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ABSTRACT
The Yang model is an example of noncommutative geometry on a background spacetime of constant curvature. We discuss the Hermitian
realizations of its associated algebra on phase space in a perturbative expansion up to sixth order. We also discuss its realizations on extended
phase spaces, that include additional tensorial and/or vectorial degrees or freedom.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0157268

I. INTRODUCTION
In recent years noncommutative models in curved spacetime have been extensively investigated, either from a formal perspective,1–13

also in connection with quantum field theory,14–16 or in view of their application in the study of phenomenological effects in cosmology.17,18

However, the first example of noncommutativity on a curved spacetime background was proposed by Yang19 already in 1947, soon after
Snyder had introduced the idea of a noncommutative spacetime.20 Yang’s proposal was based on an algebra which included phase space and
Lorentz generators, where the commutation relations between the components of the position operators, as well as those of the momentum
operators were not trivial, giving rise to a spacetime displaying both noncommutativity and curvature.

The noncommutative Yang algebra is a 15-parameter algebra, isomorphic to so(1, 5), defined by the relations

[x̂μ, x̂ν] = iβ2Mμν, [p̂μ, p̂ν] = iα2Mμν, [x̂μ, p̂ν] = iημνh,

[h, x̂μ] = iβ2p̂μ, [h, p̂μ] = −iα2 x̂μ, [Mμν, h] = 0,
[Mμν, x̂λ] = i(ημλ x̂ν − ηνλ x̂μ), [Mμν, p̂λ] = i(ημλp̂ν − ηνλp̂μ),
[Mμν, Mρσ] = i(ημρMνσ − ημσMνρ − ηνρMμσ + ηνσMμρ), (1)

where α and β are real parameters and ημν the flat metric and we use natural units, h = c = 1. The Yang algebra is a Lie algebra, and therefore
automatically satisfies the Jacobi identities.

We interpret the operators x̂μ and p̂μ as coordinates of the quantum phase space, Mμν as generators of the Lorentz transformations and
h as a further scalar generator, necessary to close the algebra. The algebra (1) is invariant under Born duality,21 α↔ β, x̂μ → −p̂μ, p̂μ → x̂μ,
Mμν ↔Mμν, h↔ h. It contains as subalgebras both the de Sitter and the Snyder algebras, to which it reduces in the limit β→ 0 and α→ 0,
respectively.

We have investigated the Yang model in previous papers. In particular, in 11 and 12 we have considered noncommutative models in a
spacetime of constant curvature and discussed their realizations on a quantum phase space. These models preserve the Lorentz invariance and,
besides Yang proposal, include some generalizations.1,2 Later, in 13, we have discussed the possibility of obtaining Yang model by symmetry
breaking of an algebra defined in an extended quantum phase space that includes also tensorial generators, of the kind introduced in 22–26
for the Snyder model.
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Following 12, in this paper we shall investigate the realizations of the Yang algebra in terms of a restricted number of operators of a
Hilbert space, the simplest case being realizations in terms of phase space variables xμ and pμ.11,12 However, we shall use a more efficient
procedure than in 12 for going to higher orders. Moreover, several possibilities arise depending on how many operators are introduced to
generate the Hilbert space, as we discuss in Secs. II–V. For example, one may consider the Lorentz generators as independent from the phase
space ones, as proposed in 22–25 in the case of the Snyder model. Some choices may be useful to obtain Hopf algebra structures, which are
not possible in a phase space realization. In general, we shall only obtain perturbative realizations of the algebra, since analytic results seem to
be out of reach.

II. REALIZATIONS OF YANG MODEL ON QUANTUM PHASE SPACE
In this section, we look for Hermitian realizations in quantum phase space, with

x̂†
μ = x̂μ, p̂†

μ = p̂μ, M†
μν =Mμν, h† = h, (2)

where x̂μ, p̂μ, Mμν and h are functions of phase space operators xμ and pμ that satisfy the Heisenberg algebra

[xμ, xν] = [pμ, pν] = 0, [xμ, pν] = iημν, (3)

with
Mμν = xμpν − xνpμ, (4)

and pμ ⊳ 1 = 0, Mμν ⊳ 1 = 0. Of course the realizations so defined can be implemented in a Hilbert space by the standard substitution xμ → xμ,
pμ → −i ∂

∂xμ , or xμ → i ∂
∂pμ , pμ → pμ.

In the limit α = 0, a Hermitian realization of the algebra (1) is given by12

x̂μ(β) =
1
2
(xμ

√
1 − β2p2 +

√
1 − β2p2 xμ), p̂μ = pμ, h =

√
1 − β2p2. (5)

Analogously, when β = 0, a realization is

p̂μ(α) =
1
2
(pμ

√
1 − α2x2 +

√
1 − α2x2 pμ), x̂μ = xμ, h =

√
1 − α2x2. (6)

However, when both α ≠ 0 and β ≠ 0, we get

[x̂μ(β), p̂ν(α)] =
i
2

ημν(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) ) + 1

4
xμ(pνK + Kpν) +

1
4
(pνK + Kpν)xμ =

i
2

ημν(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) ) + 1

4
pν(xμK + Kxμ) +

1
4
(xμK + Kxμ)pν, (7)

where

K =
∞
∑

m,n=0
(

1
2
m
)(

1
2
n
)(−β2)m(−α2)n[p2m, x2n] =

−i(α2β2D + α2β4

4
(p2D +Dp2) + α4β2

4
(x2D +Dx2) + ⋅ ⋅ ⋅), (8)

with D = 1
2(x ⋅ p + p ⋅ x).(We denote x2 = xαxα, x ⋅ p = xαpα, and so on.)

This result is different from iημνh(x, p) and therefore x̂μ(β) and p̂μ(α) are not a realization of the Yang algebra. In order to construct a
true realization of the Yang algebra, we fix p̂μ = p̂μ(α) and define x̂μ = eiG x̂μ(β)e−iG, choosing G such that [x̂μ, p̂ν] = iημνh. In general, we can
expand G as

G =
∞
∑

m,n=1
α2mβ2ng2m,2n, (9)

where g2m,2n are functions of x2, p2 and D. From x̂μ = eiG x̂μ(β)e−iG, it follows
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x̂μ = x̂μ(β) + i[G, x̂μ(β)] +
i2

2!
[G, [G, x̂μ(β)]] + ⋅ ⋅ ⋅ . (10)

Then, up to sixth order in α and β, we get

[G, x̂μ(β)] = α2β2[g22, xμ] −
α2β4

4
[g22, xμp2 + p2xμ] + α2β4[g24, xμ] + α4β2[g42, xμ]. (11)

Hence,

[x̂μ, p̂ν] = [x̂μ(β), p̂ν(α)] + iα2β2[[g22, xμ], pν] − i
α2β4

4
[[g22, xμp2 + p2xμ], pν]

+ iα2β4[[g24, xμ], pν] + iα4β2[[g42, xμ], pν] −
i
4

α4β2[[g22, xμ], pνx2 + x2pν]. (12)

Substituting in (7), it follows

[x̂μ, p̂ν] =
i
2

ημν(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) ) − iα2β2

4
(xμ(pνD +Dpν) + (pνD +Dpν)xμ)

− iα2β4

16
(xμ(pν(p2D +Dp2) + (p2D +Dp2)pν) + (pν(p2D +Dp2) + (p2D +Dp2)pν)xμ)

− iα4β2

16
(xμ(pν(x2D +Dx2) + (x2D +Dx2)pν) + (pν(x2D +Dx2) + (x2D +Dx2)pν)xμ)

+ iα2β2[[g22, xμ], pν] − i
α2β4

4
[[g22, xμp2 + p2xμ], pν] + iα2β4[[g24, xμ], pν] + iα4β2[[g42, xμ], pν]

− i
4

α4β2[[g22, xμ], pνx2 + x2pν]. (13)

Requiring that only terms proportional to ημν survive, one obtains (see the Appendix)

g22 =
1
6
(D3 − 1

2
D), g24 = −

1
16
(Dp2 + p2D), g42 = −

1
16
(Dx2 + x2D). (14)

Hence, at this order,

G = α2β2

6
(D3 − 1

2
D) − α2β2

16
(D(α2x2 + β2p2) + (α2x2 + β2p2)D), (15)

and then

x̂μ =
1
2
(xμ

√
(1 − β2p2) +

√
(1 − β2p2) xμ) +

α2β2

4
(xμD2 +D2xμ)

− α2β2

16
[xμ(α2x2 + β2p2) + (α2x2 + β2p2)xμ + 2β2(Dpμ + pμD)

− β2((xμp2 + p2xμ)D2 +D2(xμp2 + p2xμ))],

p̂μ =
1
2
(pμ

√
1 − α2x2 +

√
1 − α2x2 pμ), (16)

and [x̂μ, p̂ν] = iημνh, with

h = 1
2
(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) + α2β2D2)

+ α2β2

8
(β2p2 − α2x2 + β2(p2D2 +D2p2) − α2(x2D2 +D2x2)). (17)

We point out that infinitely many realizations can be obtained from x̂μ and p̂μ in (16) by similarity transformations, defined by acting
simultaneously with eiG(D,x2 ,p2) on all generators x̂μ, p̂μ, Mμν and h obtained above. Note that Mμν is invariant under these transformations
because G is a function of Lorentz-invariant operators, but h is not invariant since [G, h] ≠ 0.
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Special classes of realizations are

x̂μ(c1) = e−ic2G x̂μeic2G = eic1G x̂μ(β) e−ic1G,

p̂μ(c2) = e−ic2Gp̂μeic2G = e−ic2Gp̂μ(α) eic2G,

h(c1, c2) = e−ic2Gh eic2G, (18)

with G given in (15) and c1 + c2 = 1.
At sixth order in α and β we have

x̂μ(c1) =
1
2
(xμ

√
(1 − β2p2) +

√
(1 − β2p2) xμ) + c1

α2β2

4
(xμD2 +D2xμ)

− c1
α2β2

16
[xμ(α2x2 + β2p2) + (α2x2 + β2p2)xμ + 2β2(Dpμ + pμD)

− β2((xμp2 + p2xμ)D2 +D2(xμp2 + p2xμ))],

p̂μ(c2) =
1
2
(pμ

√
(1 − α2x2) +

√
(1 − α2x2) pμ) + c2

α2β2

4
(pμD2 +D2pμ)

− c2
α2β2

16
[pμ(α2x2 + β2p2) + (α2x2 + β2p2)pμ + 2α2(Dxμ + xμD)

− α2((pμx2 + x2pμ)D2 +D2(pμx2 + x2pμ))],

h(c1, c2) =
1
2
(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) + α2β2D2)

+ (c1 − c2)
α2β2

8
(β2p2 − α2x2 + β2(p2D2 +D2p2) − α2(x2D2 +D2x2)). (19)

In particular, for c1 = c2 = 1
2 ,

h(1
2

,
1
2
) = 1

2
(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) + α2β2D2) (20)

and
[h(c1, c2), x̂μ(c1)] = iβ2p̂μ(c2), [h(c1, c2), p̂μ(c2)] = −iα2 x̂μ(c1). (21)

III. REALIZATIONS OF EXTENDED YANG MODEL ON QUANTUM PHASE SPACE
A different realization of the Yang algebra can be obtained introducing additional tensorial generators x̂μν = −x̂νμ, similarly to what has

been done in 22–26 for the Snyder model or in 27 for a more general setting. They are assumed to satisfy

[x̂μν, x̂ρσ] = i(ημρ x̂νσ − ημσ x̂νρ − ηνρ x̂μσ + ηνσ x̂μρ),
[x̂μν, xλ] = 0, [x̂μν, pλ] = 0. (22)

In this case, we consider realizations of Lorentz generators of the form

Mμν = x̂μν + xμpν − xνpμ, (23)

and Mμν ▹ 1 = x̂μν ▹ 1 = xμν, where xμν are commuting variables.
In the limit α = 0, a realization of the Yang algebra is given by

x̂μ(β) =
1
2
(xμ

√
1 − β2p2 +

√
1 − β2p2xμ) − β2 x̂μα

pα

1 +
√

1 − β2p2
, p̂μ = pμ, h =

√
1 − β2p2. (24)

Analogously, when β = 0,

p̂μ(α) =
1
2
(pμ

√
1 − α2x2 +

√
1 − α2x2pμ) + α2 x̂μα

xα

1 +
√

1 − α2x2
, x̂μ = xμ, h =

√
1 − α2x2. (25)
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Also in this case, if both α ≠ 0 and β ≠ 0, x̂μ(β) and p̂μ(α) do not constitute a realization of the Yang algebra, since [x̂μ(β), p̂ν(α)] ≠ iημνh.
Therefore, as in the previous section, in order to construct a realization in terms of the extended algebra (22), we fix p̂μ = p̂μ(α) and define
x̂μ = eiG x̂μ(β)e−iG, constructing the operator G in such a way that [x̂μ, p̂ν] = iημνh.

From the expansion (9), we get at fourth order in α, β,

G = α2β2[1
6
(D3 − 1

2
D) − 1

8
x̂αβ(xαpβ + pβxα)D −

1
8

x̂αγ x̂βγ(xαpβ + pαxβ)]. (26)

Hence,

x̂μ = x̂μ(β) +
α2β2

4
(xμD2 +D2xμ) +

α2β2

4
x̂μαxαD − α2β2

8
(x̂αβ(xαpβ + pβxα)xμ)

− α2β2

8
(x̂αγ x̂μγ + x̂μγ x̂αγ)xα (27)

and
h = 1

2
(
√
(1 − α2x2)(1 − β2p2) +

√
(1 − β2p2)(1 − α2x2) + α2β2D2). (28)

There are infinitely many realizations obtained from x̂μ and p̂μ with arbitrary similarity transformations that are invariant under Lorentz
transformations and act on all generators x̂μ, p̂μ and h simultaneously. Note that Mμν is invariant under these transformation but h is not.

IV. REALIZATIONS OF YANG MODEL ON DOUBLE QUANTUM PHASE SPACE
A different class of realizations can be obtained by adding to the generators xμ, pν of the Heisenberg algebra new generators qμ and kμ

satisfying a second Heisenberg algebra,
[qμ, qν] = 0, [kμ, kν] = 0, [qμ, kν] = iημν, (29)

with
[xμ, qν] = [xμ, kν] = 0, [pμ, qν] = [pμ, kν] = 0, (30)

and
pμ ▹ 1 = 0, kμ ▹ 1 = 0, xμ ▹ 1 = xμ, qμ ▹ 1 = qμ. (31)

These realizations are more symmetric in the phase space variables and might permit the definition of a Hopf structure. We shall call the
phase space obtained by the addition of qμ and kμ double quantum phase space.

In the limit α→ 0, a realization of the Yang model in this space is given by

x̂μ(β) =
1
2
(xμ

√
1 − β2p2 +

√
1 − β2p2 xμ) +

b
2
⎛
⎝

kμ

√
1 − β2q2

b2 +
√

1 − β2q2

b2 kμ
⎞
⎠

,

p̂μ = qμ + b̃ pμ, h = b̃
√

1 − β2p2 − b

√
1 − β2q2

b2 , Mμν = xμpν − xνpμ + qμkν − qνkμ, (32)

with nonvanishing parameters b and b̃, with b̃ − b = 1. Analogously, when β = 0,

p̂μ(α) =
1
2
(qμ

√
1 − α2k2 +

√
1 − α2k2 qμ) +

b̃
2

⎛
⎜
⎝

pμ

¿
ÁÁÀ1 − α2x2

b̃ 2 +

¿
ÁÁÀ1 − α2x2

b̃ 2 pμ
⎞
⎟
⎠

,

x̂μ = xμ + b kμ, h = −b
√

1 − α2k2 + b̃

¿
ÁÁÀ1 − α2x2

b̃ 2 , Mμν = xμpν − xνpμ + qμkν − qνkμ. (33)

As usual, if both α ≠ 0 and β ≠ 0, x̂μ(β) and p̂μ(α) are not a realization of the Yang algebra.
In order to construct realizations of the Yang model in this space, as in Secs. II and III, we set p̂μ = p̂μ(α) and x̂μ = eiG x̂μ(β)e−iG, and

construct the operator G such that [x̂μ, p̂ν] = iημνh. In general, G can be expanded as in (9).
Proceeding as usual, we get at fourth order in α and β,

G = α2β2

6
[ 1

b̃ 2 (D3 − 1
2

D) − 1
b2 (D̃ 3 − 1

2
D̃)], (34)
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where D̃ = 1
2(k ⋅ q + q ⋅ k). Hence,

x̂μ = x̂μ(β) +
α2β2

4
[ 1

b̃ 2 (xμD2 +D2xμ) +
1
b
(kμD̃ 2 + D̃ 2kμ)] (35)

and

h = b̃
2

⎛
⎜
⎝

¿
ÁÁÀ(1 − β2p2)(1 − α2x2

b̃ 2 ) +
¿
ÁÁÀ(1 − α2x2

b̃ 2 )(1 − β2p2)
⎞
⎟
⎠

+ b
2

⎛
⎜
⎝

¿
ÁÁÀ(1 − α2k2)(1 − β2q2

b
) +
¿
ÁÁÀ(1 − β2q2

b
)(1 − α2k2)

⎞
⎟
⎠
+ α2β2

2
(1

b̃
D2 − 1

b
D̃ 2). (36)

Again, infinitely many realizations can be obtained by acting on (35) and (36) with similarity transformations.

V. REALIZATIONS OF EXTENDED YANG MODEL ON DOUBLE QUANTUM PHASE SPACE
Let us finally consider the Yang model with both additional phase space generators and additional Lorentz generators. Realizations of

this kind have been considered in 13 in a slightly different formalism, see Sec. VI. The additional Lorentz generators x̂μν are introduced as in
Sec. III, such that

Mμν = x̂μν + xμpν − xνpμ + qμkν − qνkμ, (37)

and Mμν ▹ 1 = x̂μν ▹ 1 = xμν, where xμν are commutative parameters.
Proceeding as usual, one can show that realizations up to second order in α2, β2 are in this case

x̂μ = xμ −
β2

4
(xμp2 + p2xμ) + b kμ −

β2

4b
(kμq2 + q2kμ) −

β2

2b̃
(xμαpα − xμαqα),

p̂μ = qμ −
α2

4
(qμk2 + k2qμ) + b̃ pμ −

α2

4b̃
(pμx2 + x2pμ) +

α2

2b
(xμαkα + xμαxα), (38)

with

h = 1 − 1
2
(α2

b̃
x2 + β2b̃ p2 − β2

b
q2 − α2b k2). (39)

Also in the present case infinitely many realizations can be obtained by similarity transformations.

VI. CONCLUDING REMARKS
In this paper we have assumed that in the limit α = 0, β = 0, the Yang algebra (1) reduces to the ordinary Heisenberg algebra with Lorentz

algebra action and h→ 1. Realizations are obtained in terms of quantum phase space and double quantum phase space with or without
tensorial coordinates.

An approach to the Yang algebra alternative to the one we have considered here is to view it as a Lie algebra with 15 generators x̂μ, p̂μ, Mμν

and ĥ. When all structure constants go to zero, it reduces to a commutative space with coordinates xμ, qμ, xμν and h with relations x̂μ ▹ 1 = xμ,
p̂μ ▹ 1 = qμ, Mμν ⊳ 1 = xμν and h = 0. Realizations of this Yang algebra can be found using the method of realizations of Lie algebras described
in 10 and 27. These realizations are linear in the position coordinates, but are given by power series in the momenta. Such approach was used
in 23–25 for the extended Snyder model and in 13 for the Yang model.

We also notice that the Yang model can be obtained from the so(1, 5) algebra with 15 generators MAB (A, B = 1, . . . , 5), through the
relations x̂μ = βMμ4, p̂μ = αMμ5 and ĥ = αβM45. A realization of so(1, 5) in symmetric ordering has been presented in 27 and can be used for
the Yang model as well.

As future prospects of our investigations we may envisage the possibility of constructing a star product and a twist using the double
quantum phase space. Also the definition of a field theory on a spacetime based on the Yang model can be pursued from the present results
and would be of great interest.

Finally, we remark that at the classical level, the symplectic structure of the Snyder-like models can be obtained from dynamical models,
see for example.5,7,28,29 In a similar way one can write down an action for the Yang model, for example using the general procedure illustrated
in 30, (see also Ref. 31). However, the results are cumbersome and we shall not report them here.
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Tea Martinić-Bilać: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Validation (equal); Writing – review & edit-
ing (equal). Stjepan Meljanac: Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Supervi-
sion (equal); Validation (equal); Writing – original draft (equal). Salvatore Mignemi: Conceptualization (equal); Formal analysis (equal);
Investigation (equal); Methodology (equal); Validation (equal); Writing – original draft (equal).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

APPENDIX: PROOF OF RELATIONS (14)

In this the appendix we give some details on the calculations leading to (14).
Starting from (13), we can compute the terms proportional to α2β2. These are given by

i[[g22, xμ], pν] −
i
4
(xμ(pνD +Dpν) + (pνD +Dpν)xμ) =

[i[g22, xμ] −
1
4
(xμD2 +D2xμ), pν] +

i
2

ημνD2. (A1)

Requiring that only terms proportional to ημν survive in (A1), one gets

i[g22, xμ] =
1
4
(xμD2 +D2xμ), (A2)

which is solved by

g22 =
1
6
(D3 − 1

2
D). (A3)

Then,
i[[g22,

1
2
(xμp2 + p2xμ)], pν] ≈ −

1
8
((xμp2 + p2xμ)Aν + Aν(xμp2 + p2xμ)) (A4)

and
i[[g22, xμ],

1
2
(pνx2 + x2pν)] ≈ −

1
8
((pνx2 + x2pν)Bμ + Bμ(pνx2 + x2pν)), (A5)

with Aμ = Dpμ + pμD and Bμ = Dxμ + xμD and the ≈ symbol means that we are discarding the terms proportional to ημν.
Substituting in (13) gives at order α2β4,

i[[g24, xμ], pν] +
i

16
((xμp2 + p2xμ)Aν + Aν(xμp2 + p2xμ)) −

i
16
(xμp2Aν + xμAνp2

+ p2Aνxμ + Aνp2xμ) ≈ i[[g24, xμ], pν] +
i
4

pμpν. (A6)

The last expression vanishes if

[g24, xμ] = −
i
8
(Dpμ + pμD), (A7)

and then, up to terms that give contributions proportional to ημν,

g24 = −
1

16
(Dp2 + p2D). (A8)

J. Math. Phys. 64, 122302 (2023); doi: 10.1063/5.0157268 64, 122302-7

© Author(s) 2023

 13 D
ecem

ber 2023 12:04:48

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

At order α4β2, one gets instead

i[[g42, xμ], pν] +
i

16
((pνx2 + x2pν)Bμ + Bμ(pνx2 + x2pν)) −

i
16
(pνx2Bμ + pνBμx2

+ x2Bμpν + Bμx2pν) ≈ i[[g42, xμ], pν] +
i
4

xμxν. (A9)

The last expression vanishes up to terms proportional to ημν if

[g42, xμ] =
i
8

x2xμ, (A10)

and then
g42 = −

1
16
(Dx2 + x2D). (A11)

More generally, if we define

p̂μ(α) =
∞
∑
m=0

α2mp(2m)
μ , x̂μ(β) =

∞
∑
n=0

β2nx(2n)
μ , (A12)

and

x̂μ = eiG x̂μ(β)e−iG = x̂μ(β) +
∞
∑
n=1

1
n!
(ad iG)n x̂μ(β), (A13)

with

G =
∞
∑

m,n=1
α2mβ2ng2m,2n, h =

∞
∑

m,n=0
α2mβ2nh2m,2n, (A14)

and h0,0 = 1, then from [x̂μ, p̂ν(α)] = iημνh, we get at order α2mβ2n,

[x(2n)
μ , p(2m)

ν ] + ∑
m1+m2=m
n1+n2=n

[[ig2m1 ,2n1 , x(2n2)
μ ], p(2m2)

ν ]

+ 1
2! ∑

m1+m2+m3=m
n1+n2+n3=n

[[ig2m1 ,2n1 , [ig2m2 ,2n2 , x(2n3)
μ ]], p(2m3)

ν ] + ⋅ ⋅ ⋅ = iημνh2m,2n. (A15)

The last term on the left hand side has the form 1
k! [(ad iG2,2)k(xμ), pν], where k = min(m, n). These relations can be solved recursively to

compute g2m,2n and h2m,2n using the results for g at lower orders.
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