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The response of a thin film flowing under an inclined
plane, modeled using the lubrication equation, is
studied. The flow at the inlet is perturbed by
the superimposition of a spanwise-periodic steady
modulation and a decoupled temporally-periodic
but spatially-homogeneous perturbation. As the
consequence of the spanwise inlet forcing, so-called
rivulets grow downstream and eventually reach
a streamwise-invariant state, modulated along the
direction perpendicular to the flow. The linearized
dynamics in the presence of a time-harmonic inlet
forcing shows the emergence of a time-periodic
flow characterized by drop-like structures (so-called
lenses) that travel on the rivulet. The spatial evolution
is rationalized by a weakly non-parallel stability
analysis. The occurrence of the lenses, their spacing
and thickness profile, is controlled by the inclination
angle, flow rate, and the frequency and amplitude of
the time-harmonic inlet forcing. The faithfulness of the
linear analyses is verified by non-linear simulations.
The results of the linear simulations with inlet forcing
are combined with the computations of non-linear
traveling lenses solutions in a double-periodic domain
to obtain an estimate of the dripping length, for a large
range of conditions.
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1. Introduction
The study of the dynamics of coating flows is of undeniable interest owing to its wide presence in
natural environments [1–5] and the large number of applications in industrial and manufacturing
processes [6,7]. Exhibiting a broad variety of flow behaviors, first systematic analyses of coating
flows were performed in the pioneering works of P.L. Kapitza and S.P. Kapitza, in inertia-
driven flows [8–10]. Besides, intriguing patterns in coating flows may emerge due to other
physical mechanisms as Marangoni effects [11–14], contact-line driven instabilities [15–18], or the
Rayleigh-Taylor instability [19].

According to the pioneering studies of Rayleigh [20] and Taylor [21], when a heavier fluid
lies above a lighter fluid, a flat interface is unstable to perturbations. When only gravity is
considered, all wavelengths are unstable. The range of unstable wavelengths is bounded when
capillary effects are considered [22]. The Rayleigh-Taylor instability of a thin film lying below
a horizontal substrate (whose normal points to the opposite direction of the gravity vector) has
been widely studied in the literature, starting from the work of Hynes [23]. In a situation in which
the film thickness is sufficiently small compared to the characteristic deformation lengths along
the horizontal directions, the lubrication approximation can be employed [24]. The instability
leads to pendent drops [25]. The equilibrium of such pendent drops was theoretically studied
by Pitts [26], demonstrating the existence of a critical volume beyond which the pendent drop is
unstable, as also shown in Marthelot et al. [27]. For sufficiently large thicknesses, these pendent
drops algebraically grow and drip [28]. The experimental investigation of Fermigier et al. [29]
showed that such pendent drops organize in hexagonal or square patterns.

When the substrate is tilted, the gravity component parallel to the substrate drives a flow
and a variety of patterns and dynamics were observed. Brun et al. [30] investigated the dripping
threshold relating it to the absolute instability of the flat film configuration. However, further
investigations in Scheid et al. [31] and Kofman et al. [32] showed that the absolute regime does
not predict the dripping satisfactorily. A further numerical study by Rohlfs et al. [33] showed the
existence of stationary traveling waves, invariant along the direction perpendicular to the flow.

Charogiannis et al. [34] performed an experimental campaign with a permanent influx,
identifying several three-dimensional patterns ranging from structures purely modulated along
the direction perpendicular to the flow (spanwise direction), so-called rivulets (see sketch of figure
1), to more complicated configurations with rivulets carrying traveling lenses. These rivulet
patterns were reminiscent of those observed in Lerisson et al. [35] in a similar set-up, and by
Rietz et al. [36], for a thin film on the outside of a vertical rotating cylinder.

Lerisson et al. [37] compared experiments with theoretical and numerical findings, showing
that, for some conditions of inclination angle and flow rate, a steady pattern of rivulets was
reached. After some distance from the inlet, these rivulets were characterized by a central lobe
of very large thickness and side lobes of very small thickness. The authors showed that the
central lobe was a streamwise-invariant profile well described by a two-dimensional pendent
drop shape, similar to the results of Pitts [38], but with a flow rate constraint rather than a volume
one. Subsequently, in Ledda et al. [39], the authors performed a secondary stability analysis of
these streamwise-saturated states, highlighting a strong stabilization mechanism as the plate was
inclined or the flow rate reduced. For small inclinations and large flow rates, traveling lenses
grew on the rivulets (see figure 1(a)), whose initial growth was well described by the linear
stability analysis. The non-linear behavior of such lenses was studied by Indeikina et al. [40],
where the authors experimentally investigated the dripping from a rivulet and described the
traveling lenses solution by matched asymptotic expansions, using a lubrication equation with
the linearized expression of the curvature. They interpreted the blow-up of the numerical solution
of the lubrication equation as the initial stage of dripping.

In Lerisson et al. [35], for a certain range of flow rate and inclination angle, the occurrence and
the spacing of these traveling lenses were experimentally tuned using a harmonic forcing at the
inlet, consisting of a variation of the total flow rate injected below the substrate. As confirmed by



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Ledda et al. [39], the streamwise-invariant rivulet profiles behaved as noise amplifiers in a certain
region of the parameter space. In such conditions, the flow instability depends on the imposed
temporal forcing at the inlet [41–44].

The study of pattern formation in complex flows relies on several theoretical approaches to
shed light on the resulting structures [19]. Among these methodologies, in this work we focus
on linear and non-linear analyses, which are in turn classified in local, weakly non-parallel, and
global approaches. Linear analyses stem from the linearization of the flow equations under the
assumption of small perturbations with respect to the so-called baseflow [45–47]. In this work,
the base flow evolves along the streamwise direction, i.e. it is non-parallel, and it is obtained
through steady non-linear numerical simulations described in Section 3. When the baseflow
is steady, the perturbation is expanded in normal form in time, i.e. ∼ exp[λt], and the linear
stability analysis is called global [47]. If the baseflow is invariant along one direction x1, the
perturbation can be expanded in normal form also along x1 (local stability analysis) [45,46].
An intermediate situation occurs when the base flow slowly evolves along this direction. The
separation of scales between the evolution of the baseflow and the perturbation allows one to
perform a weakly non-parallel (WKBJ) stability analysis [45,48,49]. The local stability analysis
problems at each x1 section are solved and then smoothly reconnected via an amplitude equation.
In all these linear problems, one typically obtains eigenfunction or linear forced problems, with
computational times significantly lower compared to the non-linear analyses, making them
suitable for parametric studies. The predictions often include the most unstable wavelength and
frequency of the instability from the local stability analysis [19] or the global structure of the
unstable mode [46,47]. Weakly non-parallel approaches are less computationally expensive than
global analyses and give further detail about the nature of the global instability and an accurate
description of the global mode. Non-linear analyses are complementary to the linear ones to verify
their faithfulness and investigate phenomena at larger amplitudes of the perturbation, where the
linear analyses cease to be valid. We will perform streamwise periodic non-linear simulations to
describe dripping lenses riding on a saturated rivulet profile in Section 6 as well as fully non-linear
global numerical simulations in Sections 5 and 7.

In this work, the complex interface patterns governing the thin film dynamics, with the
development of growing lenses on the top of spatially developing rivulets, are investigated
by focusing on the secondary instability of one single and spanwise-periodic rivulet, with a
perspective on the dripping phenomenon. The paper is organized as follows. In Section 2 the
lubrication model and the numerical implementation are presented. Subsequently, Section 3 is
devoted to the analysis of the steady rivulet emerging when a slightly modulated constant
thickness is imposed at the inlet, which will serve as a base state for the secondary stability
analysis conducted in Section 4, where the linearized dynamics of lenses around the steady
baseflow solution when the inlet is forced via a harmonic forcing is studied. In Section 4(c),
the observed patterns are rationalized via a weakly non-parallel (WKBJ) local stability analysis.
Subsequently, the non-linear response to harmonic inlet forcing is studied, and eventually the
non-linear periodic traveling lens solutions in periodic domains of various lengths is investigated.
This allows us, in Section 7, to unify the results of the previous sections to give an estimate of the
dripping length for a large range of inclination angle and flow rate.

2. Governing equation and numerical method
In this section, the governing equation for a thin film coating the underside of an inclined plane
and its numerical implementation are introduced. We consider a thin film of thickness ĥ, of a
viscous fluid flowing under a planar substrate, inclined with respect to the vertical direction of an
angle θ. The streamwise and spanwise directions are denoted (x̂, ŷ) (see figure 1). The streamwise
component of the gravity g reads gx = g cos(θ), while there is no projection along the spanwise
direction. The fluid properties are the viscosity µ, the density ρ, and the surface tension coefficient
γ. The capillary length `c =

√
γ/ (ρg) and the characteristic film thickness hN are introduced. The
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Figure 1: (a) Experimental photo of rivulets that carry lenses below an inclined planar substrate.
The fluid is silicon oil, of viscosity µ≈ 1 Pa s and density ρ≈ 970 kg/m3. The inclination angle
with respect to the vertical is 45◦ and the film thickness is ≈ 1 mm. (b) Sketch of the flow
configuration, with rivulets that invade the domain and lenses of small amplitude observed
downstream. (c) Sketch of a single rivulet that is carrying lenses.

characteristic time scale of the Rayleigh-Taylor instability reads

τ =
ν`2c

h3Ng sin2 θ
. (2.1)

Spatial directions x̂ and ŷ are non-dimensionalized by the reduced capillary length `∗c = `c/
√

sin θ,
thickness ĥ by hN and time by τ :

x= x̂/`∗c , y= ŷ/`∗c , h= ĥ/hN , t= t̂/τ. (2.2)

The modelization of the flow of a thin film is based on the separation of scales between the
normal and tangential to the substrate length scales [10]. Different levels of approximation are
employed to describe the flow, depending on the considered regime. A set of boundary layer
equations holds for thin film flows mostly governed by gravity and surface tension [50]. When
the inertia of the flow is small, the boundary layer equations are further simplified, leading to
a single evolution equation for the thickness, called Benney equation [51–53]. Pumir et al. [54]
numerically observed a blow-up of the solution at large Reynolds numbers. To further extend
these models at larger Reynolds numbers, more refined methods have been proposed [31,55].
However, in this work we consider the situation in which the Reynolds number is very small and
inertial effects can be neglected. Despite this assumption, a plethora of patterns is observed, since
these simple non-inertial models already incur complex non-linearities [35,37]. For negligible
inertia, the Benney equation is accurate and widely employed [52]. The thin film model with
the complete expression of the curvature κ [6,37,39,56–58] is thus considered, together with the
above-defined non-dimensionalization:

∂h

∂t
+ ˜̀∗

c cot (θ)h2
∂h

∂x
+

1

3
∇ · (h3(∇h+∇κ)) = 0, (2.3)
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where∇ operates in the (x, y) plane, ˜̀∗
c = `∗c/hN and κ is the mean curvature:

κ=

∂2h
∂x2

(
1 +

(
1
˜̀∗
c

∂h
∂y

)2
)

+ ∂2h
∂y2

(
1 +

(
1
˜̀∗
c

∂h
∂x

)2
)
− 2

(
1
˜̀∗
c

)2
∂h
∂x

∂h
∂y

∂2h
∂x∂y(

1 +

(
1
˜̀∗
c

∂h
∂x

)2

+

(
1
˜̀∗
c

∂h
∂y

)2
)3/2

. (2.4)

The linear advection velocity u= ˜̀∗
c cot (θ) is introduced, which is the velocity of advection of

thickness perturbations of a flat film [30]. Note that the reported non-dimensionalized curvature
differs from Lerisson et al. [37], where the presence of the terms 1/˜̀∗

c was overlooked and assumed
to be unitary. In this work, we perform our analytical and numerical analyses for the case ˜̀∗

c = 1

and study the effect of u. This choice stems from our aim to put a maximum emphasis on the
non-linear curvature effects, which ensure an unstable behavior of the flow in a large range of u.

A configuration in which the flow is continuously fed at the inlet is considered. Spanwise-
periodic rivulet structures emerge and invade the domain, with a natural spacing Ly = 2π

√
2

[37]. In this work, we numerically investigate the evolution of one spanwise-periodic rivulet,
of natural spanwise periodicity Ly , when the inlet is temporally forced. A rectangular domain
of streamwise length Lx and spanwise length Ly = 2π

√
2 is considered, with inlet and outlet

conditions along the streamwise direction and periodic boundary conditions imposed along the
spanwise direction. The inlet condition is a flat film perturbed by a cosine along the spanwise
direction (of amplitude A and wavelength Ly) and by a time-periodic forcing f̃ (of amplitude ε),
imposed by a Dirichlet boundary condition of the form:

h(x= 0, y) = 1 + A cos(y/
√

2) + εf̃(y, t). (2.5)

The outlet condition is imposed by employing a Sponge method, as in Lerisson et al. [37], resulting
in the following equation to be numerically solved in the whole domain:

∂h

∂t
+ ˜̀∗

c cot (θ)h2
∂h

∂x
+

1

3
∇ · (h3(∇h+∇κ)) = Sp(x)(h− 1), (2.6)

where Sp(x) =− 1
2 (1 + tanh(x− 6Lx/7)) is the Mask function of the Sponge method [59] that

ensures the relaxation of the thickness to h= 1 and avoids reflections from the outlet.
Equations (2.4,2.6) are numerically implemented in the finite-element solver COMSOL

Multiphysics, employing third-order Lagrange shape functions. Both the steady and unsteady
solver are employed, exploiting respectively the built-in Newton-Rapson algorithm and a second-
order Backward Differentiation Formula. The Newton algorithm is initialized using the large-time
solution (t= 1000) of the unsteady equation for a value of u= 5, in which no unsteady instabilities
are numerically and experimentally observed owing to the large value of u [39]. The previous
solution is taken as initial guess for successive and smaller values of u. In the following, the
Sponge region is excluded from the results, leading to a domain of effective length Lx = 225,
unless stated differently. Numerical convergence is achieved with a characteristic size of the
elements equal to half of the reduced capillary length, already validated in previous works [37,39].
Furthermore, the presented results are not influenced by the imposed spanwise periodic length,
both for the steady and unsteady simulations. In Appendix A of the Electronic Supplementary
Material (ESM) some calculations for a spanwise size of Ly = 4π

√
2 and Ly = 8π

√
2 are repeated,

which exclude the presence of steady and unsteady sub-harmonic instabilities for the considered
spanwise wavelength forced at the inlet [45].

3. The steady baseflow
The present section is devoted to the study of the steady solution h=H(x, y) of the flow equation
(2.6), ε= 0, when inlet and outlet conditions in a spanwise-periodic box of spanLy are considered.
In equation (2.5),A=A∗ = 10−2 is assumed. In figure 2 the thickness profile in the (x, y) plane, for
decreasing values of u, is reported. In all cases, the thickness profile evolves from a flat condition
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Figure 2: Two-dimensional visualization of the steady baseflow H(x, y). From the top to the
bottom: u= 0.85, u= 1, u= 1.5, u= 2, u= 2.5, u= 2.75.

at the inlet, slightly perturbed with a cosine, to a streamwise-invariant rivulet state. The more u
decreases, the further downstream the streamwise-invariant rivulet state emerges.

In figure 2, (a) the variation of the minimum and maximum thickness with x (solid lines)
and (b) the resulting spanwise profiles at different streamwise locations are reported. In panel
(a), the maximum and the minimum thickness saturate respectively to ∼ 10−2 and ≈ 1.71. The
presence of a streamwise saturation allows one to define a healing length Lh for the saturated
rivulet profile, defined as the streamwise location beyond which d

dx max(H)< 10−4, marked by
an asterisk in figure 3(a). The healing length always increases with u and has a linear dependence
for u> 0.75. In panel (a), the dashed line denotes the streamwise amplification predicted by the
steady dispersion relation of the flat film [37], briefly summarized as follows. Introducing in
equation (2.3) the ansatz h= 1 + εη, ε� 1, with η∝ exp (i(kxx+ kyy), the equation atO(ε) leads
to the following dispersion relation:(

k2y − k4y
)

+
(
k4x + k2x + 2k2xk

2
y

)
= 3iukx, (3.1)

where kx and ky are respectively the streamwise and spanwise wavenumbers. The estimated
amplification then reads maxy(H) = 1 + A exp(κx), where κ=−min(Im(kx)) is the spatial
growth rate (i.e. the opposite of the imaginary part of kx) in the steady dispersion relation
(3.1) (figure 12(a) of Lerisson et al. [37]), for ky = 1/

√
2. The linear rivulet amplification well

approximates the non-linear simulations results, for small values of the perturbation η=H − 1.
The rivulet profiles (panel (b)) evolves from a slightly perturbed cosine to the saturated rivulet
profile.

So far, the steady solution of the flow equation (2.3) was studied for A=A∗. Owing to the
good agreement between the non-linear simulation and the linear rivulet amplification for low
amplitudes maxy(H)− 1 / 0.2, these results are generalized to different values of A. When the
amplitude is smaller than the studied case, i.e.A<A∗, the resulting mode is analogous to a cosine
and the initial part is thus approximated as

H(x, y) = 1 + A exp(κx) cos(
y√
2

), (3.2)

which is then connected, at some coordinate x= x∗ = 1
κ log

(
A∗

A

)
, to the solution for A=A∗

reported in figure 2. In contrast, forA∗ <A< 0.2, the solution is assumed to start at the coordinate
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Figure 3: (a) Evolution with x of the maximum and minimum values of the steady baseflow
H(x, y), for u= 0.85 (cyan), u= 1 (green), u= 1.5 (purple), u= 2 (yellow), u= 2.5 (orange),
u= 2.75 (blue). The stars denote the healing length for each value of u. In the inset: healing
length as a function of u. (b) u= 2. Evolution of the profile at different streamwise locations x= 0

(blue), x= 25 (orange), x= 50 (yellow), x= 100 (purple), x= 150 (green), x= 200 (cyan), x= 220

(maroon).

x= x0, where the reference solution H(x, y) initiated with A∗ attains A, i.e. H(x0, 0) =A. It thus
consists of a variation of the origin of the x axis.

The steady simulations of equation (2.3) show that the rivulet evolves along the streamwise
direction reaching a streamwise-saturated state. The latter is independent of u and is
characterized by a central lobe of large thickness and side lobes of low thickness. While in the
work of Ledda et al. [39] the attention was focused on the analysis of the evolution of unsteady
perturbations of the streamwise-invariant rivulet profile, hereafter the streamwise evolution of
the base flow starting at the inlet is included by studying the evolution of unsteady perturbations
with respect to the two-dimensional steady baseflow H(x, y).

4. Secondary stability analysis: linear response to harmonic inlet
forcing

(a) Linearized dynamics around the baseflow solution
In this section, the equation describing the linearized dynamics of a thickness perturbation with
respect to the steady baseflowH(x, y) defined in the previous section is introduced. The following
decomposition is considered:

h(x, y, t) =H(x, y) + εη̃(x, y, t), ε� 1, (4.1)

where η̃ is the perturbation with respect to the baseflow H(x, y). The decomposition (4.1) is next
introduced in the flow equation (2.6), leading to the baseflow equation at leading order (i.e. the
steady version of equation (2.3)) and the following equation at order ε:

∂tη̃ +
1

3
∇ ·
(
H3
(
∇η̃ +∇κ̃(1)

)
+ 3H2

(
∇H +∇κ(0) + u

)
η̃
)

= Sp(x)η̃ (4.2)

where the baseflow curvature κ(0) is given by equation (2.4) with ˜̀∗
c = 1, while the first order κ̃(1)

curvatures is expressed in terms of the x and y components of the normal vector at order ε and
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(a)

(b)

Figure 4: Global linear response, (a) real and (b) imaginary parts. Quantities are rescaled with the
maximum absolute value, u= 2.

reads, upon assumption of ˜̀∗
c = 1:

κ̃(1) =∇ · ñ(1), ñ(1) =
[∂xη̃(1 + ∂yH

2)− ∂yH∂y η̃∂xH, ∂y η̃(1 + ∂xH
2)− ∂yH∂xη̃∂xH]

(1 + ∂xH2 + ∂yH2)3/2
, (4.3)

and the inlet condition now reads:

η̃= f̃(y) = f(y) exp(iωt) (4.4)

In analogy to the non-linear equation (2.6), the numerical implementation of (4.2) is performed in
COMSOL Multiphysics.

The linearized equation (4.2) is the starting point for our analysis. In the following, the
dynamics of thickness perturbations with respect to the steady baseflow H(x, y), when the inlet
is temporally forced via a harmonic forcing, is studied. As it is well known from the literature,
the linear response of the base state for an external harmonic forcing is only well defined if
the baseflow is globally stable with respect to perturbations, i.e. there is no intrinsic oscillatory
behavior of the flow [44,45]. In Appendix B of the ESM, the global stability analysis is reported,
revealing that the instability occurs for u< u0, u0 = 0.56. In the following, values of u larger than
the global instability threshold, i.e. u> u0, are considered, thus focusing on the regime in which
the flow is said to be convectively unstable and behaves as a noise amplifier.

(b) Global linear analysis
In this section, we study the secondary instability of the spatially-developing and steady baseflow
H(x, y) subject to a harmonic inlet forcing f̃ of frequency ω, i.e. f̃ = f(y) exp(iωt). The equation
for the linearized dynamics (4.2) together with the following ansatz for the perturbation η̃ are
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Figure 5: Real part of the global linear response, for ω= 0.7, (a) at the centerline (solid) and on the
lateral boundary (dashed), for u= 2, and (b) from the top to the bottom, u= 1.5, u= 2, u= 3.

considered:
η̃(x, y, t) = η(x, y) exp(iωt) (4.5)

Substituting this expression in equation (4.2) and simplifying the exponential term, one obtains:

iωη +
1

3
∇ ·
(
H3
(
∇η +∇κ(1)

)
+ 3H2

(
∇H +∇κ(0) + u

)
η
)

= Sp(x)η, (4.6)

with the Dirichlet boundary condition η(x= 0, y) = f(y) at the inlet. The inlet forcing is first given
by

f(y) =
1√
Ly

, (4.7)

so that
∫
Γi
|f |2dy= 1. This forcing can be experimentally reproduced, as it consists of a time-

harmonic variation of the flow rate at the inlet, thus making this numerical study suitable for
further experimental validations.

Equation (4.6), together with the boundary condition (4.7) at the inlet and periodic ones on the
lateral sides, is a linear problem of the form iωIη + Lη= Bf , where L and B are respectively the
linearized operator and the so-called prolongation operator, which maps the boundary forcing
inside the domain. The numerical implementation is performed in COMSOL Multiphysics, in
analogy to the baseflow computation.

Figure 4 shows the response η, for u= 2 and for different values of the forcing frequency
ω. Close to the inlet, the perturbation strongly resembles a wavy oscillation, without any
appreciable dependence on the y direction. In the streamwise-invariant rivulet region, drop-like
structures, so-called lenses, are observed. The streamwise wavelength of the lenses decreases as
ω increases. Coincidently, the transition region between wavy oscillations and lenses is moved
slightly upstream. In this region, an intricate pattern is observed, with strong perturbations on
the lateral sides that are then damped downstream. Concerning the streamwise amplification of
the perturbation, a variety of behaviors is observed. For ω= 0.5, the peak in the amplitude is
located at x≈ 100, while for ω= 1 and ω= 1.5 it moves to the outlet. For ω= 2, a strong damping
of the so far growing oscillations is observed for x> 50, followed by a progressive and modest
increase of the amplitude of the lenses.

In figure 5(a), the evolution of the real part of the perturbation at the centerline, i.e. y= 0,
(solid line) and on the lateral side, i.e. y= π

√
2, (dashed line) is reported, for ω= 0.7 and u= 2.

Interestingly, at x≈ 75, close to the healing length Lh, the streamwise oscillations are not purely
sinusoidal as they become further downstream, but a more intricate profile is observed, both at
the centerline and on the lateral side.

Figure 5(b) presents the pattern for fixed forcing frequency ω= 0.7 and for three different
values of u. As u increases, the transition region is shifted downstream and lenses with increasing
streamwise extension are observed.
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Figure 6: (a) Variation of the Gain G(ω) with ω and for u= 1 (blue), u= 1.5 (orange), u= 2

(yellow), u= 2.5 (purple), u= 3 (green). In the inset: maximum value and optimal frequency for
different values of u. (b) Iso-contours of the Gain as a function of ω and the streamwise length of
the domain Lx, u= 2.

We now turn to a quantitative analysis of the linear response. A long-established way of
measuring the amplification of the response for a forcing frequency ω is the gain G(ω), defined
as the ratio between the amplitude of the output response and the amplitude of the input forcing
[44,45,60]. The gain is defined as follows:

G2 (ω) =

∫
Ω |η|

2dxdy∫
Γi
|f |2dy

, (4.8)

where Ω denotes the whole domain and Γi the inlet boundary. Note that, according to the
definition of f given in equation (4.7), the denominator of equation (4.8) is equal to one.

In figure 6(a) the gain G(ω), for different values of u, is reported. The gain curves are
characterized by a maximum (optimal) value, associated with an optimal frequency. The optimal
gain and frequency respectively increase and decrease as u decreases. From u= 3 to u= 1, the
gain increases of two orders of magnitude, from 102 to 104, and the optimal frequency decreases
from ωopt = 1.6 to ωopt = 0.8.

Since in some cases the maximum response is attained at the outlet, the effect of the streamwise
length Lx of the domain on the gain is reported in figure 6(b), for u= 2. For a fixed frequency
ω, the gain increases with the streamwise length. However, the optimal frequency only slightly
varies with the streamwise length, from a value of ωopt = 1.24 for Lx = 125 to ωopt = 1.29 for
Lx = 300.

The analysis of the linear response shows that, in the presence of a harmonic inlet forcing,
a secondary instability occurs on the spatially-developing rivulet and perturbations evolve
downstream into traveling lenses. The occurrence of such lenses is controlled by different
parameters. The first one is the linear advection velocity u, which is a combination of inclination
angle and flow rate. An increase of u leads to lenses of larger spacing and smaller amplitude. The
harmonic inlet forcing frequency ω modifies both the spacing and the amplitude of the lenses.

An optimal frequency that most amplifies the lenses is identified. The weak dependence of the
optimal frequency with the streamwise length of the domain indicates that the transition region
from flat film to saturated rivulet is crucial for the evolution and amplification of the inlet forcing.

Finally, figures 4 and 5(a) show an intricate evolution of the oscillations, in particular close to
the transition region between wavy oscillations and lenses. This observation suggests that there
may be different spatial modes that interact as the perturbation is advected downstream.
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In the following, the structure of the linear response is investigated by a weakly non-parallel
local stability analysis.

(c) Weakly non-parallel stability analysis (WKBJ)
In a parallel convectively unstable flow, the spatial stability branches fully describe the response to
harmonic forcing of frequency ω [49]. Within this framework, the perturbation with respect to the
streamwise-invariant baseflow reads η̃∝ exp (i (kxx− ωt)), where kx is the complex streamwise
wavenumber, resulting from the polynomial eigenvalue problem associated with the dispersion
relation [45]. The imaginary and real parts of kx respectively describe the amplification in space
and the spatial frequency.

The weak non-parallelism of the baseflow H(x, y) is included by employing the WKBJ
formalism introduced by Gaster et al. [48]. A fast and slow streamwise scales are introduced,
respectively denoted as x and X = σx, where σ is a measure of the weak non-parallelism of the
baseflow. The following ansatz for the perturbation η̃ is considered:

η̃(x, t) =A(X)η(X, y) exp

[
i

(
1

σ

∫X
0
kx
(
X ′
)

dX ′ − ωt

)]
(4.9)

where η is the local eigenvalue and A(X) is the envelope function which smoothly connects the
progressive slices of the spatial stability analysis. An asymptotic expansion in σ is performed on
the linearized equation (4.2). The detailed derivation is reported in Appendix C of the ESM. At
order O(1) the following eigenfunction problem is obtained:

− iωη + (ikx)uH2η +
1

3

d

dy
[3H2(∂yH + ∂yκ(0))η+

+H3(
dκ(1)

dy
+

dη

dy
)]− 1

3
k2x[H3(κ(1) + η)] = 0, (4.10)

which is formally analogous to the streamwise-invariant dispersion relation derived in Ledda
et al. [39], and it can be written in the form iωIη= Lη. At each streamwise cross-section, the
eigenmode is normalized imposing

∫Ly

0 η̂H η̂dy= 1, where (·)H denotes the transconjugate.
At order O(σ), as detailed in Appendix C of the ESM, a compatibility condition is imposed,

resulting in the following amplitude equation:

M(X)
dA
dX

+N(X)A= 0→A(X) =A(0) exp

(
−

∫X
0

N(X)

M(X)
dX ′

)
. (4.11)

The gain is expressed as follows:

G2(ω,Lx) =

∫Lx

0 A
H (x′)A (x′) ∫Ly

0

(
ηH
(
x′, y

)
· η
(
x′, y

))
dy

(
e
∫x′
0
−2Im(kx)dx

′′
)

dx′∫Ly

0 ηH(0, y) · η(0, y)dy
. (4.12)

Since at each cross section
∫Ly

0 ηHηdy= 1, the total gain simplifies to:

G2(ω,Lx) =

∫Lx

0
AH

(
x′
)
A
(
x′
)(

e
∫x′
0
−2Im(kx)dx

′′
)

dx′. (4.13)

The procedure is as follows. At each streamwise location x, we solve for the dispersion relation
(4.10), thus obtaining the streamwise wavenumber and the corresponding eigenvector. Then, the
coefficients of equation (4.11) are evaluated and the amplitude is obtained by integration of the
ODE.

The baseflow H(x, y) is the steady solution of equation (2.6) outlined in Section 3. The
baseflow is then imported in MATLAB for the resolution of the eigenvalue problem (4.10),
at each of the considered 500 streamwise locations in the range 0<x< 225. No appreciable
variations of the results are observed with a larger number of sections along the streamwise
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Figure 7: (a) Real part of the three unstable modes at the inlet, for ω= 0.5. (b,c) Imaginary (b)
and real (c) parts of the streamwise wavenumber, from the spatial stability analysis, for the
downstream unstable mode. The solid and dashed lines respectively denote Modes 1 and 2 at
the inlet. The colors identify ω= 0.1 (dashed blue), ω= 0.3 (dashed orange), ω= 0.5 (yellow),
ω= 0.7 (purple), ω= 0.9 (green), ω= 1.1 (cyan), ω= 1.3 (maroon), ω= 1.5 (black). The value of
the linear advection velocity is u= 2.

(a) (b)WKBJ - Mode 1

WKBJ - Mode 2

Global linear response

WKBJ - Mode 1

WKBJ - Mode 2

Global linear response

Figure 8: u= 2 and (a) ω= 0.1, (b) ω= 1.2. Comparison of the real part of the global linear
response (on the bottom) with the WKBJ real part of Mode 1 (top) and Mode 2 (center).

direction. The numerical discretization of the eigenfunction problem is performed using a Fourier
pseudospectral collocation method. A preparatory analysis shows that numerical convergence is
already achieved with 80 collocation points along the spanwise direction. The adjoint eigenvalue
problem, needed for the amplitude equation, is numerically solved by using the discrete adjoint
[45]. The derivatives of the baseflow, streamwise wavenumber and eigenvectors, required for
the amplitude equation (4.11), are evaluated using second-order finite differences. The numerical
integration of equation (4.11) is performed with the built-in MATLAB function trapz.

The results of the above-described analysis are now presented. In the context of spatial stability
analysis, negative values of the imaginary part of kx denote unstable configurations associated
with downstream propagating waves [19,45,49]. A preliminary analysis at the inlet shows that
the spectrum is characterized by three unstable modes associated with downstream propagating
waves. The three different modes are tracked along the streamwise direction by using the result
in the previous section as the initial guess for the calculation at the successive one. Two of the
modes are symmetric with respect to the axis y= 0, while the other one is antisymmetric. Figure
7(a) shows the real part of the three modes at the inlet section. We denote as flat or Mode 1 the
mode that is almost invariant along the spanwise direction, cosine or Mode 2 the mode analogous
to a cosine, and sine or Mode 3 the antisymmetric mode.

We focus on the symmetric modes, while the antisymmetric one is reported in the ESM
(Appendix D) as it is not relevant for the dynamics due to the chosen inlet forcing of Section 4(b).
For ω= 0.1, 0.3 the unstable lenses mode in the streanwise-invariant rivulet region originates
from Mode 2, while for ω > 0.5 it stems from Mode 1 (see figure 7(a)). Figure 7(b,c) shows the
streamwise evolution of kx for different values of the forcing frequency, and u= 2. Only the cases
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Figure 9: u= 2. (a) Gain resulting from the global linear approach, flat (Forcing 1, blue solid line)
and cosine (Forcing 2, orange solid line) inlet forcings. The dots are the values of the gain obtained
from the WKBJ analysis, flat (Mode 1, blue circles) and cosine (Mode 2, orange circles) inlet modes.
(b) Real part of the global linear response with the harmonic cosine forcing at the inlet (Forcing
2). Eigenvectors are rescaled with the maximum absolute value.

that evolve downstream to the unstable mode are reported. The imaginary and real parts of kx
respectively increase and decrease with x, reaching downstream a constant value. An increase of
ω, in the considered range, shows a decrease of the real part of kx.

The amplitude equation (4.11) allows one to connect the different streamwise slices of the
modes, whose results for the real part are reported in figure 8, compared to the global linear
response of Section 4(b). In panel (a), Mode 1 is amplified until x≈ 100, where it presents large
values on the sides and is damped downstream. Mode 2 evolves into lenses of extremely large
spatial period. In panel (b), Mode 1 survives downstream with smaller lenses, while Mode 2 is
damped at x≈ 100. The pattern of the global linear response is very similar to the superposition
of the modes obtained with the WKBJ approach.

We then move to a quantitative comparison of the gain between the global linear analysis and
the WKBJ approach. In figure 9(a), the gain of Modes 1 and 2 are compared with the ones from
the global linear analysis with inlet forcing (i) the spanwise-invariant oscillation of the thickness
(described in Section 4(b)) (Forcing 1) and (ii) a cosine along the spanwise direction oscillating in
time, in analogy to Mode 2 (Forcing 2). The typical linear response to the Forcing 2 is reported
in figure 9(b). The gain curve of the Forcing 2 is characterized by a large value of the static gain
(i.e. at ω= 0) and G(ω) decreases with ω. The two gain curves of the global linear response are
analogous to those of the WKBJ approach.

The WKBJ analysis reveals that the linear response to harmonic inlet forcing (Section 4(b)) can
be interpreted as the superposition of two symmetric modes and only one of these two survives
downstream, and is localized in the central lobe of the rivulet. As the rivulet profile saturates,
the thickness on the sides is of order 10−2, thus quenching the instability because of the very
thin layers of fluid involved in this region. The real part of kx is decreasing downstream, and
thus the perturbation presents larger wavelengths than upstream. This is due to larger advection
velocities (proportional to uH2 [39]) on the central part of the rivulet, compared to regions close
to the inlet with lower maximum thickness. The comparison of the global linear analyses with the
inlet forcings that reproduce the spatial modes confirms the good agreement in terms of gain and
validates the interpretation of the linear response as the interaction of these two modes.

Finally, at very low values of the forcing frequency, the wavelengths of the resulting unstable
mode are of the order of the variations of the baseflow, thus violating the hypothesis of slowly-
evolving baseflow compared to the perturbation. However, a good agreement is observed also in
this case.

In this section, we aimed at interpreting the secondary instability observed in the global
linear response of Section 4(b) by a local stability analysis combined with a WKBJ approach.
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Figure 10: Non-linear response to harmonic forcing at t= 125, for ω= 1.25 and u= 2, in terms of
perturbation η= h−H . From the top to the bottom: ε= 10−4, ε= 10−3, ε= 10−2.

However, the previous analyses were focused on the linear response. The range of validity
of the previous analyses is assessed by investigating the non-linear dynamics. Henceforth, the
non-linear response to the inlet forcing described in Section 4(b) is studied.

5. Non-linear response to inlet harmonic forcing
In this section, the non-linear response to harmonic inlet forcing is studied. The non-linear
equation (2.6) is thus considered and the evolution of the response with initial condition the
steady baseflow H(x, y) described in Section 3 is studied. The Dirichlet boundary condition at
the inlet reads:

h(x= 0, y, t) = 1 + A∗ cos(y/
√

2) + ε sin(ωt), (5.1)

where ε and ω are respectively the amplitude and the frequency of the harmonic inlet forcing.
Figure 10 shows the resulting pattern at t= 125, for ω= 1.25 and u= 2. For ε= 10−4, 10−3,

the results show lenses analogous to those of the global linear response, and the amplitude of
the response is proportionally increasing with the forcing one. However, already at ε= 10−2, the
pattern significantly differs from the previously described linear response, and the amplitude
of the response does not follow a linear increase with the forcing amplitude. In figure 11(a) the
centerline and side profile for ε= 10−2 is reported. At the centerline, profiles similar to those
reported in Kofman et al. [32] and Rohlfs et al. [33] are observed.

As a quantitative comparison with the linear analysis, the non-linear gain is introduced:

G2
NL (ω, u) =

∫
Ω (h−H)2dΩ∫
Γ (ε sin(ωt))2dΓ

, (5.2)

where the overline denotes time averaging. In figure 11(b), the comparison between the non-
linear gain and the linear one reveals a very good agreement for ε= 10−4, 10−3. For ε= 10−2 the
maximum gain is lower, although the curve resembles the global linear one.

The non-linear simulations confirm the results of the linear analyses when the amplitude of
the harmonic forcing is sufficiently small. At larger values of the amplitude of the harmonic
forcing, the non-linear effects become predominant and strongly non-linear lenses are observed,
with centerline profiles reminiscent of previous analyses [32,33]. A strong saturation mechanism
of the amplitudes is observed. In a perspective of flow control, the amplitude of the harmonic
inlet forcing thus plays a key role, together with the forcing frequency. For large enough values of
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Figure 11: (a) . Perturbation η= h−H from the non-linear simulations, at the centerline (solid)
and on the lateral boundary (dashed), ε= 10−2, for u= 2, ω= 1.25 and t= 125. (b) Total gain
from the WKBJ approach for Mode 1, the global linear analysis and the non-linear simulations for
different values of the inlet amplitude.

(a) (b)

Figure 12: Thickness profile for the non-linear simulation with periodic domain, kx = 0.3. (a) u= 1

and t= 60, (b) u= 2 and t= 1000. The x and y scales are the same so as to show the correct aspect
ratio of the lens.

the amplitude, a pattern of almost periodic traveling lenses. The amplitude of these lenses slowly
evolves downstream when u is sufficiently large.

In this section, the different patterns of lenses emerging from the inlet and the effect of u,
frequency and initial amplitude of the harmonic perturbation was characterized. In the following,
the late stage of the process of growth and the structure of these lenses in the rivulet region
are investigated. Since a parametric study considering the streamwise evolution with inlet and
outlet conditions would involve a large number of parameters (ω, u, ε) and require extremely
long domains, we first study the evolution of non-linear structures, starting from a rivulet, in a
periodic domain of variable streamwise length.

6. Non-linear evolution of traveling lenses in a periodic domain
The present section is devoted to the study of the non-linear evolution of lenses in a periodic
domain of respectively streamwise and spanwise size Lp and Ly = 2π

√
2. Equation (2.3) is solved

with periodic boundary conditions and the following initial condition:

h(x, y, 0) =Hr(y) + ςRe (η̌ exp (ikxx)) , ς = 10−2. (6.1)
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(a) (b)

Figure 13: Thickness profile for the non-linear simulation with periodic domain, kx = 0.5. (a) u= 1

and t= 60, (b) u= 2 and t= 4000. The x and y scales are the same so as to show the correct aspect
ratio of the lens.

Hr(y) is the streamwise-invariant rivulet profile, extended along the streamwise direction, at t=

400, obtained from equation (2.3) imposing ∂x = 0, and η̌ is the linear mode obtained from the
linear stability analysis of Hr(y) (see Ledda et al. [39] for further detail). The initial condition
for the evaluation of Hr(y) is h= 0.54, which is the thickness required to have the same flow
rate of the simulations with inlet and outlet conditions, in the streamwise-invariant rivulet region
[37]. The simulations, in analogy with the previous non-linear ones, are performed in COMSOL
Multiphysics.

The influence of u and the streamwise wavenumber of the periodic domain kx = 2π/Lp on the
results is now described. Figure 12 shows the thickness profile, at large times, for kx = 0.3 and two
different values of u. The large-time solution is characterized by a rivulet carrying a lens, whose
profile is similar to an axisymmetric drop. Similar results are obtained increasing u and varying
kx, as in figure 13, which shows a lens traveling on the rivulet, for kx = 0.5. For visualization
purposes, the maximum thickness has been repositioned at the center of the domain, since the
lens is traveling. In Pier et al. [61], the non-linear response for a fixed kx gives the non-linear
complex dispersion relation between the frequency ωNL and kx, the streamwise wavenumber
itself, for a saturated traveling wave. We extend this idea to the case of a non-saturated response
by considering a time-dependent dispersion relation, in which the non-constant and non-linear
frequency reads:

ωNL(t, kx) =
dXmax

dt
kx, (6.2)

where Xmax is the maximum thickness location.
The time evolution shows that the maximum value of the thickness max(h) always increases

as the lens travels (figure 14(a)). A final and rapid blow-up of the solution is always observed, in
which the values of the time derivative of the maximum thickness take very large values.

The spatial evolution is deduced by following the maximum value of the thickness that travels
in the periodic domain. In figure 14(b) we report the distance L2 for the blow-up of the solution
(dots) and at which d

dt max(h)> 0.1 (marked by crosses in figure 14(a)) occurs, as a function of
kx. The distance for the blow-up of the solution strongly increases with u. For u= 1 and u= 1.5

the behavior of L2 is non-monotonous with ω, while L2 increases with ω, for u= 2.
The blow-up of the solution is interpreted as the manifestation of the onset of the dripping

process, according to Kofman et al. [32] and Indeikina et al. [40]. Both the final simulation distance
and the one beyond which d

dt max(h)> 0.1 are considered, without appreciable differences.
Therefore, a first estimate of the order of magnitude of the dripping distance is given using the
results of figure 14.
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Figure 14: (a) Evolution of the maximum thickness with x for u= 2, kx = 0.1 (blue), kx = 0.2

(orange), kx = 0.3 (yellow), kx = 0.4 (purple), kx = 0.45 (green), kx = 0.5 (cyan). (b) Distance
for the blow-up of the solution (dots) and at which d

dt max(h)> 0.1 occurs (crosses), for the
non-linear simulations in the periodic domain, u= 1 (blue), u= 1.5 (orange), u= 2 (yellow).

Figure 15: Sketch of the configuration considered for the estimate of the dripping length.

In this section, a first estimate of the order of magnitude of the dripping distance is given. This
estimate can be improved considering the streamwise-transient evolution of perturbations at low
amplitudes studied in Sections 4(b) and 4(c).

7. An estimate of the dripping length
In the previous section, the non-linear structures emerging from a fully-developed rivulet profile,
in a periodic domain of variable streamwise length was studied. However, when inlet and outlet
conditions are considered, the growth of perturbations in the region where the rivulet evolves
is crucial, as observed in Section 4(b). If the amplitude of the inlet forcing is small enough, the
growth of perturbations between the inlet and the saturated rivulet profile follows the linearized
dynamics described in Section 4(b). Therefore, in the spirit of Pier [62], the growth of lenses
is composed of (i) an initial linear growth described by the linearized dynamics and (ii) by a
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Figure 16: u= 1. (a) Variation ofL1 with ω; different colours denote different values of ε according
to the colorbar. The red dashed line denotes the healing length Lh. (b) Variation of the non-linear
frequency ωNL = dXmax

dt kx with time; different colours denote different values of kx according to
the colorbar. The red dashed line denotes the dripping threshold. In the inset: variation of L2 with
ω resulting from the integration in time for fixed ω.

non-linear growth described by the evolution in the periodic domain of the previous section. We
consider a harmonic inlet perturbation of frequency ω and amplitude ε, for the steady baseflow
H(x, y) described in Section 3, i.e h(x= 0, y, t) = 1 + A∗ cos(y/

√
2) + εRe(exp(iωt)).

The transition between stages (i) and (ii) is defined where the maximum value of the thickness
perturbation h−H is max(h−H) = ς , where ς� 1, assumed to be ς = 10−2 (see figure 15)
according to the simulations of the previous section. In pratice, the distance needed to pass from
stage (i) to (ii), identified as L1(ω, ε, u), is obtained from the global linear analysis with inlet
and outlet conditions (Section 4(b)) as the coordinate x=L1 at which

√
Lyεmax(|η|) = ς (since

the inlet condition is given by equation 4.7). In figure 16(a) the variation of L1 with the forcing
frequency ω and for different values of ε, for u= 1, is reported. L1 is non-monotonous with ω,
whilst it always decreases with ε.

The dripping distance Ldrip is thus given by Ldrip(ω, ε, u) =L1(ω, ε, u) + L2(ω, u), where
L2(ω, u) is obtained from the simulations with double-periodic domain of Section 6 as follows.
Since the simulations with inlet and outlet conditions were conducted with an imposed temporal
frequency rather than a streamwise spatial forcing, the results of the simulations with periodic
domain cannot be directly applied. At each time step, and for each simulation with kx = const,
the instantaneous and non-linear temporal frequency is evaluated using the definition of non-
linear phase speed ωNL(t, kx) = dXmax

dt kx, where Xmax is the maximum thickness location. The
results for u= 1 is reported in figure 16(b). To evaluate L2(ω, u), the iso-contour ωNL = ω is thus
followed in time, crossing the values of kx until we reach the dripping threshold for a time t= T .
Equation (6.2) is integrated to obtain the dripping distance L2(ω, u):

L2 =

∫T
0

ω

kx
dt. (7.1)

The numerical implementation is performed in MATLAB. The non-linear frequency is evaluated
with second order finite differences and a time step of ∆t= 0.05, for different kx whose step
is ∆kx = 0.025. The integral is performed along the iso-level ωNL =const using the built-in
MATLAB function trapz. The variation of L2 with ω (for u= 1) is reported in the inset of figure
16(b). An increase of L2 with ω is observed, in the considered parameters range.

Note that the decomposition into L1 and L2 only holds if L1 is larger than the healing length
for the fully developed rivulet profile Lh, as the results of Section 6 imply as initial condition
a fully developed rivulet and thus cannot be applied, if it has not been attained. Figure 17(a)
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Figure 17: (a) Dripping length Ldrip as a function of ε, prediction (solid line) and results of the
non-linear simulation (dots), for ω= 1 (blue) and u= 1. In the inset: dripping length as a function
of u, for ε= 10−4 and ω= 1. (b) Maximum and minimum thickness at t= 150, for ε= 7.5× 10−5

and ω= 1. In the inset: thickness distribution close to the dripping region.

shows the results of the prediction (solid line) compared to the non-linear simulations of equation
2.3 with inlet and outlet conditions (dots) with a domain size of Lx = 900, whose thickness
distribution at the first dripping onset is reported in panel (b). The non-linear simulation is
stopped when the critical value of d

dt max(h)> 0.1 is reached for the first time. The prediction
fairly agrees with the non-linear simulations results, with a relative error of≈ 10%. The agreement
is reasonably good also when u is varied, as reported in the inset of figure 17(a).

In this section, a method to estimate the dripping length by exploiting the results of the global
linear analysis and the non-linear simulations in doubly-periodic domain was outlined, for the
steady baseflow described in Section 3. As reported in figure 17(b), the non-linear response
exhibits non-negligible variations along the streamwise direction at the dripping location,
breaking the assumption of traveling and periodic lenses. However, the prediction fairly agrees
with the simulations, thus giving a reasonable estimate of the dripping distance as a function
of the parameters (ω, ε, u). For the sake of completeness, Appendix E of the ESM shows a
generalization of the method when the amplitude of the spanwise sinusoidal perturbation at
the inlet is A<A∗, i.e. the value assumed to define the reference developing rivulet solution
in Section 3. The proposed approach gives a fairly accurate prediction and is suitable for a
parametric study, in opposition to the non-linear simulations with inlet and outlet conditions,
which do not appear as suitable for describing a complete map of the dripping length in the
parameters space.

8. Conclusion and discussion
In this work, the secondary instability of a thin film flowing under an inclined plane when the
inlet is temporally forced was studied. Inspired by the experimental results of Lerisson et al.
[37], we considered the steady solution of the flow equation, for fixed ˜̀∗

c = 1 and with inlet and
outlet conditions, in a spanwise-periodic domain of size Ly = 2π

√
2, i.e. the natural spacing of

rivulets [37]. The steady baseflow was characterized by a streamwise-invariant state emerging
downstream, at a distance found to be linear with u.

The linear response was then studied, with the inlet forced with a harmonic forcing consisting
of an oscillation of the thickness around the steady constant value. Thickness perturbations
evolved into lenses traveling on the rivulet, whose spacing was found to decrease with the
forcing frequency. An increase of the linear advection velocity led to lenses of larger spacing
and smaller amplitudes, while the forcing frequency was seen to modify both the spacing and
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the amplitude of such lenses. The gain curves showed a maximum, associated with an optimal
frequency decreasing with u, which did not vary significantly with the streamwise length of the
domain.

The linear response was rationalized via a weakly non-parallel (WKBJ) spatial stability
analysis. The linear dynamics was interpreted as the superposition of two linearly unstable
modes, one damped and the other one amplified downstream. The gain curves of the linear
response were well reproduced by the weakly non-parallel analysis.

For low amplitudes of the forcing, the non-linear response to harmonic forcing showed
patterns similar to the linear ones. Associated with an increase of the non-linear effects, lower
values of the gain were observed, without relevant changes of the optimal frequency. Trains of
almost periodic lenses, slowly evolving downstream, were observed. The non-linear structures
were then characterized by studying the evolution in doubly-periodic domains of variable
streamwise length, where the blow-up of the solution was interpreted as the initial stage of
dripping. A dripping distance was defined by combining the results of the linear response with
the non-linear evolution in a doubly-periodic domain, giving an estimate in fair agreement with
the non-linear simulations.

Our work provides a description of three-dimensional patterns of a thin film flowing under an
inclined plane when the inlet is temporally forced, thus disclosing the existence of regular arrays
of traveling lenses on the rivulets. We show the possibility to exploit the flow rate, inclination
angle, and the frequency and amplitude of the time-harmonic inlet forcing so as to obtain
lenses with different spacings and shapes. These considerations may find further development in
manufacturing processes of complex structures by means of curing processes of coatings below
surfaces [27]. Besides, we proposed a method to estimate of the dripping distance of a rivulet,
both for spatially-periodic structures and when the evolution from the inlet is considered.

This work may be extended in several ways to refine the presented results. First, the case of a
rivulet with natural spacing Ly = 2π

√
2 was investigated, in which the temporal inlet forcing was

small enough so that the dynamics was considered as a perturbation of the steady and spanwise-
periodic rivulet. Further developments may include spanwise-periodic rivulets with wavelength
differing from the natural one, briefly presented in Lerisson et al. [37]. Another extension is the
analysis for different values of ˜̀∗

c to better characterize the response in the whole parameter space.
Last, a lubrication-type approximation to describe the dynamics of lenses was employed. Albeit
suitable to describe the first stage of the dripping process, the lubrication model cannot describe
the later stages of dripping. Further studies may include the analysis of the process leading to a
dripping drop detaching from the rivulet.
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