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Abstract.  14 

In this research study an adaptive recurrent artificial nonlinear neural network identification model has 15 

been developed and experimentally tested for dynamically predicting the traffic noise level ὒ ȟ  with a time 16 

refinement of 1 minute. The model has been successfully applied in three selected positions, representative of 17 

the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic 18 

fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically 19 

access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns 20 

during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass 21 

have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal 22 

to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been 23 

considered as input data sources. This exploratory investigation reveals a good predictive performance of the 24 

model developed, the prediction error of ὒ ȟ  falling prevalently within the range ±0.5dB. The experimental 25 

profile of ὒ ȟ  is well reflected by the simulated sequence, and the auto and cross correlation functions 26 

confirm how well the identified neural model is able to explain the functional dependence underlying the 27 

experimental observations.  28 
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Nomencalture 39 



)  represents the neural network input matrix. It includes data about the traffic flow; 40 
╛▄▲ȟ  represents the acoustic pressure level measured by the sound level meter, obtained by 41 

averaging over an integration time of 1 minute  ἬἌ; 42 
╣ represents the target matrix. It includes the information of the physical quantities describing 43 

the noise level; 44 
Ⱳ░  represents the time at i th instant   ἵἱἶ; 45 
 indicates the traffic flow data. It represents the exogenous input matrix that incorporates the 46 אַאָכּ

time sequences ὠ†, ּמ† describing the temporal evolution of the flow rates and the speed 47 
for each vehicle class and lane that composes the road section, under consideration. From  48 

 average value of the different speeds of a class of vehicles measured at a given point by the 49 מּ
traffic sensor during a time of 1 minute 50 

ὠ traffic flow rate in terms of vehicles per unit time crossing a considered section of a roadway 51 

lane, 
  

; 52 

 53 
ȿⱲ░  denotes a physical quantity evaluated at time Ⱳ░; 54 

 55 
 56 

1.  Introduc tion  57 

Nowadays, the control and abatement of the urban noise transversally pervade the different aspects of 58 

spatial planning whereas the implications on the natural and built environment, as well as on human wellbeing 59 

have become paramount in the modern age.  60 

Several studies of the European Environment Agency (EEA) [1] show that the dominant source of noise 61 

pollution results from road traffic. An overview of the estimated number of people that are exposed to the 62 

noise level indicators ὒ  and ὒ  equal to or exceeding the threshold values of 55 dB and 50 dB is depicted 63 

in fig. 1 for different transportation sources. Traffic noise poses severe health challenges, diminishes the quality 64 

of life and negatively impacts the livability character of the urban and indoor spaces [2] and [3].  65 

Devising specific tools for reducing noise exposure and setting proper mitigation actions can play a key 66 

role in improving the welfare of mankind. This explains why several researchers involved in applied acoustic 67 

concepts, urban planners and software developers have spawned (since the pioneering studies started in the 68 

early 1950s [4]) a plethora of studies to expedite the development of tools for traffic noise prediction.  69 

Two classes of modelling techniques are generally adopted to determine the noise level from vehicular 70 

traffic: static and dynamic.  71 

Static models, in the main, are oriented towards providing an acoustic representation in the spatial domain 72 

rather than over time [5-6]. For this reason, the applicability of statistical models is restricted to acoustical 73 

context where the time-varying effects are not essential. However, this approach becomes quite inadequate for 74 

reproducing the dynamic response of the acoustic field when the traffic scenario evolves continuously over 75 

short periods of time. Most conventional models accept stationary representation of the noise sources as input 76 

data, generating a corresponding crystallized timeless picture of the noise field as output, [7].  77 

 78 



 79 

Fig. 1 Number of people exposed to values of ὒ  and ὒ  equal to or exceeding the threshold values of 80 
55dB and 50dB, respectively. Box a) concerns people belonging to the European Union member states, 81 
while box b) refers to people belonging to the member countries of the Economic European Area. All 82 
states are counted before the Brexit decision was implemented. All data are extracted from reported data 83 
on noise exposure covered by Directive 2002/49/EC provided by European Environment Agency (EEA) 84 
and published 21 Nov 2019.  85 

 86 

Specifically, under free-flowing traffic conditions the noise field represents the favorable scenario for 87 

noise level prediction when using static models. Conversely, non-free-flowing traffic conditions, such as at 88 

signalized intersections or roundabouts, could be critical due to the complexity inherent in the relative random 89 

influence, (as noted by S. Abo-Qudais in [8]).  90 

A critical review and details of these standard methodologies can be found in excellent studies conducted 91 

by Naveen Garg and Sagar Maji in [9], by J. Quertieri in [10], by C. Guarnaccia et al in [11] and by C. Steel 92 

in [12]. The limitations of the static models are discussed in [7] by Quartieri et al who carried out an 93 

experimental validation of different static models, revealing a significant discrepancy between predicted and 94 

measured values.  95 

The transition from static to dynamic prediction task has been spurred by the need to devise appropriate 96 

traffic management actions and to evaluate their impact on reducing urban noise levels [13]. Excellent studies 97 

have been proposed for new dynamic simulation models [14-15] and descriptors [16] that consider the time 98 

varying behavior of the vehicles, aimed at predicting and capturing the specific dynamics of the traffic noise 99 

[17]. Several investigations that compare dynamic versus static traffic noise representation have been proposed 100 

in [18-23], while a recent brief overview on both modeling approaches is shortly presented by G. R. Gozalo in 101 

[24]. 102 

 103 

1.1 Traffic noise prediction model based on AI.  104 

Since the earliest study published in 1952, the advancements in the modeling approach were primarily 105 

inspired by the effort to incorporate more detail and explanatory variables into the physical description of the 106 

noise event, so as to derive an increasingly accurate, but still tractable, simulation tool. The physical approach 107 

https://www.eea.europa.eu/data-and-maps/data/data-on-noise-exposure-7
https://www.eea.europa.eu/data-and-maps/data/data-on-noise-exposure-7
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requires modeling the functional dependence underlying the acoustic wave phenomena. An interesting and 108 

detailed account of the existing physical approaches is presented by M. Hornikx in [25-26] and by H. Wang 109 

in [27]. 110 

Many improvements have been achieved over the decades, nevertheless accurate dynamic predictions of 111 

road traffic noise, based on a physical description approach, still remains a challenge.  112 

During the last three decades the modeling approach has been further developed by exploring the 113 

applicability of alternative options, offered by artificial intelligence concepts, for solving road noise issues. 114 

Many methods that rely on machine learning modeling techniques can be applied for predicting the influence 115 

of vehicular traffic on urban noise. For instance, regression decision trees, support vector regression, 116 

ensembles, fuzzy logic, and artificial neural networks (ANN) methods are examined in recent studies by many 117 

authors as L. Bravo-Moncayo in [28], N. Genaro in [29], V. Nourani in [30], M. .Ali  Khalil in [31], A. Sharma 118 

in [32] J. Tomiĺ in [33], and N. Garg in [34]. The most common and successful heuristic methods are based 119 

on the ANN algorithms. Indeed, the universal applicability of ANN in modeling, classifying, controlling, and 120 

predicting complex systems with an acceptable level of accuracy, of insensitivity to noisy data and tolerance 121 

to of input data incompleteness, is one of the reasons for the recent vivid interest in developing ANN models 122 

for complex traffic noise prediction problems. Furthermore, the black-box paradigm of the neural network 123 

allows one to bypass the preliminary stage consisting in the implementation of specific physical laws of the 124 

acoustic wave propagation mechanism and related boundary conditions. This aspect is quite attractive because 125 

the preliminary stages for implementing the topographic and acoustic properties of the urban and the natural 126 

environment (with the proper refinement), in addition to noise source representation may have a significant 127 

impact on the time required for fine-tuning a physical model 128 

At present, numerous excellent works are reported in the literature that propose theoretical and 129 

experimental validation studies employing ANN modeling techniques for traffic noise issues.  130 

G. Cammarata in [35] and in [36] proposed a neural architecture for traffic - noise prediction in three Sicilian 131 

cities. A two-stage architecture was examined in [36]. A first preliminary stage consisting of a Learning Vector 132 

Quantization network was used for filtering measurements affected by error followed by a stage consisting of 133 

a back propagation (BP) network for predicting the pressure level. The size of the training set was equal to 134 

70% of the entire data. The results show the proposed approach to outperform the classical relationships 135 

reported in the pertinent literature. In [37] V. Nedic et al proposed an interesting application of an ANN to 136 

traffic noise prediction. The authors adopted a feed-forward (FF) BP scheme. The ANN was trained and tested 137 

under steady-state traffic conditions on a Serbian motorway. The training and test sets comprised 70% and 138 

30% respectively of the whole dataset. The results revealed that the ANN algorithm outperformed any other 139 

statistical method in predicting the traffic noise level. A. J. Torija et al In [38] proposed an interesting study 140 

on the use of a BP algorithm for predicting the short - term level of ὒ ȟ  and the evolution, in the frequency 141 

domain, of sound pressure level for a physical characterization of the urban soundscape. Traffic features, street 142 

geometry, type of day and period, stabilization time of the sound level, and characterization of the location 143 

were considered as input data. The training, validation and test sets were equal to 80%, 5% and 15% 144 

https://asa.scitation.org/author/Tomi%C4%87%2C+J


respectively of the whole dataset. A prediction error for ὒ  lower than 1.88% and than 3.07% for the spectral 145 

composition was obtained. In [39] sixteen different FF-BP ANN models were calibrated and tested by K. 146 

Hamad for modeling traffic noise in a hot climate. The training and test sets size were respectively 85% and 147 

15% of the entire dataset. The authors carried out a sensitivity analysis over the adopted explanatory variables 148 

(distance from edge of the road, light and heavy-duty vehicle volume and composition, average speed, roadway 149 

temperature) to shed some light on the black-box paradigm of the neural network. In [40] V. Nourani et al. 150 

presented the first application of the Emotional ANN (EANN) as a new generation of neural network methods 151 

for predicting the equivalent noise level ὒ ȟ  from road traffic noise in Nicosia. The traffic volume was 152 

found to be the most significant contributing factor whereas heavy-vehicle volume was found to be the least 153 

(in accordance with the study [38] mentioned above). No information is provided about the composition of the 154 

training, validation, and test sets. 155 

P. Kumar et al in [41] trained a multilayer feed forward BP neural network by using the Levenbergï156 

Marquardt algorithm for predicting highway traffic noise in an Indian scenario. A location characterized by 157 

free-flowing-traffic conditions, avoiding sources of interruptions, was selected omitting nighttime traffic 158 

volumes from the predictions. The proposed ANN model was used to predict 10 percentile levels (L10) and the 159 

equivalent continuous sound level in dB(A) using as source of input data the average hourly values of the 160 

traffic flow. A Comparison between regression analysis and experimental values revealed a percentage training 161 

error ranging from -4.2 to 2.7 for L10 and from ī5.1 to 2.6 for ὒ , while for the test samples the error is within 162 

the range ī4.1% to -0.1% for L10 and ī4.8% to 0.5% for ὒ . The ANN model outperformed the regression 163 

analysis. Indeed, the training error of the ANN model lies within the range -0.8% - 1.0% for L10 and ī1.5% - 164 

0.9% for ὒ , while for testing samples the error ranges from ī1.7% to 1.8 for L10 and from -0.6% to 1.5% for 165 

ὒ . The training and test set sizes were 80% and 20% respectively of the whole dataset composed of 46 hourly 166 

records. 167 

In [30] V. Nourani et al. adopted an original ensemble approach for combining the response of four 168 

different models aimed to improve traffic noise prediction performance in Nicosia. Three AI-based models 169 

(fuzzy, neural network, support vector regression algorithm) were employed while the fourth was based on a 170 

conventional multilinear regression model. Measurements were performed during daytime (omitting 171 

nighttime) at observation points carefully selected for avoiding as much spurious background noise as possible. 172 

The ensembled model was then used to predict the equivalent sound level ὒ , considering 15 minutes 173 

integration time and using traffic composition and average vehicle speed as input data..  174 

L. Chen in [42] developed a neural network model for traffic noise prediction in a mountainous city. A 175 

multilayer feedforward ANN model was trained using experimental data measured in a municipal road in a 176 

hilly Chinese city (Chongqing). Measurements were performed, at observation points carefully selected for 177 

operating under free-flowing traffic conditions. The proposed ANN model was used to predict the per-vehicle 178 

noise levels and the corresponding equivalent sound level pressure. Comparison between the neural model and 179 

the Chinese standard HJ 2.4-2009 revealed a significant improvement over the empirical equations.  180 



In [43] S. Givargis et al. presented a basic Multi-Layer Perceptron (MLP) model for predicting hourly 181 

equivalent sound pressure levels. The authors conducted a comparison with the CORTN model in order to 182 

investigate whether a neural network can be used in a statistical manner to model traffic noise for Tehranôs 183 

roads. The result of the study revealed the ability of the MLP model to provide a description of the traffic noise 184 

consistent with the conventional statistical approach of the CORTN model.  185 

In [44] D. Singh et al investigated using four different soft computing methods, (generalized linear model, 186 

decision trees, random forests, and neural networks), for predicting continuous hourly ὒ  at different free-187 

flow traffic location locations in an Indian city. The Random Forests method outperformed the other 188 

approaches in predicting the sound pressure level.  189 

 190 

 191 

1.2 Short-term traffic noise prediction in waterfront of seaport cities. 192 

From the above overview, an exiguous number of studies emerges that have probed in developing 193 

dynamic models for traffic noise prediction in complex urban contexts where actual traffic conditions cannot 194 

be properly described by a priori and restrictive assumptions on traffic behavior and background noise. 195 

Continuous traffic flow regime or general features drawn from regular scenarios even under unperturbed 196 

boundary conditions, are, in some cases, unrealistic assumptions that do not adequately account for the acoustic 197 

field in response to the short - term evolution of traffic sources and under real operating conditions.  198 

The motivation of the present work stems from the following consideration. Several waterfront cities 199 

experience through traffic of private and commercial vehicles attracted by port activities, especially in tourist 200 

destinations. During the peak season the soundscape of an urban waterfront in port cities undergoes substantial 201 

changes throughout the day and night on an hourly or sub-hourly time scale that however is not always 202 

univocally and a priori predictable. This phenomenon is caused by the ferry traffic which tangibly has a direct 203 

impact on the vehicle flows through the road network in urban waterfronts in port cities. Exposure to noise in 204 

urban port waterfront areas takes on a different connotation compared to other urban contexts, particularly in 205 

those cities with commercial ports strongly impacted by the seasonality of tourism demand. The concentration 206 

of ferry departures and arrivals, during the peak season, generates a large amount of tourist with an exceptional 207 

intensification of the vehicular and heavy lorry traffic (in comparison with the average yearly trend), 208 

conditioning driving strategies and behavior, especially when drivers have to comply with boarding times.  209 

This phenomenon occurs with an unpredictable and variable time scale during days of the peak tourist 210 

season and culminates every weekend. In the case at hand, the traffic flow can increase by about (730-1000)%. 211 

The consequences on the acoustic pressure generated by vehicle engines are easy to imagine. Therefore, the 212 

presence of an urban port exposes the neighbouring areas to a wide range of temporal variation in traffic 213 

volumes, potentially creating complex constantly evolving acoustical scenarios [45]. Certain buildings may 214 

thus be subject to annoying traffic noise, as low levels in normal times alternate with heavy traffic volumes on 215 

road connections to the port. Changes in vehicular flow intensity and composition occur during boarding and 216 

disembarking. Exceptional increases in traffic flows during port operations negatively impact the livability of 217 



the waterfront areas as well as the tourist appeal of the city as a whole. Thus, the waterfront area is solely 218 

perceived as a thoroughfare for reaching quieter places.  219 

Static trafficïnoise models, based on purely statistical assumptions, or even dynamic models operating 220 

with a time refinement of an hour or longer are not able to satisfactorily incorporate and reproduce the dynamic 221 

features in similar acoustical contexts with the proper time scale and accuracy.  222 

Therefore, similar approaches could lead to unrealistic results in predicting the impact of traffic 223 

management strategies aimed at reducing urban noise.  224 

From the foregoing discussion, it would be advisable that a traffic noise prediction model, designed to 225 

identify a series of predefined traffic management strategies and to combat the uncontrolled evolution of the 226 

traffic noise levels in urban waterfronts, needed to be dynamic, accurate and to operate in real time with the 227 

actual traffic conditions at time scales smaller than the considered acoustic phenomenon. Analysis of the 228 

pertinent literature showed that a full transient dynamic model that predicts the equivalent noise level, from 229 

the traffic flow, with a small prediction error (lower than 1 dB) and a small-time refinement (1 minute), is not 230 

yet available.  231 

Consistent with this overarching objective, we addressed the problem of identifying a dynamic model that 232 

was able to replicate, or at least approximate, the data generation mechanism by means of which the flow and 233 

composition of vehicle traffic produces noise levels in a specific urban context. Therefore, we implemented a 234 

dynamic prediction model architecture with exogenous inputs that dynamically predicts noise level trends, 235 

with a short time refinement and a small prediction error, as the noise sources, arranged in different traffic 236 

scenarios, vary.  237 

An adaptive nonlinear autoregressive recurrent dynamic neural network model has been developed, 238 

trained, and experimentally tested for the short-term prediction of the equivalent noise level ὒ ȟ  generated 239 

by vehicular traffic in the port city of Olbia chosen for the case study. Olbia, a medium sized city on the 240 

Mediterranean Sea exhibits the peculiar characteristics of a port city with seasonal variations in traffic volumes, 241 

due to the major tourism flows attracted by the port. Once the area of interest was suitably scaled down to be 242 

more appropriate with the research objectives, the exploratory analysis focused on the area affected by 243 

direction of the traffic traveling to the Isola Bianca quay for freight and passenger loading and unloading 244 

operations.  245 

The neural model simultaneously predicts the experimental sequence of the time averaged equivalent 246 

sound pressure level ὒ ȟ † of the traffic noise at three different locations, representative of the acoustic 247 

field in the waterfront line: i) a signalized intersection, ii) a roundabout, and iii) the entrance to a vehicular 248 

underpass.  249 

The three locations exhibit a wide variability and different traffic conditions and were selected for the 250 

significant correlation between vehicular traffic and port activities, observed during preliminary monitoring 251 

carried out over a period of several years prior to the present study.  252 

The architecture adopted for developing the model belongs to the so called NARX models [46] and is 253 

nonlinear, autoregressive and accepts exogenous input and feedback regressors as source of input data. The 254 



intensity and the composition of the traffic flows have been used as exogenous inputs, while regressors of the 255 

acoustic output have been employed as feedback input.  256 

Moreover, the model is based on a restricted number of experimental observations of the traffic noise 257 

event, circumventing the need for a preliminary data collection stage for incorporating all possible occurrence 258 

of the traffic noise phenomenon.  259 

Indeed, this type of prediction system is employed for its ability to generalize the results and hence to 260 

associate correct responses even to input signals not previously contemplated or with missing or partially 261 

missing information. The prediction capability of the NARX model is demonstrated over a 6-day time span 262 

measured in two distinct periods of the year: for normal and peak traffic conditions.  263 

The neural model, once has been trained, is able to operate in multi-step head prediction mode. The time 264 

required for provide predictions with a time refinement of 1 minute is less of 14 [ms]. Therefore, the developed 265 

model operates in real time mode, with respect to the considered time frame of 1 minute. These features offer 266 

potential for supporting the decision processes in traffic management with short- term refinement where the 267 

ability to predict the effects of different traffic strategies can be very useful 268 

 269 

 270 

2. Description of the measuring periods and selection of the measuring points and methods.  271 

Fig. 2 shows a satellite image of the urban area of the Olbiaôs waterfront indicating the distribution of the 272 

traffic sensors and three sound pressure meters are schematically reported. A roundabout, a signalized 273 

intersection, and a wide entrance to a vehicular underpass, the most exposed area to traffic volume generated 274 

by port activities, mark the imaginary line of the waterfront city and have been acoustically monitored during 275 

the measuring periods being. The distribution of the road sections was decided on the basis of our intention to 276 

monitor all those sections along the preferential routes in and out of the port and that provide access to the 277 

cityôs waterfront. In addition, we considered sources of traffic congestion such as the signalized intersections 278 

and roundabouts along the port waterfront (see measurement points A e B shown in Fig. 2).  279 

A total of 11 road sections were continuously monitored, as shown in Fig. 2. Note that four road sections 280 

are two-way roads (sections 1, 9, 10, and 11), while the remaining 7 are one-way streets (2, 3, 4, 5, 6, 7, and 281 

8), making a total of 15 road lanes.  282 

The representativity of the selected points was confirmed by preliminary noise level measurements in 283 

both periods that in a first approximation showed a close correlation of the traffic volume fluctuations with the 284 

corresponding variations in noise levels. 285 

The area is a popular tourist destination with marked seasonal variations. Indeed, the volume and 286 

composition of traffic along the cityôs waterfront can be divided into two very different periods. The first is 287 

the normal (off-season) period, Ὕoff-s, from October to May where traffic volumes are mainly generated by the 288 

daily routine of the residents and by ordinariness of production activities. The second is the peak period, Ὕpk-s, 289 

that goes from June to September where traffic volumes increase substantially by comparison with the average 290 

yearly trend because of the large number of tourists arriving at and departing from the port. During these 291 



months vehicle traffic increases substantially by about 730 ï 1000%, culminating in the third weekend in 292 

August. 293 

 294 

 295 
Fig. 2. Monitoring area of the Olbia waterfront. Optimized selection of vehicle traffic measurement points (red) and sound pressure 296 

level meters (yellow). 297 
 298 

 299 

 300 
Fig. 3 Local contextualization of the measurement points. a) position of the sound level meter at the ñPrincipe Umbertoò roundabout 301 

denoted with A in Fig. 2; b) position of the sound level meter at the signalized intersection in front of Olbia town hall, denoted 302 
with B in Fig. 2; c) position of the sound level meter at the entrance to the underpass denoted with C in Fig. 2. d) position of the 303 
traffic sensor number 4 in Fig. 2. e) example of traffic flows along the waterfront during daytime; f) example of traffic flows 304 
along the waterfront at nighttime at sound level meter A.  305 
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 306 

In the present investigation noise level and traffic data measurements were performed in two continuous 307 

periods each of 72 hours duration. During each period the temporal evolution of sound pressure levels , ȟ  308 

was acquired simultaneously with the traffic data (category, traffic volume and speed of the vehicles) in fifteen 309 

sections of different road lanes. The first between March 24th 27th, representative of the off-season period 310 

characterized by normal traffic volumes, the second between August 24th and 27th representative of the peak 311 

season. 312 

The choice of measurement points fell on those locations that were able to provide a sufficiently complete 313 

and representative picture of noise levels in the port area.  314 

 315 

 316 

3. Neural network architecture 317 

The traffic ï noise model has been implemented adopting the architecture of a nonlinear autoregressive 318 

exogenous (NARX) artificial neural network in a closed loop configuration [47]. The reason for adopting a 319 

NARX architecture relies on its specific suitability for implementing time series prediction tasks where 320 

external independent physical input affects the behavior of the output time series to be predicted, with the 321 

contribution of its past values.  322 

This kind of autoregressive architecture can adapt its parameters on the past values of the output sequence 323 

and in addition other exogenous inputs are accounted for as driver of the future values by specific input nodes. 324 

This means that the NARX model relates the history of the time series to be used as feedback input, with 325 

the current and past values of other external independent explanatory inputs by a using a learning algorithm 326 

that drives adaptation of its parameters for reproposing the temporal relationship between inputs and output 327 

observations.  328 

The training of the network parameters takes place for each value of the sample of the input sequence that 329 

is supplied to the network. At every training step the Levenberg-Marquardt back-propagation optimization 330 

scheme is applied for reducing as much as possible the overall error between the answer given by the network 331 

at the actual instant, with respect to the relative target, and the error of the answer given at a certain number of 332 

preceding instants.  333 

The NARX model could be utilized to solve time series prediction problem where the task consists in 334 

predicting future values of a given time series Љ† from its past values and from past values of another time 335 

series ּך†. The past values of the time series Љ† represents endogenous input, while the values of the second 336 

time series ּך† represents the exogenous input. This form of prediction can be represented by the following 337 

describing equation: 338 

Љ† ꞈЉ† ρȟȣȟЉ† ὶȟ‐†ȟȣȟ‐† ὶ  Eq. 1 339 

where Љ† corresponds to the next value of the output to be predicted at instant † and by means the 340 

function ꞈ  is regressed on previous values of the output signal, Љ† Ὥȿ ȣ , and previous values of 341 

the independent exogenous input quantity, ‐† Ὦȿ ȣ .  342 



The traffic noise model can be implemented on the NARX architecture by assuming the following 343 

correspondence: the time profile of the equivalent noise level ὒ ȟ , obtained by averaging over an integration 344 

time of 1 minute, plays the role of dependent variable in place of the output signal Љ in Eq. 1. In particular 345 

ὒ ȟ † represents the output value to predict at instant †, while ὒ ȟ † Ὥ
ȣ

 represent the past values 346 

of the noise level that have to be used as regressors for predicting the next values of ὒ ȟ . The time profiles 347 

of the traffic flows data ּאַאָכ† , averaged over 1 minute play the role of independent variable in place of the 348 

exogenous input signal ‐ in Eq. 1. Clearly, the traffic flow data variable ּאַאָכ†  is not simply composed by 349 

a scalar time sequence, like ὒ ȟ , but incorporates the time sequences ὠ†, ּמ† describing the temporal 350 

evolution of the flow rates and the speed for each vehicle class and each lane that composes the road sections, 351 

under consideration.  352 

The NARX model can be implemented by means a neural network that provides an approximation of the 353 

mathematical expression of the function .ꞈ The input data source is composed of the regressor values of the 354 

acoustic pressure level ὒ ȟ  of the noise signal (in feedback or open loop arrangement) and of the parameters 355 

describing traffic composition and road layout. The NARX model should be trained using input values at 356 

instant ti and the values occurring at past instants † , †  and †  so that the model is able to learn not only 357 

the individual measured values but also the temporal dynamics with which they occur. 358 

It is worthwhile to introduce Fig. 4 since it provides insight into the architecture of the resulting NARX 359 

model. The schemes of Fig. 4a and 4b represent a two-layer feedforward neural network, with a sigmoid 360 

transfer function in the hidden layer (to treat nonlinear separable solutions) and a linear transfer function in the 361 

output layer. In both schemes, the networks are equipped with tapped delay buffers to store past values of 362 

ὒ ȟ † and ּאַאָכ†  sequences. In Fig 4a the network exhibits a close loop configuration, where the output 363 

of the network is fed back as source of input data for implementing the instantaneous dependence of ὒ ȟ † 364 

from its past values ὒ ȟ † Ὥ
ȣ

. In this case the regressors are numerically calculated by the network 365 

algorithm and derived from its output. Therefore, they are estimated values. In Fig. 4b an architecture in open 366 

loop configuration is depicted where the regressors of ὒ ȟ  are directly extracted from the experimental 367 

observations. The open loop configuration should be used during the training phase of the network, since the 368 

exact output values are available from measurements, rather than feeding back the estimated output. Thereby, 369 

the network can adapt its parameters on input values that are measured and then more accurate than the 370 

estimated values achieved with the closed loop configuration.  371 

Moreover, the training procedure can be performed by means a more efficient algorithm if a feedforward 372 

architecture is adopted in place of a feedback nework.  373 

Once the training stage of the network has been carried out in open loop configuration, by utilizing the 374 

scheme illustrated in Fig. 4b, the typical workflow includes a further step in which the trained network is 375 

transformed in closed loop configuration (according to the scheme of fig. 4a) for generating multistep-ahead 376 

predictions.  377 



The model has been built using Matlab development environment that allows to display the 378 

autocorrelation function of the prediction and the input -error cross-correlation functions that describe how the 379 

prediction errors are related in time with each other and with the input respectively. The adequacy of an 380 

identification model to the experimental observation is, in some extent, revealed by behaviour of the 381 

autocorrelation and cross-correlation function in so far as they approach to zero values throughout the lag 382 

abscissa, except in the origin at zero lag value where the function should attain its maximum value for the case 383 

of the autocorrelation function. These conditions would denote that the prediction errors are weakly or 384 

completely uncorrelated with each other and with the input sequence. If there is no dependence among these 385 

residuals, then they can be regarded as observations of independent random variables (white noise), and there 386 

is no further modelling to be done except to estimate their mean and variance. However, if instead there is 387 

significant dependence among and between the prediction error values and input sequences then it should be 388 

possible to improve the predictions by looking for a more complex time series model, for example by adding 389 

hidden layers, that accounts for the showed dependence, or perhaps by increasing the number of delays in the 390 

tapped delay lines. This could be beneficial, since dependence aspect may imply that past observations of the 391 

noise sequence can assist in predicting future values. Therefore, the autocorrelation and cross correlation 392 

function can help for assessing the proper complexity of the network and the size of the regression vectors that 393 

exhibit to improve the adequacy of the trained model to the observed data generation mechanism.  394 

Specifically, in the present study the hidden layer size and the number of the input and feedback regressor has 395 

been found by tuning them (throughout a trial-and-error technique) until no further improvements on the 396 

prediction error and the auto and cross - correlation functions were revealed. As a result, the number of the 397 

regressor considered for the training phase is 1 for the traffic flow data and 3 for the level noise data. The 398 

choice has been also validated by the Lipschitz Quotients criterion proposed for the first time by He and Asada 399 

(1993), and later developed by Jeen- Shing Wang et al. (2009), for dynamic neural models of the MISO (Multi 400 

Input Single Output) type. 401 

 402 

 403 

 404 



 405 

 406 

Fig. 4 Schematic representation of the architecture of the adopted NARX model. a) closed loop configuration for multistep-ahead 407 
prediction. In this configuration the trained model is driven by the traffic flow measurements for predicting the noise level. The 408 
simulated noise levels at previous steps are fed back as source of input data for implementing the temporal dependence of 409 
ὒ ȟ † from its past values. b) open loop configuration for performing the training stage. The values of the traffic flow, the 410 
noise level and their regressors are extracted from the experimental observations and are used as source of input data.  411 
 412 

The experimental observations are composed by 8640 records of noise level measurements and 413 

an equal number of traffic noise data. Half of these concerns the time series measured during off-414 

season traffic volumes, while the other half refers to the peak traffic season. The learning algorithm 415 

is based on the Levenberg-Marquardt back-propagation optimization scheme applied for least-416 

squares estimation of nonlinear parameters [48 - 49]. At each training step the algorithm reduces the 417 

overall error between the response provided by the network and the corresponding experimental value 418 

representing the correct target. For the benefit of the reader, an overview of the sources and the 419 
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structure of the input and output data, supplied to the model for developing the training and testing 420 

procedure, are reported in the following scheme.  421 

 422 

source of the exogenous input data 

experimental values of the traffic flow data sequence, ( ּאַאָכ† ): 

a) traffic flow rate, in terms of the overall number of vehicles per unit time (1 minute) 

crossing a reference section of a given roadway, ὠ.  

b) average value of the different speeds of a class of vehicles measured at a given point 

by the traffic sensor during a time of 1 minute, ּמ.  

The traffic flow rate ὠ and the average speed ּמ are separately provided for each 

vehicleôs category, as defined accordingly to the CNOSSOS-EU standard and for each 

lane that composes the roadways under consideration. Separate quantities for each lane 

allow to incorporate the information about the driven direction in the training processes.  

n° of monitored roadway sections 

11 measuring points placed as shown in Fig. 2. Four road sections are two-way roads 

(sections 1, 9, 10, and 11), while the remaining seven (2, 3, 4, 5, 6, 7, 8) are one-way 

streets, making a total of 15 road lanes 

nÁ of vehicleôs categories 

vehicles are grouped into four categories on the basis of their emission characteristics 

as defined in the Common Noise Assessment methods (CNOSSOS). Specifically: a) 

light motor vehicles, b) medium heavy motor vehicles, c) heavy vehicles, d) powered 

two wheelers (motorcycles and moped). In the case of powered two wheelers (category 

4), two subclasses had to be defined: a class 4a for mopeds and a class 4b for more 

powerful motorcycles, since they have very different driving modes, and their numbers 

usually vary widely (as indeed happens between the off-season and peak traffic periods 

due to the large number of tourists arriving at and departing from the port). 

n° of exogenous input  

75 exogenous inputs, resulting from the combination between the number of roadway 

lanes and the number of the vehicular classes. In particular, 5 vehicular classes 

(considering the two subclasses 4a and 4b) for 15 roadway lanes. Each datum contains 

two pieces of information collected for a time period of 1 minute: the average vehicle 

speed, ּמ and the flow rate, ὠ. 

source of the output target data 
experimental values of the equivalent noise pressure level ὒ ȟ †  sequence obtained 

by averaging over an integration time of 60 seconds. 

n° of acoustic measuring points 3 measuring points placed as shown in Fig. 2. 

n° of output  3 noise level outputs. 

source of the feedback input (regressors) 
past values of the noise level and traffic flow sequences, namely ὒ ȟ † Ὥ

ȣ
, 

ὠ† Ὦ
ȣ

 and ּך† Ὦȿ ȣ  . 

size of the feedback regressors 
 rt = 1 traffic data regressor. 

 rn = 3 noise level data regressors. 

n° of hidden layers 4 hidden layers. 

n° of measurement periods 

two continuous periods each of 72 hours duration.  

1st period, Ὕ  , that covers March 24th and 27th, representative of the off-season 

period of the traffic flow rate. 

2nd period, Ὕpk-s, during August 24th and 27th, representative of the peak season period 

of the traffic flow rate. 

time refinement  Tr = 60 seconds. 

n° of records of input/output sequences 
8640 records each averaged over a time span equal to Tr. Specifically 4320 records are 

measured during Ὕoff-s period and other 4320 during Ὕpk-s period. 

input and target training sequences size 
800 ÷ 950 records of ὒ ȟ † and ּאַאָכ†  sequences, extracted from the Ὕ  

period. 



input and target test sequences size 

7840 ÷ 7680 records of ὒ ȟ † and ּאַאָכ† sequences, measured during the Ὕ  

and Ὕpk-s periods. In particular 3520 ÷ 3350 records come from the remaining part of 

Ὕ , that is omitted by the training procedure and other 4320 records are provided by 

the whole Ὕpk-s period. 

 423 

3.1 Input and output data sets 424 

The neural model accepts an ּה  matrix, containing all the traffic composition information, as source 425 וּ

of exogenous input ). Two explanatory variables are used for characterizing the traffic on each road lane and 426 

for each vehicle class: a) the number of vehicles per minute and the average speed for each class. The row 427 

index ּג ρȢȢּה  selects the explanatory variable of a given road lane and vehicle category while the column 428 

index Ë ρȢȢּו  goes through the temporal samples, obtained by averaging the physical sample with a 429 

refinement of one minute. The value of the row index ּה is equal to the number of explanatory variables, (2) 430 

multiplied by the number of road lanes monitored (15) and by the number of the vehicular categories (5), 431 

therefore ּה ρυzςz υ ρυπ, while the value of the column index ּו is equal to the total number of 432 

temporal samples, namely ּו  8640.  433 

The neural model returns the ּט  target matrix 4  as output. The output matrix contains the temporal 434 וּ

evolution of the noise level at the given measurement points. The value of the row index is equal to 3, the same 435 

as the number of noise level measurement points.  436 

The training and the testing processes take as neural model input and output the submatrices extracted from 437 

Ὅ and Ὕ respectively.  438 

 439 

 440 

4. Training Procedure  441 

The success of the neural network approach relies on a preliminary phase, termed the training process. 442 

During this step the network adapts its parameters in order to learn the information contained in the training 443 

set data.  444 

Throughout this preliminary training process, at each training step the experimental noise level at a given 445 

instant is a known target and is used by the internal algorithm to iteratively adjust the network parameters to 446 

minimize the overall error between the right experimental targets and the simulated response of the network.  447 

The preliminary training process was carried out on a temporal sequence of traffic-noise data containing 800 448 

and 950 records corresponding to 9% and 11% respectively of all the experimental observations (depending 449 

on which measurement point A, B or C was considered). The training sequence covers a period ranging from 450 

nighttime to early morning and is characterized by a wide transitoriness of the traffic conditions.  451 

The remaining sequence, ten times larger than the training sequence, containing 7840 or 7680 records 452 

corresponding to 91% - 89% respectively of the experimental observations were used for validating the 453 

generalization stage. 454 

Figures 5 and 6 show the sound pressure level evolution, during the off-season measurement period (24-455 

27th March 2019) at the measurement point situated in position A (indicated in Fig. 2). Two schemes of 456 



training strategies throughout the classical dynamics alternating between daytime, evening, and nighttime are 457 

shown. Two different strategies have been devised: a single and a multiple time span. They were both 458 

implemented but for brevity only the results of the single time span are reported here as this strategy performed 459 

better. 460 

The multiple time span strategy consists in identifying a certain number h of intervals, evenly spaced along 461 

the timeline in an attempt to capture the dynamics of the noise event in each segment. Figure 5 gives an intuitive 462 

picture of how this strategy splits the time - line into training and test set intervals. However, this strategy did 463 

not produce the expected results. Though the training set comprised a number of intervals spread over the 464 

measurement period, each segment was not sufficiently long to identify the relationship between traffic and 465 

noise data in transient conditions. The results presented in the next sections, obtained adopting the single time 466 

span training strategy, show that it outperforms the interleaved multiple short -time spans having the same 467 

overall size as the single one.  468 

 469 

 470 

Fig. 5. Sound pressure levels vs. time, during off-season measurement period in position A, showing the periods to which, the 471 
data considered for the training and test sets, obtained using an interleaved multiple time spans learning scheme, refer. 472 

 473 

The other strategy consists in extracting a single continuous time span from the measurement period, of 474 

sufficient duration to ensure that traffic composition and noise levels exhibit a transient response. This single 475 

interval is employed for training, while the remainder of the measurement period is used for the subsequent 476 

test phase. Figure 6 gives an intuitive picture of how the single time span scheme selects the training set from 477 

the complete timeline.  478 



 479 

Fig. 6 Traffic noise measurements showing the periods to which the data considered for the training and test sets, 480 
obtained using the single time span strategy, refer. 481 

Figure 7 summarizes the results obtained. The continuous time interval comprises both day- and nighttime 482 

periods. As can be seen, the network has been trained within a time span in which the acoustic time-series 483 

exhibits a transient trend.  484 

 485 

Fig 7. Example of training response using the single time span strategy. Time span of 550 minutes with a time refinement of 1 486 
sample/min 487 

 488 

 489 

5. Results of the training and test processes.  490 

Once the training process is completed using the experimental data entered into the submatrices Ὅּהȟ , 491 

Ὕ ȟטּ , the internal parameters of the network are numerically determined and thus take constant values. The 492 



model is now potentially ready for performing prediction tasks over the entire measurement period. Therefore, 493 

the next step consists in testing the learning rate achieved by the network during the previous step, since it is 494 

quite desirable the ability to predict the right sequences of ὒ ȟ † , omitted from the training process, that 495 

cannot have any effect on the training stage. Indeed, the correct prediction of noise levels, generated at a given 496 

point for any profile of the traffic flow, dominates the developing process of a simulation model.  497 

 498 

5.1 Training process  499 

In this section the relevant results of the training processes of the NARX model by applying the 500 

measurements performed during the off-season traffic condition, are reported.  501 

In Figs. 8, 9 and 10 the simulated response of the model ὒ ȟȟ  is compared with respect to the experimental 502 

target ὒ ȟȟ  for vehicle traffic data completely extracted from the training set. The prediction errors are 503 

shown in specific subplots.  504 

Figures 8, 9 and 10 show the figures of merit describing the reliability and effectiveness of the NARX 505 

model identified for each measurement point as a result of the training process response. 506 

In Figs. 8a, 10a and 12a the simulated and experimental values of ὒ ȟ  measured at points A, B and C 507 

are compared, while the prediction errors are shown in specific subplots. 508 

In Figures 8b, 9b and 10b the regression function of the input and output data is reported. The cluster of 509 

points around the straight-line bisector indicates better performance. The closer the regression coefficient R is 510 

to 1, the better the regression of the values estimated by the neural network with respect to the experimental 511 

data. 512 

Figures 8c, 9c and 10c show the autocorrelation of the prediction error function. It describes how the prediction 513 

errors are related in time. A well performing prediction model requires a single non-zero value of the 514 

autocorrelation function at zero lag, whereas for lag times different from zero, it should be close to zero. This 515 

requirement represents a no-correlation condition throughout the prediction errors.  516 

In Figs. 8d, 9d and 10d the cross - correlation function of the prediction error and the exogenous input 517 

sequence is shown. The cross - correlation function provides a picture of how the errors are correlated with the 518 

input traffic composition sequence. For a perfect prediction model, the correlations should be close to zero 519 

across the entire lag domain. 520 

The auto and cross correlation functions are a figure of merit to consider when assessing whether and to 521 

what extent the identified model can explain the functional interdependence of the experimental observations.  522 

 523 



 524 

Fig. 8 Training performances for experimental data measured at point A. In a) comparison and prediction error of simulated and 525 
measured ὒȟ ȟ ; b) regression between traffic input and acoustic output sequences; c) autocorrelation function of the prediction 526 
error sequence. d) cross-correlation function between prediction error and traffic input sequence. 527 
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 532 

Fig. 9 Training performances for experimental data measured at point B. In a) comparison and prediction error of simulated and 533 
measured ὒȟ ȟ ; b) regression between traffic input and acoustic output sequences; c) autocorrelation function of the prediction 534 
error sequence. d) cross-correlation function between prediction error and traffic input sequence. 535 
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 539 

Fig. 10 Training performances for experimental data measured at point C. In a) comparison and prediction error of simulated and 540 
measured ὒȟ ȟ ; b) regression between traffic input and acoustic output sequences; c) autocorrelation function of the prediction 541 
error sequence. d) cross-correlation function between prediction error and traffic input sequence. 542 

 543 

5.2 Testing process  544 

In this section the relevant results of the testing processes of the NARX model are reported. The model 545 

has been tested adopting the closed loop architecture (illustrated in Fig. 4a) that performs multi-step ahead 546 

predictions where the values predicted in the preceding steps (output feedback) are used as input for predicting 547 

multi time steps ahead. 548 

The ability of the NARX model to generalize what has been learned from the training subset has been 549 

verified on a large test set size, composed (at the least) of a sequence of 7690 records, corresponding to 89% 550 

of the experimental observations. The training set is much smaller and contains the remaining 11%.  551 

Position óCô



These values should not be overlooked since the modelôs generalization ability robustness relies to some 552 

extent, on the adopted percentages composition of the training and testing sets.  553 

In pattern recognition or time series prediction, the training set is usually larger than the test set. The 554 

recommended percentages, reported in standard applications, being close to 80% and 20% respectively. 555 

Training sets composed of less than 80% of the experimental data may be inadequate, they likely contain too 556 

little information to achieve good generalization of learning across all the experimental observations.  557 

Consequently, successful generalization performance (namely attaining small prediction errors) becomes 558 

an increasingly formidable task as the size of the training set size diminishes and thus the test set increases. 559 

However, on the other hand, it is also true, that the statistical consistency of the prediction capability would be 560 

strengthened. 561 

Vice versa, increasing the training set to more than 80% facilitates achieving small prediction errors, may 562 

nevertheless undermine the statistical consistency of the generalization power. Therefore, a suitable division 563 

should reflect a compromise between the requirements (frequently conflicting) of reducing the prediction 564 

errors and increasing the size of the test set for enhancing the robustness of the generalization capability. 565 

The test results are divided into two separate time periods, the three off-season days in March 2019 and 566 

the three days during the peak tourism season in August 2019.  567 

Figures 11, 12 and 13, provide a representative picture of the ability of the neural model to generalize the 568 

traffic - noise relationship across the entire measurement periods and for traffic inputs not used to train the 569 

network.  570 

The numerical results, represented by the solid grey curves in Figures 11b-13b, are obtained using the 571 

model for generating multistep-ahead predictions of the test set samples. In particular, any point at a given 572 

instant of the grey curves is a simulated predicted value and is generated by using, as input regressors, the 573 

noise level predictions generated at previous instants in combination with the experimental values of the traffic 574 

data.  575 

Therefore, the experimental values of the noise level are not used by the model for predicting the grey 576 

curves, but rather are depicted, with the dotted blue curves in the graph, only for comparison with the simulated 577 

values. 578 

The prediction error between the response of the model ὒ ȟȟ  and the experimental target ὒ ȟȟ  579 

for vehicle traffic input data not included in the training set is shown in the sub-plots of figs. 11, 12 and 13. 580 

Figs. 11 - 13 show how the model is well adapted over the complete measuring periods. Moreover, since 581 

satisfactory generalization performances of the learning process have been attained on a large size of the test 582 

subset size, in spite of the relatively small size of the training set, the achieved generalization capability could 583 

be considered reliable. 584 

 585 



 586 

 587 
Fig. 11. Simulated and experimental evolution of ὒ ȟ †, at measurement point A. In a) during off- season (March) and in b) 588 

during peak season (August) traffic flow rates. The comparison is performed across the measurement period of the test 589 
datasets sequence.  590 
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 601 

 602 
Fig. 12. Simulated and experimental evolution of ὒ ȟ †, at measurement point B. In a) during off- season (March) and in b) 603 

during peak season (August) traffic flow rates. The comparison is performed across the measurement period of the test 604 
datasets sequence.  605 
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 613 
Fig. 13. Simulated and experimental evolution of ὒ ȟ †, at measurement point C. In a) during off- season (March) and in b) 614 

during peak season (August) traffic flow rates. The comparison is performed across the measurement period of the test 615 
datasets sequence.  616 
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