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We study the role of hydrodynamic instabilities in the morphogenesis of some typical14

karst draperies structures encountered in limestone caves. The problem is tackled using15

the long wave approximation for the fluid film that flows under an inclined substrate,16

in the presence of substrate variations that grow according to a deposition law. We17

numerically study the linear and non-linear evolution of a localized initial perturbation18

both in the fluid film and on the substrate, i.e. the Green function. A novel approach for19

the spatio-temporal analysis of two-dimensional signals resulting from linear simulations20

is introduced, based on the concepts of the Riesz transform and the monogenic signal,21

the multi-dimensional complex continuation of a real signal. This method allows for22

a deeper understanding of the pattern formation. The linear evolution of an initial23

localized perturbation in the presence of deposition is studied. The deposition linearly24

selects substrate structures aligned along the streamwise direction, as the spatio-temporal25

response is advected away. Furthermore, the growth of the initial defect produces a quasi-26

steady region also characterized by streamwise structures both on the substrate and the27

fluid film, which is in good agreement with the Green function for a steady defect on the28

substrate, in the absence of deposition.29

1. Introduction30

The astonishing beauty of geological patterns has fascinated humanity for centuries31

(Hill et al. 1997). Several different geological structures are related to mineral dissolution32

(Cohen et al. 2016) and precipitation (Meakin & Jamtveit 2010) in aqueous systems.33

A few examples are terraces and steps due to precipitation of dissolved minerals in34

flowing fluids on the ground, which find a parallel in the structures arising from melting35

and freezing of ice, usually called icicles and crenulations. Another class of geological36

patterns is speleothems, which are karst structures encountered in limestone caves. The37

most common structures are stalactites, stalagmites, draperies, flutings, to name a few.38

The chemical mechanism behind the growth of speleothems is the precipitation of calcium39

carbonate dissolved in water which flows on the cave walls. Due to the higher partial40
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pressure of CO2 in the soil and rock compared to the atmosphere, flowing water enriches41

in carbon dioxide. The pH of the solution is lowered and the quantity of calcium carbonate42

that can be dissolved in water increases (Short et al. 2005a,b). Once the water enriched in43

CO2 flows through an opening on the walls of a cave, the CO2 outgases from the solution,44

the concentration in the air being lower than in the water. As a result, the solution is45

supersaturated and calcium carbonate minerals deposit on the surface (Buhmann &46

Dreybrodt 1985).47

The role of hydrodynamics in the speleothem formation increased in interest in the48

last two decades. Short et al. (2005a) showed that the stalactite shape is self-similar and49

results from the coupling of hydrodynamics and the deposition process. In Camporeale50

& Ridolfi (2012) the problem of the origin of crenulations on stalactites was tackled in51

the context of falling film theory, indicating that the pattern is mainly dictated by a52

hydrodynamic instability (Vesipa et al. 2015). The emergence of draperies structures in53

limestone caves is also driven by falling liquid film instabilities (Bertagni & Camporeale54

2017). Falling liquid films are usually described in the context of the long-wave or55

lubrication approximation (Kalliadasis et al. 2011), in which the fundamental assumption56

is that the interface modulation wavelengths are much larger than the characteristic57

thickness of the flowing film.58

The dynamics of a viscous film underneath a substrate, and for which inertial effects59

are negligible, is related to the Rayleigh-Taylor instability. In the presence of gravitational60

forces, the flat interface is destabilized when a heavier fluid is placed above a lighter one61

(Rayleigh 1882; Taylor 1950). While gravity plays a destabilizing role, pushing the heavier62

fluid down, surface tension stabilizes disturbances of small wavelengths. In the case of a63

thin film coating the underside of a surface, the problem is solved in the context of the64

lubrication approximation (Babchin et al. 1983). When the substrate is horizontal, the65

resulting pattern is characterized by drops which organize in regular arrays (Fermigier66

et al. 1992) and can grow in time or saturate depending on the initial thickness (Lister67

et al. 2010; Marthelot et al. 2018).68

If the substrate is inclined, there is a gravity component which is projected along69

the substrate, leading to a flow. The growth rate of perturbations decreases due to the70

reduction of the gravity component normal to the substrate, and perturbations can be71

advected away. A link between the absolute to convective transition of the flow instability72

and dripping was shown by Brun et al. (2015). A refined model including inertial and73

viscous extensional stresses for high flow rates demonstrated that the occurrence of74

the absolute instability does not predict the dripping satisfactorily (Scheid et al. 2016;75

Kofman et al. 2018). In Lerisson et al. (2020) and Ledda et al. (2020) the conditions for76

the existence of steady patterns and the selection mechanisms for a thin film flowing under77

an inclined planar substrate in the absence of inertial effects were experimentally and78

numerically studied. The flow can reach a steady state without dripping, characterized by79

elongated structures modulated along the direction perpendicular to the flow (spanwise80

direction), called rivulets, also observed experimentally in Charogiannis et al. (2018). It81

has been demonstrated that the rivulet profile reaches a state mainly driven by static82

arguments, i.e. a pure equilibrium between surface tension and capillary effects. A weakly83

non-linear model highlighted the selection mechanism of streamwise structures, and the84

stability analysis of the rivulet profile to streamwise perturbations revealed that short85

wavelengths are progressively stabilized as the substrate is more inclined or the liquid film86

thinner. Rivulets can therefore be a stable pattern, for certain values of angle, flow rate87

and streamwise length of the domain. Outside of this range, lenses appear on rivulets,88

and they may merge and eventually drip (Lerisson et al. 2019).89

Bertagni & Camporeale (2017) studied the morphogenesis of draperies structures in90
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limestone caves using the thin film equation, combining a two-dimensional linear stability91

analysis and a weakly non-linear approach to show the emergence of streamwise structures92

(i.e. rivulets in the fluid film, draperies on the substrate, see fig. 1(a)). The growth rate93

of perturbations from a flat condition is slightly larger for streamwise aligned structures94

as the inertia of the flow is neglected. However, a complete characterization of the two-95

dimensional spatio-temporal dynamics and a description of the key mechanisms and the96

physics underlying the selection of streamwise structures on the substrate remain to be97

assessed. We will highlight in this work that a small coupling of the hydrodynamic effects98

with the deposition effect is already sufficient to induce a significant anisotropy in the99

spatio-temporal response, while it has only a minute effect in the temporal dispersion100

relation.101

The response of a given flow to external perturbations can be characterized through102

the large-time asymptotic behavior of the linear impulse response, the Green function.103

The Green function is the most synthetic and complete way to describe the nature of a104

forced linear system, since the response to any generic forcing is given by the convolution105

between the Green function and the forcing itself. The impulse can be localized only in106

space (steady analysis) or both in space and time (spatio-temporal analysis). Considering107

the steady case, for a thin film flowing over an inclined planar substrate, the linear Green108

function enables the reconstruction of the response which emerges from the presence109

of localized defects (Kalliadasis et al. 2000; Hayes et al. 2000; Decré & Baret 2003).110

Interestingly, the resulting Green function for a steady defect is characterized by a111

decaying behavior as the distance from the defect location increases.112

In unstable flows, the spatio-temporal Green function analysis is usually analytically113

tackled within the context of the saddle points approach, in which the large-time asymp-114

totic properties of the response can be retrieved by the research of the saddle points115

of the spatio-temporal growth rate in the complex planes of the spatial wavenumbers116

which define the response (Briggs 1964; Bers 1975; Huerre & Monkewitz 1990; Carriere117

& Monkewitz 1999; Juniper 2007; Brun et al. 2015).118

Alternatively, it has been demonstrated that a numerical approach based on the119

post-processing of the numerical linear impulse response can well describe the long-120

time behavior of the impulse response (Brancher & Chomaz 1997; Delbende et al. 1998;121

Delbende & Chomaz 1998; Gallaire & Chomaz 2003; Mowlavi et al. 2016; Lerisson 2017;122

Arratia et al. 2018). The procedure consists of a demodulation of the signal along one123

direction using the Hilbert transform, which leads to the complex analytic continuation124

of the real response, the analytic signal. As we detail in this study, the multi-dimensional125

counterpart of the analytic signal is the monogenic signal (Unser et al. 2009), which126

finds many applications in image analysis processes and is based on the application of127

the Riesz transform, the multi-dimensional generalization of the Hilbert transform.128

In this work, we propose a numerical method for the analysis of the long-time asymp-129

totic two-dimensional linear impulse response, with the aim of shedding light on the130

linear physical mechanisms which may lead to the selection of draperies structures on the131

substrate. The paper is organised as follows. In Section 2, the equations for the evolution132

of a thin film in the presence of substrate variations are defined. To introduce the133

numerical procedure for the analysis of the linear response in the presence of a deposition134

process, we first validate the algorithm against the results of the linear response in the135

absence of the deposition process and on a flat substrate, since in this circumstance the136

problem can be solved analytically. We define the theoretical framework of the linear137

impulse response and we derive the analytical solution for the thin film in the absence of138

substrate variations. We characterize the response, whose results will be used throughout139

the work as a comparison with the response in the presence of the deposition process.140
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Figure 1. (a) Draperies observed in the Vallorbe caves, Switzerland (on the left), and sketch (on
the right). (b) Description of the considered problem with the fluid film and substrate thickesses
indicated.

Subsequently, in Section 4 we present the post-processing algorithm for the analysis of141

the spatio-temporal impulse response in two dimensions, which we validate using the142

theoretical results of the previous part. We exploit the validated numerical algorithm in143

Section 5, where we focus on the linear impulse response of a thin film in the presence of144

a deposition process. The numerical solution of the linearized flow equations is analyzed145

through the post-processing algorithm. An additional analytical tool for the validation146

and interpretation of the results is given in Section 6, focused on the study of the response147

in the presence of a steady defect without deposition processes. We compare the numerical148

results with an analytical approach for the evaluation of the steady Green function within149

the framework of spatial stability analysis. To verify the faithfulness of the results of the150

performed linear analyses, non-linear simulations in the presence of the deposition process151

are reported in Section 7.152

2. Thin film model153

We study the dynamics of a thin film of a viscous fluid flowing under a plane inclined154

with respect to the vertical of an angle θ, in the presence of substrate variations (fig. 1(b)).155

The fluid properties are the kinematic viscosity ν, the density ρ and the surface tension156

coefficient γ. We denote respectively the fluid film thickness and substrate variation157

thickness as h̄ and h̄0. Thus, the distance of the fluid interface from the reference flat158

substrate is h̄+ h̄0. A coordinate system (x̄, ȳ) is defined, where x̄ and ȳ are respectively159

the streamwise and spanwise directions. We introduce the initial flat film (Nusselt)160

thickness hN and the reduced capillary length l∗c :161

l∗c =
lc

√

sin(θ)
, (2.1)

where lc =
√

γ/ (ρg) is the capillary length. The following adimensionalizations are162

defined:163

x = x̄/l∗c ; y = ȳ/l∗c ; h = h̄/hN ; t = t̄/τRT, (2.2)

where τRT = νl2c/h
3

N sin2(θ)g is the characteristic time scale of the Rayleigh-Taylor164

instability.165
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The problem of the lubrication model in the presence of substrate variations has166

been widely studied in the literature, in the context of the long wave approximation167

(Tseluiko et al. 2013) or more involved models based on the introduction of inertia and168

viscous extensional effects (D’Alessio et al. 2010; Heining & Aksel 2009). In this work,169

we consider the model used in Bertagni & Camporeale (2017), for the inertialess case,170

in which the complete curvature is retained (Weinstein & Ruschak 2004; Wilson 1982).171

The adimensional equation for the evolution of the thickness in the presence of substrate172

variations reads:173

∂th+ uh2∂xh+
1

3
∇ ·

[
χh3∇(h+ h0) + h3∇κ

]
= 0, (2.3)

where ∇ operates in the (x, y) plane and u = cot(θ)l∗c/hN is the linear advection velocity174

(Brun et al. 2015). The constant χ is set to χ = 1 for the flow under an inclined substrate,175

which is analyzed throughout the work, except in the Appendix A, where we report the176

validation of the numerical procedure against a benchmark case in the literature for the177

flow over an inclined flat substrate ( χ = −1). The curvature of the free surface is denoted178

as κ = −∇ · n, where:179

n =
[−∂xh− ∂xh

0,−∂yh− ∂yh
0, 1]T

√

1 + (∂xh0 + ∂xh)2 + (∂yh0 + ∂yh)2
(2.4)

is the normal to the free surface.180

In this paper, we focus on the substrate growth by precipitation of calcium carbonate181

in cave walls. The mathematical formulation of the problem involves different chemical182

reactions and diffusion processes that occur in the fluid layer (Buhmann & Dreybrodt183

1985). Following the derivation of Short et al. (2005b), to which we refer for details, the184

flux of calcium carbonate depositing on the substrate, i.e. the variation in time of the185

substrate thickness, can be written as follows:186

∂t̄h̄
0 = C̄h̄, (2.5)

where C̄ is the chemistry-dependent constant, of the order of C̄ ∼ 10−7s−1 (Camporeale187

2015). Considering the time scale τRT, the deposition constant in the dimensionless188

time scale is of the order C ∼ 10−4. Introducing the adimensionalization eq. (2.2), the189

nondimensional equation for the deposition reads:190

∂th
0 = Čh, (2.6)

where Č = C/ sin2(θ). Equations (2.3) and (2.6) define the system for the dynamics of a191

thin film flowing under (χ = 1) an inclined plane in the presence of substrate variations192

due to the deposition of calcium carbonate.193

The equations are linearized around the baseflow solution [H,H0]T = [1, Čt]T intro-194

ducing the following decomposition:195

h = 1 + εη, h0 = Čt+ εη0, (2.7)

where ε≪ 1 and [η, η0] is the perturbation with respect to the baseflow solution. Keeping196

O(ε) terms in equations (2.3), (2.6), the following system of equations is obtained:197

∂tη + u∂xη +
1

3

[
χ∇2(η + η0) +∇4(η + η0)

]
= 0, (2.8a)

198

∂tη
0 = Čη, (2.8b)
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Figure 2. (a) Sketch of the flow and substrate configurations adopted in Section 3. (b) Sketch
of the impulse reponse in a spatio-temporal diagram.

which describes the linearized dynamics of the perturbation [η, η0] around the constant199

flat film solution H = 1 (eq. 2.8a), in the presence of a linear in time substrate growth200

H0 due to the deposition law (eq. 2.8b), i.e. [H,H0]T = [1, Čt]T . Equations (2.8) are the201

starting point for the analysis of the speleothems morphogenesis, in a linearized dynamics202

context.203

The numerical implementation of the linearized equations (2.8) is based on a Fourier204

pseudo-spectral scheme implemented in MATLAB. Henceforth, we consider a rectangular205

domain of size 1000 × 1000, with a number of collocation points Nx = Ny = 1001 and206

periodic boundary conditions. In Appendix A we report the numerical procedure and207

the validation against the benchmark case of the response of a thin film flowing over an208

inclined flat substrate to a steady localized defect (Decré & Baret 2003; Kalliadasis et al.209

2000; Hayes et al. 2000).210

3. Linear response in the absence of substrate variations211

3.1. Dispersion relation212

In this section, we study the linear response in the absence of substrate variations (fig.213

2). We therefore impose η0 = 0 in eq. (2.8a), leading to the following equation for the214

linearized dynamics of the perturbation:215

∂tη + u∂xη +
1

3

[
∇2η +∇4η

]
= 0. (3.1)

We introduce the ansatz η ∼ exp[i (kxx+ kyy − ωt)], where kx and ky are real and216

ω is complex, within the temporal approach. Introducing k =
√

k2x + k2y, the following217

polynomial dispersion relation is obtained:218

ω = ukx +
i

3

(

k2 − k4
)

, (3.2)

which relates the behavior in space and time of the perturbation. In the absence of219

deposition process, the temporal growth rate Im(ω) does not depend on u, which220



Hydrodynamic-driven morphogenesis of karst draperies 7

(a) (c)

0

0

0

0
.0

1

0.01

0
.0

2

0.02

0.02

0
.0

3
0.03

0.03

0
.0

3

0
.0

4
0.04

0.04

0
.0

4

0
.0

5
0.05

0.05

0.05

0
.0

5 0
.0

6

0
.0

6

0.06

0.06

0
.0

7

0.07

0.07

0
.0

8
0.080.08

0
.0

8

0
.0

8
3

0.083

0.083

0
.0

8
3

Figure 3. Two-dimensional linear impulse response in the absence of substrate variations, for
u = 0.77. (a) Response in the physical space at t = 200. (b) Temporal evolution of the maximum
value of the response. (c) Temporal growth rate, as a function of kx and ky. The red dot denotes
the initial impulse location.

influences only the advection of perturbations. The response in the absence of deposition221

is characterized by concentric circles (see fig. 3(a)) that propagate from a center that222

is advected away with the linear advection velocity u. The maximum value of the223

thickness increases exponentially with time (see fig. 3(b)). In the following, we rescale224

the fluid thickness using the maximum value, knowing that the growth in amplitude is225

exponential. The iso-values of the temporal growth rate are concentric circles propagating226

from (kx, ky) = 0, (see fig. 3(c)), i.e. the growth rate is isotropic. The growth rate increases227

for small wavenumbers, reaches a maximum at k = 1/
√
2, then decreases and becomes228

negative for k > 1, the cut-off wavenumber. Therefore, the linearized dynamics does not229

show any preferential direction for the growth of perturbations, which are advected away.230

3.2. Large time behavior of the impulse response231

In this section, we analytically study the linear impulse large-time response. So as to232

better characterize the response observed in fig. 3(a) and understand the structure when233

the deposition process will be introduced, together with the differences with the case234

in the absence of substrate variations, we present the theoretical tools to describe the235

impulse response of a linear system, the Green function g̃. The method is a generalization236

of the classical one-dimensional approach (Brevdo 1991; Carriere & Monkewitz 1999;237

Juniper 2007). For t→ ∞, the Green function asymptotically reads:238

g̃(x, y, t) ∼ ĝ exp[i (kxx+ kyy − ωt)]/t, t→ ∞ (3.3)

where the streamwise wavenumber kx, the spanwise wavenumber ky and the complex239

frequency ω are varying in space and time, via their dependence on so called rays x/t and240

y/t. The evaluation of the asymptotic properties along the rays (x/t = const, y/t = const)241

for t→ ∞ is performed using the method of the steepest descent in the complex kx and242

ky planes. At large times, the dominating contribution with group velocity (x/t, y/t) is243

given by the following saddle points in the complex kx and ky planes:244

∂ω′′

∂kx
=
∂ω′′

∂ky
= 0, (3.4)
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Figure 4. Long-time asymptotic properties of the two-dimensional linear impulse response in
the absence of deposition, for u = 0.77, as functions of x/t and y/t. The colored iso-contour
plots represent the analytical results of Section 3.2. (a) spatio-temporal growth rate. (b) Real
part of the complex frequency. (c) Imaginary part of the streamwise wavenumber. (d) Real part
of the streamwise wavenumber. (e) Imaginary part of the spanwise wavenumber. (f) Real part
of the spanwise wavenumber. The black dashed line identifies the region σ = 0. The red dashed
lines denote the results of the post-processing algorithm described in Section 4.

where ω′′ = ω−kxx/t−kyy/t. The resulting values of kx, ky and ω′′ for each ray (x/t, y/t)245

allow to reconstruct the linearized dynamics of the wavepacket.246

The evaluation of the saddle points is performed in MATLAB, by using the built-in247

function fsolve that solves simultaneously for the saddle points in the two complex planes248

kx and ky using the dispersion relation eq. (3.2). The initialization is based on the solution249

of the one-dimensional case documented in Brun et al. (2015) for (x/t, y/t) = (0, 0), which250

corresponds to the maximum temporal growth rate in the dispersion relation and is a251

contributing saddle point according to Barlow et al. (2017). The solution at different252

(x/t, y/t) is obtained using as initial guess the previously calculated value.253

The asymptotic properties for u = 0.77 are reported in fig. 4. We report only positive254

values of y/t, since ω′′, ω and kx are symmetric with respect the axis y/t = 0, while255

ky is antisymmetric. The iso-contours of the spatio-temporal growth rate σ = Im(ω′′)256

(fig. 4(a)) are concentric circles that propagate from a center at (x/t = u, y/t = 0). The257

maximum value σ = 1/12 is located at the center and coincides with the maximum of258

the dispersion relation eq. (3.2). Increasing the distance from the center, the values of259

σ decrease. At a distance from the center of ≈ 0.54, the spatio-temporal growth rate is260

zero, and becomes negative at larger distances. The full description of the asymptotic261

properties is completed with the results in fig. 4(b-f). The real part of the complex262

frequency Re(ω) (fig. 4(b)) is characterized by positive values in the upstream part of263

the wavepacket and by negative values in the downstream part. The transition region264
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where Re(ω) = 0 is located at x/t = u, and the transition becomes more abrupt whilst265

decreasing y/t, with a discontinuity at y/t = 0. This discontinuity can be observed also266

in the real parts of the streamwise (fig. 4(d)) and spanwise (fig. 4(f)) wavenumbers, while267

the corresponding imaginary parts (fig. 4(c,e)) are zero.268

According to the spatio-temporal analysis approach (Van Saarloos 2003), the front is269

defined by the region where σ = 0. In the one-dimensional case the front is defined only270

by a value of x/t, while in two-dimensions by couples (x/t, y/t). From the analysis, it271

results that the front of the wave-packet is a circle of radius ≈ 0.54 centered around272

(x/t = u, y/t = 0). This value agrees with the absolute-convective instability transition273

predicted by Brun et al. (2015) for the one-dimensional case. Since the center of the274

wavepacket is located at x/t = u, and the front is a circle of radius 0.54 (independent275

of u), the first case in which the spatio-temporal growth rate is non-negative at x/t = 0276

is when u = 0.54. As the linear advection velocity decreases, the unstable region invades277

negative values of x/t, i.e. upstream of the initial impulse position, and the flow is said278

to be absolutely unstable (Huerre & Monkewitz 1990).279

The above-performed analytical spatio-temporal analysis could be in principle per-280

formed also in the presence of the deposition process. Nevertheless, the possible pres-281

ence of multiple saddle points to be identified and the discrimination of upstream282

and downstream propagating branches related to the different saddle points makes the283

problem arduous to tackle theoretically. We therefore propose a numerical approach,284

which presents some originalities and interesting perspectives. The analytical results of285

this section will be used to validate the numerical algorithm and as a reference point286

when restoring the coupling with the deposition process.287

4. Numerical approach based on the monogenic signal288

4.1. The Riesz transform and the monogenic signal289

In this section, we introduce the mathematical tools necessary for the spatio-temporal290

analysis of the impulse response from the linear simulations. Numerical analyses of the291

linear impulse response have been already performed in literature (Delbende et al. 1998;292

Delbende & Chomaz 1998; Gallaire & Chomaz 2003), where the asymptotic properties293

along one single direction were studied. The study of the asymptotic properties of a one-294

dimensional wavepacket is based on the introduction of the analytic signal (Delbende295

et al. 1998), which is the complex continuation of a real signal. The analytic signal is296

derived using the Hilbert transform, which corresponds to a phase shift of −90◦ and +90◦297

respectively to the positive and negative Fourier components of a function g(x), i.e. the298

Hilbert transformed signal reads:299

Hg(x) = Hx ⋆ g(x), (4.1)

where Hx is a Heaviside filter characterized by the Fourier transform Ĥx(kx) =300

−i sgn(kx), and the symbol ⋆ denotes the convolution operator. In the Fourier301

domain, the convolution becomes a product, such that the Fourier tranform of the302

Hilbert transformed signal reads Ĥg = −i sgn(kx)ĝ(kx), where ĝ is the Fourier303

transformed signal. The analytic signal gives access to the envelope and the phase304

of the wavepacket; indeed, as an alternative to its representation as the two components305

function ga(x) = (g(x),Hg(x)), the complex function ga(x) = g(x) + iHg(x) can be306

defined. The analytic signal ga is said to be the complex continuation of the real signal307

and can be rewritten in terms of amplitude and phase ga(x) = A exp(iξ), where A is the308

instantaneous amplitude (i.e., the envelope) and ξ the phase of the complex signal. As309
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explained in detail in the Section 4.2, the knowledge of the envelope of the wavepacket is310

necessary to analyze the spatial and temporal growth rates, while the phase gives access311

to the spatial and temporal frequencies.312

Our work aims to generalize the approach of Delbende et al. (1998) to the two-313

dimensional case, in the presence of two spatial propagation directions. We introduce314

the monogenic signal, the multi-dimensional generalization of the analytic signal (Unser315

et al. 2009). In literature, there are several attempts to generalize the analytic signal in316

two-dimensions (Bulow & Sommer 2001; Felsberg & Sommer 2001; Hahn 2003). In this317

work, we use the definition given by Unser et al. (2009), based on the multi-dimensional318

generalization of the Hilbert transform, the Riesz transform (Stein & Weiss 2016). In the319

two-dimensional case, in analogy to the Hilbert transform, the Riesz operator transforms320

the scalar signal g(x, y) to the vector signal gR(x, y) that reads321

gR(x, y) =

(
gR1(x, y)
gR2(x, y)

)

=

(
Hx ∗ g(x, y)
Hy ∗ g(x, y)

)

, (4.2)

where ∗ denotes the convolution operator in two dimensions. The functionsHx andHy are322

two Heaviside filters characterized respectively by the Fourier transforms Ĥx(kx, ky) =323

−ikx/k and Ĥy(kx, ky) = −iky/k, and they are the generalization of the one dimensional324

Heaviside filter to two spatial directions. In analogy to the Hilbert transformed signal, we325

consider a definition of the Riesz transformed signal that combines the two components326

in one scalar signal (Unser et al. 2009) :327

Rg(x, y) = gR1(x, y) + igR2(x, y), (4.3)

which in the Fourier domain reads:328

R̂g(kx, ky) =
(−ikx + ky)

k
ĝ(kx, ky), (4.4)

where ĝ is the two-dimensional Fourier transform of the signal. Note that at kx = ky = 0329

the Fourier transform of the Riesz transformed signal is singular and the regularization330

assumes zero value at the origin. We then introduce the monogenic signal as the three-331

components function:332

gm(x, y) = (g(x, y),Re(Rg(x, y)), Im(Rg(x, y))) = (g, gR1, gR2) (4.5)

According to Unser et al. (2009), the relation between the Riesz and the Hilbert trans-333

forms along the (x, y) directions can be seen as the equivalent between the definition334

of gradient and partial derivatives. The quantity r =
√

g2R1
+ g2R2

= |Rg| identifies the335

maximum response of the directional Hilbert operator336

max
ψ

{Hψg} = max
ψ

{
Re

(
e−iψRg

)}
(4.6)

along the direction dψ given by the angle ψ = atan(gR2/gR1). The instantaneous337

amplitude (i.e. the envelope of the signal) is given by338

A =
√

g2 + g2R1
+ g2R2

, (4.7)

and the phase by339

ξ = atan(
√

g2R1
+ g2R2

/g). (4.8)

This decomposition allows us to write the monogenic signal along dψ in the form340

g̃(x, y, t) = Aexp(iξ). (4.9)
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The amplitude A represents the envelope of the signal and ξ the phase along the direction341

dψ. Note that eq. (4.9) is valid only when amplitude and phase of the signal can be342

demodulated (Delbende et al. 1998). This is valid when the variations of the envelope343

occur at a scale much larger than that governing of the oscillations. The representation344

in eq. (4.9) is the two-dimensional equivalent of the analytic signal (Delbende et al. 1998)345

and identifies in g̃ the complex continuation of the two-dimensional real signal g.346

4.2. Large time asymptotic properties347

In this section, we derive the asymptotic properties of the wavepacket by following the348

same procedure outlined in Delbende et al. (1998). According to Section 3.2, the complex349

Green Function reads:350

g̃ ∼ exp[i (kxx+ kyy − ωt)]/t, (4.10)

where the asymptotic properties kx, ky and ω depend on x/t and y/t.351

The linear simulations of the impulse response give as a result the real signal g(x, y).352

We thus recover the complex Green function by the analytic continuation of g, i.e. the353

monogenic signal g̃:354

g̃ ∼ exp[i (kxx+ kyy − ωt)]/t = Aexp(iξ), (4.11)

where A = |g̃| and ξ = arg(g̃). Thus, by exploiting the last expression, we can use355

the monogenic signal g̃ to evaluate the asymptotic properties of the wavepacket. The356

spatio-temporal growth rate357

σ = Im(ω′′) = Im(ω)− Im(kx)x/t− Im(ky)y/t = Im(ω)− Im(kx)vx − Im(ky)vy, (4.12)

which represents the growth of a perturbation along a ray of group velocities (x/t, y/t) =358

(vx, vy), is obtained by applying the logarithm operator to the absolute value of eq. (4.11)359

|g̃| ∼ exp(σt)/t = A → σt− ln(t) ∼ ln(A) (4.13)

and thus by evaluating the derivative with respect to time of the resulting expression,360

for (x/t = const, y/t = const):361

σ(x = vxt, y = vyt) ∼
d

dt
ln(A(x = vxt, y = vyt, t)) +

1

t
. (4.14)

The definition of the spatio-temporal growth rate eq. (4.12) allows us to evaluate the362

imaginary part of the streamwise and spanwise wavenumbers at each ray (x/t, y/t) =363

(vx, vy) (see Appendix B for details):364

Im(kx(x = vxt, y = vyt)) = −∂vxσ, (4.15)
365

Im(ky(x = vxt, y = vyt)) = −∂vyσ. (4.16)

The real parts of the spatial wavenumbers are retrieved by considering eq. (4.11) and366

exploiting the definition of phase:367

Re(kx(x = vxt, y = vyt)) ∼ ∂xξ(x = vxt, y = vyt), (4.17)
368

Re(ky(x = vxt, y = vyt)) ∼ ∂yξ(x = vxt, y = vyt). (4.18)

Alternatively, still exploiting the logarithm of eq. (4.11), a direct evaluation of the real369

and imaginary parts of the spatial wavenumbers from the complex monogenic signal can370

be performed:371

kx ∼ −i∂xln(g̃(x = vxt, y = vyt)), (4.19)
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372

ky ∼ −i∂yln(g̃(x = vxt, y = vyt)). (4.20)

In this work, we adopted this technique to evaluate the streamwise and spanwise373

wavenumbers. The temporal growth rate is obtained from the knowledge of the spatio-374

temporal growth rate and the imaginary part of the wavenumbers:375

Im(ω) = σ + Im(kx)x/t+ Im(ky)y/t. (4.21)

The real part of the complex frequency is, by definition, the temporal derivative of the376

phase ξ:377

Re(ω)(x/t, y/t, t) ∼ −∂tξ(x/t, y/t, t). (4.22)

Note that in this case the derivative with respect to the time is evaluated in a relatively378

short time interval, without following the rays x/t = vx and y/t = vy (Delbende et al.379

1998). Moreover, the sign of the spatial frequencies cannot be recovered from the analysis,380

since we are post-processing a real signal. In the following, we will consider positive values381

for the real parts of the complex frequency and spatial wavenumbers.382

4.3. Numerical procedure and validation383

The analytical developments derived in the previous sections aim at describing the384

asymptotic behavior for t → ∞ using numerical simulations at finite times. Besides,385

eq. (4.9) assumes that the amplitude and the phase of the signal subject to the Riesz386

transform can be demodulated, i.e. that a separation of scales between the variations387

of the envelope and the oscillations subsists. In this section, we verify the numerical388

procedure and the validity of the assumptions using as a test case the analytical solution389

described in Section 3.2. The post-processing algorithm is validated against the theoret-390

ical results of the impulse response in the absence of substrate variations. The numerical391

implementation is based on MATLAB. The linear response is computed using eq. (3.1)392

subjected to the a Gaussian initial condition that mimics the Delta function behavior:393

η(x, y, 0) = η0(x, y, 0) = exp[−(x2 + y2)/2ς2]. (4.23)

with ς = 1; no appreciable changes in the response have been observed for ς < 1.394

The numerical steps for the post-processing are the following. We apply the two-395

dimensional Fourier transform to the linear response at different times via the built-in396

MATLAB function fft2. We obtain the Riesz transformed signal by eq. (4.4) . The inverse397

Fourier transform is applied (via the built-in MATLAB function ifft2 ) and we build the398

monogenic signal in the physical space, for different times, according to eq. (4.9). We399

evaluate the spatio-temporal growth rate by eq. (4.12), using the monogenic signals400

evaluated at different times. We then obtain the streamwise and spanwise wavenumbers401

by a finite difference expression of eq. (4.19-4.20), and then the temporal growth rate402

by a finite difference approximation of eq. (4.21). Finally, the real part of the complex403

frequency is recovered from eq. (4.22) using the computed monogenic signals at different404

times.405

We evaluate the derivatives using first-order finite differences. A convergence analysis406

has been performed on the number of collocation points and the order of the finite407

differences for the derivatives, and we observed the convergence of the results already408

for a domain of Lx = Ly = 1000 and Nx = Ny = 1001. The odd number of points is409

necessary to have also the zero frequency kx = ky = 0, where the transfer function of the410

Riesz transform is singular and has to be regularized imposing the zero value. The results411

are averaged at different times (Lerisson 2017). We consider a time step of ∆t = 15 for412

the evaluation of the spatio-temporal growth rate, from t = 200 to t = 350. At each413
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(a) (b)

Figure 5. Comparison of the long-time asymptotic properties of the two-dimensional linear
impulse response in the absence of deposition (u = 0.77) as functions of x/t, for y/t = 0. The
solid lines and the dots denote respectively the analytical (Section 3.2) and numerical approaches
(Section 4). (a) spatio-temporal growth rate, imaginary and absolute value of the real part of
the complex frequency. (b) Imaginary and absolute value of the real part of the streamwise
wavenumber. The black dashed line denotes the values of σ.

time, the real part of the complex frequency is evaluated using a time step of δt = 0.01414

(Delbende et al. 1998).415

In fig. 4 we also report a comparison of the post-processing algorithm (red dashed416

lines) against the results of the saddle points analysis (colored iso-contours). The results417

agree with those obtained from the saddle points approach. The spatio-temporal growth418

rate (fig. 4(a)) is well described by the numerical post-processing, and the front of the419

wavepacket is well captured. The other variables well agree with the analytical solution.420

Fig. 5 shows the results for the temporal properties and the streamwise wavenumber as421

functions of x/t, at y/t = 0. The comparison reveals a good agreement, except in the422

center of the wavepacket where the analytical solution is discontinuous. The difference423

can be imputed to a transient effect at the center of the wavepacket, which is reduced424

as time increases. Note that the analytical solution of Section 3.2 is rigorously valid as425

t → ∞. Nevertheless, in the numerical simulations, there is a practical limit in the final426

time related to the numerical noise. The maximum ratio between the smaller and greater427

values in the simulations is limited to 16 decades, for the double precision (Trefethen &428

Bau III 1997). Therefore, we cannot go beyond the final time above defined, i.e. t = 350.429

Despite the presence of a discontinuity in the center of the wavepacket, the numerical430

procedure well captures the structure of the solution. Concerning the spatio-temporal431

growth rate, the maximum error from the theoretical value is around ∆ = 2 × 10−3,432

which means a percentual error of 2.5%. The edges of the wavepacket well agree with the433

analytical solution. We conclude that our post-processing algorithm is able to capture434

the spatial structure of the asymptotic properties, making it suitable for the study of the435

impulse response in the presence of the deposition process.436

5. Linear response in the presence of the deposition process437

5.1. Dispersion relation438

In this section, we briefly study the temporal stability properties in the presence of439

the deposition process. Following the linear stability analysis approach, we assume the440

normal mode expansion441
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(a) (b)

Figure 6. Temporal growth rate Im(ω) from the dispersion relation with deposition (eq. 5.2)
as a function of (kx, ky), for (a) C = 10−5, (b) C = 10−3.

[η, η0]T = [η, η0]T exp[i (kxx+ kyy − ωt)]. (5.1)

It is worth to underline that this decomposition for the substrate thickness assumes442

that the temporal growth due to the presence of the flat film is much slower than the443

one related to the Rayleigh-Taylor instability. The deposition constant C. describes the444

growth in the absence of patterns in the fluid film. The characteristic time scale of this445

process has to be large enough so as to the variations of the baseflow are negligible as the446

instability occurs. Under these conditions, a separation of scales between the speleothem447

growth and the Rayleigh-Taylor instability subsists. Since C is already adimensionalized448

with the characteristic time scale of the Rayleigh-Taylor instability, we restrict ourselves449

to the case C < 10−3. In these conditions, we can safely assume the ansatz eq. (5.1).450

We introduce the normal mode decomposition in the equations for the linearized451

dynamics eq. (2.8), leading to the dispersion relation which relates the complex frequency452

ω to the wavenumbers (kx, ky) for the coupled hydrodynamic-deposition problem:453

ω =
ωH

2
±

√
(
ωH

2

)2

− Č

3

(

k2 − k4
)

, (5.2)

where ωH is the complex frequency in the absence of substrate variations, eq. (3.2).454

The dispersion relation eq. (5.2) is the analogous of the one reported in Bertagni &455

Camporeale (2017) in the absence of inertial effects. Two branches of the dispersion456

relation are identified. One branch is always damped while the other one tends to the457

hydrodynamic case as C goes to zero. The dynamics is governed by two adimensional458

parameters, the linear advection velocity u and the deposition constant C. A preliminary459

analysis of the influence on the dispersion relation for a large range of u did not show460

any appreciable effect on the temporal growth rate of perturbations, for fixed deposition461

constants 10−10 < C < 10−3. For computational reasons, it is not convenient to consider462

extremely large values of u, as large as those that can be found in limestone caves463

(lc/hN ∼ 270, i.e. u ∼ 102), since the advection of perturbations will require the use of464

irrealistic extremely large computational domains for the numerical simulations, while465

the physics of the traveling wavepacket would not change significantly. For these reasons,466

we focus on the case u = 0.77 and θ = 55◦, and we study the effect of the deposition467

constant C.468
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(a) (b)

(II) (I) (II) (I)

(c) (d)

Figure 7. Linear impulse response (eq. 2.8), for u = 0.77, at t = 200. (a-b) C = 10−5, (a)
fluid film and (b) substrate thickness. (c-d) C = 10−3, (c) fluid film and (d) substrate thickness.
Results are rescaled with the maximum fluid thickness for visualization purposes. The red dots
denote the initial impulse location.

In fig. 6 we report the temporal growth rate Im(ω) as a function of (kx, ky), for different469

values of the deposition constant. For C = 10−5, the temporal growth rate is analogous470

to the case without deposition, and no appreciable anisotropies are observed. At very471

high values of the deposition constant, C = 10−3, the iso-values are concentric circles in472

most of the (kx, ky) plane, but there is a small region located close to kx = 0 where the473

growth rate is slightly higher (the difference is of order 10−3). The isotropy is broken,474

and spanwise structures (rivulets) experience a slightly larger growth than the streamwise475

structures (waves), as already pointed out in Bertagni & Camporeale (2017).476

Nevertheless, the small anisotropy in the dispersion relation may be not sufficient477

to completely characterize a linear selection of streamwise structures in the deposition478

process that should arise also for low values of the deposition constant, in the range479

defined by Camporeale (2015). Moreover, the complex form of the dispersion relation480

does not highlight how the deposition process influences the spatio-temporal growth of481

perturbations, and thus it does not shed light on the physics underlying the phenomenon.482

We therefore focus on the response of the system to a localized initial perturbation, i.e.483

the Green function.484

5.2. Numerical impulse response485

In this section, we focus on the spatio-temporal analysis of the linear impulse response,486

both on the substrate and in the fluid film, in the presence of the deposition process (eq.487

(2.8)). We consider two representative values of the deposition constant which cover the488

physical range indicated by Camporeale (2015), C = 10−5 and C = 10−3. Figure 7 shows489

the linear impulse response in terms of fluid and substrate thickness, at t = 200. We490

recall that in Section 3 we observed that the fluid thickness response in the absence491

of substrate variations was characterized by concentric circles. The fluid film thickness492



16 P.G. Ledda, G. Balestra, G. Lerisson, B. Scheid, M. Wyart and F. Gallaire

(fig. 7(a,c)) is characterized by a quite similar structure, albeit some differences can be493

highlighted. While in the downstream part (I) we observe circular iso-values for η, the494

pattern in the upstream part (II) is more intricate.495

The substrate thickness (fig. 7(b,d)) presents similar peculiarities. The iso-values in the496

downstream part are circular, while in the upstream part streamwise aligned structures497

are present. The region in which streamwise structures dominate roughly corresponds498

to the region upstream of the maximum film thickness. These structures grow as higher499

values of the deposition constant are considered. As a consequence, we observe a more500

perturbed pattern in the fluid film.501

The isotropy breaking in the fluid film is related to the presence of deposited streamwise502

structures in the upstream part of the wavepacket. While in the downstream part the503

hydrodynamics dominate the pattern with an isotropic structure reminiscent of the case504

without deposition (Section 3), observed also in the substrate thickness, in the upstream505

part we observe an interaction between the hydrodynamics and the deposition process.506

As the impulse travels, it leaves behind a substrate pattern characterized by predom-507

inant streamwise structures. From a physical point of view, this may be explained by508

the fact that waves are structures that are advected away with the flow, while rivulets509

are not. Furthermore, it has to be remembered that the deposition law is linear with510

the film thickness (see eq. 2.6). The growth of substrate disturbances is overposed with511

the classical growth in the presence of a flat film, i.e. the substrate thickness is always512

increasing, but this is not obvious for the perturbation η0. Since waves are traveling513

structures (i.e., they are oscillating at fixed locations), the linearized deposition law is514

sequentially increasing and decreasing the substrate perturbation with respect to the515

linear growth in time, then leading to a much smaller effect on the deposition process.516

On the contrary, rivulets are not traveling structures. The substrate perturbation always517

increases or decreases, since there is no advection of the fluid structures along the518

spanwise direction. As a consequence of the passage of the wavepacket, predominant519

streamwise structures are deposited on the substrate.520

5.3. Large time behavior of the impulse response521

In this section we apply the post-processing algorithm, introduced in Section 4, to522

the two cases of fig. 7. According to the decomposition of eq. (5.1), the analysis of the523

asymptotic properties can be applied to both variables. The difference in the patterns524

observed in fig. 7 are related to the different eigenvectors [η̂, η̂0]. In the following, we525

consider the fluid thickness for the evaluation of the asymptotic properties. However, the526

observed physical results are not affected by this choice.527

In fig. 8(a) we report the spatio-temporal growth rate obtained from the post-528

processing algorithm, for C = 10−5. The spatio-temporal growth rate is greater than529

zero in a region downstream of the initial impulse position (III). The unstable region530

spreads in the (x/t, y/t) plane within a region roughly defined by a front angle φ ≃ 36.5◦.531

In the downstream part of the wavepacket (I), we observe circular iso-values of the spatio-532

temporal growth rate, which decreases moving away from the value of (x/t = u, y/t = 0).533

The two regions interact in the region just upstream of the maximum spatio-temporal534

growth rate position (II). The real part of the complex frequency (fig. 8(b)) presents535

the same structure of the spatio-temporal growth rate. In the region downstream of the536

initial impulse location, both the real and imaginary parts of the complex frequency are537

close to zero.538

A complete characterization of the asymptotic behavior of the impulse response re-539

quires also the evaluation of the spatial asymptotic properties kx and ky, which are540

reported in fig. 8(c-f). Downstream of the initial impulse location, all the spatial proper-541
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(a) σ (b) Re(ω)

ϕ
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(c) Im(kx) (d) Re(kx)

(e) Im(ky) (f) Re(ky)

Figure 8. Asymptotic properties from the post process algorithm (Section 4), for u = 0.77
and C = 10−5. (a) spatio-temporal growth rate. (b) Real part of the complex frequency. (c)
Imaginary part of the streamwise wavenumber. (d) Real part of the streamwise wavenumber.
(e) Imaginary part of the spanwise wavenumber. (f) Real part of the spanwise wavenumber.

ties iso-values are approximately rays that propagate from the initial impulse position.542

Interestingly, the real part of the streamwise wavenumber is very small, i.e. Re(kx) ∼543

10−2. Moreover, at y/t = 0, Re(ky) ≃ 1/
√
2, while in the absence of deposition it was544

zero except in the singular point at the center of the wavepacket.545

The same behavior is found in the case C = 10−3 (reported in Appendix C), but the546

front downstream of the initial impulse position is more curved. Moreover, the region in547

which the two patterns interact is displaced downstream.548

The present analysis reveals that there are three regions in the spatio-temporal impulse549

response. The region (I) is characterized by asymptotic properties whose distribution is550

very similar to the case in the absence of substrate variations, studied in Sec 3.2. In551

the region (III), streamwise structures dominate. Since in the region just downstream552

of the initial impulse location, the complex growth rate is close to zero, the pattern is553

almost steady. Moreover, the analysis of the spatial asymptotic properties reveals that554

streamwise aligned structures dominate, since Re(kx) ∼ 10−2 and Re(ky) ∼ 1/
√
2. The555

other spatial asymptotic properties are almost constant for y/x = const since the iso-556

values are rays that propagate from the initial impulse position. In region (II), the two557

regions (I) and (III) interact, and it is best observed in the fluid film response (fig. 7),558

where the substrate presents non negligible values of the thickness compared to the fluid559

film. In this region, due to the high values of the fluid film thickness, we observe a strong560

deposition and an increase of the substrate thickness.561

We therefore identified two linear mechanisms that could lead to the emergence of562

draperies structures on the substrate. First, the advection of oscillating perturbations563

along the streamwise direction promotes the deposition of drapery-like structures rather564

than wave patterns on the substrate (ripples). This interpretation confirms the observa-565
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(a) (b)

(I)(II)

Figure 9. Linear fluid film response eq. (2.8) (rescaled with the maximum value) in the presence
of a steady defect (i.e. C = 0) located at (x = 0, y = 0), for u = 0.77, (a) t = 100, (b) t = 200.
The black dots denote the steady defect location.

tion of slightly higher growth rates for spanwise perturbations in the two-dimensional566

dispersion relation of Bertagni & Camporeale (2017). This first mechanism strongly567

enhances the growth of draperies structures in the region just upstream of the maximum568

thickness, which is advected away with time. The second mechanism was highlighted569

thanks to the post-processing algorithm, which shows the presence of another region in570

which the perturbation grows, absent in the case without substrate variations of Section571

3.2. The presence of the initial defect that grows without being advected, creates a572

quasi-steady region characterized by streamwise structures both in the fluid film and573

on the substrate. The second mechanism appears to be dominant in the regions in574

which the isotropic response has been advected away. In the following, we investigate575

the hydrodynamic origin of this second source of anisotropy.576

6. Linear response in the presence of a steady defect without577

deposition process578

6.1. Numerical response and large-time asymptotics579

In this section, we provide an additional analytical insight to better understand the580

physical mechanisms underlying the response in the presence of the deposition process.581

We consider the linear response of the thin film (eq. 2.8) in the presence of a steady582

defect (i.e. C = 0) of the form:583

η0(x, y, t) = exp[−x2/2− y2/2], (6.1)

together with the initial condition for the fluid thickness η(x, y, 0) = 0.584

The wavepacket (fig. 9), in the downstream part (I), is characterized by the isotropic585

structure typical of the temporal response (fig. 3,7), as described in detail in Section586

3.2. Nevertheless, in the upstream part (II) we observe streamwise structures more587

pronounced than in the case of the impulse response in presence of deposition (described588

in Section 3.2), since the initial condition differs from a steady defect as it is characterized589

by an impulse both in the fluid film and on the substrate.590

The asymptotic properties (fig. 10) resulting from the post-processing algorithm591

present a spatial structure analogous to the case in the presence of deposition reported592

in fig. 8. In the region (III), downstream of the initial impulse location, the iso-values593

are rays that propagate from (x/t, y/t) = (0, 0). Both real and imaginary parts of the594

complex frequency are zero in the region downstream of the steady defect, and the real595

part of the streamwise wavenumber is of order 10−2.596

The steady defect analysis confirms that the structure of the wavepacket is mainly597



Hydrodynamic-driven morphogenesis of karst draperies 19

(a) σ (b) Re(ω)

ϕ

(III) (II) (I)

(c) Im(kx) (d) Re(kx)

(e) Im(ky) (f) Re(ky)

Figure 10. Long-time asymptotic properties from the post process algorithm (Section 4) of the
two-dimensional linear response to steady defect in the absence of deposition, for u = 0.77. (a)
spatio-temporal growth rate. (b) Real part of the complex frequency. (c) Imaginary part of the
streamwise wavenumber. (d) Real part of the streamwise wavenumber. (e) Imaginary part of
the spanwise wavenumber. (f) Real part of the spanwise wavenumber.

driven by hydrodynamic effects. Moreover, the region downstream of the obstacle is598

steady because ω = 0 and originates from the presence of the steady defect. Since the599

asymptotic properties are rays that propagate from the center, the properties of the600

steady pattern are constant at fixed y/x. This invariance suggests that the response601

can be evaluated in the context of a steady pattern asymptotic analysis, introduced in602

Lerisson et al. (2020) for the front analysis of a propagating steady wavepacket, known603

as spatio-spatial stability analysis.604

6.2. The two-dimensional steady Green function605

In this section, we analytically derive the Green function for a steady defect. The606

approach is based on the spatio-temporal analysis introduced in Section 3.2, but we607

focus on the growth in space of a steady wavepacket. We can thus make an analogy to608

the classical one-dimensional analysis (Van Saarloos 2003): the (x, y) directions play the609

role of space and time.610

Following Hayes et al. (2000), we introduce the total free surface elevation ηt = η+η0.611

We seek for the solution of the following problem:612

u∂xηt +
1

3

[
∇2(ηt) +∇4(ηt)

]
= −u∂xη0 = f(x, y). (6.2)

The impulse is located in the position y/x = 0, i.e. the Green function g̃s(x, y) solves the613



20 P.G. Ledda, G. Balestra, G. Lerisson, B. Scheid, M. Wyart and F. Gallaire

(a) (b) (c)

Figure 11. Analytical asymptotic properties for the steady two-dimensional Green function. (a)
Spatio-spatial growth rate as a function of y/x. (b) Streamwise wavenumber and (c) spanwise
wavenumber resulting from the analytical steady response, as functions of y/x.

steady problem:614

u∂xηt +
1

3

[
∇2(ηt) +∇4(ηt)

]
= δ(x)δ(y). (6.3)

The solution in the presence of a localized defect ηt is found using the property of the615

Green function, i.e. ηt = g̃s ∗ f , where ∗ is the convolution operator. Since we consider616

the response to a steady localized defect f(x, y) = ∂x[δ(x)δ(y)]. Using the properties of617

the Delta function and integrating by parts, we obtain that the solution reads:618

ηt = u∂xg̃s(x, y) (6.4)

The solution g̃s is found using the same approach of the spatio-temporal stability analysis,619

where now we have the direction x → ∞. The Green function for steady defect can be620

expressed as:621

g̃s(x, y) ∼ ĝ exp(kxx+ kyy)/
√
x ∼ ĝ exp(k′xx)/

√
x, (6.5)

where k′x = kx + ky(y/x). The solution reads:622

ηt = u∂xg̃s(x, y) ∼ iukx exp[i(kxx+ kyy)]/
√
x, (6.6)

i.e. the asymptotic properties of the total elevation ηt wavepacket are the same of the623

Green function for x→ ∞.624

The spatio-spatial analysis is implemented similarly to the spatio-temporal stability625

analysis outlined in Section 3.2. We look for the steady (i.e. ω = 0) dispersion relation626

(eq. 3.2) saddle points of k′x = kx + ky(y/x) in the complex ky plane, varying y/x.627

The resulting asymptotic properties define the response for each y/x. The method is628

numerically implemented in MATLAB; we solve for the saddle point using the built-629

in function fsolve. The initial guess is given by the maximum in the steady dispersion630

relation eq. (3.2) for y/x = 0, which is a contributing saddle point according to Barlow631

et al. (2017).632

In fig. 11 we report the spatial asymptotic properties as functions of y/x. The spatio-633

spatial growth rate K = −Im(k′x) (fig. 11(a)) is initially positive and decreases with y/x.634

Beyond the critical value of y/x = 0.74 it becomes negative. Both the real and imaginary635

parts of the streamwise wavenumber (fig. 11(b)) are negative and decrease with y/x,636

in opposition to the real and imaginary parts of the spanwise wavenumber (fig. 11(c)),637

which are positive and increase with y/x.638

The unstable region in the (x, y) plane is located where the spatio-spatial growth rate639

is positive. At low values of y/x, i.e. close to y = 0, we observe a positive spatio-spatial640

growth rate, i.e. perturbations are growing (remember that one writes ηt ∼ exp[i(kxx+641

kyy)]). When K = 0 we define the value of y/x beyond which perturbations are damped,642
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Figure 12. Results of the spatio-spatial analysis in the (x, y) plane. (a) Real part of the total
free surface elevation ηt obtained from the asymptotic properties. The red and black dashed line
denote respectively the streamlines of the wavevector k = (Re(kx),Re(ky)) and the wavefronts.
(b) Spatio-spatial growth rate, (c) imaginary and (d) real parts of the streamwise wavenumber,
(e) imaginary and (f) real parts of the spanwise wavenumber. The red line denotes the value of
y/x for which K = 0.

that is y/x = 0.74. This value of y/x defines a ray in the (x, y) plane, that corresponds643

to an angle with respect to the x axis of φ ≃ 36.5◦, in agreement with the front observed644

in figures 8 and 10.645

These results can be easily visualized in fig. 12, in which we report the real part646

of the total free surface elevation and the asymptotic properties in the (x, y) plane,647

in a similar fashion to the previous plots for the spatio-temporal response. The total648

free surface elevation is characterized by predominant streamwise structures. The steady649

Green function is growing moving away from the obstacle, in strong contrast to the case650

of the flow over an incline, in which it is decaying (Decré & Baret 2003; Kalliadasis et al.651

2000; Hayes et al. 2000). The streamlines of the wavevector k = (Re(kx),Re(ky)) (red652

dashed lines in fig. 12(a)) are parallel to the y direction at y = 0 and slightly bend653

upstream with y. This slight variation is related to the negative value of the real part654

of the streamwise wavenumber. The bending of the wavevector streamlines imply that655

the wavefronts (black dashed lines in fig. 12(a)), orthogonal to the wavevector directions,656

tend to slightly diverge from the center going downstream.657

We now consider the spatio-temporal response observed in Section 6.1. In the steady re-658

gions, the spatio-temporal growth rate (Section 3.2) σ = Im(ω)−Im(kx)x/t−Im(ky)y/t =659

Im(ω) + Kx/t coincides with the spatio-spatial growth rate rescaled with x/t, i.e. σ =660

Kx/t, since ω = 0. In fig. 13 we show the spatio-temporal growth rate obtained from661
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Figure 13. Linear response to a steady defect: spatio-temporal growth rate from the post process
algorithm of Section 4 (colored iso-contours) and from the saddle points approach of Section 3.2
(black iso-contours) and spatio-spatial growth rate (changed of sign) from the analytical steady
approach of Section 6.2 (red iso-contours).

the numerical simulation compared with analytical values of σ and Kx/t respectively ob-662

tained from the spatio-temporal (Section 3.2) and spatio-spatial approaches, for t = 350.663

The comparison shows a good agreement between spatio-spatial theory and numerical664

post-processing in the region downstream of the steady defect. Moreover, the numerical665

spatio-temporal response well agrees with the spatio-temporal results, in the region666

downstream of x/t = u.667

We report in fig. 14 a comparison of the spatial asymptotic properties, at y/t = 0. Also668

in this case, the results are in good agreement; the values of Re(ky) are converging to669

the analytic values as x increases. The small difference in the values can be imputed to670

the fact that we are considering not large enough values of x close to the obstacle. The671

saddle point analysis is rigorously valid for x→ ∞, and in this case the steady response672

is present in the range 0 < x < 175 for the considered time (t = 350), which explains the673

small difference.674

Our analysis shows that the temporal response to a steady defect is characterized675

by the presence of the steady and unsteady ontributions which interact. The steady676

contribution, which originates from the presence of the steady defect, is not advected677

away and spreads in the domain as the streamwise coordinate increases. The presence678

of an initial perturbation gives rise also to a temporal response that is advected away.679

If enough time is waited, eventually the temporal response is no more present in the680

field and only the steady response survives, which is characterized by streamwise aligned681

structures.682

We then conclude that the emergence of streamwise structures both on the fluid film683

and on the substrate in the region just downstream of the initial impulse location is684

related to the presence of defects on the substrate and it has a linear hydrodynamic685

origin. This mechanism is predominant in the regions in which the temporal response686

has been advected away. In the context of morphogenesis of draperies, we thus argue687

that the response in the presence of the deposition process contains as fundamental688

ingredients two hydrodynamic effects, one related to the isotropic unsteady response in689



Hydrodynamic-driven morphogenesis of karst draperies 23

(a) (b)

Figure 14. Comparison of streamwise (a) and spanwise (b) wavenumbers obtained from the
post process algorithm of Section 4 (dots), the analytical approach (colored solid lines) for the
response to a steady defect of Section 6.2, and the analytical results of the spatio-temporal
analysis of Section 3.2 (black solid lines), on the ray y/t = 0.

the absence of substrate variations, and the other one related to the steady response in690

the presence of a localized defect in the substrate. The deposition process couples these691

two different hydrodynamic mechanisms, giving rise to predominant draperies structures692

on the substrate.693

7. Non-linear response694

The linear response in the presence of the deposition process is compared to non-linear695

simulations of equations (2.3) and (2.6), for the case C = 10−3. The system of equations696

(2.3), (2.6) is subjected to the initial conditions697

h = 1 + S exp[−x2/2− y2/2], (7.1a)
698

h0 = S exp[−x2/2− y2/2], (7.1b)

where S = 10−2.699

The non-linear simulations are performed using the finite-element software COMSOL700

Multiphysics. The flow equations are solved in a rectangular domain with periodic bound-701

ary conditions, for the variables (h, κ, h0) using third-order finite elements; the time-702

marching is obtained by a second-order backward differentiation formula. We consider a703

domain of size Lx = 310 and Ly = 180 with periodic boundary conditions and largest704

mesh element of characteristic size l∗c in the region, leading to a mesh of approximately705

56000 elements. A preliminary analysis shows that the numerical convergence is already706

achieved with this characteristic size of the elements.707

In fig. 15 we show the results at three different times, for the fluid and substrate708

thickness. As a comparison, on the bottom, the results for h = 1 + Sη of the linear709

simulation of Section 5.2 are reported. The non-linear patterns are very similar to the710

corresponding linear ones, even if some differences can be highlighted. As time increases,711

the fluid film increases and the perturbation spreads in concentric circles from the712

maximum thickness location. Streamwise structures are selected in the downstream part713

of the response close to the maximum value position, while in the linear simulation714

the pattern is isotropic in this region. The dominance of streamwise structures in the715

downstream part is enhanced as u increases (fig. 16).716
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Figure 15. Non-linear impulse response of equations (2.3) and (2.6) for u = 0.77 and C = 10−3,
at (a) t = 40, (b) t = 60, (c) t = 80. On the left: fluid thickness response. On the right: substrate
thickness response. The colobars are centered around the values h = 1 and h0 = Čt.

(a) (b)

Non-linear

Linear

Non-linear

Linear

Figure 16. Non-linear impulse response of equations (2.3) and (2.6) for u = 2.31 and C = 10−3,
at t = 120. (a) fluid thickness response. (b) substrate thickness response. The colobars are
centered around the values h = 1 and h0 = Čt.

The upstream part shows the same intricate pattern observed in the linear simulations.717

The substrate thickness presents a defect at the origin, which slowly grows in time.718

Downstream of the defect at the origin, growing streamwise structures on the substrate719

emerge and propagate in the domain, with a front well described by a constant angle.720

Under the light of the results of the previous linear analyses, we are able now to721

distinguish the different physical mechanisms underlying the selection of streamwise722

structures. The selection of streamwise structures both in the fluid film and on the723
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Figure 17. (a) Iso-levels of |η| as a function of x and t, for y = 0. The red dashed lines denote
the linear front, while the black line the iso-level that well approximates the front at small times.
In the inset: thickness profile for t = 108. (b) Iso-level of |η| approximating the non-linear front,
for t = 50 (blue line) and t = 125 (green line). The red circle denotes the linear front given
by the response in the absence of substrate variations, and the red lines the front given by the
steady defect analysis. u = 3.85 and C = 10−3.

substrate in the downstream part of the initial impulse location is due to the steady defect724

mechanism of Section 6.2, while in the region upstream the maximum thickness draperies725

are purely selected by the deposition law. Besides, rivulets emerge also in the downstream726

part of the wavepacket. This selection is absent in the linearized dynamics and is due727

to non-linear effects (Ledda et al. 2020). The downstream part of the wavepacket is728

progressively invaded by rivulets with time, thus enhancing the deposition of streamwise729

structures on the substrate. Thanks to the linear analyses, we conclude that the linear730

effects are predominant in the upstream part of the wavepacket such that, after all, the731

selection of streamwise structures occurs for all the values of the linear advection velocity.732

The deposition of streamwise structures in the downstream part is largely dictated by733

the non-linear selection of rivulets in the fluid film, whose dominance is enhanced with734

u.735

In fig. 16, we observe that the visible perturbation in the non-linear simulation spreads736

in a larger region compared to the linear simulation. This implies that the linear front737

given by the iso-level σ = 0 changes in the non-linear regime. We thus focus on the738

structure of the non-linear front with time. The analysis performed with the post-process739

algorithm could be in principle applied to the results of the non-linear simulations.740

However, non-linearities generate large wavelengths, altering the band structure of the741

spectrum of the perturbation observed in the linear simulations. As a consequence, it742

is no more possible to recover the envelope of the response (Melville 1983; Delbende &743

Chomaz 1998).744

Despite this, following Delbende & Chomaz (1998), it is possible to obtain information745

about the front by following the iso-levels of the absolute value of the response |η|.746

We consider the centerline profile (i.e. y/t = 0) and we extend the linear fronts (red747

dashed lines) in the non-linear regime by following the corresponding iso-level of |η| (fig.748

17(a)). We assume that this iso-level is a good approximation of the non-linear front.749

The non-linear front follows the linear one until t ≈ 108, beyond which it bends and750

the perturbation spreads in a larger region. In the inset, we report the corresponding751
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thickness profile at t = 108. The maximum thickness location is very close to the linear752

front. The variation of the iso-level of |η| well approximating the non-linear front is753

reported in fig. 17(b) as a function of (x/t, y/t), for t = 50 and t = 125. The iso-level754

well approximates the linear prediction, and at t = 125 we observe that the non-linear755

front has spread downstream in a larger region.756

The analysis of the non-linear front shows that, at large times, the perturbation spreads757

in a larger region than the one predicted by the linear theory. While in the linear regime758

the advection of perturbation is given by u, in the non-linear regime it is equal to uh2759

(Babchin et al. 1983). As the perturbation grows, regions with thickness h > 1 travel760

faster than the flat film and vice versa. Thus, for large enough times, the linear front is761

eventually reached (downstream for h > 1, upstream for h < 1). Our case corresponds762

to (c,d) in fig. 3 of Delbende & Chomaz (1998). For the sake of completeness, we report763

in Appendix D the results of the non-linear front in the absence of substrate variations.764

In conclusion, the non-linearities tend to favour streamwise structures and to deform the765

front in which the perturbation spreads due to the differences in advection.766

8. Conclusions and discussion767

In this work, we studied the pattern formation of a thin film flowing under an768

inclined plane, in the presence of material deposition on the substrate, reminiscent of the769

karst structure formation in limestone caves. We tackled the problem theoretically and770

numerically studying the linearized dynamics when substrate variations are considered.771

The spatio-temporal analysis in the presence of the deposition process was studied in772

the context of numerical simulations and a novel approach to retrieve the wavepacket773

properties. The numerical study of the impulse response was generalized to the two-774

dimensional case with the introduction of the monogenic signal, the two-dimensional775

analytic continuation of a real signal, based on the Riesz transform. The monogenic776

signal allows us to reconstruct the amplitude and the phase of the numerical response,777

and then the asymptotic properties of the wavepacket. This approach, which constitutes778

the generalization to two propagation directions of the approach introduced in Brancher779

& Chomaz (1997) and Delbende et al. (1998), can be generally used in flows where780

the dispersion is not known analytically or when the saddle-point tracking becomes too781

challenging. Besides, this procedure allows one to proceed to an a posteriori description782

of the response, without the necessity to a priori define the unstable branches of the783

dispersion relation, making it suitable for the analysis of complex fluid responses. The784

numerical procedure aims at deriving the asymptotic behavior for t→ ∞ using numerical785

simulations at finite times, and assumes that the amplitude and the phase of the signal786

subject to the Riesz transform can be separated (i.e. a separation of scales between the787

variations of the envelope and the oscillations subsists). We verified the validity of the788

assumptions in the present case by a comparison with the analytical solution in the789

absence of substrate variations.790

We therefore focused on the study of the linear impulse response in the presence791

of a deposition law. The temporal analysis of the dispersion relation showed only a792

slight anisotropy which promotes streamwise aligned structures. Motivated by this, we793

therefore studied the linear impulse response exploiting the post-processing algorithm.794

We identified (I) an isotropic region that is advected away (fig. 18(a)) and (III) a795

quasi-steady region propagating downstream (fig. 18(b)) with a front defined by an796

approximately constant angle, related to the presence of a growing substrate defect at797

the initial impulse location.798

The analysis of the substrate thickness showed that the deposition law selects predomi-799



Hydrodynamic-driven morphogenesis of karst draperies 27

(a) (b)

Figure 18. Analytical (a) spatio-temporal response to a localized initial perturbation (Section
3.2) and (b) spatial response to a localized steady defect (Section 6.2), in the absence of the
deposition process. The red lines denote the limits in which the perturbation spreads.

nant streamwise structures as the wavepacket is advected away, in (II) the upstream part800

of the traveling wavepacket. Physically, we related this phenomenon to the fact that, in801

opposition to rivulets, waves are traveling structures. Perturbations are oscillating at802

fixed locations, thus having a much smaller effect on the substrate topography.803

We thus analysed the response to a steady defect, for the pure hydrodynamic problem.804

The region just downstream of the steady obstacle coincides with the quasi-steady region805

(III) identified in the deposition case, and it is in good agreement with the analytical806

Green function for a steady defect (fig. 18(b)). The emergent pattern is characterized by807

streamwise structures both in the fluid film and on the substrate thickness.808

In the non-linear simulations, we exploited the results of the linear analyses and we809

distinguished the selection mechanisms due to the substrate variations from the non-810

linear mechanism of rivulets selection in the absence of substrate variations. While811

in the first case the dominance of streamwise structures is independent of the linear812

advection velocity, the latter plays a crucial role in the non-linear selection mechanism.813

The latter promotes the selection of rivulets (in the fluid film) in the downstream part of814

the traveling wavepacket (I), thus enhancing the deposition of draperies structures. We815

analyzed the evolution of the fronts between which the perturbation spreads, concluding816

that the emergence of rivulets modifies the downstream front by nonlinearly increasing817

the leading edge front velocity.818

We conclude that the different selection mechanisms are dominant in different regions819

of the response. The deposition process couples the hydrodynamic mechanisms of the820

unsteady response in the absence of substrate variations and the steady response in the821

presence of localized substrate variations. In common natural environments, the relative822

importance of the mechanisms may depend on the fluid film and substrate conditions,823

but always giving rise to predominant draperies structures. The immense diversity of824

limestone patterns observed in nature may result from secondary instabilities of these825

predominantly selected primary streamwise-oriented structures.826
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Appendix A. Numerical method and validation831

In this section, we introduce the numerical method to solve equations 2.8 in a rectan-832

gular domain, with periodic boundary conditions. We consider the Fourier transforms of833

the functions (η, η0):834

[
η̂, η̂0

]T
=

∫∫
[
η, η0

]T
e−ik·xdx, (A 1)

where k = (kx, ky), are respectively the streamwise and spanwise wavenumbers. Applying835

the Fourier transform to eq. (2.8), the following complex ODE’s system is obtained:836

dη̂

dt
= η̂(−iukx) + (η̂ + η̂0)

1

3

(
χk2 − k4

)
, (A 2)

837

dη̂0

dt
= Čη̂, (A 3)

where k = |k|. Introducing the vector η̂ = [η̂, η̂0]T , the system of equations reads:838

dη̂

dt
=

[
1

3

(
χk2 − k4

)
− iukx

1

3

(
χk2 − k4

)

Č 0

]

η̂ = Aη̂ (A 4)

With the decomposition η̂ = η̂r + iη̂i, the final system of real ODE’s reads:839

dŷ

dt
=

[
dη̂r

dt
dη̂i

dt

]

=

[
Ar −Ai
Ai Ar

] [
η̂r

η̂i

]

= Bŷ (A 5)

The solution of this problem can be written as:840

ŷ = expm[Bt]ŷ(0), (A 6)

where expm stands for the exponential matrix.841

The numerical procedure is implemented in MATLAB. A rectangular domain of size842

1000 × 1000 is considered, with a number of collocation points Nx = Ny = 1001. A843

convergence analysis on (Nx, Ny) has been performed, concluding that convergence is844

already achieved for 1001 collocation points. No significant changes have been observed845

increasing the domain size. The initial condition is transformed in the two-dimensional846

Fourier space using the built-in function for the Fast Fourier Transform fft2. Subsequently,847

the linear system of ODE’s is solved using the built-in function for the exponential848

matrix, and the solution in the space domain is obtained through the Inverse Fast Fourier849

Transform ifft2.850

The numerical code is validated against a benchmark case present in the literature for851

the experimental response in the presence of a steady defect for a thin film flowing over an852

inclined plane, i.e. χ = −1 and C = 0. The initial condition is given by η(x, y, 0) = 0, and853

η0(x, y, 0) = − exp[−(x2+y2)/2ς2], with ς = 0.17, which gives the same integral value of854

the experimental step-down defect used in Decré & Baret (2003) and does not vary with855

time. In the inertialess case and absence of defects, the flow over an inclined plane is stable856

and the solution is a film of constant thickness (Kalliadasis et al. 2011). The presence857

of a localized steady defect creates a region close to the depression characterized by a858

variation of the free surface elevation η+η0 (see fig. 19(a)). In the region just upstream of859
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(a) (b)

Figure 19. Two-dimensional linear response in the presence of a localized steady defect for
the flow over an inclined planar substrate, at y = 0 as a function of the streamwise coordinate,
for u = 16.75. Results are rescaled using the adimensionalization reported in Decré & Baret
(2003) (Ld = (γhN/3ρgcos(θ))1/3). (a) Response in the (x, y) plane. (b) Comparison between
the experimental (red dots) and numerical (black stars) results of Decré & Baret (2003) and the
numerical solution (blue line).

the depression, there is a small increase in the free surface elevation, followed by a strong860

decrease. Downstream, there is an overshoot greater than the initial thickness followed861

by a recovery of the flat film conditions. In fig. 19(b) we show a comparison of the results862

of our model with the experimental and theoretical results of Decré & Baret (2003), for863

the free surface elevation at y = 0. Results are rescaled using their adimensionalization.864

The comparison shows a good agreement, thus validating the numerical procedure.865

Appendix B. Evaluation of the imaginary part of the spatial866

wavenumbers from the spatio-temporal growth rate867

In this Appendix, we demonstrate eq. (4.15,4.16) by generalizing to the two-868

dimensional case the approach outlined in Delbende et al. (1998). We consider:869

ω′′ (vx, vy) = ω − kxvx − kyvy. (B 1)

We derive eq. (B 1) with respect to the group velocity vx along the x direction:870

∂ω′′

∂vx
=

∂ω

∂vx
− ∂kx
∂vx

vx − kx −
∂ky
∂vx

vy. (B 2)

Since ω = ω(kx, ky), we evaluate the derivative as follows:871

∂[ω (kx, ky)]

∂vx
=

∂ω

∂kx
︸︷︷︸

vx

∂kx
∂vx

+
∂ω

∂ky
︸︷︷︸

vy

∂ky
∂vx

, (B 3)

being vx and vy real (Delbende et al. 1998). Substituting in eq. (B 2), the imaginary part872

of the streamwise wavenumber is obtained:873

Im (kx) = − ∂σ

∂vx
. (B 4)
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(a) σ (b) Re(ω)

(c) Im(kx) (d) Re(kx)

(e) Im(ky) (f) Re(ky)

Figure 20. Asymptotic properties from the post process algorithm (Section 4), for u = 0.77
and C = 10−3. (a) spatio-temporal growth rate. (b) Real part of the complex frequency. (c)
Imaginary part of the streamwise wavenumber. (d) Real part of the streamwise wavenumber.
(e) Imaginary part of the spanwise wavenumber. (f) Real part of the spanwise wavenumber.

Deriving ω′′ with respect to vy and following the same procedure, Im(ky) reads:874

Im (ky) = − ∂σ

∂vy
. (B 5)

Appendix C. Results of the post-processing algorithm for C = 10−3
875

In this section, for the sake of completeness, we report the results of the post-processing876

algorithm of Section 4 applied for the case in the presence of the deposition process877

(Section 5.3), for C = 10−3. The results are similar to those observed in the case C = 10−5
878

(fig. 8), with a front downstream of the initial position more curved and the region where879

the two contributions (quasi-steady and spatio-temporal) interact displaced downstream.880

Appendix D. Non-linear front in the absence of substrate variations881

In this Section, we report the results of the evaluation of the non-linear front for the882

case in the absence of substrate variations, for u = 3.85. The results show a deformation883

of the front similar to fig. 17, without the quasi-steady part propagating downstream.884
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Sabine Mécanique des fluides Paris Saclay 2017.962

Lerisson, G., Ledda, P.G., Balestra, G. & Gallaire, F. 2019 Dripping down the rivulet.963

Phys. Rev. Fluids 4, 100504.964

Lerisson, G., Ledda, P.G., Balestra, G. & Gallaire, F. 2020 Instability of a thin viscous965

film flowing under an inclined substrate: steady patterns. Journal of Fluid Mechanics 898,966

A6.967

Lister, J.R., Rallison, J.M. & Rees, S.J. 2010 The nonlinear dynamics of pendent drops on968

a thin film coating the underside of a ceiling. Journal of Fluid Mechanics 647, 239–264.969

Marthelot, J., Strong, E. F., Reis, P. M. & Brun, P-T. 2018 Designing soft materials970

with interfacial instabilities in liquid films. Nature communications 9 (1), 4477.971

Meakin, P. & Jamtveit, B. 2010 Geological pattern formation by growth and dissolution972

in aqueous systems. Proceedings of the Royal Society A: Mathematical, Physical and973

Engineering Sciences 466 (2115), 659–694.974

Melville, W.K. 1983 Wave modulation and breakdown. Journal of Fluid Mechanics 128,975

489–506.976

Mowlavi, S., Arratia, C. & Gallaire, F. 2016 Spatio-temporal stability of the kármán977
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