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Abstract: Endangered trout populations can be monitored with a variety of methods, the selection
of which should consider social constraints and environmental variables known to affect method
effectiveness. Here, we confront the effectiveness of four monitoring methods (removal with elec-
trofishing, ELE; underwater camera survey, UCS; streamside visual survey, SVS; visual surveys
with angling, VSA) to estimate the relative abundance of three populations of the endangered
Mediterranean brown trout. The trout counts obtained via different methods were well correlated
(r = 0.65–0.72), providing a coherent description of the relative pool abundance across the methods.
However, the methods were differently affected by environmental variables, depending on the age
classes of trout. Specifically, the adult and subadult counts provided by ELE and VSA were negatively
and positively affected by the maximum pool depth, respectively; adult and subadult counts of
VSA and the SVS were positively affected by pool area; the juvenile counts provided by the UCS
were positively affected by pool shade and negatively affected by water turbidity; juvenile counts
provided by VSA were positively affected by shade. Variables such as pool depth, area, shading,
water turbidity and proportion of age classes can be hardly controlled in monitoring programs, and
their bias could be modelled. Different sampling methods provided similar information about relative
abundance and appeared equivalent. While ELE could be selected to collect samples and biometric
data, monitoring relative abundance with the UCS, VSA, and SVS appears more suited and can also
involve citizen scientists.

Keywords: adaptive monitoring; environmental heterogeneity; ethic and conservation; Salmo trutta;
small streams; standard methods

1. Introduction

Monitoring programs designed for species conservation should provide information
about distribution, relative abundance, and environmental variables thought to affect the
conservation status of populations [1]. Additionally, the operation of monitoring programs
is affected by socio-ecological factors and decisions related to the human dimension. For
example, when managing renewable resources of common interest [2], it is important to
involve stakeholders in monitoring programs, so that relevant local ecological knowledge
can be gathered with the support of non-professional researchers [3–5], and a consensus
about resource conservation status and management can be possibly achieved [6,7]. Fi-
nally, when dealing with species of conservation concern, monitoring methods should
be non-invasive [8–10], with ethical issues becoming dominant in selecting methods of
investigation [11,12]. Therefore, selecting monitoring methods for endangered trout pop-
ulations should consider issues such as management objectives, socio-ecological context,
information needs, the available resources, and constraints related to animal welfare.

Freshwater fishes can be monitored with a variety of methods, each one with ad-
vantages and disadvantages [13]. Multiple-pass removal with backpack electrofishing is
considered a standard method and commonly applied for counting salmonids in small

Diversity 2024, 16, 442. https://doi.org/10.3390/d16080442 https://www.mdpi.com/journal/diversity

https://doi.org/10.3390/d16080442
https://doi.org/10.3390/d16080442
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diversity
https://www.mdpi.com
https://orcid.org/0000-0003-3873-6761
https://orcid.org/0000-0001-7171-6987
https://orcid.org/0000-0003-0816-0298
https://doi.org/10.3390/d16080442
https://www.mdpi.com/journal/diversity
https://www.mdpi.com/article/10.3390/d16080442?type=check_update&version=1


Diversity 2024, 16, 442 2 of 16

streams, although it can be affected by several environmental variables [13,14]. Electrofish-
ing can also cause injures, physiological stress and post-release mortality to fish, and it
should be used with particular caution with populations of conservation concern [11,15].
Electrofishing also requires highly qualified field biologists, and it is difficult/expensive
to perform in large-scale studies and in remote locations [13], where the transport of the
electrofishing equipment is often difficult. Visual survey methods based on underwater
cameras recordings [8,9] and streamside counts [13,16] are non-harmful alternatives to
electrofishing that can provide information about distribution and relative abundance
of salmonids in small streams with shallow and clear waters [10]. Visual surveys can
also be used for large-scale monitoring programs involving non-professional researchers.
However, visual surveys cannot provide information about individual covariates such
as age, weight, length, morphology, and genetics, unless augmented with a collection
technique. To obtain such information, streamside visual surveys can be performed by
anglers during catch-and-release fishing activity [17]. Catch-and-release anglers are also
the main salmonid users in freshwater habitats, particularly in remote location and natural
parks, and they could contribute with their knowledge and skills to large-scale monitoring
programs of fish and co-management [7].

The effectiveness of counting methods can vary with several environmental vari-
ables [13]. For example, boulder substrate, water depth, stream shading, and slow flow can
negatively affect estimates of trout abundance provided by backpack electrofishing [14,18],
while visual counts can be reduced by water turbidity, turbulence, depth, and glaring [18,19].
Several environmental variables cannot be controlled in monitoring programs, because
monitoring aims at obtaining information about distribution, abundance, and threats to the
species over space and time [1]. Sampling only in selected pools to maximize efficiency of
given sampling methods would provide habitat-biased estimates. Instead, environmental
variables thought to affect sampling can be included as covariates to address their biases
on counts. Therefore, to develop local monitoring programs, it is important to evaluate
methods that are thought to be useful, feasible, and effective by studying how provided
counts can be affected by environmental variables.

Here, we apply the four methods mentioned above (removal via electrofishing, un-
derwater camera survey, streamside visual survey, and visual surveys with angling) to
study the abundance of three populations of the Mediterranean brown trout, Salmo trutta L.,
1758 Complex (Osteichthyes: Salmonidae) [20], in Sardinia (Italy). The Mediterranean trout
is considered critically endangered in the national Red List of the International Union for
Conservation of Nature, as Salmo cettii [21] and is also listed as Salmo macrostigma in Annex
II of the Habitats Directive (92/43/EEC). The main threats for the species are represented by
habitat fragmentation, water pollution, invasive species, overexploitation of fish and water
resources [21,22], and the introduction of domesticated trout [23,24]. The populations of
conservation interest of this species are often confined in headwater streams, with shallow
and clear waters, similarly to other endangered trout populations [11,25,26]. Therefore,
it is important to study the reliability and effectiveness of monitoring methods that can
be applied in remote headwater streams to gain information about the distribution and
relative abundance of the Mediterranean brown trout, as well as the effect of environmental
variables on abundance estimates.

By confronting trout counts obtained via repeating the four different methods in
10 randomly selected pools for each population, we attempt to evaluate their relative
effectiveness in different environmental conditions, focusing on the following questions:

(1) Do trout counts differ among methods?
(2) How are sampling methods affected by environmental variables?

Considering the results of our comparison, we finally discuss the principles that could
guide the development of locally adapted, feasible, and effective monitoring programs for
endangered trout populations.
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2. Methods
2.1. Study System

Sardinia (Italy), where we conducted this study, is characterized by a Mediterranean
climate with hot dry summers and mild rainy autumn/winter seasons. The Mediterranean
streams generally have an intermittent regime [27], with little surface flow and fragmented
pools or stream stretches during summer. These streams are thus characterized by the
presence of physical and hydraulic barriers that reduces river continuity and severely
fragment fish populations.

Three headwater streams were selected for this study (the Piras, Furittu, and Flu-
mineddu streams, Figure 1). The streams present viable populations of the Mediterranean
native brown trout [24,28]. The headwater section of the Piras and Furittu streams have
been designated as a genetic sanctuary (DR n.314/Dec.A9 07.02.2019) where fishing is not
allowed, while in the Flumineddu stream, fishing is allowed.
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2.2. Sampling Design

This study was performed during June and July 2022, when dry weather and slow-flow
regime provided optimal conditions for sampling, as shown in a comparison of underwater
camera surveys and streamside visual surveys in detecting pool occupancy during high-
and low-flow regimes [10]. Sampling occurred during sunny mornings when weather
conditions remained stable (no wind, clouds, or rain). Within each population (stream),
10 consecutive pools were selected. Pools are defined as habitat units with water depths of
at least 20 cm, separated by narrow stretches or small waterfalls, and with a substantial
decrease in water velocity. During periods of minimal water flow, such discontinuity should
minimize dispersals of individuals between adjacent pools. Considering that sampling
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in each stream was carried out over three consecutive days, fish dispersal between pools
was assumed to be negligible and pools were thus considered independent. To minimize
the potential impact of previous sampling efforts on counts, we started with less invasive
methods such as streamside visual surveys and underwater camera surveys. Visual surveys
with angling were conducted on the second day and removal with electrofishing was
performed on the third day, as described below.

Streamside visual surveys (SVSs) were performed on the first day by two observers
simultaneously walking along the stream on opposite banks. Both observers cautiously
approached the pool and remained stationary while counting trout from selected view-
points. The observers were not independent and, communicating with each other, they
identified positions of all the observed fish to avoid double counts as much as possible.
After approximately 3–5 min, depending on pool size, the number of different observed
trout were recorded. Trout were visually categorized by size, with specimens divided into
juveniles (J), subadults (SA), and adults (AD) based on total lengths (TL, cm) defined for
the Mediterranean trout in Sardinia [29] (TLJ below 9 cm; TLSA from 8 to 12 cm; and TLAD
more than 12 cm). Following the SVSs, one underwater camera was placed in the pool
(see below) and habitat variables were measured. The observers then walked upstream to
the next pool to repeat the observation process up to the 10th pool.

Underwater camera surveys (UCSs) were performed using one action camera per pool
(Apeman Action Cam A100, Shenzhen, China). The camera was mounted on a stable stand
(Sabrent magnetic support), placed to maximize the field of view and face upstream. The
camera recorded video for a minimum of 30 min (1080p video resolution, 30 frames per
second, ultra-wide frame of view, and 1920 × 1080 screen resolution). A recording time of
30 min has been considered sufficient for obtaining reliable counts in small streams [8–10].
The cameras were recovered at the end of the sampling session, when walking backstream
and after an interruption of at least 30 min from SVS sampling of last pool. All videos were
reviewed to count the maximum number of individuals observed in each single frame of
30 s, and the maximum possible observed count (MaxN) was used to estimate the number
of individuals observed in the pool [8]. The counts for adults (A), subadults (SA), and
juveniles (J) were recorded as described above.

On the second day, visual surveys with angling (VSA) were performed with the same
10 pools by a single observer (angler). The angler involved in this study (F. Curreli) has a
degree in Natural and Environmental Science and was also the second observer during the
SVS. To minimize the impact on trout, fishing attempts were made using low-impact catch-
and-release equipment [17]. The angler moved from downstream to upstream ensuring
minimal disturbance. Upon reaching the casting distance, the angler cast from 5 to 20 times,
gradually moving from downstream towards the upstream limit of the pool. The goal
was not to catch trout, as this could potentially startle other individuals, but rather to
attract as many trout as possible out of their refuges for counting purposes. Therefore,
efforts were made to reduce the likelihood of trout attacking the bait, such as quickly
recovering the bait upon sensing the readiness of the fish to bite. If trout inadvertently
bit the bait, they were promptly unhooked, keeping them in the landing net to minimize
alerting other individuals. A spin-fishing tackle, consisting of a 180 cm ultralight rod with
a casting range of 2–8 g, a size-2000 fishing reel filled with a 0.06 mm braided line and a
0.20 mm fluorocarbon leader, and a 3 g handmade spinner lure armed with a single barbless
hook were used for fishing. After about 2–10 min of fishing attempts and observations,
depending on pool size, the number of observed and captured adults (A), subadults (SA),
and juveniles (J) were recorded.

On the third day, multiple-pass removal with backpack electrofishing (ELE) was
performed in the same 10 pools sampled on previous days. Trout were sampled us-
ing a backpack electrofisher unit (Helt 60II with Honda engine 4 stroke, 49 ccm, power
1.8 KW/7000 rpm; average voltage and current values applied: 5.2–2.8 Å, 230–400 V,
1300 W) with an electrode diameter of 30 cm and a cathode section of 5 mm. Three opera-
tors were involved, one using the electrofisher and two others with landing nets to capture
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stunned trout. Water conductivity was assessed before sampling (Piras 182.71 ± 41.38 µS;
Furittu 324.76 ± 13.81 µS; Flumineddu 406.26 ± 11.49 µS) and the electrofisher was tuned
accordingly. All the trout captured were immediately measured and weighed on-site,
including total length (TL, to the nearest 0.1 cm) and total weight (TW, nearest 0.1 g). The
specimens were categorized as adults (A), subadults (SA), and juveniles (J). After process-
ing, the trout were released back into the pool. Electrofishing operations were considered
complete when two consecutive passes failed to capture further trout.

2.3. Environmental Variables

Environmental variables thought to affect counts provided by the different methods
were recorded in each sampled pool, as below.

Pool depth may negatively affect counts obtained from ELE and the SVS, as pools deeper
than 1 m are difficult to explore and observe [13,16]. The UCS and VSA could be less affected
by pool depth, as cameras can be strategically placed, and angling may attract trout from
refuges. To capture these effects, we recorded the maximum pool depth (MDepth) as a proxy
for unsamplable pool extent. Pool length (Length), maximum width (MWidth), and surface
area (Area = Length*MWidth) could negatively affect counts [but see 10]. The UCS counts could
be affected by the pool extension due to its fixed field of view [30], while ELE, the SVS, and
VSA allow observers to adapt their sampling efforts and move, potentially reducing the effect
on counts. Variables describing pool size were measured using a roll meter (Table 1).

Table 1. Mean values and range of variation in environmental variables measured at the pool level.

Variable Name and Code Unit Min Max Mean SD

Pool maximum depth (MDepth) meters 0.5 2.5 1.09 0.49
Pool length (Length) meters 2 31 13.36 7.72

Pool maximum width (MWidth) meters 2 10 4.77 2.23
Pool area (Area) m2 8 140 63.87 44.85
Turbidity (Turb) NTU 0.2 1.85 0.65 0.45

Pool shading (Shade) % cover 20 100 79 28.93
Refuges (Refuge) % cover 5 60 21.83 14.17

Water temperature (WTemp) ◦Celsius 16.20 25.53 21.59 3.01
Trout count (N) N◦individuals 0 10 2.53 2.34

High levels of turbidity could reduce visibility and negatively affect counts provided
by the four methods [13,16,31], perhaps with effects more evident on the SVS. Turbidity
(Turb) was recorded using a turbidity meter (NTU) (AQUALYTIC® AL255T-IR, Pretoria,
South Africa).

Direct light and glaring can negatively affect visual observation and electrofishing [13,16],
as well as shading, which reduces light and vision. To capture such effects, pool shading
(Shade) was measured as the percent of pool surface covered by shade. Sampling was
performed in the morning and in valleys, where shade was often the result of the sun being
covered by mountains or rocky outcrop, depending on the hour.

During sampling, trout often hide under submerged vegetation, roods, roots, and
boulders [13], reducing their detectability. Refuges (Refuge) were visually estimated as the
percent cover of the pool bottom that could not be seen through, under which trout could
potentially hide. VSA could reduce this effect by attracting adult trout out from refuges. By
estimating the percent cover of refuges, we aimed to account for their potential impact on
trout counts and understand how different methods might be affected by refuge quantity.

Sampling was performed during summer, with high water temperatures (max T = 25◦).
Trout, in response to high temperatures, can seek thermal refuge in deeper and fresher
parts of a pool [32], negatively affecting counts. Given the range of temperature observed
(Table 1), low temperature effects could not be studied. Water temperature (WTemp, ◦C) was
measured using a multiparameter probe (InSitu smarTROLL Multiparameter Handheld,
Fort Collins, CO, USA).
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Trout abundance should positively affect counts. Abundance was estimated in each
pool by using the average value of counts for a given pool i, as below:

Ni = (Ci(x) + Ci(y) + Ci(z))/3);

where Ci(x, y, or z) is the number of trout counted in pool i with method x, y, or z. Indeed,
by averaging across all the four methods, the counts provided by any given method could
not be independent from Ni. To address this, for each method, pool density was estimated
by using counts provided by the other three methods, x, y, and z. A positive correlation
between counts provided by a given method and Ni can be thus interpreted as support for
the ability of the method to capture variation in density between pools. Indeed, the absence of
correlations would suggest that variation in counts across different methods is random and
not related to abundance. This variable was also used to distinguish variation in counts due
trout abundance from variation in counts due to environmental variables or method effects.

2.4. Statistical Analysis

The data were analyzed by means of generalized linear models (GLMs) [33]. Variance
of counts can be described by Poisson or negative binomial distributions [34]. The fit of
the two distribution was assessed by means of the R package fitdistrplus [35]. Estimates of
overdispersion were based on deviance, using the functions glm of software R 4.2.2 [36]
and glm.nb of R package MASS [37].

The negative binomial distribution (AICNB = 507.32) showed a better fit compared to
the Poisson distribution (AICPoisson = 640.28). The Poisson model applied to evaluate fit,
considering the effect on counts of location, mean density of trout and sampling method
(Counts(Tot) ~ Stream + N + Method, family = poisson) showed overdispersion (chat = 2.14).
Residual deviance (241.8) and sum of Pearson (245.3) of the Poisson model were also higher
than the five-percent critical value for a chi-squared test (138.81). Conversely, the residual
deviance (130.7) and sum of Pearson (126.1) of the equivalent negative binomial model
were lower than the critical value, showing a better fit of the negative binomial distribution.
Model selection was thus performed using the glm function with family = negative.binomial
implemented in software R 4.2.2 (see Supplementary Materials: data and R script).

Models were compared by means of small-sample correction of the Akaike Information
Criterion AICc [38]. When the difference of AICc between models (∆AICc) was lower than 2,
a likelihood ratio test (LRT) implemented in the R package lmtest [39] was applied.

Models’ goodness of fit was estimated as deviance explained (DE = (dev(M0) −
dev(Mx))/dev(M0))), where M0 is the null model specifying no effects and Mx is the
tested model.

2.4.1. Do Trout Counts Differ among Methods?

The effectiveness of sampling methods can vary with environmental variables and age
classes [40,41]. Therefore, method effects were evaluated on total (Tot = J + SA + A), subadult
and adult (SA + A) and juvenile (J) counts. The whole dataset (n = 30 pools × 4 meth-
ods = 120) was used, and fixed effects on counts of location (Stream) and pool trout
density (N) were assessed. However, method effects could be confounded with time
effects (Time), i.e., the effect of the temporal repetition of sampling for four consecutive
times (SVS = 1, UCS = 2, VSA = 3, and ELE = 4). Although we started from less inva-
sive methods, such a sequence could alert trout and result in negative temporal trends of
counts. As an attempt to distinguish between sampling method (category) and time effects
(trend), model selection started from the general models Counts ~ Stream + N + Method or
Counts ~ Stream + N + Time. By modeling method effects as category and time effect as
trend, we attempt to distinguish if effects were relative to the method applied or to the
sampling sequence. Since method and time effects are described by the same data (where
method = sequence number), a simultaneous evaluation of method and time effects could
not be performed. All possible combinations of simplified models were generated by
means of automated model selection implemented in the R package glmulti [42]. To reduce
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the number of models run on a small dataset and facilitate the interpretation of results,
simplified models were built allowing no interactions (level = 1).

2.4.2. How Are Methods Affected by Environmental Variables?

To assess the effect of environmental variables (Table 1) on the total (Tot = J + SA + A),
subadult and adult (SA + A) and juvenile (J) counts, the whole dataset was analyzed
(n = 30 pools × 4 methods = 120). Model building started from the best model selected
with the analysis presented in the previous section, specifying fixed effects of location
(Stream) and pool trout density (Ni). Considering the small dataset, each variable was
evaluated individually using univariate screening [43]. Additionally, given that the effects
of environmental variables on counts could be method-dependent, method effects and inter-
actions between method and variables were allowed. Univariate screening thus confronted
two null models (NullA: Counts ~ Stream + N and NullB: Counts ~ Stream + N + Method)
with the effect model Counts ~ Stream + N + Method + Method:Variable. If a variable af-
fects counts provided by a given method, this effect should be captured by the model
part Method + Method:Variable. One univariate model was created for each habitat variable
(Depth, Length, Width, Area, Turb, Shade, Refuges, and Temp) and confronted with null mod-
els. The Pearson correlation coefficient showed that environmental variables were not
collinear [44], except for Length vs. Area (r = 0.8465).

Environmental variables that were supported by the univariate screening were in-
cluded into a general multivariate model, Counts ~ N + Stream + Method + Method:Variable1
+ Method:Variable2 + . . . The structure of the model depended on the specific variables that were
supported by each dataset (Tot, A + SA or J). The general model was then simplified by taking
out each Method:Variable part at a time (see Supplementary Materials: data and R script).

3. Results
3.1. Do Trout Counts Differ among Methods?

The distribution of total (Tot), adult and subadult (ASA), and juvenile (J) counts provided
by the different methods can be seen in the boxplot presented in Figures 2–4, respectively.
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Figure 4. Distribution of juvenile counts (J) provided by the different methods (backpack elec-
trofishing, ELE; streamside visual survey, SVS; underwater camera survey, UCS; visual surveys with
angling, VSA). Black circles show observed counts while white circles show counts that are classified
as outliers.

The best model selected with total trout counts (J + SA + A) was Tot ~ Stream + N
(Table 2). This result was obtained via both model selections starting from the general
model Tot ~ Stream + N + Method or Tot ~ Stream + N + Time (not shown in Table 2). Simi-
larly, the best model selected with adult + subadult counts (ASA) supports the same effects



Diversity 2024, 16, 442 9 of 16

(ASA ~ Stream + N), with both model selections starting from the general model
ASA ~ Stream + N + Method or ASA ~ Stream + N + Time (Table 2). Additionally, model
weights (wi) and ∆AICc values show that the second (for Tot data) and third (for ASA
data) ranked models, which specify method effects, have fundamentally no support. In
both cases, no method or time effects were found, while the effects of location (Stream)
and pool density (N) were well supported. Deviance explained by the best models were
DEBest(Tot) = 0.3709 and DEBest(ASA) = 0.1808, respectively.

Table 2. Model selection results for location (Stream), pool density (N) and method effects on total (Tot),
adult + subadult (A + SA), and juvenile (J) trout counts (no interactions among covariates allowed).

Data Rank Model Structure AICc ∆AICc wi

To
t(

J
+

SA
+

A
D

) 1 Tot ~ 1 + Stream + N 453.5055 0 0.8763
2 Tot ~ 1 + Stream + N + Method 457.4694 3.964 0.1208
3 Tot ~ 1 + N 465.6514 12.146 0.002
4 Tot ~ 1 + Stream 468.6184 15.1129 0.0005
5 Tot ~ 1 + N + Method 469.0052 15.4997 0.0004
6 Tot ~ 1 + Stream + Method 473.2471 19.7416 0
7 Tot ~ 1 525.9969 72.4914 0
8 Tot ~ 1 + Method 531.3003 77.7949 0

A
+

SA

1 ASA ~ 1 + Stream + N 351.7343 0 0.7429
2 ASA ~ 1 + N 354.3142 2.5799 0.2045
3 ASA ~ 1 + Stream + N + Method 357.7945 6.0602 0.0359
4 ASA ~ 1 + N + Method 359.4606 7.7263 0.0156
5 ASA ~ 1 + Stream 364.9632 13.2289 0.001
6 ASA ~ 1 370.038 18.3038 0.0001
7 ASA ~ 1 + Stream + Method 371.0232 19.2889 0
8 ASA ~ 1 + Method 375.3934 23.6591 0

J

1 J ~ 1 + Stream + N + Method 296.397 0 0.3394
2 J ~ 1 + Stream + N 296.9249 0.5279 0.2606
3 J ~ 1 + Stream + Method 297.4489 1.0519 0.2006
4 J ~ 1 + Stream 297.4607 1.0637 0.1994
5 J ~ 1 + N + Method 347.4382 51.0412 0
6 J ~ 1 + N 348.3466 51.9497 0
7 J ~ 1 408.5618 112.1648 0
8 J ~ 1 + Method 410.9305 114.5335 0

With juvenile counts (J), no time effects were found, while method effects were sup-
ported by the general model J ~ Stream + N + Method, ranked first (Table 2, J data). The
model’s weight (wi) and AICc value were very similar to those of the second ranked model,
which specifies no method effects. However, the LRT showed that the first two models were
significantly different (pLRT first vs. second = 0.0664), supporting weak method effects on
juvenile counts. Similarly to the analysis of total and adults + subadults counts, there was
again support for the effects of location (Stream) and pool density (N). Deviance explained
by the best model was DEBest J = 0.5477.

Parameter estimates from the best models showed a positive sign of the slope parame-
ter (β) describing the relationship between counts and pool density: βNTot = 0.1897 ± 0.0471
(SE); βNASA = 0.2781 ± 0.0712; βNJ = 0.0938 ± 0.0579 (taken from the best models,
Tot ~ 1 + Stream + N, ASA ~ 1 + Stream + N, and J ~ 1 + Stream + N + Method, respec-
tively). The Pearson correlation coefficients between total trout counts obtained via each
method and relative pool density were, in decreasing order, rVSA = 0.7199, rSVS = 0.6564,
rUCS = 0.5841, and rELE = 0.57059. The best model selected with juvenile counts showed sig-
nificantly higher values of juvenile counts obtained via the UCS (p = 0.0345). Finally,
the best models selected with Tot, ASA, and J data all showed significant and well-
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supported location effects (Stream). In fact, there were substantial differences among
average stream trout counts (NFurittu(Tot) = 4.625 ± 2.88(SD); NPiras(Tot) = 2.200 ± 2.74;
NFlumineddu(Tot) = 0.750 ± 1.42 and NFurittu(J) = 3.150 ± 2.18(SD); NPiras(J) = 0.550 ± 1.30;
NFlumineddu(J) = 0.125 ± 0.33).

3.2. How Are Methods Affected by Environmental Variables?

Univariate screening of environmental variables with total trout counts (Tot), sup-
ported the effect of Depth, Area, and Length, depending on method (Table 3, data = Tot).

Table 3. Univariate model selection of environmental variables affecting total (Tot), adult + subadult
(A + SA) and juvenile (J) trout counts obtained via different sampling methods.

Data Rank Model Structure K AICc ∆AICc wi

To
t(

J
+

SA
+

A
)

1 Tot ~ N + Stream + Method + Method:Depth 12 452.8375 0 0.5243
2 Tot ~ N + Stream + Method + Method:Area 12 454.8241 1.9866 0.1942
3 Tot ~ N + Stream + Method + Method:Length 12 455.6747 2.8372 0.1269
4 Tot ~ N + Stream (Null A) 5 455.6778 2.8403 0.1267
5 Tot ~ N + Stream + Method (Null B) 8 459.7729 6.9354 0.0164
6 Tot ~ N + Stream + Method + Method:Refug 12 461.8712 9.0336 0.0057
7 Tot ~ N + Stream + Method + Method:Turb 12 463.7103 10.8728 0.0023
8 Tot ~ N + Stream + Method + Method:Shade 12 464.5323 11.6947 0.0015
9 Tot ~ N + Stream + Method + Method:Temp 12 465.1169 12.2794 0.0011

10 Tot ~ N + Stream + Method + Method:Width 12 465.6282 12.7907 0.0009

A
+

SA

1 ASA ~ N + Stream + Method + Method:Depth 12 348.2256 0 0.6509
2 ASA ~ N + Stream + Method + Method:Area 12 349.9593 1.7336 0.2736
3 ASA ~ N + Stream (Null A) 5 353.9072 5.6815 0.038
4 ASA ~ N + Stream + Method + Method:Length 12 354.1168 5.8912 0.0342
5 ASA ~ N + Stream + Method (Null B) 8 360.0974 11.8717 0.0017
6 ASA ~ N + Stream + Method + Method:Shade 12 362.4088 14.1831 0.0005
7 ASA ~ N + Stream + Method + Method:Width 12 362.6081 14.3825 0.0005
8 ASA ~ N + Stream + Method + Method:Turb 12 364.2744 16.0488 0.0002
9 ASA ~ N + Stream + Method + Method:Refug 12 364.3348 16.1091 0.0002

10 ASA ~ N + Stream + Method + Method:Temp 12 365.3122 17.0866 0.0001

J

1 J ~ N + Stream + Method + Method:Shade 12 293.5737 0 0.6262
2 J ~ N + Stream + Method + Method:Turb 12 296.2197 2.646 0.1668
3 J ~ N + Stream + Method + Method:Width 12 297.4444 3.8707 0.0904
4 J ~ N + Stream + Method (Null B) 8 298.6943 5.1206 0.0484
5 J ~ N + Stream (Null A) 5 299.1034 5.5297 0.0394
6 J ~ N + Stream + Method + Method:Area 12 300.5745 7.0009 0.0189
7 J ~ N + Stream + Method + Method:Depth 12 302.982 9.4084 0.0057
8 J ~ N + Stream + Method + Method:Temp 12 304.8883 11.3146 0.0022
9 J ~ N + Stream + Method + Method:Length 12 305.6803 12.1066 0.0015

10 J ~ N + Stream + Method + Method:Refug 12 307.6453 14.0716 0.0006

Specifically, the first model (Depth) has a ∆AICc value higher than two compared to
NullA (fourth). The second (Area) and third (Length) models have ∆AICc values smaller
than two but are significantly different from NullA according to the LRT (pLRT NullA vs.
second = 0.0159; pLRT NullA vs. third = 0.0218). Therefore, multivariate model selection
started form the general model Tot ~ N + Stream + Method + Method:Depth + Method:Area
+ Method:Length and supported again the effect of Depth, Area or Length on total counts
(Table 4). Indeed, the first model and third models ranked in Table 4 (data = Tot) are
significantly different from the second model, specifying only Depth effects (pLRT first vs.
second = 0.0338; pLRT third vs. second = 0.0417), thus supporting the presence of either
Area or Length effects. However, given the correlation between Length and Area, only the
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effect of Area was considered with Depth, as it was supported by the lower AICc value of
the first model Tot ~ N + Stream + Method + Method:Depth + Method:Area. Deviance explained
by this first multivariate model was DE1st M(Tot) = 0.5120.

Table 4. Multivariate model selection of environmental variables affecting total (Tot), adult + subadult
(A + SA) and juvenile (J) trout counts obtained via different sampling methods.

Data Rank Model Structure K AICc ∆AICc wi

To
t(

J
+

SA
+

A
)

1 Tot ~ N + Stream + Method + Method:Depth + Method:Area 16 452.7768 0 0.275
2 Tot ~ N + Stream + Method + Method:Depth 12 452.8375 0.0608 0.2667
3 Tot ~ N + Stream + Method + Method:Depth + Method:Length 16 453.2807 0.5039 0.2137
4 Tot ~ N + Stream + Method + Method:Area 12 454.8241 2.0473 0.0988
5 Tot ~ N + Stream + Method + Method:Length 12 455.6747 2.8979 0.0646
6 Tot ~ N + Stream 5 455.6778 2.9011 0.0645
7 Tot ~ N + Stream + Method 8 459.7729 6.9962 0.0083

8 Tot ~ N + Stream + Method + Method:Depth + Method:Area +
Method:Length 20 460.273 7.4962 0.0065

9 Tot ~ N + Stream + Method + Method:Area + Method:Length 16 462.6188 9.842 0.002

A
+

SA

1 ASA ~ N + Stream + Method + Method:Depth 12 348.2256 0 0.5054
2 ASA ~ N + Stream + Method + Method:Depth + Method:Area 16 349.6221 1.3965 0.2514
3 ASA ~ N + Stream + Method + Method:Area 12 349.9593 1.7336 0.2124
4 ASA ~ N + Stream 5 353.9072 5.6815 0.0295
5 ASA ~ N + Stream + Method 8 360.0974 11.8717 0.0013

J

1 J ~ N + Stream + Method + Method:Shade 12 293.5737 0 0.4416
2 J ~ N + Stream + Method + Method:Shade + Method:Turb 16 294.6245 1.0509 0.2611
3 J ~ N + Stream + Method + Method:Turb 12 296.2197 2.646 0.1176
4 J ~ N + Stream + Method + Method:Width 12 297.4444 3.8707 0.0638
5 J ~ N + Stream + Method 8 298.6943 5.1206 0.0341
6 J ~ N + Stream + Method + Method:Turb + Method:Width 16 299.0925 5.5188 0.028
7 J ~ N + Stream 5 299.1034 5.5297 0.0278
8 J ~ N + Stream + Method + Method:Shade + Method:Width 16 300.0327 6.4591 0.0175

9 J ~ N + Stream + Method + Method:Shade + Method:Turb +
Method:Width 20 301.481 7.9073 0.0085

Univariate screening of environmental variables with adult and subadult trout counts
supported the effect of Depth and Area, depending on method (Table 3, data = ASA).
The first (Depth) and second (Area) models have ∆AICc values higher than two com-
pared to NullA (third). Therefore, multivariate model selection started form the general
model ASA ~ N + Stream + Method + Method:Depth + Method:Area and again supported
the effect of Depth and Area. Indeed, the first (Depth), second (Depth + Area), and
third (Area) models ranked in Table 4 (data = ASA) are significantly different accord-
ing to the LRT (pLRT first vs. second = 0.0619; pLRT third vs. second = 0.0301), thus sup-
porting the presence of both Depth and Area effects. Deviance explained of the model
ASA ~ N + Stream + Method + Method:Depth + Method:Area was DE2nd M(ASA) = 0.4108.

Univariate screening of environmental variables with juvenile trout counts supported
the effect of pool shading (Shade), water turbulence (Turb), and pool width (Width), de-
pending on method (Table 3, data = J). The first (Shade) and second (Turb) models have
∆AICc values higher than two compared to NullB (fourth). Confirming the results of the
previous section, focusing on general method effects, the best null model here also specifies
method effects. The third model (Width) has a ∆AICc value smaller than two but is sig-
nificantly different from model NullB according to the LRT (pLRT NullB vs. third = 0.0281),
supporting Width effects. The sixth model, specifying Area effect is not significantly dif-
ferent form model NullB according to the LRT (pLRT NullB vs. sixth = 0.1016), i.e., Area
effects are not supported. Therefore, multivariate model selection started form the gen-
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eral model J ~ N + Stream + Method + Method:Shade + Method:Turb + Method:Width and sup-
ported the effect of Shade and Turb. Indeed, the first (Shade) and second (Shade + Turb)
models ranked in Table 4 (data = J) have ∆AICc values lower than two but are significantly
different according to the LRT (pLRT first vs. second = 0.0537), thus supporting the presence
of both Shade and Turb effects. Deviance explained of model J ~ N + Stream + Method +
Method:Shade + Method:Turb is DE2nd M(J) = 0.6530.

Parameter estimates taken from the best multivariate models selected for Tot, ASA,
and J data (Table 5) show that counts provided by each method are differently affected
by environmental variables, depending on age classes. Specifically, adults and subadults
counts provided by ELE are negatively affected by the maximum pool depth (Table 5, Best
Tot and Best ASA). Adult and subadult counts provided by VSA are positively affected by
the maximum pool depth (Best ASA). A positive effect of pool area is shown on VSA and
SVS adult and subadult counts (Best Tot and Best ASA). Instead, juvenile counts provided
by the UCS are positively affected by pool shade and negatively affected by water turbidity
(Best J). Additionally, juvenile counts provided by VSA appears also positively affected
by Shade.

Table 5. Parameter estimates (standard errors) taken form the best models selected on total (Tot),
adult + subadult (A + SA) and juvenile (J) trout counts (significance: + p < 0.1, * p < 0.05, ** p < 0.01,
*** p < 0.001). Significant effects of environmental variables in bold.

Parameter Best Model Parameter Estimates (Standard Error)Significance

Best Tot Best ASA Best J

Intercept 0.088 (0.510) 0.210 (0.693) −4.213 (1.111) ***
N 0.227 (0.046) *** 0.309 (0.064) *** 0.088 (0.066)

Streamfurit 1.116 (0.304) *** −0.030 (0.413) 3.486 (0.537) ***
Streampiras 0.697 (0.282) * 0.592 (0.356) + 1.944 (0.556) ***
MethodVSA −1.956 (0.659) ** −3.793 (0.974) *** −0.169 (1.401)
MethodSVS −1.808 (0.654) ** −3.329 (0.958) *** 0.548 (1.308)
MethodUCS 0.215 (0.608) −1.099 (0.863) 0.912 (1.313)

MethodELE × Depth −1.232 (0.411) ** −1.588 (0.592) **
MethodVSA × Depth 0.538 (0.357) 1.144 (0.490) *
MethodSVS × Depth 0.302 (0.352) 0.653 (0.494)
MethodUCS × Depth −0.486 (0.369) −0.319 (0.515)
MethodELE × Area 0.008 (0.004) * 0.007 (0.005)
MethodVSA × Area 0.006 (0.004) 0.013 (0.006) *
MethodSVS × Area 0.010 (0.004) * 0.015 (0.006) *
MethodUCS × Area −0.003 (0.004) 0.002 (0.006)
MethodELE × Shade 0.015 (0.010)
MethodVSA × Shade 0.018 (0.010) +
MethodSVS × Shade 0.007 (0.009)
MethodUCS × Shade 0.026 (0.010) **
MethodELE × Turb 0.047 (0.514)
MethodVSA × Turb −0.007 (0.514)
MethodSVS × Turb 0.346 (0.472)
MethodUCS × Turb −1.475 (0.564) **

Focusing on the more significant negative effects, Figure 5 shows the magnitude of the
effect of increasing pool depth on ELE adult and subadult counts and increasing turbidity
on UCS juvenile counts. Model predictions were obtained using parameters taken from
best models selected with ASA and J counts.



Diversity 2024, 16, 442 13 of 16Diversity 2024, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 5. Effect of increasing pool depth on adult and subadult counts provided by backpack elec-
trofishing (ELE; left) and effect of increasing water turbidity on juvenile counts provided by under-
water camera surveys (UCSs; right). Counts and 95% confidence intervals (shaded area) were pre-
dicted from best models selected on adult + subadult counts and juvenile trout counts, respectively. 

4. Discussion 
The results show that trout counts obtained by sampling from the same pools with 

removal with electrofishing (ELE), underwater camera surveys (UCSs), streamside visual 
surveys (SVSs), and visual surveys with angling (SVA) are well correlated, providing a 
coherent description of relative pool abundance across the methods. However, the results 
show that the counts obtained via the different sampling methods are affected by different 
environmental variables measured at the pool level, depending on the age classes of the 
trout. Indeed, the methods’ effects emerged clearly when interactions between the method 
and environmental variables were considered, while a general method effect on counts 
was weakly shown only with juvenile counts. From a practical perspective, it is important 
to note that the effectiveness of the applied methods varied differently depending on en-
vironmental features that cannot be controlled, such as the pool features and age structure 
of trout populations, thus affecting the reliability of counts in heterogeneous environ-
ments. 

The shown negative effect of the maximum pool depth on counts provided by back-
pack electrofishing (Figure 5) appears important. Indeed, despite the well-known limita-
tions of backpack electrofishing in deep pools, this method is considered a standard 
method for monitoring trout populations for conservation and management purposes 
[13]. Apart from ethic and conservation concerns [9–11], backpack electrofishing does not 
emerge here as a superior method, showing the weakest correlation with estimated pool 
density. Therefore, the application of electrofishing should be based more on practical 
reasons, such as the speed of sampling in selected stretches of homogeneous streams and 
a need to collect adequate numbers of genetic samples and detailed biometric data (e.g., 
length, weight, and scales to assess age). When seeking information about distribution 
and relative abundance over longer stretches of heterogeneous streams, other methods 
such as the UCSs, VSA, and SVSs may be more practical, similarly reliable (i.e., affected 
by environmental features but proportional to abundance to some extent), and can involve 
stakeholders and non-professional researchers [5–7]. 

Figure 5. Effect of increasing pool depth on adult and subadult counts provided by backpack
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predicted from best models selected on adult + subadult counts and juvenile trout counts, respectively.

4. Discussion

The results show that trout counts obtained by sampling from the same pools with
removal with electrofishing (ELE), underwater camera surveys (UCSs), streamside visual
surveys (SVSs), and visual surveys with angling (SVA) are well correlated, providing a
coherent description of relative pool abundance across the methods. However, the results
show that the counts obtained via the different sampling methods are affected by different
environmental variables measured at the pool level, depending on the age classes of the
trout. Indeed, the methods’ effects emerged clearly when interactions between the method
and environmental variables were considered, while a general method effect on counts
was weakly shown only with juvenile counts. From a practical perspective, it is important
to note that the effectiveness of the applied methods varied differently depending on
environmental features that cannot be controlled, such as the pool features and age structure
of trout populations, thus affecting the reliability of counts in heterogeneous environments.

The shown negative effect of the maximum pool depth on counts provided by back-
pack electrofishing (Figure 5) appears important. Indeed, despite the well-known limita-
tions of backpack electrofishing in deep pools, this method is considered a standard method
for monitoring trout populations for conservation and management purposes [13]. Apart
from ethic and conservation concerns [9–11], backpack electrofishing does not emerge
here as a superior method, showing the weakest correlation with estimated pool density.
Therefore, the application of electrofishing should be based more on practical reasons,
such as the speed of sampling in selected stretches of homogeneous streams and a need
to collect adequate numbers of genetic samples and detailed biometric data (e.g., length,
weight, and scales to assess age). When seeking information about distribution and relative
abundance over longer stretches of heterogeneous streams, other methods such as the UCSs,
VSA, and SVSs may be more practical, similarly reliable (i.e., affected by environmental
features but proportional to abundance to some extent), and can involve stakeholders and
non-professional researchers [5–7].

The absence of meaningful negative effects of environmental variables on counts
emerged with SVS and VSA methods also suggests their utility in a larger set of environ-
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mental conditions, which is a good attribute of methods selected for large-scale monitoring.
On the other hand, the weak positive effects observed for the SVS and VSA (Depth, Area,
and Shade) are unlikely to be due to increased detectability of trout and could be sim-
ply related to higher abundance in larger and deeper pools [45], with larger pools also
representing thermal refuges where fish aggregate during warmed periods [32].

The negative effect of water turbidity on counts provided by the UCS with juvenile
counts (Figure 5) is well known [9,46,47] and was expected considering the smaller size
of juveniles and the reduced visibility of turbid waters. Although this effect could be
controlled by monitoring during clear water conditions, monitoring for conservation often
requires covering large spatial scales, limiting resources available for sampling only with
optimal conditions.

In general, it is important to address biases in the counts provided by different methods
in given conditions with statistical modeling. To do that, information about environmental
features thought to affect pool abundance and the sampling process should be gathered.
Indeed, monitoring programs need to be informed by scientific hypotheses about factors
affecting variation in detectability [48] and population dynamics through space and time,
so that some understanding about determinants of population trends can be gained [1].

5. Conclusions

Our results suggest that, in small Mediterranean streams, different sampling meth-
ods can provide similar information about the relative abundance of trout populations
and are in this sense equivalent. However, sampling methods selected for monitoring
are seldom perfectly standardizable in heterogeneous environments, because they can be
significantly affected by uncontrollable environmental variables. Therefore, selecting moni-
toring methods for conservation can be based on several criteria, among which reliability
(proportionality with what is measured), applicability on large spatial scales and wide sam-
pling conditions, the type of information needed, the social context and resources available
(e.g., interest of anglers or other volunteers in monitoring), and ethics and conservation
issues (unwillingness to risk mortality or disturb endangered populations). Instead of
searching for the best standard method, monitoring programs could be based on a set of
locally tested methods, with their performance adaptively evaluated [1,49] so that variation
in method effectiveness within heterogeneous contexts can be addressed.
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