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Abstract.
In this research study an adaptive recurrent artificial nonlinear neural network identification model has

been developed and experimentally tested for dynamically predicting the traffic noise lgvetith a time

refinement of 1 minute. The model has been successfully applied in three selected positions, representative of
the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic
fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically
access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns
during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass
have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal
to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been
considered as input data sources. This exploratory investigation reveals a good predictive performance of the

model developed, the prediction errotbof falling prevalently within the range +0.5dB. The experimental
profile of 0  is well reflected by the simulated sequence, and the auto and cross correlation functions

confirm how well the identified neural model is able to explain the functional dependence underlying the

experimental observations.
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) represents theeural network input matriit includes data about the traffic flow;

=|- i represents theacoustic pressure level measured by the sound level meter, obtained by
averaging over an integration time of 1 minutel’A

J|| represents therget matrix It includes the information of the physical quantities describing
the noise level;

W represents théme ati® instant | i 1;

D NN indicates theraffic flow data. It represents tlexogenousnput matrix that incorporates the

time sequencem T ,n T describing the temporal evolution of tfiew rates and the speed
for each vehicle class and lane that composes the road section, under consiéeeation

n average value of the different speeds of a class of vehicles measured at a given point by the
traffic sensor during a time of 1 minute
W traffic flow rate in term®f vehicles per unit time crossing a considered section of a roadway
lang ;
Sn denotes a physical quantity evaluated at t¥fe

1. Introduction

Nowadaysthe control anchbatemenbf the urban noise transversally pervade the different aspects of
spatial planningvhereastheimplicationson the natural and built environmeas well ason human wellbeing
havebecomeparamountn the modern age.

Several studies ohe EuropeainvironmentAgency(EEA) [1] show that the dominant source of noise
pollution results from road trafficAn overview of the estimated number of people that are exposhe to
noiselevelindicators)  andd equalto or exceedinghethresholdvalues 065 dB and 50 dB is depicted
in fig. 1for different transportation sources. Traffic ngeses severe health challengisinisheghe quality
of life and negativelympactsthe livability characteof the urban and indoor spad&$ and B].

Devising specific tools for reducing noise exposamd setting proper mitigation actiooan play a key
rolein improvingthewelfare of mankindThis explains why several researchers involved in applied acoustic
concepts, urbaplanners and software developers have spawsiade(the pioneering studistartedin the
early 195044]) a plethora of studig® expediteahe development dbolsfor traffic noiseprediction

Two clasgsof modelling techniqueare generally adopted to determine the noise level from vehicular
traffic: static and dynamic.

Static models, in the main, are orienteddodsproviding an acoustic representation in the spatial domain
rather than over timeb{6]. For this reasonhe applicability ofstatistical modelss restricted to acoustical
contextwherethe timevarying effects are not essentidlowever, this approadfecomes quite inadequate for
reproducingthe dynamic response of the acoustic fielden thetraffic scenarioevolvescontinuously over
short periods of timéVlost conventional modelsccepistationary representation of the noise souasaisput

data, generating a correspondargstallized timeless picture of the noise fiakloutput[7].
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Fig. 1 Number of people exposed to value$ of andi equal to or exceeding the threshold values of

55dB and 50dB, respectively. Box a) concerns people belonging to the European Union member states,
while box b) refers to people belonging to the member countries of the Economic European Area. All
states are counted before the Brexit decision was implemented. All data are extractegdroed data

on noise exposure covered by Directive 2002/49Eided byEuropean Environment Agency (EEA)

and published 21 Nov 2019.

Specifically, under frelowing traffic conditions the noise field represents the favorable scenario for
noise level prediction when using static models. Converselyfree-flowing traffic conditions, such as at
signalized intersections or roundabouts, could be critical due to the complexity inherent in the relative random
influence, (as noted y. Abo-Qudais in [8])

A critical review and details dhesestandard methodologies can be found in excellentegaodnducted
by Naveen Garg and Sagar Maji B},[by J. Quertieri in10], by C. Guarnaccia et al ii]] and byC. Steel
in [12]. The limitatiors of the static moded are discussed in7 by Quartieri et alwho carried outan
experimentalalidation ofdifferent static mode|gevealing a significant discrepancy between predicted and
measured values

The transition from static to dynamic prediction thsls beerspurredby the need to devise appropriate
traffic managemerdctionsand to evaluate their impact on reducimbannoise leved [13]. Excellent studies
have been proposed for new dynamic simulation mdddid5] and descripta[16] that consider the time
varying behavior of the vehicleaimed at predictingndcapturingthe specific dynamics of the traffic noise
[17]. Severainvestigationshat compare dynamic versstsitictraffic noise representation have been proposed
in [18-23], while arecentbrief overviewon bothmodeling approadsis shortlypresented by G. R. Gozalo in
[24].

1.1 Traffic noise prediction model based Ah

Since theearlieststudy published in19%2, the advancements in the modeling approach were primarily
inspired by the effort to incorporate more detail and explanatory variables into the physical description of the

noise event,so as talerive an increasingly accurate, but still tractafilulation tool The physical approach
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requiresmodelingthe functional dependencenderlying the acoustic wave phenomeAa interesting and
detailedaccount of thexisting physical approachespresented byl. Hornikx in [25-26] and byH. Wang
in [27].

Manyimprovements have beahievedver the decadesgvertheless accuratgnamicpredictiors of
roadtraffic noise based ora physicaldescriptionapproachstill remainsa challengg.

During the last three decades the modeling approach hasflrtieer developedy exploring the
applicability of alternative options, offered by artificial intelligence concepts, for solving road noise issues.
Many methodshat rely onmachine learning modeling technigues be applied for predicting the influence
of vehicular traffic on urban noisdor instance regression decision trees, support vector regression,
ensembles, fuzzy logic, and artificial neural netvgdkNN) methodsareexaminedn recentstudiesby many
authorsasL. Bravo-Moncayoin [28], N. Genaro in29], V. Nourani in[30], M. .Ali Khalil in [31], A. Sharma
in[321J . Tio[8d], hndN. Gargin [34]- Themost common and successhauristicmethod arebased
on the ANN algorithra. Indeed, he universal applicability of ANN imodeling, classifying, controlling, and
predicting complex systeswith an acceptable level of accuracy, of insensitivity to noisy data and tolerance
to of input datancompletenesss one of the reasomsr the recent vividnterestin developing ANN models
for complex traffic noise prediction problentaurthermore, the blaekox paradigm of the neural network
allows one to bypass the preliminary stage consisting in the implementation of specific physical laws of the
acoustic wave propagation mechanism and related boundary conditions. This aspect is quite attractive because
the preliminary stages for implementing the topographic and acoustic properties of the urban and the natural
environment (with the proper refinement), in addition to noise source representation may have a significant
impact on the time required for firtaning a physical model

At present,numerous excellent works are reported in tiberature thatproposetheoretical and
experimental validatiostudiesemployingANN modelingtechniqus for traffic noise issug
G. Cammarata in [§ and in [3] proposed a neural architecture for traffitoise prediction in three Sicilian
cities. A twostage architecture was examined i6][2\ first preliminary stage consisting of a Learning Vector
Quantization network was used for filtering measurements affected by error followed by a stage consisting of
a back propagation (BP) network for predicting the pressure level. The size of the training set was equal to
70% of the entire data. The results show the proposed approach to outperform the classical relationships
reported in the pertinent literatude. [37] V. Nedic et al proposed an interesting application of an ANN to
traffic noise prediction. The authors adopted afieediard (FF) BP scheme. The ANN was trained and tested
under steadytate traffic conditions on a Serbian motorway. The training and test sets comprised 70% and
30% respectively of the whole dataset. The results revealed that the ANN algorithm outperformed any other
statistical method in predicting the traffic noise levelJ. Torija et al In 38] proposed an interesting study
on the use of a BP algorithm for predicting the shetetm level ofd ; and the evolution, in the frequency
domain, of sound pressure level for a physical characterization of the urban soundscape. Traffic features, street
geometry, type of day and period, stabilization time of the sound level, and characterization of the location

were considered as input data. The training, validation and test sets were equal to 80%, 5% and 15%
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respectively of the whole datasAtprediction error fob lower than 1.88% and than 3.07% for the spectral
compositionwas obtainedIn [39] sixteen different FlBP ANN models were calibrated and testedkby
Hamad for modeling traffic noise in a hot climate. The training and test setsegigeespectively 85% and

15% of the entire dataset. The authors carried eanaitivityanalysis over the adopted explanatory variables
(distance from edge of the road, light and hedurty vehicle volume and composition, average speed, roadway
temperature) to shed some light on the black paradigm of the neural network. WQ[ V. Nourani et al.
presented the first application of the Emotional ANN (EANN) as a hew generation of neural network methods

for predicting the equivalent noise level ; from road traffic noise in Nicosia. The traffic volume was

found to be the most significant contributing factor whereas heehicle volume was found to be the least
(in accordance with the studygBmentioned above). No information is provided about the composition of the
training, validation, and test sets.

P. Kumar et alin [41] trained a multilayer feed forward BP neural network by using the Levenberg
Marquardt algorithm for predicting highway traffic noise in an Indian scenario. A locc@nacterized by
free-flowing-traffic conditions avoiding sources of interruptions, was selected omitting nighttime traffic
volumes from the predictions. The proposed ANN model was used to predict 10 percentile lgvaisi(the
equivalent continuous sound level in dB(A) using as source of input data the average hourly viddees of
traffic flow. A Comparison between regression analysis and experimental values revealed a percentage training
error ranging from4.2 to 2.7or Lipandf r o m 1 5ford ,while f@ thétest samples the error is within
the ranga 4.1% to-0.1%for Lio and1 4.8% to 0.5%or O . The ANN model outperformed the regression
analysis. Indeed, the training error of the ANN model lies within the rdh8&o- 1.0%for Lio andi 1.5%-
0.9%for 0 , while for testing samples the error ranges fidnv% to 1.&or L1o andfrom -0.6% to 1.5%or
0 .The training and test set sizes were 80% and 20% respectively of the whole dataset composed of 46 hourly
records.

In [30] V. Nourani et al. adopted an original ensemble approach for combining the response of four
different models aimed to improve traffic noise prediction performance in Nicosia. Thiggséd models
(fuzzy, neural network, support vector regressitgorithm) were employed while the fourth was based on a
conventional multilinear regression model. Measurements were performed during daytime (omitting
nighttime) at observation points carefully selected for avoiding as much spurious background noise as possible.
The ensembled model was then used to predict the equivalent sound lgvebnsidering 15 minutes
integration time and using traffic composition and average vehicle speed as input data..

L. Chen in [2] developed a neural network model for traffic noise prediction in a mountainous city. A
multilayer feedforward ANN model was trained using experimental data measured in a municipal road in a
hilly Chinese city (Chongging). Measurements were performed, at observation points carefully selected for
operating undefree-flowing traffic conditions. The proposed ANN model was used to predict theshécle
noise levels and the corresponding equivalent sound level preéSsumparison between the neural model and

the Chinese standard HJ 2809 revealed a significant improvement over the empirical equations.
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In [43] S. Givargis et al. presented a basic Multiyer Perceptron (MLP) model for predicting hourly
equivalent sound pressure levels. The authors conducted a comparison with the CORTN model in order to
i nvestigate whether a neur al net work can be wused
roads. The result of the study revealed the ability of the MLP model to provide a description of the traffic noise
consistent with the conventional statistical approach of the CORTN model.

In [44] D. Singh et al investigated using four different soft computing metligeseralized linear model,
decision trees, random forests, and neural netyoftespredicting continuous hourly at differentfree-
flow traffic location locations in an Indiarcity. The Random Forests method outperformed the other

approaches in predicting the sound pressure level.

1.2 Shortterm traffic noise prediction in waterfroof seaportities.

From the above overview, an exiguous number of studies emerges that have probed in developing
dynamic models for traffic noise prediction in complex urban contexts where actual traffic conditions cannot
be properly described by a priori and restrictive assumptions on traffic behavior and background noise.
Continuous traffic flow regime or general features drawn from regular scenarios even under unperturbed
boundary conditions, are, in some cases, unrealistic assumptions that do not adequately account for the acoustic
field in response to the sherterm evolution of traffic sources and under real operating conditions.

The motivation of the present work stems from the following considere®ieveral waterfront cities
experience through traffic of private and commercial vehicles attracted by port activities, especially in tourist
destinations. During the peak season the soundscape of an urban waterfront in port cities undergoes substantial
changes throughout the day and night on an hourly ohsully time scale that however is not always
univocally and a priori predictable. This phenomenon is caused by the ferry traffic which tangibly has a direct
impact on the vehicle flows through the road network in urban waterfronts in portEExmssure to noise in
urban port waterfront areas takes on a different connotation compared to other urban contexts, particularly in
those cities with commercial ports strongly impacted by the seasonality of tourism demand. The concentration
of ferry departures and arrivals, during the peak season, generates a large amount of tourist with an exceptional
intensification of the vehicular and heavy lorry traffic (in comparison with the average yearly trend),
conditioning driving strategies and behavior, especially when drivers have to comply with boarding times.

This phenomenon occurs with an unpredictable and variable time scale during days of the peak tourist
season and culminates every weekend. In the case at hand, the traffic flow can increase by ab@Q@)%30
The consequences on the acoustic pressure generated by vehicle engines are easy toherafime, the
presence of an urban port exposes the neighbouring areas to a wide range of temporal variation in traffic
volumes, potentially creating complex constantly evolving acoustical scenarios [45]. Certain buildings may
thus be subject to annoying traffic noise, as low levels in normal times alternate with heavy traffic volumes on
road connections to the port. Changes in vehicular flow intensity and composition occur during boarding and

disembarking. Exceptional increases in traffic flows during port operations negatively impact the livability of
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the waterfront areas as well as the tourist appeal of the city as a whole. Thus, the waterfront area is solely
perceived as a thoroughfare for reaching quieter places.

Static traffid noise models, based on purely statistical assumptions, or even dynamic models operating
with a time refinement of an hour or longer are not able to satisfactorily incorporate and reproduce the dynamic
features in similar acoustical contexts with the proper time scale and accuracy

Therefore, similar approaches could lead to unrealistic results in predicting the impact of traffic
management strategies aimed at reducing urban noise.

From the foregoing discussion, it would be advisable that a traffic noise prediction model, designed to
identify a series of predefined traffic management strategies and to combat the uncontrolled evolution of the
traffic noise levels in urban waterfronts, needed to be dynamic, accurate and to operate in real time with the
actual traffic conditions at time scales smaller than the considered acoustic phenomenon. Analysis of the
pertinent literature showed that a full transient dynamic model that predicts the equivalent noise level, from
the traffic flow, with a small prediction error (lower than 1 dB) and a stimad refinement (1 minute), is not
yet available.

Consistent with this overarching objectivee addressed the problem of identifying a dynamic model that
was able to replicate, or at least approximate, the data generation mechanism by means of which the flow and
composition of vehicle traffic produces noise levels in a specific urban context. Therefore, we implemented a
dynamic prediction model architecture with exogenous inputs that dynamically predicts noise level trends,
with a short time refinement and a small prediction error, as the noise sources, arranged in different traffic
scenarios, vary.

An adaptive nonlinear autoregressive recurrent dynamic neural network model has been developed,

trained, and experimentally tested for the shemn prediction of the equivalent noise letel; generated

by vehicular traffic in the port city of Olbia chosen for the case study. Olbia, a medium sized city on the
Mediterranean Sea exhibits the peculiar characteristics of a port city with seasonal variations in traffic volumes,
due to the major tourism flows attracted by the port. Once the area of interest was suitably scaled down to be
more appropriate with the research objectives, the exploratory analysis focused on the area affected by
direction of the traffic traveling to the Isola Bianca quay for freight and passenger loading and unloading
operations.

The neural model simultaneously predicts the experimental sequence of the time averaged equivalent

sound pressure levél ; T of the traffic noise at three different locations, representative of the acoustic

field in the waterfront line: i) a signalized intersection, ii) a roundabout, and iii) the entrance to a vehicular
underpass.

The three locations exhibit a wide variability and different traffic conditemms were selected for the
significant correlation between vehicular traffic and port activities, observed during preliminary monitoring
carried out over a period of several years prior to the present study.

The architecture adopted for developing the model belongs to the so called NARX models [46] and is

nonlinear, autoregressive and accepts exogenous input and feedback regressors as source ofTimgut data.



255 intensity and the composition of the traffic flohave been used as exogenous inputs, while regressors of the
256 acoustic output have been employed as feedback input.

257 Moreover, the model is based on a restricted humber of experimental observations of the traffic noise
258 event, circumventing the need for a preliminary data collection stage for incorporating all possible occurrence
259 of the traffic noise phenomenon.

260 Indeed, this type of prediction system is employed for its ability to generalize the results and hence to
261 associate correct responses even to input signals not previously contemplated or with missing or partially
262 missing informationThe prediction capability of the NARX model is demonstrated oveday&ime span

263 measured in two distinct periods of the year: for normal and peak traffic conditions.

264 The neural model, once has been trained, is able to operate irstapltiead prediction mode. The time

265 required for provide predictions with a time refinement of 1 minute is legs[ofd]. Therefore, the developed

266 model operates in real time mode, with respect to the considered time frame of 1 Tiasésteatures offer

267 potential for supporting the decision processes in traffic management withtshorrefinement where the

268  ability to predict the effects of different traffic strategies can be very useful

269

270

271 2. Description of the measuring periods and selection of the measuring points and methods.

272 Fig. 2showsa satelliteimageof theurbanar ea of t he didatingtldedistnbationeof ther o n t
273 traffic sensors andhree sound pressure meters are schematically reported. A roundabout, a signalized
274 intersectionand a wide entrande a vehicular underpasthe most exposed area to traffic volume generated
275 by port activitiesmark theimaginaryline of the waterfront city and have been acoustically monitored during
276 the measuring periodming The distribution of the road sections was decided on the basis of our intention to
277 monitor all those sections along the preferential routes in and out of the port and that provide access to the
278 cityobs waterfront. I n addition, we considered sou
279 and roundabouts along the port waterfront (see measurement points A e B shown in Fig. 2).

280 A total of 11 road sections were continuously monitored, as shown in Fig. 2. Note that four road sections
281 are tweway roads (sections 1, 9, 10, and 11), while the remaining 7 areanstreets (2, 3, 4, 6, 7, and

282  8), making a total of 15 roddnes

283 The representativity of the selected points was confirmed by preliminary noise level measurements in
284  both periods that in a first approximation showed a close correlation of the traffic volume fluctuations with the
285 corresponding variations in noise levels

286 The area is a popular tourist destination with marked seasonal varidhdesd, he volume and

287 composition of traffic along the cityo6sThebrstisr fr on
288 thenormal(off-seasopperiod Y ¢ from October to May where traffimlumesaremainly generatedby the

289  daily routine of the residents abgl ordinarinessf production activitiesThe second is theeakperiod “Y s,

290 thatgoesfrom Jundo Septembewhere traffic volumes increase substantially by comparison with the average

291 yearly trend because of the large number of tourists arriving at and departing from tHgupog these
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monthsvehicle traffic increases substantially digout B0 i 1000%, culminating in the third weekend in
August

+\—< Sound level meter

Fig. 2. Monitoring area of the Olbia waterfront. Optimized selection of vehicle traffic measurement points (red) and ssurel pre
level meters (yellow).

Fig.3Localcont extuali zation of the measurement points. a) positio
denoted with A in Fig. 2; b) position of the sound level meter at the signalized intersection in front of Olbia towmdizdi de
with B in Fig. 2; c) position of the sound level meter at the entrance to the underpass denoted with C in fogitirddf the
traffic sensor number 4 in Fig. 2. €) example of traffic flows along the waterfront during daytime; f) example didvesfic
along the waterfront at nighttime at sound level mAter



306
307 In the present investigation noise level and traffic data measurements were performed in two continuous

308 periods each of 72 hours duration. During each pehiedemporal evolution of sound pressure leyelg

309 was acquired simultaneously with the traffic datégory, traffic volume and speed of the vehjdleifteen

310 sections of different road laneEhe first between March 2427", representative of theff-season period

311 characterized by normal traffic volumes, the second between Audgusn@427 representative of the peak

312 season.

313 The choice of measurement points fell on those locations that were able to provide a sufficiently complete
314 and representative picture of noise levels in the port area.

315

316

317 3. Neural network architecture

318 The traffici noise model has been implemented adopting the architecture of a nonlinear autoregressive

319 exogenous (NARX) artificial neural network in a clddeop configuratior{47]. The reason for adopting a

320 NARX architecture relies on its specific suitability for implementing time series prediction tasks where
321 externalindependenphysical input affects the behavior of thetput time series to be predictedjth the

322  contribution ofits past values.

323 This kind of autoregressive architecture can adapt its parameters on the past values of the output sequence
324  and in addition other exogenous inputs are accounted for as driver of the future values by specific input nodes.
325 This meanghat the NARX model relates the history of the time series to be used as feedback input, with
326 the current and past values of other external independent explanatogbiynputising a learninglgorithm

327 thatdrivesadaptation of its parameteiar reproposg the temporal relationshipetween inputs and output

328 observations

329 The training of the netwonkarameters takes place for each value of the savhfile input sequence that

330 is suppliedto the network At every training step theevenbergMarquardt backpropagation optimization

331 scheme isppliedfor reducing as much as possible the overall error betieeanswer given by the network

332 atthe actual instant, witlespect to the relative target, and the error of the arggwem at a certain number of

333 precedingnstants

334 The NARX model could beatilized to solvetime series prediction problemhere the tds consists in

335 predicting future values ofgiventime seriedbt from its past values and from past values of another time

336 series) T . The past values of the time setie$ represents etogenousnput, while the values dhe second

337 time series) T represents thexogenousnput This form of prediction can bepresented by the following

338 describing equation:

339 /bt /bt pBABLE I R tTBRET 1 Eqg.l
340 where/bt correspond to the next value of the outputto be predicted at instaritand by means the
341 function is regressed on previous values of tlwput signal/bt s g , and previous values of

342 the independent exogenous input quantity Qs g .
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The traffic noise model can be implemented on the NARX architediyrassumingthe following

correspondencghe time profile of the equivalent noise lebel}; , obtained by averaging over an integration
time of 1 minute, plays the rolef dependent variabl@ place ofthe output signallbn Eq. 1 In particular

0 T represergthe output value to prediet instantt, whiled ; T Q g represent thpast values

of the noise levethathave to be used asgressorsor predictng the next valugof 0 , . The time profiles

of the traffic flowsdata > X ¥ , averaged over 1 minute play the role of independent vatiaplace ofthe
exogenousnput signal in Eg. 1 Clearly, the traffic flow data variable X ¥ is not simply composed by
ascalar time sequenckke 0 j , butincorporateghetime sequences T, n t describing the temporal

evolution oftheflow ratesand thespeed for each vehicle clemsdeachlane that composes thead sectios,
under consideration

TheNARX model can be implemented by means a neural networktbatesan approxinationof the
mathematical expression of the functionThe input data sourde composed of the regressor values of the
acoustic pressure level ; of the noise signal (in feedback or open loop arrangement) and of the parameters
describing traffic composition and ro#ayout The NARX model should be trained using input values at
instantt; and the values occurring at past instants, t  andt  so that the model is able to learn not only
the individual measured values but also the temporal dynamics with which they occur.

It is worthwhile to introduce Fig. dince it provides insight into the architectufelee resulting NARX
model. The schenseof Fig. 4a and 4bepresent awo-layer feedforward neural networkvith a sigmoid
transfer function in the hidden layer (to treahlinearseparable soluti@hand a linear transfer function in the
output layer.In both schemeshé networks are equipped withtapped delay bufferto store past values of

0 5 T and> x® sequencedn Fig 4a the network exhibits a close loop configuragtwnerethe output
of the networkis fed baclkas source ahputdatafor implementing the instantaneous dependence @f T

fromits pastvalues ; T Q g In this case the regressors are numerically calculated by the network

algorithm and derived from its output. Therefdrey are estimated valuéa Fig. 4b anarchitecture iropen

loop configurationis depictedwhere the regressors of ; are directly extracted from the experimental

observationsThe open loop configuration should be used during the training phase of the netacekhe
exact output values are available from measientsrather than feeding back the estimated ouffiutreby,
the network can adapt its parametersioput valuesthat aremeasured and themore accurate than the
estimated values achieved with the closed loop configuration.

Moreover, tharainingprocedurecan beperformedoy means anore efficient algorithnif a feedforward
architecturas adoptedn place of a feedback nework

Once the training stag# the networkhas beertarried outin open loop configuratiarby utilizing the
schemeéllustrated in Fig.4b, the typical workflowincludesa further step in which the trained network is
transformed in closed loop configuration (according to the scheme of fig. 4a) for genemaltistepahead

predictiors.
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The model has been built using Matlab development environment atlats to display the
autocorrelation function of the prediction and the inpuator crosscorrelation functions that describe how the
prediction errors are related in time with each other and with the input respeciikelyadequacy of an
identification model to the experimental observationiis some extentrevealed by behaviour of the
autocorrelatiorand crossorrelation functionin so far aghey approach to zero values throughout the lag
abscissa, except in the origin at zero lag value where the function should attain its maximuor ttaéuease
of the autocorrelation functiorTheseconditiors would denote that the prediction errors are weakly or
completely uncorrelated with each otlaerd with the input sequendé there is no dependence among these
residuals, then they can be regarded as observations of independent random variables (white noise), and there
is no further modelling to be done except to estimate their mean and vattmveever, ifinsteadthere is
significant dependence amoagd betweetthe prediction error valuemnd input sequenceisen it should be
possible to improve the predictions by looking for a more complex time series, fuwdstampleby adding
hidden layes, that accounts for the showed dependgocperhaps by increasing the number of delays in the
tapped delay lines. This could be beneficial, since depen@dspeemayimply that past observations of the
noise sequence can assist in predicting future valtlesrefore, the autocorrelation and cross correlation
function can help for assessing the proper complexity of the network and the sizeegféission vectors that
exhibit to improve the adequacy of the trained model to the observed data generation mechanism
Specifically, in the present study the hidden layer size and the number of the input and feedback regressor has
beenfound by tuning themtljroughout atrial-anderror technique) until ndurther improvemens on the
prediction error andhe auto and crosscorrelation functios wererevealed As a result, the number of the
regressor considered for the training phase is 1 fotrdffic flow data and 3 for the level noise data. The
choice has been also validated by the Lipschitz Quotients criterion proposed for the first time by He and Asada
(1993), and later developed by JeShing Wang et al. (2009), for dynamic neural models of the MISO (Multi
Input Single Output) type.
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Fig. 4 Schematic representation of the architecture of the adopted NARX model. a) closed loop configuration for-ameltidtep
prediction. In this configuration the trained model is driven by the traffic flow measurements for predicting the noisadevel
simulated noise levels at previous steps are fed back as source of input data for implementing the temporal dependence of

(U

T from its past values. b) open loop configuration for performing the training stage. The values of the traffic flow, the

noise level and their regressors are extracted from the experimental observations and are used as source of input data.

The experimental observations are composed by 8640 records of noise level measurements and

an equal number of traffic noise data. Half of these concerns the time series measured during off

season traffic volumes, while the other half refers to the peak traffic season. The learning algorithm

is based on the Levenbekprquardt backpropagation optimization scheme applitd least

squares estimation of nonlinear parameters @@. At each training step the algorithm reduces the

overall error between the response provided by the network and the corresponding experimental value

representing the correct target. For the benefit of the readeryexview of the sources and the



420 structure of the input and output data, supplied to the model for developing the training and testing
421 procedure, are reported in the following scheme.
422

experimental values of the traffic flow data sequencs, kK N ):

a) traffic flow rate,in terms ofthe overall number of vehicles per unit time (1 minu
crossing a reference section of a given roadway,

b) average value of the different speeds of a class of vehicles measured at a give

source of thexogenous input data by the traffic sensor during a time of 1 minute

The traffic flow rate @ and the average speé&d are separately providefbr each
vehicleds category, CNOSSODEEUistandald arddoc eaa
lane that composes the roadways under consideration. Separate quantities for e
allow to incorporate the information about the driven direction in the training proce

11 measuring pointglaced as shown in Fig. Eour road sections are tweay roads
n° of monitored roadway sections (sections 1, 9, 10, and 11), while the remaining seven (2, 3, 4, 5, 6, 7, 8) avayol
streetsmaking a total of 15 road lanes

vehicles are grouped infour categories on thieasis of their emission characteristi
as defined in the Common Noise Assessment methods (CNOSSpESjfically: a)
light motor vehicles, b) medium heavy motor vehicles, c) heavy vehicles, d) po
two wheelers (motorcyclesandmopddn t he case of powert
4), two subclasses had to be definactlass 4dor mopeds ané class 4b fomore
powerful motorcycles, since they have very different drivimglesand their numbers
usually vary widely (as indeed happens between theazffon and peak traffic perio
due to the large number of tourists arriving at and departing from the port).

nA of vehiclebds c.

75 exogenous inpgitresulting from the combination between the number of road
lanes and the number of the vehicular classes. In particular, 5 vehitadses

n° of exogenous input (considering the two subclasses 4a andfdib]l5 roadway laneg€ach datum contain:
two pieces of information collected for a time period of 1 mintiteaverage vehicle
speedn andtheflow rate .

experimental values of the equivalent noise pressurelevgl T sequencebtained
by averaging over aimtegration time of 60 seconds

source of the output target data
n° of acoustic measuring points 3 measuring points placed as shown in Fig. 2.
n° of output 3 noise level outputs

pastvalues of the noise level and traffic flow sequences, natnely T Q

ot Q g andyt ™ g

source of the feedback input (regresso 8’

re = 1 traffic data regressor.

size of the feedback regressors _ -
r = 3 noise level data regressors.

n° of hidden layers 4 hidden layers

two continuous periods each of 72 hours duration.
1t period,”Y , that covers March 24and 27, representative of the efieason
n° of measurement periods period of theraffic flow rate.
2nd period,”Y s, during August 2% and 27", representative of the peak season pel
of the traffic flow rate.

timerefinement Tr = 60 seconds

8640 records each averaged over a tpen equal toT Specifically 4320 records ar

n® of records of input/output sequence: measured duringy siperiod and other 4320 durirfiy s period

800 + 950 records 0 ; T and > X ¥ sequencesextracted from thé&Y

input and target training sequences siz .
P 9 gseq period.
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7840 + 7680 records @f ; T and > X N sequencesneasured during tH&Y
and"Y is periods. In particular 3528 3350 records come from the remaining part
“Y , thatis omitted by the training procedure and other 4320 records are provic
the whol€ey s period.

input and target test sequences size

3.1 Input and outputlatasets

The neural model accepts@an 1 matrix, containing all the traffic composition information, as source
of exogenous inpud . Two explanatory variables are used for characterizing the traffic on each road lane and
for each vehicle class: a) the number of vehicles per minute and the average speed for each class. The row
indexA p8&" selectghe explanatory variable of a given road lane and vehicle category while the column
index E p& goes through the temporal samples, obtained by averaging the physical sample with a
refinement of one minute. The value of the row indexs equal to the number of explanatory variables, (2)
multiplied by the number of road lanes monitored (15) and by the number of the vehicular categories (5),
thereforen p ¥ ¢zu p v, Twhile the value of the column index is equal to the total number of
temporal samples, namdly 8640.

The neural model returns tkle 1 target matrix4 as outputThe output matrix contains the temporal
evolution of the noise level at the givereasurement points. The value of the row index is equal to 3, the same
as the number of noise level measurement points.
The training and the testing processes take as neural model input and output the submatrices extracted from

‘Oand “Y respectively.

4. Training Procedure

The success of the neural network approach relies on a preliminary fgnassgjthe training process
During this step the network adapts its parameters in order to learn the information containdchinirige
setdata.

Throughout this preliminary training process, at each training step the experimental noise level at a given
instant is a known target and is used by the internal algorithm to iteratively adjust the network parameters to
minimize the overall error between the right experimental targets and the simulated response of the network.
The preliminary training process was carried out on a temporal sequence ohivadféicdata containing 800
and 950 records corresponding to 9% and 11% respectively of all the experimental observations (depending
on which measurement point A, B or C was considered). The training sequence covers a period ranging from
nighttime to early morning and is characterized by a wide transitoriness of the traffic conditions.

The remaining sequence, ten times larger than the training sequence, containing 7840 or 7680 records
corresponding to 91% 89% respectively of the experimental observations were used for validating the
generalization stage.

Figures 5 and 6show the sound pressure leegblution,during the offseason measurement period-(24

27th March 2019hat the measurement point situatedpsition A (indicatedin Fig. 2. Two schemes of
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training strategsthroughout the classical dynamics alternating between daytime, evening, and nighgtime
shown Two different strategies have been devised: a single and a multiple time span. They were both
implemented but for brevity only the results of the single time span are reported here as this strategy performed
better

The multipletime span strategy consigtsidentifying a certain numbdrof intervals, evenly spaced along
the timeline in an attempt to capture the dynamics of the noise ewattsegment. FigurB givesan intuitive
picture of howthis strategy splits the timdine into training and test set intervals. Howethbis strategy did
not produce the expected results. Though the training set comprised a number of intervals spread over the
measurement period, each segment was not sufficiently long to identify the relationship between traffic and
noise data in transient conditions. The requiesentedn the next sections, obtained adoptihgsingle time
span training strategghow that it outperforms the interleaved multiple shtimie spandaving the same
overall size as the single ane

experimental data set: measurement point A
\

« 15 I I I I I
training testing training testing training testing training testing training testing training testing training testing training testing training testing
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Fig. 5. Sound pressure levels vs. time, duringsgson measurement period in positiosi#gwing the period® which,the
data considered for the training and test sets, obtained using an interleaved multiple time spans learning scheme, refer.

The other strategy consists in extracting a single continuous time span fromeakeremerperiod, of
sufficient duratiorto ensure that traffic composition and noise levels exhibit a transient response. This single
interval is employed for training, while the remainder of the measurement period is used for the subsequent
test phase. Figur@gives an intuitive picture of how the single time span scheme selects the training set from
the complete timeline.
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experimental data set: measurement point A
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Fig. 6 Traffic noise measurements showing the periods to which the data considered for the training and test sets,
obtained using the single time span strategfger.

Figure7 summarizes the results obtained. The continuous time interval comprises bahdlaighttime

periods. As can be seen, the network has been traiitlith a time span in which thacoustictime-series

exhibits atransient trend
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Time-Series: Training Response with single time span
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5. Results of the training and test processes.

Once the training process is completed using the experimentardatad into theubmatrices Oy, 1,

“Y oi . the internal parameters of the network are numerically determined and thus take constant values. The
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model is nowpotentially ready for performing prediction tasks over the entire measurement péeogfore,
thenext step consists in testing the learning rate achieved by the network during the previous stefs since it
quite desirable the ability to predict the rigleiquences a¥ ; 1 , omitted from the trainingrocessthat

cannot have any effect on the training sthggeed, he correct prediction of noise levels, generated at a given

point for any profile of the traffic flow, dominates the developing process of a simulation model.

5.1 Training process
In this section the relevant results of the training processes of the NARX model by applying the
measurements performed during tifieseason traffic conditigrare reported.

In Figs. 8, 9 and 10 the simulated response of the ndode},  is compared with respect to the experimental
targetd  y for vehicle traffic data completely extracted from the training se¢ firediction errors are

shown in specific subplots.
Figures 8, 9 and 10 show the figures of merit describing the reliability and effectiveness of the NARX
model identified for each measurement point as a result of the training process response.

In Figs. 8a, 10a and 12a the simulated and experimental valies;ofmeasured at points A, B and C

are compared, while the prediction errors are shown in specific subplots.

In Figures 8b, 9b and 10b the regression function of the input and output data is reported. The cluster of
points around the straighihe bisector indicates better performance. The closer the regression coefficient R is
to 1, the better the regression of the values estimated by the neural network with respect to the experimental
data.

Figures 8c, 9c and 10c show the autocorrelation of the prediction error function. It describes how the prediction
errors are related in time. A well performing prediction model requires a singleenorvalue of the
autocorrelation function at zero lag, whereas for lag times different from zero, it should be close to zero. This
requirement represents a-oorrelation condition throughout the prediction errors.

In Figs. 8d, 9d and 10d the crossorrelation function of the prediction error and the exogenous input
sequence is showiihe cross correlation function provides a picture of how the errors are correlated with the
input traffic composition sequence. For a perfect prediction model, the correlations should be close to zero
across the entire lag domain.

The auto and cross correlation functions are a figure of merit to consider when assessing whether and to

what extent the identified model can explain the functional interdependence of the experimental observations.
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543
544  5.2Testing process
545 In this section the relevant results of the testing processes of the NARX anedeportedThe model
546 has been testemtoptingthe closed loop architecture (illustrated in Fig. 4a) that performs-siafiiahead
547 predictionswvhere the values predicted in the preceding steps (output feedback) are used as input for predicting
548  multi time steps ahead
549 The ability of the NARX model to generalize what has been learned from the training subset has been
550 verified on a large test set size, composed (at the least) of a sequence of 7690 records, corresponding to 89%
551 of the experimental observations. The training set is much smaller and contains the remaining 11%.
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These values should not be overl ooked since the
extent, on the adopted percentages composition of the training and testing sets.

In pattern recognition or time series prediction, the training set is usually larger than the test set. The
recommended percentages, reported in standard applications, being close to 80% and 20% respectively.
Training sets composed of less than 80% of the experimental data may be inadequate, they likely contain too
little information to achieve good generalization of learning across all the experimental observations.

Consequently, successful generalization performance (namely attaining small prediction errors) becomes
an increasingly formidable task as the size of the training set size diminishes and thus the test set increases.
However, on the other hand, it is also true, that the statistical consistency of the prediction capability would be
strengthened.

Vice versa, increasing the training set to more than 80% facilitates achieving small prediction errors, may
nevertheless undermine the statistical consistency of the generalization power. Therefore, a suitable division
should reflect a compromise between the requirements (frequently conflicting) of reducing the prediction
errors and increasing the size of the test set for enhancing the robustness of the generalization capability.

The test results are divided into two separate time periods, the thissastin days in March 2019 and
the three days during the peak tourism season in August 2019.

Figuresll, 12 and 13, provide a representative picture of the ability of the neural model to generalize the
traffic - noise relationship across the entire measurement periods and for traffic inputs not used to train the
network.

The numerical results, representedthy solid grey curvesiiFigures 11#3b, are obtained using the
model for generating multistegthead predictions of the test set samples. In particular, any point at a given
instant of the grey curves is a simulated predicted value and is generated by using, as input regressors, the
noise level predictions generated at previous instants in combination with the experimental values of the traffic
data.

Therefore, the experimental values of the noise level are not used mmpded for predicting the grey
curves, but rather are depicted, with the dotted blue curves in the graph, only for comparison with the simulated
values

The prediction errobetween the responsé the model  ; and the experimental targét j

for vehicle traffic input data not included in the training set is shown in thelstdof figs.11, 12 and 13.

Figs. 11 - 13 show how the model is well adapted over the complete measuring periods. Moreover, since
satisfactory generalization performances of the learning process have been attained on a large size of the test
subset size, in spite of the relatively small size of the training set, the achieved generalization capability could

be considered reliable.
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Fig. 11. Simulated and experimental evolutiordof; T, at measurement poiAt. In a) during off season (March) and in b)
during peak season (August) traffic flow rates. The comparison is performed across the measurement period of the test
datasets sequence.
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Fig. 13. Simulated and experimental evolutiordof; T, at measurement poi@t In a) during off season (March) and in b)
during peak season (August) traffic flow rates. The comparison is performed across the measurement period of the test
datasets sequence.



