5.2, because
their number of class samples is different, which makes them not compatible for data fusion.

Therefore, we first horizontally concatenated the FAC and SP datasets as in Equation (1) to
create the FAC-SP single dataset:

FAC-SP(270,129) = [FAC(270,18) |SP(270,111)]. (1)

Then, we applied the ADASYN algorithm on the FAC-SP dataset and the corresponding L ma-
trix, as in Equation (2), for creating synthetic features and label samples reducing class imbalance:

[FACauд , SPauд ,Lauд] = ADASYN(FAC-SP,L), (2)

where FACauд (521,18) , SPauд (521,111) , and Lauд (521,1) are the augmented facial and speech datasets
and the augmented matrix of labels, respectively. To obtain a normalized distribution of the data
in each dataset, both FACauд (521,18) and SPauд (521,111) have been normalized using the Z-score
function. Table 8 summarizes the number of augmented samples for each class. This approach
allowed us to create synthetic samples for both facial and speech features corresponding to the
same label as well as augmented facial and speech features datasets including the same number of
class samples.

6.2 Data Fusion

The SVM is the ML classifier that demonstrated to achieve the best QoE estimation performance on
the individual facial and speech features datasets. Thus, we utilized an SVM as the ML classifier and
we considered two data fusion approaches to fuse the FACauд and SPauд datasets: the Principal

Component Analysis (PCA) and the Improved Centered Kernel Alignment (ICKA). The
PCA is a popular and standard technique for analyzing, interpreting, reducing the dimensionality,
and fusing large datasets containing a high number of features [31]. The ICKA is a kernel fusion
technique developed for SVM classifiers [34].
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Table 9. QoE Estimation Performance Achieved by the SVM Model
Trained with Facial and Speech Features Fused with PCA and ICKA

Techniques

Data fusion Performance ACR score

technique metric 1 2 3 4 5

PCA

Mean Acc. 0.84
Precision 0.95 0.74 0.60 0.93 0.95

Recall 0.90 0.85 0.71 0.86 0.90
F1-score 0.93 0.78 0.68 0.87 0.93

ICKA

Mean Acc. 0.93
Precision 0.85 0.83 0.82 0.95 0.87

Recall 0.92 0.92 0.91 0.99 0.93
F1-score 0.87 0.85 0.80 0.95 0.88

6.2.1 Principal Component Analysis. The PCA is a statistics technique used to reduce the di-
mensionality of a dataset while retaining as much as possible of the original data variance. The
PCA transforms the original dataset into a reduced dataset of new variables capturing the most
important patterns and relationships in the data. This characteristic of the PCA can be exploited
for data fusion, which is the process of combining data from multiple sources to create a unified
view of the underlying phenomenon. Therefore, we first applied PCA separately on the FACauд

and SPauд datasets to extract the most important patterns and relationships. By applying the elbow
method, we found the first four PCA components include the greatest percentage of data variance
(95%) for both datasets. We define FACPCA

auд and SPPCA
auд the augmented facial and speech features

datasets transformed after the application of the PCA. Then, we horizontally concatenated the
transformed datasets as in Equation (3):

FAC-SPPCA
auд = [FACPCA

auд |SPPCA
auд ]. (3)

We trained the SVM on the FAC-SPPCA
auд dataset with a 5-fold cross-validation approach by

applying a 70%/30% training/validation split rate. To obtain the best-tuned SVM, we used the
GreedSearchCV function.4 We considered the following tuning parameters: the penalty parameter
of the error term C = {0.1, 1, 10, 100, 1000}, the parameter γ = {1, 0.1, 0.01, 0.001, 0.0001}, and
three kernels K : дaussian, linear , and radial basis . The results in Table 9 are obtained withC = 10,
γ = 1, and K = radial basis .

6.2.2 Improved Centered Kernel Alignment. The ICKA [34] is a method used for ML feature
fusion tasks. It is an extension of the kernel alignment method, which measures the similarity
between two datasets by computing the inner product of their corresponding kernel matrices. The
main idea behind ICKA is to compute the SVM kernel alignment between the ideal kernel blocks
and the base kernel that are selected to be representative of the data. Then, we construct the fuse
kernel by a weighted linear combination of multiple aligned kernels. Thus, we define the SVM
optimization by approaching its dual problem formulation and applying the “kernel trick” to avoid
mapping the features into the high dimensional space. Therefore, according to the SVM definition
reported in Reference [58], we can define the SVM with the following optimization function:

max
α

m∑

i=1

αi −
1

2

m∑

i=1

m∑

j=1

αiα jyiyjk (xix j ), (4)

4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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which is subject to

αi ≥ 0, i = {1, . . . ,m},
m∑

i=1

aiyi = 0, (5)

where αiα j are Lagrange multipliers, x is the set of samples, m is the total number of samples
in the set of features x , y is the set of labels, and k (xix j ) is the kernel trick non-linear mapping
function. As introduced before, the fusion kernel can be obtained with a weighted sum of multiple
base kernels to integrate the different types of features, as follows:

k
(
xi ,x j

)
=

H∑

h=1

dhkh

(
xi ,x j

)
, s .t . dh � 0, and

H∑

h=1

dh = 1, (6)

where dh is the non-negative weight for the base kernel and H is the total number of base kernels.
dh is obtained as follows:

dh = dist (Kh )/
H∑

h=1

dist (Kh ). (7)

The dist function is the distance measured between the base kernel and the ideal kernel, which
is defined as follows:

dist (Kh ) =
C∑

c=1

S ( |Dhc |)/S ( |Kh |), (8)

where h = {1, 2, . . . ,H }, c = {1, 2, . . . ,C} identifies the number of classes, S is the sum function of
all elements of the matrix Dhc , and D is the diagonal block element that identifies the class c and
base kernel h. Dhc is obtained from the ideal kernel block Kblock defined as:

Kblock (X ,X ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dh1

. . .

Dhc

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (9)

where h = {1, 2, . . . ,H } and c = {1, 2, . . . ,C}.
Thus, according to Equation (6), we can define the fuse obtained kernel as:

ICKAKernel = df acekf ace

(
xi ,x j

)
+ dspeechkspeech

(
xi ,x j

)
. (10)

The ICKAkernel is used as the input kernel of the SVM. Similarly to the PCA approach, we
tuned the SVM using the GreedSearchCV function, performing a 5-fold cross-validation, dividing
the dataset with a 70%/30% split rate, and finding the bestC and γ parameters, respectively, equal
to 10 and 1.

6.3 Data Fusion Results

Table 9 shows the QoE estimation results in terms of mean accuracy, precision, recall, and F1-score
obtained with the SVM classifier using the PCA and ICKA data fusion techniques. The PCA-based
solution reached a mean accuracy of 0.84 that, compared to the ICKA-based method, is 9% lower.
Comparing the recall results between the two approaches, the PCA-based one obtained results
comparable to the ICKA-based method for classes 1 and 5. The remaining classes achieved worse
and less stable results. ICKA recall results appear to be more stable and always greater than 0.90.
The precision and the F1-score metrics reported that ICKA has fewer misclassification issues. Still,
the results are always greater than 0.80, which makes the ICKA-based SVM suitable to predict
the five rating scales of the perceived quality. Comparing the QoE estimation results achieved
by the ICKA-based SVM with those achieved by the facial- and speech-based SVMs (reported in
Tables 4 and 7, respectively), it can be noted that the data fusion technique provided a significant
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Table 10. Comparison with the State-of-the-art in Terms of the Mean Accuracy

Method MLQoE [11] SpeechQoE [57] Ours (speech only) Ours (facial and speech)

Accuracy 0.76 0.81 0.86 0.93

performance improvement. Indeed, both the facial- and speech-based SVMs show weaknesses
when predicting the middle class 3, highlighting a very unbalanced prediction in favor of the
external classes. The best NRS SVM method obtained significantly lower scores of recall than the
ICKA-based method, obtaining for the classes 2, 3, and 4 recall scores lower than 22%, 16%, and 22%,
respectively.

Moreover, we have computed the Pearson correlation coefficient (PCC) and Root Mean

Square Error (RMSE) between the actual ACR scores and the ACR scores estimated with the
proposed PCA- and ICKA-based solutions. The PCC measures the linear correlation between two
sets of data. It is essentially a normalized measurement of covariance, whose result always falls
between −1 and 1. PCC values greater than 0.8 indicate a strong positive correlation between
the two sets of data, whereas PCC values lower than −0.8 indicate a strong negative correlation.
PCC values in the middle of these thresholds indicate low or no correlation between the datasets.
The RMSE measures the quadratic mean of the differences between the true and estimated values.
The lower the RMSE, the better the estimation quality. The ICKA-based solution achieved a
PCC of 0.984 and an RMSE of 0.255, whereas the PCA-based one achieved a PCC of 0.923 and
an RMSE of 0.561. These results highlight that both the solutions estimate ACR scores strongly
correlated with the real ACR scores. However, the ICKA-based method achieves a lower RMSE
(almost half) than that achieved by the PCA-based method. Thus, the ICKA-based solution is
the most accurate solution to estimate single ACR scores based on speech- and facial-based
features.

6.4 Comparison with the State-of-the-art

Finally, in Table 10, we compare the performance of our method, in terms of the mean accuracy,
with that achieved with state-of-the-art methods. Our method is the only one in the literature
that estimates the QoE based on both facial and speech features, which achieved a mean accuracy
of 0.93. By only considering the speech, our method achieved an accuracy of 0.86, as presented in
Section 5. The MLQoE [11] takes as the input only the network conditions (Table 1 in this case) and
employs multiple ML algorithms to estimate the QoE. It achieved an accuracy of 0.76. This lower
performance may be due to speech-related features that are not being considered by this method.
The SpeechQoE model [57] converts speech-based cues into a QoE score. It takes as the input
the time-frequency domain speech spectrogram, from which it extracts implicit features by con-
ducting multiple levels of non-linear operations. In this case, the inputs were the time-frequency
domain speech spectrograms of the OS files described in Section 5.1. The SpeechQoE achieved an
accuracy of 0.81. However, it must be said that the SpeechQoE model was trained by considering
network conditions less disturbing than those considered in our study. In particular, the PLR
ranged from 0 to 3% and the delay from 0 to 500 ms; also, the jitter was not considered. This may
be the reason for the lower performance when compared to the performance achieved by our
method.

7 CONCLUSION

In this article, we focused on the joint exploitation of voice and facial expression features to
predict the quality of experience of the end-users during WebRTC video calls. This approach has
the advantage of building personalized QoE models as the personal instinctive reaction of the user
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that is seized by the facial expression and voice is extensively analyzed by the proposed method
with a total of 129 features that have been found to be statistically significant (111 for the voice
signal and 18 for the facial expression). This is not the case with most of the available models
where the human influencing factors are often neglected due to the difficulty in collecting relevant
parameters.

The proposed method has proved to be successful in predicting the QoE with an overall accuracy
of 0.93. This is quite higher than the case where only the facial expression or the voice features
are used, which achieved an accuracy of 0.78 and 0.86, respectively. Moreover, the proposed model
outperformed the state-of-the-art models. Whereas the application of the approach requires the
consent of the user (as is the case for most of the predictors), all the processing can be performed on
the user side with the computational power of a normal smartphone or PC. Only the final predicted
QoE level has to be shared with the service provider to take any action for service management.
This data can be used in real-time to take any reactive action (e.g., allocate more resources for the
service) in case of any quality issue or for offline analysis of the provided quality levels at different
network and service conditions.

In the future, we plan to extend this approach to other application scenarios, as we believe that
the correlation of the considered features with the QoE can be application-independent to a certain
extent. Indeed, by feeding the system also with the parameters that characterize the application, it
may be possible to achieve results comparable to the ones presented in this article with a general-
ized model. As the parameters considered may vary from one application configuration to another,
we will be experimenting a Multi-view (MV) learning that allows for improving generalization
efficiency by learning from multiple viewpoints.
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