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Abstract

We relate the scattering theory of the focusing AKNS system with

equally-sized nonvanishing boundary conditions to that of the matrix

Schrödinger equation. This (shifted) Miura transformation converts

the focusing matrix nonlinear Schrödinger (NLS) equation into a new

nonlocal integrable equation. We apply the matrix triplet method of

solving the Marchenko integral equations by separation of variables

to derive the multisoliton solutions of this nonlocal equation, thus

proposing a method to solve the reflectionless matrix NLS equation.
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1 Introduction

The Nonlinear Schrödinger (NLS) equations have served as the basic mod-

els for surface waves on deep waters [1, 4, 82], signals along optical fi-

bres [50, 49, 75], plasma oscillations [79], magnetic spin waves [28, 81],

and particle states in Bose-Einstein condensates [70, 71, 55]. The NLS

equations with solutions decaying at infinity have been studied in detail

[2, 4, 26, 41, 3]. After finding the Peregrine solutions [69], various solutions

of the NLS equations with nonvanishing boundary conditions have been pre-

sented in [65, 8, 7, 9, 52, 66, 76, 80].

In 1972 in their seminal paper [82], Zakharov and Shabat showed that

the NLS equation can be solved by means of the Inverse Scattering Trans-

form (IST) technique. To this aim, they introduced a scattering problem

now known as the Zakharov-Shabat (ZS) system. The ZS system was used

to solve the scalar NLS system with zero and nonzero boundary conditions

[82, 83]. In particular, in [83], Zakharov and Shabat considered the case of

nonzero boundary conditions in the defocusing regime, introducing a spectral

parameter belonging to a suitable two-sheeted Riemann surface and studying

the analyticity properties of the scattering data on this surface. Moreover,

in [65], it was proven that, in order to develop the IST for the focusing NLS

equation with nonvanishing boundary conditions, the associated ZS system

leads to introducing a spectral parameter λ which belongs again to a suitable
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two-sheeted Riemann surface. The introduction of a two-sheeted Riemann

surface evidently makes the study of the NLS equation with nonvanishing

boundary conditions via the IST much more complicated with respect to

the vanishing case. Furthermore, in 1974 Ablowitz, Kaup, Newell and Segur

proposed an alternative but equivalent way to develop the IST for the NLS

equation consisting of associating to this equation the so-called AKNS sys-

tem [2]. In the AKNS system, one (matrix) equation represents the spectral

equation, whereas a second (matrix) equation describes the time evolution

of the scattering data. Similarly to what happens with the ZS system, de-

veloping the IST from the AKNS pairs is significantly more complicated in

the nonvanishing cases than in the vanishing case.

Systematic studies of the inverse scattering transform theory (IST) of the

(scalar and matrix) NLS equation with nonvanishing boundary conditions

have been carried out in the defocusing case in [53, 54, 16, 17, 41, 72, 31] and

in the focusing case in [24, 32, 68, 23]. In [22] the IST with full account of

the spectral singularities leads to rogue wave solutions of the focusing NLS

wth nonvanishing boundary conditions.

In all the papers cited above, a ZS system or an AKNS system is associ-

ated to the NLS equation. If one considers the focusing NLS with nonvan-

ishing boundary conditions, it is customary, as we have remarked above, to

introduce a new spectral complex parameter, say λ, defined as λ =
√
k2 + µ2
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(it should be noted that λ is defined through a multivalued function). The

study of the analyticity properties of the scattering data with respect to the

parameter λ is quite difficult and requires special care. In this article, we

show how to associate a Schrödinger equation with a vanishing potential as

a spectral problem for the NLS equation with nonzero boundary conditions.

In this way, to the best of our knowledge, for the first time we develop the

IST for the focusing NLS system with nonzero boundary conditions without

associating to it the AKNS system (or the Zakharov-Shabat system). The

advantage of associating the Schrödinger equation with vanishing boundary

conditions instead of the AKNS system is immediate because the construc-

tion of the scattering data for the Schrödinger equation with zero boundary

conditions does not require the introduction of a new spectral parameter.

Consequently, the study of the analyticity properties of these coefficients can

be done in a more transparent way respect to the analogous study while

using the AKNS system. In other words, a major obstacle encountered in

the above-cited studies of the IST for the non-vanishing NLS systems is the

change of variable from the initial spectral parameter k to a new spectral

parameter λ =
√
k2 + µ2 which complicates analyticity issues for Jost so-

lutions and scattering coefficients considerably, especially if such change of

variable is considered in the entire complex plane. The main purpose of this

article is to greatly simplify these issues by relating the focusing NLS equa-

tion to a suitable matrix Schrödinger equation, where the spectral parameter

(in this case, λ) is typically chosen in the closed upper half complex half-
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plane C+ ∪ R. Here we can rely on a substantial body of knowledge on the

direct and inverse scattering theory of the scalar Schrödinger equation on

the line [40, 29, 26, 27] and the matrix Schrödinger equation on the half-line

[14, 15] and the full-line [78, 12]. In particular, the small λ asymptotics of the

scattering data, which is crucial to a rigorous matrix Schrödinger scattering

theory, has been developed in detail in [12].

In this article we study the focusing m+m AKNS system

vx = (−ikσ3 +Q)v, (1.1)

where v = v(x, k) is a vector function with n = 2m components, Im is the

identity matrix of order m, σ3 = Im⊕ (−Im), the potential Q anticommutes

with σ3, and the complex conjugate transpose Q† = −Q. The potential Q

is to satisfy the integrability condition

∫ ∞
0

dy (1 + |y|) (‖Q(−y)−Ql‖+‖Q(y)−Qr‖+‖Qy(y)‖+‖Qy(−y)‖) < +∞,

(1.2)

where Qy is the y-derivative of Q and [Qr,l]2 = −µ2In for some µ > 0.

We pursue an approach that is quite different from the one expounded in

[24, 32, 23]. Letting L = iσ3[∂xIn−Q] stand for the AKNS Hamiltonian, we

easily verify that L = L2 + µ21 is the matrix Schrödinger Hamiltonian given
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by

Lv = (L2 + µ21)v = −σ3[∂xIn −Q]σ3[∂xIn −Q]v + µ2v

= −[∂xIn +Q][∂xIn −Q]v + µ2v

= −vxx +Q2v −Qvx + (Qv)x + µ2v = −vxx +Qv,

where 1 stands for the identity operator on a suitable function space and

Q = Q2 +Qx + µ2In (1.3)

is a matrix Faddeev class Schrödinger potential obtained from Q by the

(shifted) Miura transform [4]. In other words, ‖Q(·)‖ ∈ L1(R; (1 + |x|)dx).

Then any solution v of the AKNS system (1.1) is also a solution of the matrix

Schrödinger equation

Lv = (−∂2
xIn +Q)v = λ2v, (1.4)

where

λ =
√
k2 + µ2 (1.5)

is the conformal transformation from the complex k-plane K cut along the

segment [−iµ, iµ] onto the complex λ-plane satisfying λ ∼ k at infinity. This

transformation provides a 1, 1-correspondence between the open upper/lower

half k-plane K± cut along [−iµ, iµ] onto the open upper/lower half λ-plane
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C± as well as a 1, 1-correspondence between their boundaries ∂K± and R

and their closures K± ∪ ∂K± and C± ∪ R.

−
0 +µ−µ0 +0

µi

µ−i

k−region in upper half−plane

k−region in lower half−plane

λ

λ

−region in upper half−plane

−region in lower half−plane

Figure 1.1: The regions k ∈ K± and λ ∈ C± with manifold boundary.

In this article we wish to take advantage of the well developed direct and

inverse scattering theory of the matrix Schrödinger equation with selfadjoint

potential ([6, 14, 15] on the half-line, [78, 12] on the full line), especially the

established custom of choosing its spectral variable λ in C+ ∪R, in deriving

the focusing NLS solutions with nonvanishing boundary conditions. In a

previous paper, [35] such full-line theory has been made to fit potentials

satisfying

Q† = σ3Qσ3. (1.6)

The traditional applications of the matrix Schrödinger equation to quan-

tum graphs, quantum wires, and quantum mechanical scattering of particles

with internal structure [18, 19, 20, 21, 25, 39, 43, 44, 45, 46, 47, 48, 57, 58,

59, 60, 61, 62, 63] have led to the almost exclusive development of matrix

Schrödinger scattering theory for selfadjoint potentials satisfying Q† = Q
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(see [6, 14, 15] for the half-line theory and [78, 12] for the full-line theory).

Energy losses in such systems naturally lead to potentials whose imaginary

part [Q −Q†]/2i has constant sign. In the present context where Q satis-

fies (1.6), we thus require the modified matrix Schrödinger scattering theory

given in [35] when solving the focusing matrix NLS equation.

Let us discuss the contents of the various sections. In Sec. 2 we intro-

duce the Lax pair {L, A} and the AKNS pair {X,T } whose compatibility

conditions lead to an integrable nonlocal equation for Q. We also relate

the solutions of this integrable equation to those of a modified matrix NLS

equation which is converted into the usual matrix NLS equation by a trivial

gauge transformation. Next, in Sections 3-4 we state the direct and inverse

scattering theory of the matrix Schrödinger equation (1.4) with Faddeev class

potentials Q satisfying (1.6), disregarding any time dependence. In partic-

ular, we introduce the Jost solutions and the scattering coefficients, write

them as Fourier transforms of L1-functions, and state the Marchenko inte-

gral equations to solve the inverse scattering problem. We then go on to

derive the time evolution of the scattering data [Sec. 5]. In Sec. 6 we apply

the so-called matrix triplet method to derive the multisoliton solutions of

the nonlocal integrable equation and the focusing matrix NLS equation by

separation of variables in the Marchenko integral equations.

We adopt boldface symbols for many of the quantities pertaining to the

matrix Schrödinger equation and calligraphic symbols for many of the quan-

tities pertaining to the AKNS system. We deviate from the praxis of [2, 3]
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in allowing right and left to correspond to the real line endpoints involved in

defining the Jost solutions, both in the (matrix) Schrödinger and the AKNS

cases. Hence we prioritize traditional notations regarding (matrix) Schrödin-

ger equations [40, 29, 27] over those regarding AKNS systems [2, 3].

2 Lax Pair for the new integrable model

It is well-known that the matrix NLS system is governed by a Lax pair {L,A}

of linear operators [64, 4, 38]

L = iσ3(∂xIn −Q), (2.1a)

A = iσ3

(
2∂2

xIn − 2Q∂x −Q
)
, (2.1b)

where Q is given by (1.3), Lv = kv is the AKNS eigenvalue problem, and

vt = Av describes the time evolution. Then the zero curvature condition

Lt + LA− AL = 0,

where 0 denotes the zero operator on a suitable function space, leads to the

integrable PDE

iσ3Qt +Qxx − 2Q3 − 2µ2Q = 0n×n (2.2)

which coincides with the usual matrix NLS equation, studied in [3, 2], apart

from the extra term −2µ2Q.

9



Putting L = L2 + µ21 = −∂2
x +Q, we now compute

iσ3[Lt + LA− AL] = iσ3Qt

− (−∂2
x + σ3Qσ3)

[
2∂2

x − 2Q∂x −Q
]

+
[
2∂2

x − 2Q∂x −Q
]

(−∂2
x +Q)

= iσ3Qt + 4(−Qx + 1
2
[Q− σ3Qσ3])∂2

x

+ 2(−Qxx +Qx + σ3Qσ3Q−QQ)∂x

+Qxx + σ3Qσ3Q− 2QQx −Q2.

Then the ∂2
x term vanishes iff Q = D + Qx for some D commuting with

σ3 and vanishing as x → ±∞. Hence the coefficient of the ∂x term equals

2(D − Q2)x + 2[D,Q] = 0n×n. Putting E = D − Q2 − µ2In so that E

vanishes as x→ ±∞, we obtain Ex + [E,Q] = 0n×n. Writing the latter as

(
e−xQrEexQr

)
x

= −e−xQr [Q(x)−Qr]exQr

and using that e±xQr = cos(µx)In ± sin(µx)
µ
Qr to arrive at the estimate

‖e±xQr‖ ≤
√
µ2+‖Qr‖2

µ
, we can apply Gronwall’s inequality to the estimate

‖E(x)‖ ≤ µ2 + ‖Qr‖2

µ2

∫ ∞
x

dy ‖E(y)‖‖Q(y)−Qr‖,

to see that E vanishes identically and therefore D = Q2 + µ2In. Thus, for

this particular choice of D we arrive at the nonlinear evolution equation

iσ3Qt +Qxx −Q2 + σ3Qσ3Q− 2QQx = 0n×n, (2.3)
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where

Q(x; t) = Qr −
∫ ∞
x

dy 1
2

(Q− σ3Qσ3) , (2.4a)

Q(x; t) = Ql +

∫ x

−∞
dy 1

2
(Q− σ3Qσ3) . (2.4b)

for time invariant matrices Qr,l satisfying [Qr,l]2 = −µ2In for every t ∈ R.

Conversely, substituting

Q = D +Qx,

where D commutes with σ3, Qx anticommutes with σ3, and D vanishes as

x→ ±∞, into (2.3), we obtain

0n×n = iσ3Dt + (Dx − 2QQx)x + (iσ3Qt +Qxx − 2QD)x.

Separating the block off-diagonal and block diagonal components we get

iσ3Dt + (Dx − 2QQx)x = 0n×n,

iσ3Qt +Qxx − 2QD = 0n×n,

where Qt, Qxx, and D vanish as x → ±∞. If there exists a solution Q of

the differential Riccati equation Q2 + Qx = Q − µ2In which anticommutes
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with σ3 and satisfies Q → Qr,l as x→ ±∞, then D = Q2 + µ2In and

[
iσ3Qt +Qxx − 2Q3 − 2µ2Q,Q

]
= 0n×n, (2.5a)

iσ3Qt +Qxx − 2Q3 − 2µ2Q = 0n×n, (2.5b)

where a matrix commutator appears. The gauge transformation

Q(x; t) = e−iµ
2tσ3R(x; t)eiµ

2tσ3 (2.6)

then converts (2.5b) into the usual matrix NLS equation

iσ3Rt +Rxx − 2R3 = 0n×n,

where the limits Rl,r(t) of R(x; t) as x→ ±∞ satisfy [Rr,l]t = −2iµ2σ3Rr,l.

This is in agreement with Qt vanishing as x→ ±∞ and with the well-known

time evolution (see [32] for m = 1)

Rr,l(t) = iµe2iµ2tσ3eiθr,lσ3(σ2 ⊗ Im),

where σ2 = ( 0 −i
i 0 ) denotes the second Pauli matrix, σ2 ⊗ Im =

(
0m×m −iIm
iIm 0m×m

)
is a Kronecker product (cf. [51]), and θr,l ∈ R are phases. Furthermore,
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(2.5b) and (1.3) imply the nonlinear equation (2.3). In fact,

iσ3Qt +Qxx − (Q− σ3Qσ3)Q− 2QQx = Q[Qxx − 2Q3 − 2µ2Q]

− [Qxx − 2Q3 − 2µ2Q]Q− [Qxxx − 2(Q3)x − 2µ2Qx]

+ [QQxx +QxxQ+ 2Q2
x +Qxxx]− [2QxQ2 + 2Q2

x + 2µ2Qx]

− 2[Q2Qx +QQxQ+QQxx] = 0n×n.

Recall that the Lax pair {L, A} for the modified nonlinear matrix Schrö-

dinger equation (2.3) is given by (2.1). Let us now derive an AKNS pair

{X,T } for the same equation. Indeed, (2.3) is compatible with the linear

system

Lv = λ2v, vt = Av,

where L = −∂2
x +Q. We may therefore write

vt = Av = 2iσ3vxx − 2iσ3Qvx − iσ3Qv

= 2iσ3(Q− λ21)v − 2iσ3Qvx − iσ3Qv

= iσ3

{
(Q− 2λ21)v − 2Qvx

}
.

Let us compute

(vx)t = (Av)x = iσ3

(
(Q− 2λ21)vx +Qxv − 2Qxvx − 2Q(Q− λ21)v

)
= iσ3

(
Qx − 2QQ+ 2λ2Q

)
v + iσ3(Q− 2λ21− 2Qx)vx.
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Hence, putting V = ( v
vx ) we get the linear system

V x = X(x, λ; t)V , V t = T (x, λ; t)V ,

where {X,T } is the AKNS pair given by

X(x, λ; t) =

 0n×n In

Q(x; t)− λ2In 0n×n

 , (2.7a)

T (x, λ; t) =

 iσ3(Q− 2λ2In) −2iσ3Q

iσ3(Qx − 2QQ+ 2λ2Q) iσ3(Q− 2λ2In − 2Qx)

 . (2.7b)

Then we easily compute

i(σ3 ⊕ σ3) (X t − T x +XT − TX) =

0n×n 0n×n

E21 0n×n

 ,

where

E21 = iσ3Qt +Qxx − 2(QQ)x + 2λ2Qx

− σ3(Q− λ2In)σ3(Q− 2λ2In) + (Q− 2λ2In − 2Qx)(Q− λ2In)

= iσ3Qt +Qxx +Q2 − σ3Qσ3Q− 2QQx − 4QxQ

+ λ2 (2Qx + 2σ3Qσ3 +Q−Q− 2Q+ 2Qx)

= iσ3Qt +Qxx +Q2 − σ3Qσ3Q− 2QQx − 2
(
Q2 − σ3Qσ3Q

)
= iσ3Qt +Qxx −Q2 + σ3Qσ3Q− 2QQx,
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as claimed. Thus the zero curvature condition for the AKNS pair {X,T } is

equivalent to the nonlinear evolution equation (2.3).

3 Direct scattering theory

In this section we introduce the Jost solutions and scattering coefficients

for the matrix Schrödinger equation (1.4) with Faddeev class potential Q

satisfying (1.6). For the scalar Schrödinger equation with real Faddeev class

potential the direct scattering theory is well documented [40, 29, 26, 67, 27].

The matrix theory is discussed at great length in [14, 15] for the half-line

and in [78, 12] for the full line. Here [12] contains the essential small λ

asymptotics of scattering coefficients that is lacking in [78]. The adjoint

symmetry Q requires some modifications of existing theory (cf. [35]).

3.1 Jost solutions of the matrix Schrödinger equation

a. n× n Jost solutions.

Let us define the Jost solution from the left Fl(x, λ) and the Jost solution

from the right Fr(x, λ) as those solutions of the matrix Schrödinger equation

(1.4) which satisfy the asymptotic conditions

Fl(x, λ) = eiλx [In + o(1)] , x→ +∞, (3.1a)

Fr(x, λ) = e−iλx [In + o(1)] , x→ −∞, (3.1b)
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where n = 2m. Calling ml(x, λ) = e−iλxFl(x, λ) and mr(x, λ) = eiλxFr(x, λ)

Faddeev functions, we easily define them as the unique solutions of the

Volterra integral equations

ml(x, λ) = In +

∫ ∞
x

dy
e2iλ(y−x) − 1

2iλ
Q(y)ml(y, λ), (3.2a)

mr(x, λ) = In +

∫ x

−∞
dy

e2iλ(x−y) − 1

2iλ
Q(y)mr(y, λ). (3.2b)

Then, for each x ∈ R, ml(x, λ) and mr(x, λ) are continuous in λ ∈ C+ ∪ R,

are analytic in λ ∈ C+, and tend to In as λ → ∞ from within C+ ∪ R. For

0 6= λ ∈ R we can reshuffle (3.2) and arrive at the asymptotic relations

Fl(x, λ) = eiλxAl(λ) + e−iλxBl(λ) + o(1), x→ −∞, (3.3a)

Fr(x, λ) = e−iλxAr(λ) + eiλxBr(λ) + o(1), x→ +∞, (3.3b)

where

Ar,l(λ) = In −
1

2iλ

∫ ∞
−∞

dyQ(y)mr,l(y, λ), (3.4a)

Br,l(λ) =
1

2iλ

∫ ∞
−∞

dy e∓2iλyQ(y)mr,l(y, λ). (3.4b)

Then Ar,l(λ) is continuous in 0 6= λ ∈ C+ ∪ R, is analytic in λ ∈ C+, and

tends to In as λ → ∞ from within C+ ∪ R, while 2iλ[In − Ar,l(λ)] has the

finite limit −∆r,l =
∫∞
−∞ dyQ(y)mr,l(y, λ) as λ→ 0 from within C+ ∪R. By

the same token, Br,l(λ) is continuous in 0 6= λ ∈ R, vanishes as λ → ±∞,
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and satisfies 2iλBr,l(λ)→ −∆r,l as λ→ 0 along the real λ-axis.

b. 2n× 2n Jost solutions.

Putting

F l(x, λ) =

Fl(x,−λ) Fl(x, λ)

F ′l (x,−λ) F ′l (x, λ)

 , F r(x, λ) =

Fr(x, λ) Fr(x,−λ)

F ′r(x, λ) F ′r(x,−λ)

 ,

(3.5)

where the prime denotes differentiation with respect to x, we obtain

F r(x, λ) = F l(x, λ)

Ar(λ) Br(−λ)

Br(λ) Ar(−λ)

 , (3.6a)

F l(x, λ) = F r(x, λ)

Al(−λ) Bl(λ)

Bl(−λ) Al(λ)

 , (3.6b)

where 0 6= λ ∈ R. Using that F r,l(x, λ) satisfies the linear first order system

V
V ′


′

=

 0n×n In

Q(x)− λ2In 0n×n


V
V ′

 (3.7)

with traceless system matrix, we see that, for 0 6= λ ∈ R, F r,l(x, λ) has

a determinant not depending on x ∈ R. Using (3.1) we easily verify that

detF r,l(x, λ) = (2iλ)n for 0 6= λ ∈ R.

Let us now apply the x-independence (A proof of this property will

be given in Appendix A) of W (x, λ)†(σ2 ⊗ σ3)V (x, λ), where σ2 ⊗ σ3 =
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(
0n×n −iσ3

iσ3 0n×n

)
, for any two square matrix solutions V and W of (3.7) to derive

identities for the A and B coefficients by equating the asymptotics as x →

+∞ to the asymptotics as x → −∞. Using V = W = Φ = F re1 + F le2,

where e1 = In ⊕ 0n×n and e2 = 0n×n ⊕ In, we get

Ar,l(λ)†σ3Ar,l(λ)−Br,l(λ)†σ3Br,l(λ) = σ3, (3.8a)

Br,l(λ)† = −σ3Bl,r(λ)σ3, (3.8b)

where 0 6= λ ∈ R. Using V = W = F r,l, we get

Ar,l(λ)†σ3Br,l(−λ) = Br,l(λ)†σ3Ar,l(−λ), (3.9)

where 0 6= λ ∈ R. Using the x-independence of W (x,−λ∗)†(σ2⊗σ3)V (x, λ)

for V = F l and W = F r we obtain

Ar(λ)† = σ3Al(−λ)σ3, Br(λ)† = −σ3Bl(λ)σ3, (3.10)

where 0 6= λ ∈ R. Finally, for V = W = Φ we get

Ar,l(−λ∗)† = σ3Al,r(λ)σ3, (3.11)

where 0 6= λ ∈ C+ ∪ R.

c. Reflection coefficients.
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Introducing the reflection coefficients

Rr,l(λ) = Br,l(λ)Ar,l(λ)−1 = −Al,r(λ)−1Bl,r(−λ) (3.12)

and the transmission coefficients Ar,l(λ)−1, we obtain the Riemann-Hilbert

problem

(
Fl(x,−λ) Fr(x,−λ)

)
=

(
Fr(x, λ) Fl(x, λ)

)Ar(λ)−1 −Rl(λ)

−Rr(λ) Al(λ)−1

 ,

(3.13)

where the matrix S(λ) containing the A and R quantities is called the scatter-

ing matrix and a discussion of the nonsingularity of Ar,l(λ) will be presented

shortly. Then it is easily verified that

Rr,l(λ)† = σ3Rr,l(−λ)σ3, (3.14a)

and

S(λ)†(σ3 ⊕ σ3)S(λ) = σ3 ⊕ σ3, (3.14b)

provided 0 6= λ ∈ R and detAr,l(λ) 6= 0.

Above we have defined ∆r,l as follows:

∆r,l = lim
λ→0

2iλAr,l(λ) = − lim
λ→0±

2iλBr,l(λ),

where the first limit may be taken from the closed upper half-plane. Then
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the matrices ∆r,l have the same determinant. If ∆r,l is nonsingular, we are

said to be in the generic case; if instead ∆r,l is singular, we are said to be in

the exceptional case cf. [12]. We are said to be in the superexceptional case if

∆r,l = 0n×n and Ar,l(λ) tends to a nonsingular matrix, Ar,l(0) say, as λ→ 0

from within C+ ∪ R.

Throughout this article, we assume the absence of spectral singularities,

i.e., the absence of nonzero real λ for which detAr,l(λ) = 0. Under this

condition the reflection coefficients Rr,l(λ) are continuous in 0 6= λ ∈ R.

d. Triangular representations.

The Jost solutions allow the triangular representations

Fl(x, λ) = eiλxIn +

∫ ∞
x

dy eiλyK(x, y), (3.15a)

Fr(x, λ) = e−iλxIn +

∫ x

−∞
dy e−iλyJ(x, y), (3.15b)

where for every x ∈ R

∫ ∞
x

dy ‖K(x, y)‖+

∫ x

−∞
dy ‖J(x, y)‖ < +∞. (3.16)

The integral equations satisfied by the auxiliary matrix functions K(x, y)

and J(x, y) derived in [35] imply that

K(x, x) = 1
2

∫ ∞
x

dyQ(y), J(x, x) = 1
2

∫ x

−∞
dyQ(y). (3.17)
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e. Wiener algebras.

For convenience we introduce the well-known Wiener algebra [42]. By

the (continuous) Wiener algebra W we mean the complex vector space of

constants plus Fourier transforms of L1-functions

W = {c+ ĥ : c ∈ C, h ∈ L1(R)}

endowed with the norm |c| + ‖h‖1. Here we define the Fourier transform as

follows: ĥ(k) =
∫∞
−∞ dy e

ikyh(y). The invertible elements of the commutative

Banach algebra W with unit element are exactly those c+ ĥ ∈ W for which

c 6= 0 and c+ ĥ(k) 6= 0 for each k ∈ R [42].

The algebraW has the two closed subalgebrasW+ andW− consisting of

those c + ĥ ∈ W for which h is supported on R+ and R−, respectively. The

invertible elements of W± are exactly those c+ ĥ ∈ W± for which c 6= 0 and

c + ĥ(k) 6= 0 for each k ∈ C± ∪ R [42]. Letting W±0 and W0 stand for the

(nonunital) closed subalgebras of W± and W consisting of those c + ĥ for

which c = 0, we obtain the direct sum decompositions

W = C⊕W+
0 ⊕W−0 , W0 =W+

0 ⊕W−0 .

We denote the (bounded) projections of W onto W±0 along W∓ by Π±.

Throughout this article we denote the vector spaces of n×m matrices with

entries in W , W±, and W±0 by Wn×m, W±n×m, and W±0
n×m

, respectively.

We write L1(R)n×m and L1(R±)n×m for the vector spaces of n×m matrices
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with entries in L1(R) and L1(R±), respectively. Using a submultiplicative

matrix norm, we can turn all of these vector spaces into Banach spaces. It is

then clear thatWn×n andW±n×n are noncommutative Banach algebras with

unit element and W±0
n×n

are (nonunital) noncommutative Banach algebras.

As above, we then define Π± as the (bounded) projections of Wn×m onto

W±0
n×m

along W∓n×m. The invertible elements of Wn×n and W±n×n are

exactly those elements whose determinants are invertible elements of W and

W±, respectively. Hence, according to (3.15) and (3.16), for each x ∈ R the

Faddeev functions mr,l(x, ·) ∈ Wn×n
+ . We then easily prove with the help of

(3.4) that 2iλ[In − Ar,l(λ)] belong to Wn×n
+ and 2iλBr,l(λ) belong to Wn×n.

Assuming the absence of spectral singularities and to be in the generic

case, we proved in [35] that the reflection coefficients Rr,l(λ) belong toWn×n
0

and the transmission coefficients Ar,l(λ)−1 toWn×n
+ . In the superexceptional

case, where ∆r,l = 0n×n, we proved in [35] that Ar,l ∈ Wn×n
+ , provided

Q ∈ L1(R; (1 + |x|)2dx); assuming the absence of spectral singularities and

using the nonsingularity of Ar,l(0), we see that the reflection coefficients

Rr,l(λ) and the transmission coefficients Ar,l(λ)−1 belong to Wn×n.

At present it is not known if, under the absence of spectral singularities,

the reflection and transmission coefficients belong to Wn×n in any other ex-

ceptional case and for general Q ∈ L1(R; (1 + |x|)dx). Under the condition

Q ∈ L1(R; (1 + |x|)dx), the continuity of the reflection and transmission co-

efficients at λ = 0 is known for n = 1 [56] and for selfadjoint potentials [12].

In neither case is it known if these continuous functions belong to W .
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4 Inverse scattering theory

In this section we introduce the Marchenko integral equations for the matrix

Schrödinger equation (1.4) with Faddeev class potential Q satisfying (1.6).

We make use of the hypothesis that the reflection coefficients Rr,l ∈ Wn×n
0 ,

something proved in the generic case but not in the most general exceptional

case. For the sake of simplicity we assume that the poles of Ar,l(λ)−1 in

C+ are simple. The extension to multiple pole situations is rather technical

but straightforward [33]. Inverse scattering theory is well documented in

the scalar case [40, 29, 26, 27], in the matrix half-line case [14, 15], and in

the matrix full-line case [78, 12]. The adjoint symmetry (1.6) requires some

modifications to existing theory (cf. [35]).

Let us write the transmission coefficients in the form

Ar(λ)−1 = Ar0(λ) +
N∑
s=1

τr;s
λ− λs

, Al(λ)−1 = Al0(λ) +
N∑
s=1

τl;s
λ− λs

, (4.1)

where λ1, . . . , λN are the distinct simple poles of Ar,l(λ)−1 in C+, τr;s and

τl;s are the residues of Ar(λ)−1 and Al(λ)−1 at λ = λs (s = 1, . . . , N), and

Ar0(λ) and Al0(λ) are continuous in λ ∈ C+ ∪ R, are analytic in λ ∈ C+,

and tend to In as λ→∞ from within C+ ∪R. Then it is easily proved that

τr;s = −σ3τ
†
l;sσ3 and τl;s = −σ3τ

†
r;sσ3 whenever λs = −λ∗s (cf. [35]).

Let us write

Rr(λ) =

∫ ∞
−∞

dα e−iλαR̂r(α), Rl(λ) =

∫ ∞
−∞

dα eiλαR̂l(α), (4.2)
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where R̂r,l ∈ L1(R)n×n. In fact, this has only been proved in the generic case

and, under the condition that Q ∈ L1(R; (1 + |x|)2dx), in the superexcep-

tional case. Using (3.14a) it follows that R̂r,l(α; t) are σ3-hermitian matrices.

Then the following Marchenko integral equations can be derived (see [35] for

details):

K(x, y) + Ωr(x+ y) +

∫ ∞
x

dz K(x, z)Ωr(z + y) = 0n×n, (4.3a)

J(x, y) + Ωl(x+ y) +

∫ x

−∞
dz J(x, z)Ωl(z + y) = 0n×n, (4.3b)

where the Marchenko integral kernels are given by

Ωr(w) = R̂r(w) +
N∑
s=1

eiλswNr;s, (4.4a)

Ωl(w) = R̂l(w) +
N∑
s=1

e−iλswNl;s. (4.4b)

Here Nr;s and Nl;s are the so-called norming constants defined by

Fr(x, λs)τr;s = iFl(x, λs)Nr;s, (4.5a)

Fl(x, λs)τl;s = iFr(x, λs)Nl;s, (4.5b)

where λs is a (simple) pole of Ar,l(λ)−1 in C+ (s = 1, 2, . . . , N). Then τr;s

and Nr;s have the same rank and the same null space; the same thing is true
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for τl;s and Nl;s. As in [33], we can prove the adjoint symmetry relations

Ωr,l(w) = σ3Ωr,l(w)†σ3, (4.6)

thus implying the following symmetry relations for the norming constants:

Nr;s = σ3N
†
r;sσ3, Nl;s = σ3N

†
l;sσ3, (4.7)

provided λs = −λ∗s is a simple pole of Ar,l(λ)−1. For the rather tedious details

we refer to [35, App. B].

Example. Let us now solve the Marchenko integral equations (4.3) in

the one-soliton case, where Ωr(w; t) = e−a0wNr;0(t) and Ωl(w; t) = ea0wNl;0(t)

for a suitable eigenvalue λ0 = ia0 ∈ C+. Then separation of variables yields

K(x, y; t) = −e−a0(x+y)

[
In +

1

2a0

e−2a0xNr;0(t)

]−1

Nr;0(t), (4.8a)

J(x, y; t) = −ea0(x+y)

[
In +

1

2a0

e2a0xNl;0(t)

]−1

Nl;0(t). (4.8b)

so that

∫ ∞
x

dyQ(y; t) = −2

[
e2a0xIn +

1

2a0

Nr;0(t)

]−1

Nr;0(t), (4.9a)∫ x

−∞
dyQ(y; t) = −2

[
e−2a0xIn +

1

2a0

Nl;0(t)

]−1

Nl;0(t), (4.9b)

where the σ3-hermitian norming constants Nr;0(t) and Nl;0(t) will be ex-
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pressed in their initial values shortly. The off-diagonal parts of these expres-

sions yield explicit expressions for Qr−Q(x; t) and Q(x; t)−Ql, respectively.

5 Time evolution of the scattering data

In this section we establish the time evolution of the scattering data of the

matrix Schrödinger equation. We then go on to derive the Marchenko integral

kernels as a function of time. These results allow us, in Sec. 6, to derive the

reflectionless solutions of the integrable nonlocal equation (2.3) and hence of

the focusing matrix NLS equation.

Recall that the integrable equation (2.3) arises as the zero curvature con-

dition of the AKNS pair {X,T } given by (2.7). Thus there exist nonsingular

matrices CF r(λ; t) and CF l
(λ; t) not depending on x ∈ R such that

F r(x, λ; t) = V (x, λ; t)CF r(λ; t)−1, F l(x, λ; t) = V (x, λ; t)CF l
(λ; t)−1.

Then a simple differentiation yields

[CF r(λ; t)]tCF r(λ; t)−1 = F−1
r TF r − F−1

r [F r]t, (5.1a)

[CF l
(λ; t)]tCF l

(λ; t)−1 = F−1
l TF l − F−1

l [F l]t, (5.1b)

where the two left-hand sides do not depend on x ∈ R. Using (2.4) we now

compute the x → ±∞ limits of the two right-hand sides by evaluating the
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matrix product

1

2iλ

 iλeiλxIn −eiλxIn

iλe−iλxIn e−iλxIn


 −2iλ2σ3 −2iσ3Qr,l

2iλ2σ3Qr,l −2iλ2σ3


 e−iλxIn eiλxIn

−iλe−iλxIn iλeiλxIn


and obtain

[CF r(λ; t)]tCF r(λ; t)−1 =

−Λup
r (λ) 0n×n

0n×n −Λdn
r (λ)

 , (5.2a)

[CF l
(λ; t)]tCF l

(λ; t)−1 =

−Λup

l (λ) 0n×n

0n×n −Λdn
l (λ)

 , (5.2b)

where

Λup

r,l(λ) = 2iλ2σ3 + 2λσ3Qr,l, (5.3a)

Λdn

r,l(λ) = 2iλ2σ3 − 2λσ3Qr,l, (5.3b)

are time invariant. Then, using that Q† = −Q and Qσ3 = −σ3Q, we arrive

at the symmetry relations

Λup

r,l(λ) = σ3Λdn

r,l(λ)σ3, (5.4a)

Λup

r,l(−λ
∗)† = −Λup

r,l(λ), (5.4b)

Λdn

r,l(−λ∗)† = −Λdn

r,l(λ), (5.4c)
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where λ ∈ C+∪R. Relating F r,l(x, λ; t) by means of the equalities [cf. (3.6)]

F r(x, λ; t) = F l(x, λ; t)Ar(λ; t), F l(x, λ; t) = F r(x, λ; t)Al(λ; t),

where the factors Ar,l(λ; t) are given by the matrices

Ar(λ; t) =

Ar(λ; t) Br(−λ; t)

Br(λ; t) Ar(−λ; t)

 , Al(λ; t) =

Al(−λ; t) Bl(λ; t)

Bl(−λ; t) Al(λ; t)

 ,

(5.5)

for 0 6= λ ∈ R we compute

[Ar]t = −F−1
l [F l]tF

−1
l F r + F−1

l [F r]t

= −F−1
l

(
TF l − F l [CF l

(λ; t)]tCF l
(λ; t)−1

)
Ar

+ F−1
l

(
TF r − F r [CF r(λ; t)]tCF r(λ; t)−1

)
= [CF l

(λ; t)]tCF l
(λ; t)−1Ar −Ar [CF r(λ; t)]tCF r(λ; t)−1

= Ar

Λup
r (λ) 0n×n

0n×n Λdn
r (λ)

−
Λup

l (λ) 0n×n

0n×n Λdn
l (λ)

Ar. (5.6)

Using that Al(λ; t) = Ar(λ; t)−1, we obtain from (5.6)

[Al]t = Al

Λup

l (λ) 0n×n

0n×n Λdn
l (λ)

−
Λup

r (λ) 0n×n

0n×n Λdn
r (λ)

Al. (5.7)
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Therefore, (5.5), (5.6), and (5.7) imply

[Ar]t = Ar(λ; t)Λup

r (λ)− Λup

l (λ)Ar(λ; t), (5.8a)

[Al]t = Al(λ; t)Λdn

l (λ)− Λdn

r (λ)Al(λ; t), (5.8b)

where 0 6= λ ∈ C+ ∪ R, and

[Br]t = Br(λ; t)Λup

r (λ)− Λdn

l (λ)Br(λ; t), (5.8c)

[Bl]t = Bl(λ; t)Λdn

l (λ)− Λup

r (λ)Bl(λ; t), (5.8d)

where 0 6= λ ∈ R.

Proposition 5.1 The reflection coefficients satisfy the following differential

equations:

[Rr]t = Rr(λ; t)Λup

l (λ)− Λdn

l (λ)Rr(λ; t), (5.9a)

[Rl]t = Rl(λ; t)Λdn

r (λ)− Λup

r (λ)Rl(λ; t), (5.9b)

where 0 6= λ ∈ R. Moreover, for fixed λ the matrices σ3Rr,l(λ; t) have time

invariant traces.
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Proof. Using (3.12) we compute

[Rr]t = [BrA
−1
r ]t = [Br]tA

−1
r −BrA

−1
r [Ar]tA

−1
r

= (BrΛ
up

r − Λdn

l Br)A
−1
r −BrA

−1
r (ArΛ

up

r − Λup

l Ar)A
−1
r

= BrA
−1
r Λup

l − Λdn

l BrA
−1
r = RrΛ

up

l − Λdn

l Rr,

where we have not written the dependence on (λ; t). Similarly, we compute

[Rl]t = [BlA
−1
l ]t = [Bl]tA

−1
l −BlA

−1
l [Al]tA

−1
l

= (BlΛ
dn

l − Λup

r Bl)A
−1
l −BlA

−1
l (AlΛ

dn

l − Λdn

r Al)A
−1
l

= BlA
−1
l Λdn

r − Λup

r BlA
−1
l = RlΛ

dn

r − Λup

r Rl.

Finally, since σ3Λup

r,l(λ)σ3 = Λdn
r,l(λ), we see that

[σ3Rr]t = [σ3Rr(λ; t),Λup

l (λ)], [σ3Rl]t = [σ3Rl(λ; t),Λdn

r (λ)], (5.10)

where the square brackets in the right-hand sides are matrix commutators.

Consequently, [σ3Rr,l]t are traceless matrices.

Let us now derive the time evolution equations for the norming constants.

First, writing (5.8) in the form

[A−1
r ]t = Ar(λ; t)−1Λup

l (λ)− Λup

r (λ)Ar(λ; t)−1,

[A−1
l ]t = Al(λ; t)−1Λdn

r (λ)− Λdn

l (λ)Al(λ; t)−1,
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and computing the residues at the simple poles λs, we get

[τr;s]t = τr;s(t)Λ
up

l (λs)− Λup

r (λs)τr;s(t), (5.11a)

[τl;s]t = τl;s(t)Λ
dn

r (λs)− Λdn

l (λs)τl;s(t). (5.11b)

Next, using (5.2) we write (5.1) in the form

[F r,l]t = T (x, λ; t)F r,l(x, λ; t) + F r,l(x, λ; t)

Λup

r,l(λ) 0n×n

0n×n Λdn
r,l(λ)

 . (5.12)

Using the standard block structure T =
(
T 1 T 2
T 3 T 4

)
as a 2 × 2 matrix having

m×m entries, from (5.12) we easily arrive at the identities

[Fl(x, λs; t)]t = T 1(x, λs; t)Fl(x, λs; t) + T 2(x, λs; t)F
′
l (x, λs; t)

+ Fl(x, λs; t)Λ
dn

l (λs), (5.13a)

[Fr(x, λs; t)]t = T 1(x, λs; t)Fr(x, λs; t) + T 2(x, λs; t)F
′
r(x, λs; t)

+ Fr(x, λs; t)Λ
up

r (λs). (5.13b)

Differentiating (4.5a) with respect to t, utilizing both of (5.13), and applying

(4.5a) as well as its derivative with respect to x, we obtain

Fr (Λup

r τr;s + [τr;s]t) = iFl (Λ
dn

l Nr;s + [Nr;s]t) ,

where we have omitted the arguments (x, λs; t), λs, and t. With the help of
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(5.11a) we write the latter in the form

Frτr;sΛ
up

l = iFl (Λ
dn

l Nr;s + [Nr;s]t) .

Using (4.5a) once again and considering the x → +∞ asymptotics of the

resulting expression to lose the resulting common factors iFl, we obtain

[Nr;s]t = Nr;s(t)Λ
up

l (λs)− Λdn

l (λs)Nr;s(t). (5.14)

Analogously, differentiating (4.5b) with respect to t, utilizing both of (5.13),

and applying (4.5b) as well as its derivative with respect to x, we obtain

Fl (Λ
dn

l τl;s + [τl;s]t) = iFr (Λup

r Nl;s + [Nl;s]t) ,

where we have omitted the arguments (x, λs; t), λs, and t. With the help of

(5.11b) we write the latter in the form

Frτl;sΛ
dn

r = iFl (Λ
up

r Nl;s + [Nl;s]t) .

Using (4.5b) once again and considering the x → −∞ asymptotics of the

resulting expression to lose the resulting common factors iFr, we obtain

[Nl;s]t = Nl;s(t)Λ
dn

r (λs)− Λup

r (λs)Nl;s(t). (5.15)

As in the proof of Proposition 5.1, we can prove that for each λ the matrices
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σ3Nr;s(t) are similar and the matrices σ3Nl;s(t) are similar. Hence the traces

of σ3Nr;s(t) and σ3Nl;s(t) are time independent. Thus the ranks of Nr;s(t)

and Nl;s(t) are time independent. We recall [see (4.7)] that the norming

constants corresponding to eigenvalues symmetrically located with respect

to the imaginary axis are each other’s σ3-adjoints.

Let us now derive the differential equations for the Marchenko integral

kernels. Using (4.2) and (5.3) we obtain the PDEs

[R̂r]t = −2i
(

[R̂r]αασ3 − σ3[R̂r]αα+[R̂r]ασ3Ql −Qlσ3[R̂r]α

)
, (5.16a)

[R̂l]t = −2i
(

[R̂l]αασ3 − σ3[R̂l]αα+[R̂l]ασ3Qr −Qrσ3[R̂l]α

)
, (5.16b)

provided
∫∞
−∞ dα (1 + α2)‖R̂r,l(α; t)‖ converges for every t ∈ R. Here we

recall that R̂r,l(α; t) are σ3-hermitian for all (α, t) ∈ R2. Using (4.2) and

Proposition 5.1 we see that the traces of σ3R̂r,l(α; t) are time independent.

Using (5.16) and (4.4) to derive PDEs for the Marchenko integral kernels

Ωr,l(w; t), we obtain with the help of (5.14) and (5.15)

[Ωr]t = −2i ([Ωr]wwσ3 − σ3[Ωr]ww + [Ωr]wσ3Ql −Qlσ3[Ωr]w) , (5.17a)

[Ωl]t = −2i ([Ωl]wwσ3 − σ3[Ωl]ww + [Ωl]wσ3Qr −Qrσ3[Ωl]w) , (5.17b)

where Ωr,l(w; t) are σ3-hermitian for all (w, t) ∈ R2. Hence, the reflection

kernels R̂r,l(w; t) and the Marchenko integral kernels Ωr,l(w; t) satisfy the

same PDEs. Finally, the traces of σ3Ωr,l(w; t) are time independent.
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Recalling that Qr,l are time independent, we observe that the matrices

Λup

r,l(λ) and Λdn
r,l(λ) are time independent as well. We easily compute

etΛ
up
r,l(λ) = cos(2λkt)In +

sin(2λkt)

2λk

[
2iλ2σ3 + 2λQr,l

]
, (5.18a)

etΛ
dn
r,l(λ) = cos(2λkt)In +

sin(2λkt)

2λk

[
2iλ2σ3 − 2λQr,l

]
, (5.18b)

where k2 = λ2 − µ2 and the expressions (5.18) are even functions of k for

fixed λ (cf. [32] where these matrix groups also appear). Using that the

initial value problem for the matrix differential equation

Ft = B1F (t)− F (t)B2

has the unique solution

F (t) = etB1F (0)e−tB2 ,

we obtain for the solutions of (5.9a) and (5.9b)

Rr(λ; t) = e−tΛ
dn
l (λ)Rr(λ; 0)etΛ

up
l (λ), (5.19a)

Rl(λ; t) = e−tΛ
up
r (λ)Rl(λ; 0)etΛ

dn
r (λ). (5.19b)

Because of (5.4a), the matrices σ3Rr(λ; t) are similar and so are the matrices

σ3Rl(λ; t). In the same way we get for the time evolution of the norming
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constants

Nr;s(t) = e−tΛ
dn
l (λs)Nr;s(0)etΛ

up
l (λs), (5.20a)

Nl;s(t) = e−tΛ
up
r (λs)Nl;s(0)etΛ

dn
r (λs), (5.20b)

where k2
s = λ2

s − µ2 and the expressions (5.20) are even functions of ks for

fixed λs. Because of (5.4a), the matrices σ3Nr;s(t) are similar and so are the

matrices σ3Nl;s(t). In the same way we derive from (5.8) the identities

Ar(λ; t) = e−tΛ
up
l (λ)Ar(λ; 0)etΛ

up
r (λ), (5.21a)

Al(λ; t) = e−tΛ
dn
r (λ)Al(λ; 0)etΛ

dn
l (λ), (5.21b)

where 0 6= λ ∈ C+ ∪ R, and

Br(λ; t) = e−tΛ
dn
l (λ)Br(λ; 0)etΛ

up
r (λ), (5.21c)

Bl(λ; t) = e−tΛ
up
r (λ)Bl(λ; 0)etΛ

dn
l (λ), (5.21d)

where 0 6= λ ∈ R. Observe that (5.21) and (3.12) imply (5.19).

6 Multisoliton solutions

In this section we apply the matrix triplet method to write the reflectionless

Marchenko integral kernels in separated form and solve the Marchenko equa-

tions by separation of variables. This method has been successfully applied
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to the Korteweg-de Vries (KdV) equation [5, 13], the NLS equation [10, 34],

the sine-Gordon equation [74, 11], the modified Korteweg-de Vries (mKdV)

equation [30], the Toda lattice equation [73], and the Heisenberg Ferromag-

net Equation [36, 37]. An introduction to this method can be found in [77].

In contrast to earlier work, we allow the time factors in these triplets to be

absorbed by both the input and output matrices.

Before solving the Marchenko integral equations (4.4), we write the re-

flectionless Marchenko integral kernels in the form

Ωr(w; t) =
N∑
s=1

e−aswNr;s(t), Ωl(w; t) =
N∑
s=1

easwNl;s(t), (6.1)

where as = −iλs (s = 1, . . . , N). Then it is easily proved that, for s =

1, . . . , N , the norming constants Nr;s(t) and Nl;s(t) both have the same time

independent rank rs. In fact, rs coincides with the ranks of the residues τr;s

and τl;s of Ar,l(λ; t)−1 at λ = λs. Since σ3Nr;s(t) and σ3Nl;s(t) have σ3Nr;s(t)

and σ3Nl;s(t) as their respective complex conjugate transposes whenever

λs = −λ∗s, there exist n × rs matrices er;s(t) and el;s(t) having rs = rs

orthonormal columns and spanning the ranges of σ3Nr;s(t) and σ3Nl;s(t)

and time independent diagonal rs × rs matrices dr;s = d†r;s and dl;s = d†l;s

having only nonzero diagonal entries such that

σ3Nr;s(t) = er;s(t)dr;ser;s(t)
†, σ3Nl;s(t) = el;s(t)dl;sel;s(t)

†, (6.2)
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whenever λs = −λ∗s. Furthermore,

er;s(t) = e−tΛ
up
l (λs)er;s(0), el;s(t) = e−tΛ

dn
r (λs)el;s(0). (6.3)

If λs = −λ∗s is purely imaginary and therefore σ3Nr;s(t) and σ3Nl;s(t) are

hermitian matrices, the number of positive and negative diagonal entries of

dr;s and dl;s corresponds to the (time independent) number of positive and

negative eigenvalues of σ3Nr;s(t) and σ3Nl;s(t).

Now define the matrix triplets as follows:

Ar = Al = a1Ir1 ⊕ . . .⊕ aNIrN , (6.4)

where Ar,l are diagonal matrices of order q = r1 + . . .+ rN having rs copies

of as = −iλs on the diagonal. Next, we define

Br =


dr;1e

†
r;1

...

dr;Ne
†
r;N

 , Bl =


dl;1e

†
l;1

...

dl;Ne
†
l;N

 , (6.5a)

Cr =

(
σ3er;1 . . . σ3er;N

)
, C l =

(
σ3el;1 . . . σ3el;N

)
, (6.5b)

where we have not written the time dependence. Then the Marchenko inte-
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gral kernels in (6.1) are given by

Ωr(w; t) = Cr(t)e
−wArBr(t), (6.6a)

Ωl(w; t) = C l(t)e
wAlBl(t), (6.6b)

where the q × q matrices Ar,l have only eigenvalues with positive real parts,

Br,l(t) are q × n matrices, and Cr,l(t) are n× q matrices.

Let us now depart from arbitrary Marchenko integral kernels (6.6), where

the q× q matrices Ar,l have only eigenvalues with positive real parts, Br,l(t)

are q × n matrices, Cr,l(t) are n × q matrices, and the specific expressions

(6.4) and (6.5) need not be applied. Solving the Marchenko integral equations

(4.3) we get

K(x, y; t) = −W r(x; t)e−yArBr(t), (6.7a)

J(x, y; t) = −W l(x; t)eyAlBl(t), (6.7b)

where

W r(x; t) = Cre
−xAr +

∫ ∞
x

dz K(x, z; t)Cr(t)e
−zAr ,

W l(x; t) = C le
xAl +

∫ x

−∞
dz J(x, z; t)C l(t)e

zAl .
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Substituting (6.7) into (4.3) and solving for W r,l(x; t) we get

W r(x; t) = Cr(t)e
−xAr

[
Iq + e−xArP r(t)e

−xAr
]−1

,

W l(x; t) = C l(t)e
xAl
[
Iq + exAlP l(t)e

xAl
]−1

,

provided the inverse matrices exist. Here

P r,l(t) =

∫ ∞
0

dz e−zAr,lBr,l(t)Cr,l(t)e
−zAr,l

are the unique solutions of the Sylvester equations

Ar,lP r,l(t) + P r,l(t)Ar,l = Br,l(t)Cr,l(t).

More precisely, given (x, t) ∈ R2, the Marchenko integral equations (4.3) are

uniquely solvable (in an L1-setting) iff the algebraic equations for W r,l(x; t)

are uniquely solvable. Consequently,

K(x, y; t) = −Cr(t)e
−xAr

[
Iq + e−xArP r(t)e

−xAr
]−1

e−yArBr(t)

= −Cr(t)
[
Iq + e−2xArP r(t)

]−1
e−(x+y)ArBr(t)

= −Cr(t)
[
e2xAr + P r(t)

]−1
e−(y−x)ArBr(t), (6.8a)

J(x, y; t) = −C l(t)e
xAl
[
Iq + exAlP l(t)e

xAl
]−1

eyAlBl(t)

= −C l(t)
[
Iq + e2xAlP l(t)

]−1
e(x+y)AlBl(t)

= −C l(t)
[
e−2xAl + P l(t)

]−1
e−(x−y)AlBl(t). (6.8b)
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Using (3.17) we obtain

∫ ∞
x

dyQ(y; t) = −2Cr(t)
[
e2xAr + P r(t)

]−1
Br(t), (6.9a)∫ x

−∞
dyQ(y; t) = −2C l(t)

[
e−2xAl + P l(t)

]−1
Bl(t). (6.9b)

Consequently,

Q(x; t) = −4Cr(t)
[
e2xAr + P r(t)

]−1
Are

2xAr
[
e2xAr + P r(t)

]−1
Br(t),

(6.10a)

Q(x; t) = −4C l(t)
[
e−2xAl + P l(t)

]−1
Ale

−2xAl
[
e−2xAl + P l(t)

]−1
Bl(t).

(6.10b)

Using the partitioning

Cr,l(t) =

Cup

r,l(t)

Cdn

r,l(t)

 , Br,l(t) =

(
Blt

r,l(t) Brt

r,l(t)

)
,
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and assuming the nonsingularity of P r,l(t), we obtain

Q(x; t) = Qr + 2Cup

r (t)P r(t)
−1Brt

r (t) + 2Cdn

r (t)P r(t)
−1Blt

r (t)

− 2Cup

r (t)
[
e2xAr + P r(t)

]−1
Brt

r (t)

− 2Cdn

r (t)
[
e2xAr + P r(t)

]−1
Blt

r (t), (6.11a)

Q(x; t) = Ql + 2Cup

l (t)P l(t)
−1Brt

l (t) + 2Cdn

l (t)P l(t)
−1Blt

l (t)

− 2Cup

l (t)
[
e−2xAl + P l(t)

]−1
Brt

l (t)

− 2Cdn

l (t)
[
e−2xAl + P l(t)

]−1
Blt

l (t). (6.11b)

If (6.11) are solutions of the differential Riccati equation Q2+Qx = Q−µ2In,

then they represent the multisoliton solutions of the focusing matrix NLS

equation with extra term (2.2). Using the gauge transformation (2.6) we then

get the multisoliton solutions of the usual focusing matrix NLS equation.
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A Wronskian relations

In this appendix we give the details of the proofs of the identities (3.8), (3.9),

(3.10), (3.11). First of all, we prove the following

Proposition A.1 For λ ∈ R, let V (x, λ) and W (x, λ) be two 2n×2n matrix

solutions of the first order system (3.7). Then

W (x, λ)†(σ2 ⊗ σ3)V (x, λ)

is independent of x ∈ R. In particular, its asymptotic forms as x → ±∞

coincide.

Proof. It is easily verified by using (1.6) that for λ ∈ R we have

(σ2 ⊗ σ3)

 0n×n In

Q(x)− λ2In 0n×n

 (σ2 ⊗ σ3) = −

 0n×n In

Q(x)− λ2In 0n×n


†

.

Then

∂

∂x

[
W (x, λ)†(σ2 ⊗ σ3)V (x, λ)

]
= W (x, λ)†

 0n×n In

Q(x)− λ2In 0n×n


†

(σ2 ⊗ σ3)V (x, λ)

+W (x, λ)†(σ2 ⊗ σ3)

 0n×n In

Q(x)− λ2In 0n×n

V (x, λ) = 02n×2n,
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as claimed.

Let us first apply Proposition A.1 to V (x, λ) = W (x, λ) = Φ(x, λ) and

divide the resulting equation by 2λ. For 0 6= λ ∈ R we get by equating the

x→ +∞ asymptotics to the x→ −∞ asymptotics and dividing the resulting

equation by 2λ

−A†rσ3Ar +B†rσ3Br B†rσ3

σ3Br σ3

 =

 −σ3 −σ3Bl

−B†lσ3 A†lσ3Al −B†lσ3Bl

 ,
where we have not written the λ-dependence. Consequently, for 0 6= λ ∈ R

we have the equalities

Ar(λ)†σ3Ar(λ)−Br(λ)†σ3Br(λ) = σ3, (A.1a)

Al(λ)†σ3Al(λ)−Bl(λ)†σ3Bl(λ) = σ3, (A.1b)

Br(λ)† = −σ3Bl(λ)σ3, Bl(λ)† = −σ3Br(λ)σ3. (A.1c)

We observe that (A.1) coincide with (3.8).

Let us now apply Proposition A.1 to V (x, λ) = W (x, λ) = F r,λ(x, λ) and

divide the resulting equation by 2λ. For 0 6= λ ∈ R we get by equating the
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x→ +∞ asymptotics to the x→ −∞ asymptotics and dividing by 2λ

 −A†rσ3Ar +B†rσ3Br −A†rσ3B
#
r +B†rσ3A

#
r

A#
r
†
σ3Br −B#

r
†
σ3Ar A#

r
†
σ3A

#
r −B#

r
†
σ3B

#
r

 =

−σ3 0n×n

0n×n σ3

 ,
−σ3 0n×n

0n×n σ3

 =

−A#
l

†
σ3A

#
l +B#

l

†
σ3B

#
l −A#

l

†
σ3Bl +B#

l

†
σ3Al

A†lσ3B
#
l −B

†
lσ3A

#
l A†lσ3Al −B#

l σ3Bl

 ,
respectively, where the short-hand notation C#(k) = C(−k) is adopted.

Equating the block diagonal entries implies (A.1a) and (A.1b). Equating the

block off-diagonal entries implies

Ar(λ)†σ3Br(−λ) = Br(λ)†σ3Ar(−λ), (A.2a)

Al(λ)†σ3Bl(−λ) = Bl(λ)†σ3Al(−λ), (A.2b)

and these equalities coincide with (3.9)

Finally, let us now apply Proposition A.1 to V (x, λ) = F l(x, λ) and

W (x, λ) = F r(x, λ) and divide the resulting equation by 2λ. For 0 6= λ ∈ R

we get by equating the x → +∞ asymptotics to the x → −∞ asymptotics

and dividing the resulting equation by 2λ

 −Ar(λ)†σ3 Br(λ)†σ3

−Br(−λ)†σ3 Ar(−λ)†σ3

 =

−σ3Al(−λ) −σ3Bl(λ)

σ3Bl(−λ) σ3Al(λ)

 .
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As a result, we arrive at the two identities

Ar(λ)† = σ3Al(−λ)σ3, Br(λ)† = −σ3Bl(λ)σ3. (A.3)

Identities (A.3) coincide with (3.10).

Equation (3.11) can easily be derived from the x-independence of

W (x,−λ∗)†(σ2 ⊗ σ3)V (x, λ)

for given solutions V (x, λ) and W (x, λ) of (3.7).
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