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Abstract: In this short note, we prove two properties of symplectic pairs on a four-manifold: firstly
we prove that two transversal orientable foliations of codimension two, which are taut for the same
Riemannian metric, are the characteristic foliations of a symplectic pair; secondly, we characterize
intrinsically harmonic 2-forms of rank two as part of a symplectic pair.
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1. Introduction

A symplectic pair on a smooth manifold [1,2] is a pair of non-trivial closed 2-forms
(ω, η) of constant and complementary ranks, for which ω restricts to a symplectic form on
the leaves of the kernel foliation of η, and vice versa.

On a four-manifold M, a symplectic pair (ω, η) can be equivalently defined by a pair
of symplectic forms (Ω+, Ω−) satisfying the following conditions:

Ω2
+ = −Ω2

−, Ω+ ∧Ω− = 0. (1)

In this case, the forms ω and η are given by ω = 1
2 (Ω+ + Ω−) and η = 1

2 (Ω+ −Ω−).
Several interesting examples and constructions are given in [1], especially on closed

four-manifolds. It is also observed that it is possible to construct compatible metrics, making
both the characteristic foliations taut (i.e., with minimal leaves).

Recall that a differential form on a manifold is called intrinsically harmonic [3] if it is
harmonic with respect to some Riemannian metric. With respect to a compatible metric,
each 2-form of the pair forming the symplectic pair is harmonic.

The aim of this paper is two-fold: firstly, we prove that on a four-dimensional ori-
entable manifold, two complementary orientable foliations of dimension 2 which are taut
for some metric are, in fact, the characteristic foliations of a symplectic pair; secondly, we
show that, on a closed four-dimensional manifold, an intrinsically harmonic 2-form of rank
2 is necessarily one of the 2-forms composing a symplectic pair.

All the objects considered in this paper are assumed to be C∞.

2. Preliminaries on Symplectic Pairs

In this section, we recall the main objects studied in this article and some basic results
needed in the next sections.

Definition 1 ([1,2]). Let M be a 2n-dimensional manifold. A pair of closed 2-forms (ω, η) is
called a symplectic pair of type (k, n− k) if they have constant ranks 2k and 2(n− k), respectively,
and, moreover, ω2k ∧ η2(n−k) is a volume form.
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A symplectic pair gives rise to two symplectic forms:

Ω+ = ω + η, Ω− = ω− η

on M and on (−1)n−p M, respectively, where −M denotes the oriented manifold obtained
by reversing the orientation of M. To make the definition interesting, we assume that k > 0
and n > k. Then, when M has dimension four—the case of interest in the present article—a
symplectic pair on M can only be of type (1, 1) and, in particular, M is symplectic for both
orientations.

In dimension four, a symplectic pair (ω, η) can be equivalently defined by a pair of
symplectic forms (Ω+, Ω−) satisfying

Ω2
+ = −Ω2

−, Ω+ ∧Ω− = 0 .

The symplectic pair is then given by(Ω+ + Ω−
2

,
Ω+ −Ω−

2

)
,

and we say that (Ω+, Ω−) arises from a symplectic pair.
The kernels of ω and η are integrable complementary distributions and therefore

integrate to a pair of transverse foliations Fω and Fη called characteristic foliations [1]
such that

TFω = ker ω and TFη = ker η.

Each form is symplectic on the leaves of the foliation induced by the other form and,
moreover, Fω and Fη are symplectically orthogonal with respect to both the symplectic
forms Ω+ and Ω−.

By Rummler and Sullivan’s criterion (see [4]), the characteristic foliation of a closed
2-form is taut, which means that there exists a Riemannian metric for which the leaves are
minimal. For a symplectic pair, it is possible to construct a Riemannian metric, making
the foliations orthogonal and both with minimal leaves (see [1] and the discussion after
Definition 5.6 in [5]).

3. Taut Foliations and Symplectic Pairs

It is shown in [6] that on a four-dimensional orientable manifold “two taut make
one symplectic”, which means that the existence of two complementary orientable 2-
dimensional taut foliations implies that the manifold is symplectic.

In this section, we see that “two taut make a symplectic pair”, proving that the two
foliations are, in fact, the characteristic foliations of a symplectic pair as shown in the
following result:

Theorem 1. Let M be an orientable four-dimensional manifold endowed with two transverse and
complementary orientable foliations F and G of dimension 2. If F and G are orthogonal and have
minimal leaves for some Riemannian metric on M, then they are the characteristic foliations of a
symplectic pair.

Proof. Let g be a metric for which F and G are orthogonal and have minimal leaves.
Consider g-orthogonal almost complex structures J1, J2, respectively, on TF and TG. Then,
we have two almost complex structures on TM given by

J± = J1 ⊕ (±J2).

Let Ω±(X, Y) = g(X, J±Y). For ∇, the Levi–Civita connection of g and X, Z vector
fields on M, we have (see Appendix in [6] for a proof):

dΩ±(X, J±X, Z) = g([X, J±X], J±Z)− g(∇XX +∇J±X J±X, Z) .
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To prove that dΩ± = 0, it is enough to prove that dΩ± vanishes when calculated
on any triple of linearly independent vector fields. We can choose a local basis such that
X, J±X are tangent to F and Z, J±Z are tangent to G. Any triple of vectors fields of the local
basis has the form (U, J±U, V) for some U, V in the local basis.

By the minimality of the leaves, we have g(∇XX +∇J±X J±X, Z) = 0 (see [7] for
example). Frobenius’ theorem and the orthogonality of F and G imply g([X, J±X], J±Z) = 0.
This implies that the 2-forms Ω± are closed and therefore symplectic.

Since Ω± are symplectic, there is a unique isomorphism A of the tangent bundle of M,
called recursion operator, such that

Ω+(X, Y) = Ω−(AX, Y).

In fact, A is the composition of the usual musical isomorphisms.
In our case, the recursion operator A is the identity on one foliation and minus the

identity on the other one. In particular, A is not the identity itself, but its square is the
identity. Thus, by Theorem 3 in [8] the pair (Ω+, Ω−) arises from a symplectic pair.

4. Intrinsically Harmonic 2-Forms

A differential form ω on an n-dimensional manifold is called intrinsically harmonic [3]
if it is harmonic with respect to some Riemannian metric. An intrinsically harmonic form is
a fortiori closed, and then the main problem is to give necessary and sufficient conditions
under which a closed form is intrinsically harmonic.

In fact, only the forms of degrees 1 and n− 1 are quite well understood. A classical
theorem of Calabi [3] answers the question for 1-forms with non-degenerate zeros, and
Honda [9] proves the dual case of (n− 1)-form.

In 2007, Volkov [10] was able to drop the condition on the zeros of the 1-form, giving a
complete characterization.

In general, the forms of degrees strictly between 1 and n − 1 present additional
problems. One of this difficulties is illustrated in [10], where the author gives an example of
a closed 2-form of rank 2 on a 4-dimensional manifold, which is not intrinsically harmonic.

Observe that any symplectic form is harmonic with respect to a compatible metric
because its Hodge dual is, up to a constant, a power of the symplectic form.

On a 4-dimensional manifold, a non-vanishing 2-form of constant rank has either rank
2 or 4. Vanishing forms and symplectic forms (of rank 4) are intrinsically harmonic, so let
us consider the 2-forms of rank 2. We start with the following result of linear algebra.

Lemma 1. Let ω be a 2-form of rank 2 on a four-dimensional Euclidean vector space (W, g) and
let ? be the Hodge operator with respect to g. Then ?ω also has rank 2.

Proof. Since the rank of ω is 2, then it has 2-dimensional kernel. Let W ⊂ W be the kernel
of ω and let {e1, e2} be an othonormal basis of V. Complete {e1, e2} to an orthonormal basis
{e1, e2, e3, e4} of W. Then ω is (up to a non-zero constant) equal to e3 ∧ e4 and ?ω is equal
(up to a non-zero constant) to e1 ∧ e2.

We can now give the proof of the main theorem:

Theorem 2. A closed 2-form of constant rank 2 on an orientable closed four-dimensional manifold
M is intrinsically harmonic if and only if it is part of a symplectic pair.

Proof. We already observed that on a manifold endowed with a symplectic pair, there exist
compatible metrics. With respect to these metrics, each form of the symplectic pair is then
closed and co-closed.
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On the other end, let ω be a 2-form of rank 2 which is intrinsically harmonic for some
metric g on M. Then ?ω has also rank 2 at each point by Lemma 1. Moreover, for Volg, the
volume form associated with g, we have

ω ∧ ?ω = ||ω||2Volg

which vanishes in a point p only if ωp does. Then (ω , ?ω) is a symplectic pair on M.

5. Conclusions

Theorem 2 is somehow suggested at the end of the last section of [10], but symplectic
pairs are not mentioned there. Moreover, the author seems to relegate this possible link to a
mere tautological definition. We think instead, that this point of view could reveal some
interesting aspects.

Let us consider, for example, the case of CP2. Since it is symplectic, it admits intrinsi-
cally harmonic 2-forms of constant rank 4. The existence of a symplectic pair on a manifold
implies that its second Betti number b2 satisfies b2 ≥ 2 and, therefore, no intrinsically
harmonic 2-form of constant rank 2 exists.

A more subtle example is given by CP2#CP2 (the non-trivial CP1-bundle over CP1),
which fulfills all the basic topological obstructions to the existence of a symplectic pair.
In Example 1 of [10], the author considers, on CP2#CP2, the pullback to the total space of a
volume form on the base (which has constant rank 2) and proves that it is not intrinsically
harmonic. But we can say much more, because, by the results in [11], CP2#CP2 admits no
symplectic pair at all and thus, by Theorem 2, we have the following.

Corollary 1. CP2#CP2 admits no intrinsically harmonic 2-form of constant rank 2.

Recall that CP2#CP2 admits a symplectic form and hence the only intrinsically har-
monic 2-forms of constant rank, can have rank 4 or 0.

We thus have the following natural question.

Question 1. Does CP2#CP2 admit an intrinsically harmonic 2-form of non-constant rank, which
is not symplectic and has at least rank 2 in a point?

The answer is positive, and an example can be constructed as follows.

Example 1. Let ω be the pullback to CP2#CP2 of the Fubini–Study volume form on CP1, and
fix any Riemannian metric g on CP2#CP2. By the Hodge theorem, the cohomology class of ω
has a unique harmonic representative, let us say ω + dα for some 1-form α. Since ω is not exact
(because it is one of the generators of the second cohomology group of CP2#CP2), there is a point
q, where ω + dα is non-zero. Then ω + dα is non-trivial and, in particular, its rank r at q is
rq ≥ 2. On the other hand, because ω2 = 0, we have (ω + dα)2 = 2ω ∧ dα + dα2, which is
exact and, thus, it cannot be a volume form by Stokes’ theorem. This means that there is a point p,
where (ω + dα)2 = 0 and then the rank of (ω + dα)p is rp ≤ 2. Therefore, ω + dα is non-trivial,
g-harmonic, cannot have constant rank 2 and cannot be symplectic.

One can try to seek more restricted ranks and ask the following questions:

Question 2. Does CP2#CP2 admit an intrinsically harmonic 2-form of non-constant rank r ≤ 4,
which has rank 4 at least in a point?

Question 3. Does CP2#CP2 admit an intrinsically harmonic 2-form of non-constant rank r such
that 2 ≤ r ≤ 4 and there are points where r = 2 and r = 4?
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Of course, CP2#CP2 can be replaced by the blow-up of CP2 in the k point or, more
generally, by a closed orientable symplectic 4-manifold, which is non-minimal.
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