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Abstract

This thesis consists in two results.

In [Z. Lu, G. Tian, The log term of Szegd kernel, Duke Math. J. 125 N 2
(2004), 351-387|, the authors conjectured that given a Kdhler form w on CP"
in the same cohomology class of the Fubini—Study form wgs and considering the
hyperplane bundle (L,h) with Ric(h) = w, if the log—term of the Szegd kernel
of the unit disk bundle D, C L* vanishes, then there is an automorphism ¢ :
CP" — CP" such that ¢*w = wpg.

The first result of this thesis consists in showing a particular family of rotation

invariant forms on CP? that confirms this conjecture.

In the second part of this thesis we find explicitly the Szegd kernel of the
Cartan-Hartogs domain and we show that this non-compact manifold has va-
nishing log—term. This result confirms the conjecture of Z. Lu for which if the
coefficients a; of the TYZ expansion of the Kempf distortion function of a n—
dimensional non—compact manifold M vanish for j > n, then the log-term of the

disk bundle associated to M is zero.
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Introduction

In this thesis we analyze how the vanishing of some coefficients of the asympto-
tic expansion of the Kempf distortion function of a Kéhler manifold affects the
geometry of the manifold.

Given a polarized compact Kéhler manifold (M, w), S. Zelditch [59] proved the
existence of a complete asymptotic expansion of the Kempf distortion function

T, associated to w:
Tule) ~ 3 a7,
§=0

where a;, 7 = 0,1,..., are smooth coefficients with ag(z) = 1. In [40], Z. Lu
showed that each of the coefficients a;(z) is a polynomial of the curvature and
its covariant derivatives at x of the metric g associated to w, which can be com-
puted by finitely many algebraic operations. Z. Lu and G. Tian pointed out
that these coefficients are strictly related to the geometry of (M,w). Consider
the reproducing kernel of the Hilbert space consisting of the closure in L?(X) of
the restriction to X of the continuous functions in D that are holomorphic in all
D, where D = {v € M| p(v) > 0} is the disk bundle of the dual bundle of the
polarization of (M,w) and X = 0D. This kernel is called the Szegs kernel of the
unit disk bundle D over M. A direct computation of the Szegd kernel could be
in general very complicated. Although, when D C M is a strictly pseudoconvex
domain with smooth boundary, the following celebrated formula due to Fefferman

(see [22], [7] and also [6]) shows that there exist functions a and b continuous on
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D and with a # 0 on X, such that:

a(v)
p(o)r+t

In particular, in [41], Lu and Tian proved the following results:

S(v) = + b(v) log p(v).

1. If one considers a Kdihler form w on CP" in the same cohomology class of
the Fubini—Study metric which is “close” to wps (in the sense expressed in
(3.22) ) and such that the log-term of the Szegd kernel vanishes, then there

is an automorphism ¢ : CP" — CP" such that ¢*w = wrg.

2. If the log—term of the Szeqi kernel of the unit disk bundle over M wvanishes

then ai, = 0, for all k > n.

(We refer the reader to Section 3.2 for more details).

It is rather natural to ask the following:

Question 1: Does result (1) above holds true when the hypothesis to be “close”

15 removed?

Question 2: Is it also true the converse of result (2)? In other words, if the
coefficients ay of the expansion given by Zelditch vanish for all k > n, does the

log—term of the Szegd kernel of the unit disk bundle over M wvanish?

A positive answer to Question 1 has been conjectured by Lu and Tian in
[41], while a positive answer to Question 2 was conjectured by Lu in a private
communication.

In this thesis we give a positive answer to Question 1 and 2 in particular cases.
For the first one, we consider for each a > 0, the one parameter family of Kéhler
forms on CP? given by

W, = P wrg
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where a = |a|?,a € C* and ® is a holomorphic Veronese—type embedding given
by:
CcP? %5 CP°
(Zo, 21, Zo) — |28, 23, Z3, 2o Z1, Zg Za, 21 Zs),
where Zy, Z1, Z5 are homogeneous coordinates on CIP?.
For the second one, in the non—compact situation, we consider the case when

(M,w) is a Cartan-Hartogs domain (see Section 4.4 for the definition). In

particular, we prove the following:

Theorem A. The log-term of the Szegd kernel of the disk bundle over a Cartan—

Hartogs domain vanishes.

The proof is based on the fact that the disk bundle of a Cartan—Hartogs do-
main M@ (y) is the Cartan-Hartogs domain M2*! (). Observe that since the
boundary is not smooth, we cannot apply Fefferman’s result. However, we say
that the log-term of the Szegd kernel of the disk bundle vanishes if there exists

a(v)

a continuous function a on D with @ # 0 on X such that S(v) = ST (see

Definition 4.10).

In [21], Z. Feng and Z. Tu proved that the coefficients a; of the TYZ expansion
of the Kempf distortion function of the Cartan-Hartogs domain M (u) vanish
for k > d + do, where d + dj is the dimension of M& (11). Combining this result
with Theorem A, we show that Cartan—Hartogs domains are an example of non—

compact manifolds for which the Lu’s conjecture holds true.

The thesis is organized in four Chapters as follows:

In Chapter 1, we recall the basic notions on Kéahler geometry and on the
theory of fiber bundles used in the thesis, with particular attention to the case of
CP".

In Chapter 2, we summarize useful results of complex analysis. In particular,
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in Sections 2.1 and 2.2 we define, respectively, the Bergman and the Szegé kernel
for domains of C”, investigate some of their properties and recall the results of
C. Fefferman [22] and L. Boutet de Monvel and J. Sjostrand [6]. In Section 2.3
we extend the definition of the Szegé kernel to domains of manifolds.

In Chapter 3, we describe the first result of this thesis. In Section 3.1, we intro-
duce the Kempf distortion function for a compact Kéhler manifold M explaining
what TYZ asymptotic expansion of this function means and what coefficients a;
of TYZ expansion are, recalling the results due to S. Zelditch [59], Z. Lu [40]
and Z. Lu and G. Tian [41]. In Subsection 3.1.1 we define the disk bundle of a
polarized Kahler manifold (M, w) and we prove that it is a strictly pseudoconvex
domain. In Subsection 3.1.2 we remake the construction of the Szegé kernel of
the disk bundle over M as in [59] and in [41], using the natural volume form
induced by the contact form on the boundary of the disk bundle. Moreover we
illustrate the relation showed by Lu and Tian in [41], between this Szegd kernel
and the coefficients of the TYZ expansion of the Kempf distortion function. In
the last section we show that the family of Kéhler forms w, is a particular family
of metrics on CIP?, which gives a positive answer to Lu and Tian’s conjecture.

In the last chapter, we describe the second result of this thesis. In Section 4.1
we generalize the definition of the asymptotic expansion of the Kempf distortion
function to the non—compact case giving a necessary condition to the existence
of such an expansion. In sections 4.2 and 4.3 we introduce Hartogs domains and
Cartan domains that are used to give, in Section 4.4, the definition of Cartan—
Hartogs domains. In the same Section 4.4, we also prove that the disk bundle
of a Cartan—-Hartogs domain of dimension d is a Cartan—Hartogs domain of di-
mension d + 1. Finally, in Section 4.5 we find explicitly the Szegd kernel of a

Cartan—Hartogs domain and prove Theorem A.



Capitolo 1

Preliminaries

In this chapter we illustrate the notations used in this thesis and recall some

notions on complex and Kéahler geometry.

1.1 Kahler metrics

Recall that if (M, g) is a hermitian manifold, with g a hermitian metric, we define

the fundamental form w € Q4D (M, C) of g as
w(X,Y) = g(X, JY), (1.1)

for all smooth fields X, Y on M, where J is the almost complex structure on M

and denoting by Q1 (M, C) the space of all (1,1)-forms on M.

Definition 1.1. A hermitian manifold (M,w) is Kdhler if and only if for all
p € M there exist a neighborhood U and a plurisubharmonic® function ® : U — C
such that
i
Wiu = 588@

The function ® is called a Kdhler potential for the metric g and it is univocally

determined up to the addition of the real part of a holomorphic function. Observe

In our contest, we consider ® of class C? and being plurisubharmonic means that the matrix

[00D(z)] of second derivatives is positive semi-definite, for all z € U.
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that in local coordinates one has

i < .
W= 5 %;1 9o dzo N\ dZg,

where

o o 0\ 0%
9o8 =9I\ 0z 975 ) ~ 020075
Let Ric be the Ricci curvature of (M, g) and let p be the Ricci form associated
to Ric, i.e.

p(X,Y) = Ric(JX,Y),

for all smooth fields X, Y on M. The nice feature of the Kéhler metrics is that

the Ricci form has a very simple expression in terms of the metric tensor, i.e.
p = —i00log det(g,z5),

(we refer the reader to [53]).

1.1.1 The complex projective space

In this section we recall some aspects of the Kéhler geometry of the complex
projective space which will be useful throughout the thesis.

The complex projective space CP" is the set of all complex lines in C". If we
consider on C"*! the equivalence relation where z, y € C" are equivalent, x ~ 7,
if and only if x = Ay for some A € C*, then the complex projective space can be

described as the quotient space

Cn+1

Y

cp”

Denote with [Zo, ..., Z,] the equivalence class of (Zy, ..., Z,) € C**!. Consider
in CP" the canonical atlas (U,, p,) with U, = {[Zo, ..., Z,] € CP"| Z, # 0},

a=1,...,nand

Oo: U, —C"

[Zo,...,Zn]l—)



and inverse map
ot c"— U,
(Wl,...,Wn) — [Wl,...,Wa_l,l,Wa+1,...,Wn].

Observe that when U, N Usz # 0, the composition

®q © gf)gl : gbg(Ua N Uﬁ) — gba(Ua N Uﬁ)

(Z1 7 ) . <é Za-1 Las1 Zﬁfl 1 ZB+1 Zn)

Za7-"7 Za ) Za Y Za ’Za’ Za a"'?Za

is clearly holomorphic.

. _ Zo Zozfl Za+1 Z,
Set for convenience (z1, ..., z,) = (Z—a, e T T and define on each

U, the (1,1)-form
wrs = i, = 5001og(1+ a1 + -+ |zal?), (1.2)

the so—called Fubini-Study form on CP" and let ®pg = 10g<1+ B |zn|2>

be the Kahler potential associated to wrg on U,.

1.2 Holomorphic vector bundles

A holomorphic vector bundle over M of rank r is a complex manifold E together

with a holomorphic function 7 : £ — M such that
e T is surjective,

e for any point p € M the fiber E, = 7 '(p) is a complex vector space of

dimension 7,

e for every p € M there exist an open set U, C M, p € U, and a biholomor-

phism ¢ such that the diagram:



commutes, where | is the restriction of 7 to 7! (U,) and pry is the standard

projection on the first factor.

Observe that, denoting with pry the standard projection on the second factor,
the map pro - g, : B, — C" is an isomorphism of vector spaces.

Given a holomorphic vector bundle 7 : £ — M, the pair (U,,¢,) is a local
trivialization.

For each U,, Ug such that U, N Ug # (), the map

gpao(pglt(UaﬂUg) x C" — (UaﬂUg) x C"
(z,0) = (2, gap(2)0)

is holomorphic and induces the maps, gas : (Us N Uz) — GL,(C) which satisfy
(1) Yas = Gsa

(44) Gaa = lder,

(#1) gap - 9~ - gra = Ider-

The maps gqp are called transition functions of the vector bundle. Observe that

prescribing maps gas : (U, N Uz) — GL,(C) on M which satisfy the conditions

(i), (#i) and (zii) above, determines uniquely the bundle.

Definition 1.2. Given a vector bundle m : E — M of rank r on M, a global

section s of £ is a map s : M — E such that mo s = idy;.

Note that if s is a global section then s(p) € E, for all p € M. Denote with I'(E)
the set of all smooth sections of F and with H°(E) the set of all holomorphic
sections on F. In particular, by the vector space structure of FE, it is possible to
endow H°(E) with the vector space structure, setting (s +t)(p) = s(p) +t(p), for
all s,t € H(E), for all p € M and (As)(p) = As(p) with A e C. If 7 : E — M

is a vector bundle of rank r with local trivialization (¢4, U,) and s € H(E) is a
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holomorphic section, then
Pa O S|, = Sa :Us = Uy x C"
p = (p,0a(p))
and
¢5OS|Uﬂ = 83 ZUg—)Uﬂ x C"
p = (p,o5(p))
where sy, and sy, are called local trivializing sections. Observe that if p €

Ua N Ug, then sy, (p) = sy, (p) and we have

(P, 0a(p)) =3a(p) = (¢a 0 811, ) (P) = (a © 81, )(P) = (Ya 0 95" ©55)(p)
(1.3)

=(a © 905" )(38)(P) = Pa 0 05" (0, 75(P)) = (P, Gaso5(p))
that implies 04 = gapos.
Remark 1.3. Observe that the product and the direct sum of two (or more)
vector bundles is still a vector bundle. In particular, if 7' : E' — M and
7% . E? — M are vector bundles of rank k; and ky respectively, with transition
functions g}, and g2, then 7' @ 7* : E' ® E* — M is a vector bundle of rank
k1ky with transition functions g5, = g,59%5. Analogously, 7' ®7* : E'®@E* — M

is a vector bundle of rank k; + ks with transition functions

1
® goc,B 0
goéﬂ - 9
0 955
1.2.1 Tangent bundle

Let TM = {J,c); TpM be the classical tangent space of M and let (U,, ha) be
an atlas for M. Let m be the canonical projection defined by ©= : TM — M,

m(v,) = p, for all v, € T,M. Define ¢, = dh,, where

(dha)p ZTpUa — Tha(p)Rn ~ R"



Then the diagram

%U x R"

\/

commutes, with 77%(U,) = TU, = {(p,v) | p € Uy,v € T,U, ~ T,M}. Thus

0o : ™ HUy,) = Uy x R™ are local trivializations for T'M.

1.2.2 Dual bundle

To any vector bundle 7 : Uyep £, — M, with local trivializations (¢q, Uy ), we
can associate a dual bundle 7* : Upep B — M, where E7 is the dual space of

Ey e Er={f, € C°(E,, C)}. A local trivialization (U}, ¢},) for 7* is given by
o () THUR) = Uy x (€)'
fo= (p, fpo 30(;1)-
Observe that since by definition the transition functions for 7* are
o (pp) ™ 1 (UsNTUZ) x (€)= (UznUp) x (CT)°
(P, f) = (0 frops o9,

we have g%; = gh, = (g95,5) " Note that if rank of E is one then g3 = gsa-

1.2.3 Universal bundle on CP"

Now we are interested in constructing an important line bundle (a vector bundle
where the rank is 1) on CP", called the universal bundle or tautological bundle.
Let U be the disjoint union of lines in C"*! and consider the map 7 : U — CP"

where the fiber of a point p = [Zy, ..., Z,] is the complex line through p, i.e.

7 (p) = {(p,\(Zo,...,Zn)) | A € C and (Zy,...,Z,) € C"\ {0}}

10



and clearly ©((p, \(Zo, ..., Zn))) =7((p, Zos---,2Zn)) =p = [Zo, ..., Zy). Consi-
der the open set U, = {[Zo, ..., Z,] € CP"| Z, # 0} then

7N UL) ={([Zo, ..., Zn), N Zo,...,Zn)) | \€C, Zy # 0}

Zy Zn, o
A zan (B Z)) n ).

Yo: T U, — UyxC

Define

([Zoy -y Zn), N(Zoy -y Z0n)) = ([Zoy -+ Znly Aa)

and the diagram

commutes. Observe that ¢, is bijective and C-linear, with inverse map

-1

et UyxC  — 74U,

([Zos -, Zal, A) ([ZO,...,Zn],A(g—Z,...é—Z)).

The pair (U,, ¢q) is a local trivialization of the universal bundle ¢ that is a sub-
bundle of the trivial bundle CP" x C. For the transition function observe that if

(M Zo,...,Z,)) € 71U, N Ug) then

paopy  (UaNUs) x C— (UsNUg) x C
Za
(AR ([ZO,...,Zn],)\Z—B),
thus
9o : (Us NUs) — GLy(C) = C*

Za

2oy ey Ll = —.
[07 ) ] Zﬁ

The dual bundle of U is a linear bundle called the hyperplane bundle and is
denoted by O(1), for this reason we will denote the universal bundle by O(—1).

Other important bundles of CP™ are the tensor power of O(1) and O(—1) (see

11



Remark 1.3), so sometimes we write O(m) for O(1)®™ and O(—m) for O(—1)®™
and O(0) = CP" ® C by definition.

Now we investigate the set of holomorphic sections of O(1) and O(—1).

Proposition 1.4. Let O(1) be the hyperplane bundle of CP"™ and m € Z, then

the following holds:

C, ifm=0,
H(O(m)) = 1 0, ifm <0,
\(D[zo, ..., Zn] homogeneous of degree m, if m > 0,
and )
1, ifm=20,
dim(H°(O(m))) = < o, if m <0,

("), ifm > 0.

m
\

Dimostrazione. If m = 0, by definition O(0) = CP" ® C and H°(O(0)) is the set

of holomorphic sections s from CP" to CP" ® C, which since CPP" is compact by
the maximum principle are constant functions on C, i.e. H°(O(0)) ~ C and its
dimension is 1.

If m < 0 then O(m) is a tensor power of the universal bundle O(—1) that has
no holomorphic sections, (see for example [45, Th. 15.3] or [55, Ex.2.13, Ch.1]).

If m > 0, let s be a holomorphic section, i.e. s: CP" — O(m). Consider the
canonical atlas (U;, ¢;) for CP", with ¢ =0,...,n, U; = {[Z, ..., Z,| € CP"|Z; #
0} and

[Zo,...,Zn]f—}

(Zo Zi1 Ziq Zn)
Zi""7 ZZ, ZZ ""7Zi Y

and consider a local trivialization (U;, ;) of O(m), with i = . If 0; and o; are
like in (1.3) for p € U; N Uj, © < j we have that o;(-) = ¢;;(-)o;(-), where in this

12



case gi;([Zo,. .., Zn]) = (%)m (see Remark 1.3). Each of 0,0 ¢; ', 0j 0 ¢;" is

a holomorphic function from C" to C, thus there exists a power expansion such

that
—+o00

(0i00; (21, ..y 20) = Z Qayan 21 o 20m (1.4)

aq,...,an=>0

and
“+o00

(Uj © gbj_l)(zb sy Zn) = Z bﬁl,n-,ﬂnzll e Zgn (15)
Blw--,ﬁn:O

If the point (z1,...,2,) € ¢:(U; N U;) = ¢;(U; N Uj;) then

Zy Zi1 | Zig1 Zn Zy Zj—1 . Zjt1 Zn,
([ By B B gz ([, By B
7 ({ Z; Z; Z; 9i1 (1Zo Doy Z; Z; j Zj

and using the power expansions (1.4) and (1.5) we have

+oo a ) "y an m +oo ) . N
B N E A S R OO R )
with « and 8 the multi-indicies o = aq, ..., a,, 8= B1,..., Bn, which implies
I R RN CI SRS ST RS SN

From this last equality it follows that oy +--- 4+, <mand f1+---+ 5, <m

and the power series (1.4) and (1.5) become

m m
S gz g = S b gy
Q1,eeny 0y =0 B1,,Bn=0

Finally, we get that an holomorphic section on O(m) can be identified with

E .7
C’Yo,mﬁnZO Znn7 (1'6)
Yo+t m=m
with Am—ai——an,01 e yn—1 — bm—ﬁl—'“—ﬁmﬁl,---ﬁn—1 = Cyopeei -

In other words, a holomorphic section of the form (1.6) can be viewed as a ho-

mogeneous polynomial of degree m in the n + 1 complex variables Z, ..., Z,.
Finally, by combinatory computation the dimension of the space of homoge-

neous polynomials of degree m in n + 1 variables is (mgn) (see for example |27,

p.166]). O
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1.2.4 Canonical bundle on CP"

Given a complex manifold M of real dimension 2n, the complex line bundle
Ky = A"OM, called canonical bundle of M, is the holomorphic line bundle
whose global holomorphic sections are the n—forms on M. In particular, for CP"

we have the following characterization:

Proposition 1.5. The canonical bundle Kgpn := A"OCP™ of CP" is isomorphic
to O(—n —1)).

Dimostrazione. Consider on CP" the canonical holomorphic atlas (U,, ¢, ), then

¢o : Uy, — C" induces ¢, :
G

7 (U,) C Kgpn —2—> U, x A™°C"

U, C CP"

N

cn
so a trivialization for 7 : Kgp» — CP™ is given by (¢7) ™! : 771(U,) — Uy x A™OC™
and the transition functions are hap := (¢},) "' (¢5). Let w := dwy A- - -Adw, be the
canonical generator of A™°C™ and consider holomorphic coordinates on U, N Up,

zi:%,i#a,andwjzg—;,j#ﬁ. Then

dr(w)=dzg AN+ Ndzg—1 Ndzay1 N+ Ndzp,

Pp(w) = dwo A -+~ ANdwg_1 Ndwgy A -+ A dwy,

and in particular we can write
dwoA- - -ANdwg_1 Adwg1 A+ - -ANdw,, = hagdzgA- - -Ndza—1 ANdZgr1 A+ - -Ndzy. (1.7)

Observe that in U, N Ug, we have

1 Zz wiZﬁ
Z2Wq = 1, 2 = = =
p Zo  Za

= W;zg

14



for i # «, B and

1
dz; = zgdw; + widzg, dzg = ——dea = —zgdwa,
w

«

which gives

Z n+1
hos = (1) 8257 = (1) (Z—B) |

after a substitution in equation (1.7). O

1.2.5 Hermitian product on fiber bundles

Let m : E — M be a complex vector bundle over M. A hermitian structure or
hermatian metric h on E is a C'™ field of hermitian inner products in the fibers

of E. In other words for all p € M the following holds:
o h,(Avy + vy, w) = Ahy(v1, w) + hy(ve, w) Yoy, v9,w € E, and X € C,

o hy(v, Awy + wy) = Ahy(v,w;) + hy(v, ws) Y, wy, wy € E, and X € C,

o h,(v,w) = hy(w,v) Yo,w € E,.

and h(s(+),s(:)) € C°(E x E,C) for s trivializing section of 7 : E — M.
Observe that it is possible to construct a hermitian structure on every complex
vector bundle of rank 7. In fact, it suffices to consider a trivialization (U,, p,) on
E and a partition of the unity {f.,} subordinate to the open cover {U,} of M.
For every point p € U, denote by (H,), the pull-back of the hermitian metric on
C" through Pay, - Then Y foH, is a well defined hermitian metric on E.

In the following examples we write explicitly the hermitian product on the uni-

versal bundle of CP' and on CP", which will be useful in Chapter 3.

Example 1.6 (Hermitian product on the universal bundle of CP'). Consider the
hermitian metric A~ on O(—1). Given two points v,w € 7~ (Up) in the same

fiber, we have

e (£ (£ (E] 20 £)) oo
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Clearly, h™! is well defined. In fact, if one consider another representation of

[1, g—é}, e.g. [aZy,aZy] € Uy we have

_ A A A
h‘Ulo <([aZo,aZ1] oA (aZO,aZl)) , <[aZ0,aZ1]7 G—ZO (aZO,aZl)>) = WMQ (|Z0‘2 + |Zl|2) .

* aZo
Example 1.7 (Hermitian product on the universal bundle of CP"). Analogously
to the one dimensional case, we can define hermitian products h=1, h, h=™, k™
on O(—1), O(1), O(—=m) and O(m), respectively. Let p € U, C CP", p =

(Zo, ..., Zy], and consider two points in the same fiber v = (p, Ap), w = (p, up).

Define
— _ ZO ? Zn ?
hwla(v,w)zk/x(Z—a +~--+1+---+‘Z—a )
and in affine coordinates p = (21,...,2,) = <§—2,,g—z) we get

hf(}a(v,w) = A/Z(l +lal +-+ ]zn]2>,

that is a well defined hermitian product on O(—1). Observe finally that on O(1)
we have h = (h™1)~!

mow(w.w) = ((1+ [P o+ ) (18)

and in a similar way on O(m), k™ = (h)™.
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Capitolo 2

Complex Analysis of Bergman and

Szegb kernels

In this chapter we summarize known results on complex analysis about reprodu-
cing kernels for domains in C" and for domains of manifolds. In particular we
analyze some properties of the Bergman and Szegd kernels. For this Chapter we

refer to [33].

2.1 Bergman kernel for domains in C”

Let Q C C" be a compact and bounded domain and let L?*(2) be the set of
all holomorphic functions with finite norm on §2. Consider the set A%*(Q)) :=

L*(Q2) N Hol(Q) of all holomorphic functions f such that

IR
Q
where dy is the restriction on  of the flat metric of C". The space A?(2) is

called the Bergman space and it is a separable ! Hilbert space with respect to the

canonical inner product

< fig>= /Q fgdp.

Tt is a subspace of L2 (Q) that is a separable Hilbert space
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Let ©o,...,¢j,... be a complete orthonormal basis of A%(Q2), then the Bergman

kernel of € is the function

K(20) = 3 o5(=)p,w)

It is easy to prove that K(-,-) does not depend on the particular orthonormal
basis chosen. Notice that if z, w are two points of Q then K(z,w) = K(w, Z) and

holds the reproducing property

£6) = [ Ko fw)d
for all f € A%(2). Moreover, K(z,w) is uniquely determined by these two last
properties and it is an element of A(f2) for each w € Q. From the geometric
point of view, the Bergman kernel of a domain €2 is very interesting because it
is an invariant for biholomorphic maps in the following sense. Let 2 C C" be a
domain and f: Q — C", f = (f1,..., f») a holomorphic map, i.e. each of the f;

is holomorphic. Given z € €2 denote w; = f;(z) and by

O(wy, ..., wy)

021,y 2n)

the n x nm matrix that represents the holomorphic Jacobian of f. Recall that if

Jof =

f Q1 — €y is a holomorphic map, it is a biholomorphism from €; C C" to
Qo C C" if is invertible and its inverse is holomorphic, i.e. it is 1-1, onto and

det Jof(2) # 0 for all z € Q.

Proposition 2.1. Let f: Q; — Qs be a biholomorphism and €21, 5 domains in

C". Then

Ko, (z,w) = det Jo f(2) Ko, (f(2), f(w)) det Jo f (w)
for all z,w € 2.

When (2 is compact a characteristic of the Bergman kernel is that K (z,z) > 0.

In fact by definition we have
+oo +oo
K22 = 0ie@ = 3 les(2)E = 0
§=0 §=0
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and K (z,Z) = 0 cannot be achieved due to the compactness of 2. When 2 is not

compact, the first question that arises is when this reproducing kernel vanishes:

Conjecture 2.2 (Lu Qi-Keng). Let Q C C™ be a simply connected domain with

smooth boundary, then the Bergman kernel of ) is non-vanishing.

R. Greene and S. Krantz, in [25] and [26], proved that if © is C'* sufficiently
close to the ball in C" then the Bergman kernel does not vanish.

Given a domain 2 C C™ it is possible to define a hermitian metric on €2 using
the Bergman kernel K (-,-) of Q in the following way,

82

685(2) = g1 g 08K (2,2)

The metric ¢ is called the Bergman metric of §2.
If the domain has good symmetric properties, we are able to calculate the Berg-
man kernel explicitly, for example, consider the unit ball B* C C" and let 27 (j-
multi-index) be a complete orthogonal basis of A%(B™). With a bit of calculation
we gets

n! 1

K(z,w) = 0=z oy (2.1)

where z - = z;W; + - - - + 2,Wy,, (see [33, p.60] for details). In general, it can be
very difficult to find an explicit expression of the Bergman kernel (also to know if
it is different from zero) for a given domain. In the case of strictly pseudoconvex
domains, the Bergman kernel can be described by a celebrated formula due to C.
Fefferman (see [22| and Theorem 2.4 below). Recall the definition of a strictly

pseudoconvex domain:

Definition 2.3. A domain 2 C C" with smooth boundary and with p as defining

function (i.e. Q= {z € C"}|p(z,2) > 0) is a strictly pseudoconvex domain if

S (@) > 0 (2:2)



where w; are vectors of the boundary such that

o
sz

ZUj = 0
Fefferman’s results can be stated as follows:

Theorem 2.4 (Fefferman’s formula [22],[7]). Let Q C C" be a strictly pseudo-
convex domain with smooth boundary and let p : Q@ — R be the defining function
of Qie. Q= {z¢€ C"p(z) > 0}, with boundary 02 = {z € C"|p(z) = 0}. Then

the Bergman kernel in the diagonal of € is of the form

K(z,z) = pé()izrl + b(2) log p(2) (2.3)

where a and b are continuous functions on Q and a(z)jpn # 0. For the points
(z,w) € Q, where Q. = {|z — w| < €,dist(z,00) < €} for sufficiently small
€ > 0, the Bergman kernel can be written as

K(zw) = % +b(z, @) log plz, w) (2.4)

where a(z,w) b(z,w) and p(z,w) are extensions of a(z), b(z) and p(z) in (2.3)

such that

e p(z,w) is almost analytic in z and w in the sense that d,p(z, w) and Oyp(z, w)

vanish to infinite order ? at z = w,

o p(z,2) = p(2),
e the same holds for a(z,w) and b(z,w).

This theorem tells us that although we are not able to calculate explicitly the
Bergman kernel, we know that it can be represented in a elegant way. In particu-
lar, observe that the Bergman kernel of the n—dimensional ball is in Fefferman’s
form, without the logarithmic part (see eq. (2.1)). This characteristic is very

important and we give the following definition

%i.e. A function f:Q — R vanishes to infinite order if 9% f(z,w)|,_, = 0 for all k € N.
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Definition 2.5. The log—term of the Bergman kernel K(z,w) vanishes if the

function b in (2.4) is identically zero.

There are several questions related to the previous observation, the first one

is considered by the celebrated Ramadanov’s Conjecture.

Conjecture 2.6 (Ramadanov [47]). Let Q be a strictly pseudoconver bounded
domain in C™ with smooth boundary. If the log—term of the Bergman kernel is

zero then § is biholomorphically equivalent to the unit ball B C C™.

Observe that when €2 is a complete Reinhardt domain in C", Nakazawa, in
[46], proved that the conjecture holds true. Moreover, it was proved to be true
for any strictly pseudoconvex domain in C? in [23| and for rotationally invariant

domains in [28].

Remark 2.7. When we deal with complex manifolds instead of a complex do-
mains in C", we can still define the Bergman kernel and the Bergman metric.
Throughout this thesis, we will not make any use of these concept. The interested

reader is referred to [34].

2.2 Szegd kernel of domains in C”

In a similar way, we can define another reproducing kernel, (that is not invariant

by biholomorphism) called the Szegs kernel.

Let © C C" be a compact bounded domain with smooth boundary 99 (or
such that it fails to be smooth in a set of points of measure zero) and consider
the Hilbert space H?(02), that is the L?(9Q) closure of the set of all continuos
functions defined on €2 that are holomorphic on €2, restricted to 9. The space
H?(09) is called the Hardy space of 9. The space H?(0R2) is a Hilbert space
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with respect to the inner product

< f,9g>= [ fygdo,
o0

where do is the volume form on 9 induced by 2 C C". Consider in H?*(Q)
a complete orthonormal basis vy, ...,%;,... with respect to < -,- >, then the

Szeqd kernel of €2 is the smooth function

S(z) = 3 035 (w).

It is easy to prove that the Szegs kernel does not depend on the particular
orthonormal basis chosen. Moreover, given two points z, w € €2, the reproducing

property formula

holds for all f € H?*(0Q).
The analogue of the Fefferman’s formula holds true also for the Szeg6 kernel

(see [22] and [6] for references):

Theorem 2.8. Let Q) C C™ be a strictly pseudoconvex domain with smooth boun-
dary and let p : Q@ — R be the defining function of Q i.e. Q@ ={z € C"|p(z) > 0}
with boundary 02 = {z € C"|p(z) = 0} such that gz% # 0 on 0. Then the Szegd

kernel in the diagonal of € is of the form

S(z,7) = ;((j))n +b(2) log p(2) (2.5)

where a and b are continuous functions on Q and a(z)jpq # 0. For the points
(z,w) € Q, where Q. = {|z — w| < €,dist(z,00) < €} for sufficiently small

€ > 0, the Szegd kernel can be written as

S(z,w) = + b(z,w) log p(z,w) (2.6)

where a(z,w), b(z,w) and p(z,w) are extensions of a(z) b(z) and p(z) in (2.5)

such that
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e p(z,w) is almost analytic in z and w in the sense that 3.p(z,w) and Oyp(z, w)

vanish to infinite order at z = w,

o p(2,2) = pl2),
e the same holds for a(z,w) and b(z,w).
Analogously to the Bergman kernel case, we have the following definition:

Definition 2.9. The log—term of the Szegd kernel S(z,w) is said to vanish if the

function b in (2.6) is identically zero.

2.3 Szegd kernel of domains on manifolds

In this section we define the Szegd kernel of a domain €2 C M.

Let € be a relatively compact domain on a complex manifold M of dimension
n. Consider a contact form « on 9Q 3 (we are assuming that 9 is smooth, or
fails to be smooth in a set of points of measure zero) and consider the induced
volume form a A (da)" . Let H?(9, ) be the Hardy space obtained from the
closure in L?(99Q) of the restricted functions f that are holomorphic on Q. The

space H?(0Q, a) is a Hilbert space with respect to

< fof >= /8 IfFa A (da)

Pick in H?*(0%, ) an orthonormal basis vy, ...,%;,... with respect to < -,- >.

Then the Szegd kernel of €2 is the function:
oo JR—
S(z,w) =Y i (2)¢;(w).
j=0
It is easy to prove that the Szegs kernel does not depend on the particular
orthonormal basis chosen and as in the C" case, it is the reproducing kernel of

H?(09, ). If Q is a strictly pseudoconvex domain and p is its defining function,

then holds the Fefferman’s formula (2.5) (see [22] and [6]).

3Recall that a contact form o on 9 is a differential 1-form such that o A (da)™™* # 0.
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Capitolo 3

On a conjecture of Z. Lu and G.

Tian

In this chapter we introduce the Kempf distortion function for a compact manifold
M and its complete asymptotic expansion. Then we analyze the close relationship
between this expansion and the Szegé kernel of a particular domain constructed

on the line bundle L* of M.

3.1 The TYZ expansion on compact manifolds

Definition 3.1. Given a holomorphic line bundle m : L — M over a complex
manifold M we say that L is a positive line bundle if the first Chern class of L

is exactly the class of a Kdhler form w on M, that is ¢,(L) = [w].

Let (L, h) be a holomorphic line bundle on M, we can associate to h a (1,1)—

form on M that locally reads
Ric(h),, = —500log(h(o(x). o(x))).

for a trivializing section o : U — L\ {0}. In general w = Ric(h) is a closed form

which is also Kéhler when L is positive.
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Given a positive line bundle (L, h) with h a hermitian product on L, we say
that (L,h) is a polarization for (M,w) if Ric(h) = w and w is a Kéhler form.
Observe that the existence of such a hermitian product on L is guaranteed by

the positivity of L and is also equivalent to requiring that w is an integral form.

Remark 3.2. The Kéhler form wpg on CP" defined in (1.2) is exactly Ric(hpg)
where is hpg := h defined in (1.8).

Let L — M be a positive holomorphic line bundle over a compact Kéahler
manifold (M, w) of dimension n and let s = {sq,...,sx} be a basis of H*(M, L),
the space of global holomorphic sections of L. Compactness of M ensure that
dim H(M,L) = N + 1.

Let i, : M — CP" be the Kodaira map associated to the basis s (see, e.g.

[27]), namely i, : M — CP¥ for a trivializing section ¢ : U — L\ {0} is given

by:
So(x)
is(z) = : , x €M, (3.1)
sn ()
where s; = fjo, j = 0,...,N. Here the square bracket denotes the equivalence

class in CPY. Note that, if we consider another trivializing section, say 7:V —
L, then 0 = h -7 with h : U NV — C holomorphic function. For each section
s; € HY(L) we have s; = fjo = fjh-T = g;7, so g; = f; - h and represents the

same point i,(x) in CPY. This map is induced by

0, U — CV

z— (folz),..., fn(2)).

(3.2)

It is clear that if we consider another trivializing section, for example ¢, this
map is different from ¢, but it induces the same Kodaira map.

The well known Kodaira Theorem can be summarized as follows:
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Theorem 3.3 (Kodaira). A compact complex manifold M admits a positive line
bundle L — M if and only if there exists a sufficiently large m such that is is a

holomorphic embedding of M in Cpdim HO(L™)—1
Dimostrazione. For a complete proof we refer to [50, Ch.VI, p.234]. m

The holomorphic embedding ¢, of Theorem 3.3 is called Kodaira embedding.

Remark 3.4. The universal bundle O(—1) for CP" is a negative line bundle (it is
the dual of a positive line bundle O(1)). From Proposition 1.4 we know that the
universal bundle has no holomorphic sections and then it is not possible to apply
Theorem 3.3. On the contrary, if one consider the line bundle O(m) for CP" we

have that dim H°(O(m)) = (™7") and in this case the Kodaira embedding is

m+n)71

iy : CP" — cP("
(Zo,. .. Zn) v 2300 Zn . 730 - 7]
with jo + -+ -+ j, = m. This map is called the Veronese map and the pull back

of wpg on CP("")~! with the Veronese map is exactly the Fubini-Study form of

cp".

In general, given a complex manifold (M,w) with a polarization (L, h), the
pull back of the Fubini—Study form through the Kodaira embedding is not equal
to the form w = Ric(h), but it is in the same cohomology class as wpg, i.e.
i*(wps) ~ w. More precisely, if (L™, h,,) is the holomorphic line bundle over
the compact manifold (M, w) where h,,(-) = h(-)™ and Ric(h,,) = mw, define in

HY(L™) the hermitian product

< 8, t >p,= /Mhm(s(:t),t(x))—(x)

for s,t € HY(L™). Let dim H°(L™) = N,,+1 be the dimension of H°(L™) and let

s™ = (s, ..., s¥ ) be an orthonormal basis of H(L™) with respect to < -, >,.
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Then the Kempf distortion function is the smooth function T,,(x) € C°(M,R™)

defined by

Observe that in general

/ ()5 = Ny + 1.
M

n.

(3.4)

The function T, is known in the literature by different names, for examples in [48]

it’s called n—function by Rawnsley, and later renamed #—function in [8]. In [30]

Kempf called T, as distortion function and it is also called distortion function by

Ji |29] for abelian varieties and by Zhang in [63] for complex projective varieties.

It coincides with the diagonal of the Bergman kernel on L™ associated to h,, and

thus is also frequently called Bergman kernel in the literature (see, for example,

[42]).

The Kodaira embedding constructed using the orthonormal basis s™, (crf.

with (3.1) where the basis is not necessarily orthonormal) is given by

SN, ()

and it is called coherent states map. Moreover, we have that

iom(Wrs) = Mw + %85 log T,

(3.5)

as it can be easily seen recalling that the Kodaira embedding ¢s» is induced by
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@, asin (3.2) (with o : U — L\ {0} trivializing section) and thus locally we have
iim(wrs)y =500 T0g(fo” + - + | )
=mw — mw + %8510g(]f0|2 o N l)
=mw + %85 log(hm (0 (), 0(x))) + %85 log(| fol* + -+ + | fxl)
—m -+ £ 00 10g(hn(o(), (@) ol + -+ + |, )
=mw + %88 log T, ().

(3.6)

Here we are using the fact that in the trivializing open set U the Kempf distortion

function reads

(o (@), o (@) fol? + -+ | 2.

We say that mw is projectively induced via the coherent states map if and only

if 90T, is zero, i.e. if and only if T}, is constant, since M is compact.

Definition 3.5. Let (L, h) be a polarization of a Kdhler manifold (M,w) with
Ric(h) = w. We say that w is balanced if and only if the Kempf distortion function
T1 of M is constant.

Thanks to this definition, we can say that a compact manifold is projectively
induced via the coherent state map if and only if it is balanced.
Definition 3.6. A bundle (L,h) of a manifold (M,w) with Ric(h) = w is called
a reqular quantization if T,, is constant for all m > 0.

If (L,h) is a regular quantization of the compact Kéhler manifold (M,w) we

have the following result

Proposition 3.7. If (L, h) — (M, w) is a positive line bundle and (L, h) a reqular

quantization then
dim HO(L™)
Th(r) = ———=
() = 5D
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Dimostrazione. Consider the integral

that from (3.4) is equal to dim H°(L™). Since T,,(x) is constant for all m > 0,
then
dim HO(L™) — / T () = To(x) [ 2 = Ty (2) Vol (M)

that is the assertion. O

In the following example apply Prop. 3.7 to compute T,,(z) for CP".

Example 3.8. Consider (CP", wpg) with (O(m), h2g) (see Remark 3.2 and equa-
tion (1.8)). By Prop.1.4 we have dim H°(O(m)) = (™*"). Further Vol(CP") =

w?g _ 4™
fC]P“ o = o thus

In general, there are Kahler metrics that are not projectively induced via the
coherent state map, but when M is compact, Tian [52] and Ruan [51] proved that
any polarized metric (w = Ric(h)) is the C*°-limit of a sequence of normalized
and projectively induced K&hler metrics. Zelditch in [59] generalized Tian and

Ruan theorem proving the existence of a complete asymptotic expansion.
Theorem 3.9 (Zelditch’s). There is a complete asymptotic expansion
Tyu(x) ~ ag(z)m" + ay (x)m™ ' + ag(z)m™ 2. .. (3.7)

with a;(x) smooth and ag(x) = 1. Asymptotic expansion means that for m — 400

k

Tyule) = ay(x)m™

Jj=0

n—k—1
S C%mﬂl )

C’r‘
where Cy, is a constant depending on k and r, and on the Kdihler form w.

Moreover || - ||cr is the C™ norm in local coordinates.
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This asymptotic expansion is called Tian—Yau-Zelditch expansion or briefly
TYZ expansion.

Another important result is due to Zhigin Lu [40] who through Tian’s peak
method proved that each a; in (3.7) can be found with finitely many steps of

algebraic computations, more precisely

Theorem 3.10 (Lu). Each of the coefficients a; of the TYZ expansion is a
polynomial of the curvature and its covariant deriwatives at x of the metric g of

the manifold. In particular, the first three coefficients read
1
a; = §Scal,
1 1
as = §AScal + ﬂ(\RP — 4|Ric|* + 3Scal?),

1 1 1 1
as :§AASCal + ﬂdivdiv(R, Ric) — gdivdiv(Scal, Ric) + EA(|R|2 — 4|Ric|* 4 8Scal?)

1 1
+£Scal(SCa12 — 4|Ric]* + |R*) + ﬂ(O‘g(RiC) — Ric(R, R) — R(Ric, Ric)),
where R, Ric and Scal represent the curvature tensor, the Ricci curvature and

the scalar curvature of the metric of M, and A is the Laplacian of M.

See examples 3.11 and 3.12 below for the definition of each element in the
previous expressions of ai, as and as.

Observe that such coefficients can be computed also using a recursive formula
written in terms of Calabi’s diastasis function (see [36], [37] and references therein
for details). In the following examples, we calculate explicitly the first coefficients

of the TYZ expansion for (O(1), hrs) over (CP', wrg) and over (CP? wrg):

Example 3.11. Consider (CP', wrs) with polarization (O(1), hrg) such that
wrs = Ric(hrs), (see Remark 3.2). By (1.2) we have locally
i
WrS|U, = 585109(1 + 2%,

and in particular

> log(1 + |2[%) !
T = z =
A P ER (1+ |22’
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g =gt = (1 + 2P
The only Christoffel symbol for CP! is T'l, = gﬁ% that reads

L2z

r,=—-——.
1 1+ 2|2
The curvature tensor for a Kdhler manifold of dimension 1 s

_ Pq1 1709119911

Bt =552 79 5. 92

that in our case gives

The Ricci curvature tensor is

2

Ricy1 = —gliRﬁﬂ = _(1 + |2[2)2

and the scalar curvature as the trace of the Ricci curvature is
Scal = gﬁRiCﬁ = 2.

In order to compute a; and ay we also need |R|* and |Ric|* that must be the same

for all points of CP' so we calculate them in (1,z) = (1,0) that reads
|R|* = 4 and |Ric|* = 4,
while AScal = 0. Then we have
1
a; = §Scal =1,

i(\RP — 4|Ric|* + 3Scal®) = i(4 —16+12) =0

24 24 .
Example 3.12. Consider (CP? wrg) with (O(1), hrs) (see Remark 3.2). By

1
Qg = §AScal +

equation (1.2)) (note that in this case wps = Ric(hgs) is the Fubini-Study form

on CP?) we have locally wrs)y, = $00log(1 + |21]* + |22/?).

The matriz of the metric g associated to wpg reads
( 1 1+ |ZQ|2 —Z1%22
93) = 5 PP

—2122 1+ |21|2
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with inverse
= 14 |z
(97) = @+ 1)

2129

Z122

1+ |22‘2

n

In our notation the Christoffel symbols are F;k => 1.9

for CP?, the only symbols different from 0 are:

22 2 2 z1

1

1 _ 1 _ _ _
F12_F21__1+‘Z|2’ 12_F21__1+‘Z|2’ 11 — —

The curvature tensor is defined as

sg 8gk§
0z;

2

22 —

and in particular

279
1+ |22

Y

Y

— 82k Ozl
or
Rijkl_ = ngl_R;‘Sjk;?
s=1
where Rijk = —8;—;_’“. In CIP? the only not zero elements are the following
J
g 20BPR 2P
22122 1 =+ |29 2 22122 1 =+ |29 2
Rzt = Rz = (1 i_ |z|2|)4| )u Rito1 = Roni1 = (1 :_ |z|2|)4| )
21|22 + (1 + [21]*) (1 + |22])
Ri301 = Rot13 = Ros17 = Ri19s = —
1221 2112 2211 1122 1+ |2]2)?
27Z129(1 + |21 |2 22125(1 + |21 |?
Ri393 = Ry313 = 1(12:_ ’Z|2|)i’ )7 Ryia3 = Rozo1 = 1(125_ |z|2|)i| )
27222 22272
Rigis = -2 Ryjpi=—— 2.
(1+z2)* (1+|z?)*

The Ricci curvature tensor reads

Ricj; = — Z gklRijkl'

k=1

and the scalar curvature (i.e. the trace of the Ricci curvature) is

Scal = Z g’g Ric;; = 6.

i.j=1
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In order to compute a1, ay and az we also need

n

RP = Y 9?99 " RijiiRpars

i7j7k7l7p’q7r7s_]‘

n
and |Ric|? = E g ¢’ Ric;;Ricyy,
g k=1

which in CP? are constant and respectively equal to 12 and 18,

Z 4 0Scal 0Scal

D/ 1 2 —
| Sca| 02’7, (92] ’

ij=17

n
D12 _E ji . S
|D'Ric|* = E g% g”" Ric; p Rickr
ikl m=1

- ORic; s
where Ric;z), = =5+ — > oo, T8 Ricg,

n

12 _ PRT I PT >
|D'R|" = E 9?9719 " " Rizpi i Rpgrs,ts
4,5,k,0,p,q,7,8,t=1
where R = O _ S T2 R — Son T% Ry that in CP? are all equal
ijkl,p — dzp s=1 " ip* skl s=1" kp*ligsl q

to 0. Recall that the Laplacian is defined as A =37 >0, g 82?82j.

We need to compute also

- 09?Scal

2
divdiv(Scal, Ric) = 2| D’'Scal|* + Z RIC”a %, + ScalAScal,
2,j=1
0?Scal o |2 - ip N .
divdiv(R, Ric) Z RC”W—2|D Ric|*+ Z g Rpgkqg kgl RICTJ wi—R(Ric, Ric)—o3(Ric),
i,j=1 4,4,k l,p,q,r=1

which for CP? are divdiv(Scal, Ric) = 0 and divdiv(R, Ric) = 0.

Finally

2
Ric(R.R)= > g"Rictg" Ruipsg™ 9" Reigug™

i7j7k7l7p’q7,’n7s7t7u:1

2
R(Ric, Ric) = Z 9P Ryikeg™ ¢" Ric,ig* Ricys,

1,3,k,l,p,q,m,s=1
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o3(Ric) = Z gi‘_’RicajngRicb,;ngRiCCg,
a,b,c,i,j,k=1
which in CP? are Ric(R, R) = 36, R(Ric, Ric) = —54 e o3(Ric) = 54.
Concludingly, the coefficients are
ag = 1,
1
a; = EScal =3,
1 1
as = §AScal + ﬁ(\RP — 4|Ric|* + 3Scal®) = 2,
1 1 1
as :§AAScal + ﬂdivdiv(R, Ric) — adivdiv(Scal, Ric)+
1 1
—|—4—8A(|R|2 — 4|Ric|? + 8Scal?) + 4—880a1(Sca12 — 4|Ric|* + |R[*)

+ 1 (03 (Ric) - Rie(R. R) — R(Ric, Ric))

24

1 1 —24 36
= —T72+12) + —(54 — 4)=—+—-=0
486(36 2+ )+24(5 36 4 54) s 1 0

Observe that in these two examples, we find that the coefficient a,; of the
TYZ expansion is zero, where n is the dimension of the complex projective space.
We will illustrate in the following that this is not a particular case, but can be
generalized to any compact Kéhler manifold M that admits a polarization and
for which the log—term of the disk bundle of the dual of the positive line bundle
is zero.

Before proving this result, we introduce the notion of disk bundle and its

relationship with the Kempf distortion function of the manifold M.

3.1.1 Disk bundle

In this section, we want to define the Szegd kernel for a particular domain of the
holomorphic vector bundle on the manifold M.

Let (L*, h*) be the dual bundle of (L, h) over (M,w) such that Ric(h*) = —w.
A disk bundle is a subset D, = {v € L*|h*(v,v) < 1} of L* and X}, = 9D, =

{v € L*|h*(v,v) = 1} is a unit circle bundle.
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If the line bundle (L, k) is also a polarization of (M,w) (i.e Ric(h) = w with

w Kéhler) we have the following

Theorem 3.13. Let Dy, C L* be the disk bundle of (L*,h*), dual bundle of a

polarization (L,h) of (M,w). Then Dy, is a strictly pseudoconvex domain.

Dimostrazione. Clearly the defining function of Dy, is p(v,v) = 1 — h*(v,v) =
1 — h™t(v,v), but if v is a vector on (7*)71(21,...,2,) then it is of the form

(1= la*h™"(z,2)).

v = (017... Un+1) = (21,... zn,oz) (a € C*)7 SO p( )
#=—((w;, B), (g, B)) > 0 holds for
) =

From Definition 2.3 we need to prove that 5

boundary points v' = (wy, ..., w,, 3) such that —ﬂ(w B) = 0. Recall that for a

trivializing section o : U — L* \ 0 we have
Ric(h)jy =w = %85 logh ' (0(2),0(2))

that is positive defined so

21,—1 1 27 1 1 1
0>8510gh_1:h2(8h -1 Oh™ Oh” >:h<8h , Oh On” )

02;0Z . 0z; 0z 8zj8zk 8zj 0z,
(3.8)
The quantity %%((wj, B), (wy, B)) locally reads
62 82 _
< > 82,07, 92,06 w
w 6 92, 92 -~ 9
0adzy, dada ﬁ
that is
2 92h—1 Oh~1! —
<w 5) —lof oem % v
daahzkl _h_l’ B
Now expanding
2 92p1 oh~! 7
(w 5) ~lof gz am o — a%57h
A 7
Zk
we need to evaluate if
0?%p _ 5 O2h~1 oh=t 6h !
_— , 0 = _ W — ———; —pt
(3.9)
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is positive. Using the condition on the boundary points we have locally

Ip op , 5 Oh™!
(‘92] wi+—F=0 = —|qf o,

8 U)j — O_éh_lﬁ = 0,

which implies the two relations

Oh~t B
Oéa—zjw]‘ + h 1B = U,
—1
o’za}i Wy +h71B =
ﬁzk
Thus .
oh~
B =—a 57 wj,
o Jl (3.10)
ﬂ Ozk
and multiplying the two equations we have
oh~t on!
2 _
= W ——Wk. 3.11
218 = Jaf? Gy G (3.11)
Now using both of (3.10) in (3.9) we get that
9?p _ , O*h~! oh=t 8h !
7 . I S W — ——— 0 h=118]?
avja@k((wmﬁ)a(wkaﬁ)) |O_/| azjazkw]wk‘ « azj U}]B wkﬁ |6|
2h—1 - B B B
— Py AP W—h g7
J
2 007! 1|32
= — 0 h_
(3.12)
and multiplying by h|8|? and its inverse and using (3.11)
0?ht _
h<_h71 |O"2 |5’2 —_wju_)k +h™? |5‘4) 18 ?
2 -1 ~ 8h 1 ah 1
T S Vit + P BRI (313)
j
0?h~! oh~t  ont
_ 2( _ T i — ]
=l ( D205 1 T i, “”“)’

which is positive, because equation (3.8) is true and (L,h) is a positive line

bundle. O
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3.1.2 Szegé kernel of the disk bundle

Now we can define the Szegs kernel of the disk bundle on a manifold (M, w) and
by Theorem 3.13 we ensure that this kernel is of the form given by Fefferman’s
formula in (2.5), (see also [6]).

Consider the separable Hilbert space H?(X},) defined as the closure in L?(X},)
of the set given by the restrictions to X} of the continuous functions in D), that
are holomorphic in Dy, (see [6] and [59] for references). Let du = o A (da)™ be
the natural measure on X, where o = —idp|x, = z@p‘ x, is the contact form on
X, associated to the strictly pseudoconvex domain Dy, (observe that D, C L*
is a domain of dimension n + 1). Let 1, ...,%;,... be an orthonormal basis of

H?(X},) with respect to

< >= /X [

Then on the diagonal of D;, x Dy, the Szegs kernel of D), is the function

S(v,v) = Z%(U)?/Jj(v)-

From Theorem 3.13 we know that the disk bundle D, C L* is a strictly pseudo-
convex domain with smooth boundary and by Theorem 2.8, Fefferman’s formula
(2.5) holds for Dy, i.e. there exist functions a and b continuous on Dj, and with

a # 0 on X}, such that:

Sv) = p(cqbf)?“ + b(v) log p(v), (3.14)

where n + 1 is the dimension of D, C L* and we write S(v) := S(v, v).

We have seen that the study of the log—term of the Bergman kernel is related
to an important conjecture (for example Ramadanov’s Conjecture 2.6). A cor-
responding conjecture for the Szegs kernel of the disk bundle was formulated by
M. Englis and G. Zhang in [17], inspired by the paper [41] of G. Tian and Z. Lu.

More precisely, they asked if the vanishing of the log-term of the Szegd kernel
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of the disk bundle of a simply connected Kéhler manifold implies that the circle
bundle (X}, in our notation) is diffeomorphic to the sphere or at least locally CR
equivalent to the sphere. In [17]|, Englis and Zhang showed with a counterexam-
ple that the conjecture is false for both the diffeomorphic and the CR equivalent
case. In the first case, they considered the tensor power of the tautological bundle
O(—1) over the complex projective space, namely the line bundle L* = O(—m)
over CP": in fact in this case the Szegd kernel of the disk bundle Dy, C O(—m)
has no log-term (cfr. (3.21) below), but Xj,,, being the lens space $*"*!/Z,,,
is not diffeomorphic to $?"*! for m > 1, but it is CR equivalent to $*"*! (see
[17] for details). For the locally CR equivalence case, they considered compact
symmetric spaces of higher rank whose disk bundles have vanishing log—terms,
but they are not locally spherical at any point (nor diffeomorphic to $***1).

In a recent paper [4], C. Arezzo, A. Loi and F. Zuddas generalized these results
by showing that the disk bundles over homogeneous Hodge manifolds form an in-
finite family of strictly pseudoconvex domains (also smoothly bounded) for which
the log-term vanishes but are not locally CR equivalent to the sphere.

Now we want to show the reason for considering this particular Szegd kernel
and the relationship with the Kempf distortion function. Consider the disk bundle
Dy, of the dual (L*, h*) of a positive hermitian line bundle (L, h) and let H?(X})
be the Hardy space of holomorphic functions on Dj. It is possible to prove that
the volume form dy can be written as du = df A 7*(w™), where 7 : L* — M, 7*
is the pull back through 7 and df is the canonical $'-invariant volume form on
X, (see [59, p.6] for more details). By the $'-action, the space H?(9D) splits
into several parts with finite dimension. First of all, there exists a function

A HYL™) — H* (X))
(3.15)
s 8(v) = v¥"s(x)
where z = m(v) and clearly if A € C* we have §(Av) = N"0®"s(x) = N"5(v).
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Let H2(X},) = {f € H*X}) | f(Av) = X" f(v)}. Then s € HZ(X}) and the

restriction of (3.15) to H2 (X}) becomes an isometry with respect to

/ )0 = [ Bl )

M n!’

wn

Thanks to the isometry, if M is compact, the space H?2 (X},) has finite dimension,
in particular dim HZ (X}) = dim H°(L™) = N,, + 1. Moreover, to an orthonor-
mal basis s = s{',...,s% of H?(L™) there corresponds an orthonormal basis
As™ =87, ..., 8% of H2 (Xy). From the Fourier decomposition of H*(X,) into

irreducible factors, we have
+oo
H*(X,) = €D H2(Xa)
m=0
by the $!-action on Xj,.
We need the following lemma

Lemma 3.14. Let s,t € H(L™). Then

s(v)i(v) = (h*(v,0))" hun(5(2), t())
where x = 7(v).

Dimostrazione. If v € L* then v = ac*(z) where ¢ : M — L* is a global
holomorphic frame of HY(L*). A section on H°(L™) can be written as s(z) =
fmo(z)™, t(x) = fo(x)™ where 0 : M — L is a global holomorphic frame of

HO(L).

The product 3(v)t(v) reads

5()i(v) =3(ac*(@)i(ac"(x)) = |al*™5(0* (2))E(0" (x))
Hlalmo (2)ms(x) o () ()
=|af*" " (x) "o () o ()" T o (2)™
=[a 2" TR (0" (), 0 (2)) "B (x), o ()"
=(h" (0, 0))" hn(5(x), 1(x)),
as wished. O
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If one considers the orthogonal projections of the Szegé kernel onto each
H? (X},) we have that the Szegs kernel for H%(X},) is the sum of all projections

of the Szeg6 kernels onto H2 (X},), that is

+oo 400 Npm
S) =" Sn(v)=>_> &Mv)ir(v) (3.16)
m=0 m=0 j=0
where §',..., 8% is an orthonormal basis for H2(X}), © = n(v), v € L* and

S, (v) is the projection on of S(v) on H2. Using Lemma 3.14 we have

S =SS T = 33 (0, 0) hn(s(2), 57(2))
m=0 j=0 m=0 j=0 (317)

+oo
=Y (1" (v,0)"Tu(2),
m=0
and comparing with (3.16) gives
S = (b (v,v))" T (), (3.18)
where T, (x) is the Kempf distortion function on M defined in (4.2).

Remark 3.15. Observe that from (3.18) it follows that if the Kempf distortion
function T, of M admits an asymptotic expansion as in (3.7) and if for example

h*(v,v) < 1 then also the projection S,,(z) does.

If (L,h) is a regular quantization for (M,w) (i.e for all m > 0 the function

T, (z) is constant) then we have already seen (Prop. 3.7) that

_ dim H(L™)
T

In this case the Szegs kernel becomes

400 . 0/7m
S(w) = Z(h*(v,v))m%. (3.19)

m=0

So we are ready to prove the following (see [4])

Theorem 3.16 (C. Arezzo, A. Loi, F. Zuddas). Let (L, h) be a regular quanti-
zation and let D, = {v € L* | p(v,v) =1 — h*(v,v) > 0} C L* be the disk bundle

of M. Then the log—term of the Szeqd kernel of Dy, is zero.
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Dimostrazione. First of all, observe that it is possible to extend h*(v,v) to
h*(v,v") for all v, € D) x D, except for a subset of D), x D) of measu-
re zero and h*(v,v") is well defined by the Cauchy-Schwarz inequality. From
the Riemann-Roch Theorem, for m > 1 dim H°(L™) is a monic polynomial

m"® + a,_1m" "t +---+a;m+ ay. Thus
- k
dim H°(L™) = (m i )dk
m
k=0
with d,, = n!. Substituting in (3.19), the Szegé kernel of D), reads

/ o * —/\\m Z:O mr—rtk dk 1 - — * Sryym [T k
S,7) =3 (0 (v,)) ZVOI((M)) :Vol(M)gde(h (v,7)) ( . >

The last sum gives

<% o (M E 1
>t (" ) = e (320)

m=0
where we are using that

f om (m + k:) B 1

— m ) (1—z)k
Recall that the defining function of Dy, is p(v,v) = (1 — h*(v,v)), with almost
analytic extension p(v,?") = (1 — h*(v, ")) which substituted in (3.20) reads

n

N 1 1
S0 ) = i) 2% oo

Now writing p for p(v,?’), a direct computation shows:

1 d d
S0 (48

Y

VolM) \ p = p? pr

nl | m (dop™ + -+ - + dpyp+n!)
o pn—l—l

which compared with Fefferman’s formula (2.6) yields

N
)= Vol (M)

a(v,v (dop(v,0)" + -+ - + dp_1p(v,0') + nl)

and clearly b(v,v") = 0. O
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Observe that if M = CP"™ and L™ = O(m), from Theorem 1.4 we have
dim H°(L™) = (™'"). Recalling that Vol(CP") = 4% we find that the Szeg6
kernel of the disk bundle Dy, of CP" is

S(v, @) = VO%(M) 3 (mnt ”) (h* (v, )™ = %pnlﬂ. (3.21)

3.2 The conjecture of Zhiqin Lu and Gang Tian

In [41] Z. Lu and G.Tian analyzed what happens to the log-term of the Szegs
kernel of the disk bundle D, when one varies the metric A by preserving the
corresponding cohomology class.

In particular they conjectured the following

Conjecture 3.17 (Z.Lu-G.Tian). Let w € [wrg| be a Kdihler metric on CP"
in the same cohomology class as the Fubini—Study metric wps. Let (L, h) be the
hyperplane bundle whose curvature is w, (i.e. Ric(h) = w). If the log—term of
the Szeqgd kernel of the unit disk bundle D, C L* wvanishes, then there is an

automorphism ¢ : CP" — CP" such that ¢*w = wpg.

Moreover, in the same paper, they proved the local version of the conjecture,
in fact the conjecture above holds true if the hermitian metric h is close to hgrg

in the following sense

Theorem 3.18 (Z. Lu-G. Tian). Let L be the hyperplane bundle of CP" and let
h be a hermitian metric on L such that Ric(h) = w. Assume that there exists

e > 0 (depending only on n) for which

If the log—term of the Szegd kernel of the unit disk bundle Dy, vanishes, then there

h
L
hrs

<e (3.22)

02n+4

exists an automorphism ¢ of CP" such that ¢*(w) = wpg.
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The main result obtained by Z. Lu and G. Tian in [41] is the close relationship
between the vanishing of the log-term of the Szegé kernel constructed on the disk
bundle D, C L* and the vanishing of the coefficients a; of the TYZ expansion of
(M,w) for k > n when M is compact.

More precisely, they proved the following theorem

Theorem 3.19 (Z. Lu, G.Tian). Let (L,h) be a positive line bundle over a
complex compact manifold (M,w) of dimension n such that Ric(h) = w. If the
log-term of the Szeqd kernel of Dy, C L* vanishes then the coefficients ay of the

TYZ expansion in (3.7) vanish for k > n.

For completeness we report here the proof that can be found in [41].

Dimostrazione. Let v,v" € L* be two points whose local coordinates are v = (z, «)
and v' = (w, ), respectively (in the same trivializing open set).

We consider h(z,w) as the almost analytic expansion of h(z) in z and w in
the sense that 0.h(z,w) and 9,h(z,w) vanish to infinite order at z = w and

h(z) = h(z, z). Define a global function (v, v") = —ip(v,v’) with

Y(v,v) =Y(z,a,w, ) = —i (1 — h(z,w) 'af).

Moreover, if v,0v" € X}, C L*, we can write

where 6,6 are real numbers. Thus on X}, we have

D(v,v') = Pz, 0w, f) = —i (1 - \/h(z)\/h(w)h(z,w)’lei(g’el)) . (3.23)

and by Fefferman’s formula (2.6) (see also |7])

a(v,v')

S S

+ b(v,v") log p(v,v"). (3.24)
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In particular, from |59] and eq.(2.3) in [41], we know that the projection of S(v, v')

onto HZ (X}) is related to S(v,v’) by
Sp(v,0') = / S(v,rgv))e™do, (3.25)
g1

where 19 : X}, — X}, is given by rgv = 19(2, ) = (2, @) = (2, \/h(2)e*?). If the
log—term of the Szegd kernel vanishes, i.e. b =0 in (3.24), and passing to points

on the diagonal of X}, x X}, we have

i"a(v,rev) 4
= ———e"dp
Su(v0) = | e as

where p(v,rgv) = (v, rev) = —i (1 — \/h(z)\/h(z)h(z,w)_lei(e_%)). We need
to prove that the above expression expands to a polynomial in the variable m.

For that, take a real number ¢ > 1 and consider

, i"a(v, rev)
Sm(v.v) =lim | Sy

e™?dp.
Now, integrating by parts n times, we get

Spm(v,v) = lim ¢(v, 0, m)

im@
——————¢"""df
c—1 g1 (C — e—z@)n—‘,—le ’
where (v, 8, m) is a polynomial in the variable m and the coefficients are smooth
functions in v and 6. By the Riemann-Lebesgue Lemma, we know that the above

expression has the same asymptotic expansion as

(0, 0) = C(v,0,m) lim L mogy

=1 Jg1 (¢ — e=0)nt1

In other words, there is a polynomial P(x, m) of degree < m such that
Sm(v,v) ~ P(v,m),

in the sense that

C
|Sm(U,U) - P('Uam)| < W

for any k. From Remark 3.15 we can compare this expansion of §,, with the

TYZ expansion of T, in (3.7). In particular, P(v,m) being of degree less than
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or equal to m implies that the coefficients a; with 7 > n of the TYZ expansion

are all equal to zero. O

Following this idea, in [54] the author showed the validity of the Lu-Tian’s
Conjecture for a family of Kéhler forms in CIP? cohomologous to 2wgg and which
do not satisfy condition (3.22).

Consider for each a > 0, the one parameter family of Kéhler forms on CP? given
by

Wy = (I)*WFs, (326)
where a = |a|?, a € C* and ® is the holomorphic Veronese-type embedding given
by

CcP? 25 CP°
(2o, Z1, Zo) V— |23, 23, Z3, aZyZv, Zo Za, 2y Zs),

where Zy, Z,, Z, are homogeneous coordinates on CIP?. (Note that we are denoting

by the same symbol the Fubini-Study form of CP? and of CP?).

So the author has proved the following

Theorem 3.20. Let w, be as above and let h, be the hermitian product on O(1) —
CP? such that Ric(hy) = w,. If the log—term of the Szeqd kernel of Dy, vanishes,

then there is an automorphism ¢ : CP? — CP? such that ¢*w, = wpg.

Dimostrazione. Consider standard affine coordinates in CP? in the chart U, =

{Zy # 0}. Then the Kéhler form w, in (3.29) is given in these coordinates by
i
wa = 500 1log(1 + |21 ]* + [z2l* + alz1* + alze|* + alz1 Pz

with a = |a|?.
Suppose that the log—term of the Szegs kernel of
Dy, ={veL"|p,v):=1-h(v,v) >0} C L7,
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with L* = O(—1) vanishes. Then, by Theorem 3.19, the coefficients a; = 0
for £ > 2. In particular a3 = 0, which combined with Theorem 3.10 gives the
following equation
as :éAAScal + idwdw(}z, Ric) — %divdiv(ScalRic) + %A(\RF — 4|Ric|* 4 8Scal?)
+%Scal(Sca12 — 4[Ric]® + |R|?) + %(ag(RiC) — Ric(R, R) — R(Ric, Ric)) = 0.

A long but straightforward computation obtained also with the use of a computer

program, gives that the function as evaluated at the origin reads

13a® — 30a® — 67a* + 278a® + 904a* — 704a — 2592)

007 - (3.7
1(30° — 24a* — 115a° + 48a2 + 1000a + 1296)(a — 2) ‘
6 ab

while evaluating ag at the point (1,1) reads

128139a® — 526469a” — 57190a° + 6561820a° + 2946788a*+
3 (1+a)
—22781096a> — 16867840a” + 19757632a + 16922624
(a® +8a + 16)*(a + 4)
1(28139a™ — 470191a% — 997572a° + 45666764 + 1208014043
T3 (1+a)
+1379184a% — 141094724 — 8461312)(a — 2)
(a? + 8a + 16)*(a + 4)

asz(1,1) = —

(3.28)
With a bit of calculation and using Descartes’ rule of signs and the intermediate
value theorem, we found that the positive zeros of (3.27) are 1, x9, v3 with 1 = 2,
Ty € ] %, % [ and z3 € |11, 12[ while the positive solutions of (3.28) are y1, y2, y3, Ys
with y; = 2, yo € |1,2[, y3 € }%, %[ and y, € |18,19]. So we can conclude that

the only value of a for which the coefficient a3 is zero for all points is @ = 2, which

is the only Fubini-Study metric of the family. ]

Let us point out that the proof of Theorem 3.20 cannot be achieved by Lu-
Tian’s Theorem, since h, doesn’t satisfy condition (3.22). Indeed, let oy, : Uy —

L\ {0} be the trivializing section given by

U\Uo([ZO> Zy, ZQ]) = ([17 21 22]7 (17 215 ZZ)) )
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with z; = é—; and zo = % Then the local expression of the hermitian metric h,

and of the hermitian metric h%4 such that Ric(h%g) = 2wpg are given by

1

(o (120 21 Zal)s o120, 200 2a)) = (o o i T e oy aleal? + al Pa)

and

1
(1+ |21 + [22[*)*

h%S<U\U0([Z0a Zy, ZQ])? U|U0<[Z07 A ZZ])) =

respectively. If condition (3.22) were satisfied then the quantity

H L+ |2 + |z2|* + 2]z + 2[22 + 2|21 [*] 22[*)

-1
(14 [21]* + [z2]* + alz1? + al22* + a2 *[22[?) H

would be bounded. By passing to polar coordinates (21, z2) = p(cosv,sin?)) one
gets

_ _ (2 — a)[p(cos 9 + sin¥) + p? cos ¥ sin V]
lim lim : .
cosdsin9——L p=+oo || (1 4 p? 4 a[p(cos ¥ + sin ) + p? cos 1 sin ?]

H N +oo’

which yields the desired contradiction.

One could ask if a similar result holds for a more general family of forms on
CP". To answer this question, consider the three parameter family of K&ahler

forms on CP? given by

Wabe = \II*WFS (329)

where a = |a]?,a € C*, b = |B]%,8 € C, ¢ = |7|>,7v € C* and ¥ is the

holomorphic Veronese-type embedding given by

cp? % op?

[207 Z1, ZQ] — [Zg7 Z127 2227 CVAVANCYAVAS ’72122]7

where Zy, Z1, Zy are homogeneous coordinates on CP?. (Also in this case we
are denoting by the same symbol the Fubini-Study form of CP? and of CIP%).

Replacing the proof of Theorem 3.20 we find the following expressions for the
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coefficient a3 evaluated in the points (0,0) and (0, 1)
a3(0,0) =(a*b® — 136ab* + a®b*)c®+
+(—4a°b" + 4a°b® — 376a°b"* + 66°b" + 216a*b* + 64’0 + 4a°b° — 376a*b” — 4a*b°)c* +
+(8a%b® + 408a°b° — 80a"b® + 8a°b* — 240a®b® — 680ab® + 3a°b® — 104D — 10a°b* +
+3a°b°% — 680a°b + 408a°b® — 6a°b® — 6a°0°)c+
—2208a°® + 192a*b* — 160a'0° — 384a"b* 4 1176a°b* — 160a°b* — 384a°b" — 72a°0°+
—72a°b® 4+ 12a°0° + 96ab® + 96a°b + 2a"b* — 2208b° + 1176a°b° + 12a°b° + 2a0".
and
a3(0,1) =4bc” + (56a + 48ab + 216b° — 966" — 808b + 340b° — 4ab”)c®+
+(576 + a’b® — 40a*b* — 10544ab + 384b + 92a°b — 6512a — 600adb” + 184a* + 1180ab”+
+1428b%a + 48b°)c’ +
+(—48b" + 304a” + 64964°b° — 8b°a — 724D + 21116a°b° — 49600b + 116a°b — 64ab”+
—20960b° — 2976b> — 1670a°b" + 8a’b® 4 800ab — 38400 + 1696a° + 5896a°b + 1792a)c" +
+(296a* — 4704a°b* + 992a°b 4 24a*b® — 5120 + 40064a — 1536b> — 64b° — 160a°b°+
+2816a° — 28968a°b + 9a*b® + 112a*b + 30544b°a — 13664a> + 98080ab® — 42284°b* +
+116672ab — 70a*b* — 4554a°b® + 2832ab* — 5376b)c*+
+(294912 4 2752a° + 1552a* — 949764 + 168a” + 8384b* + 87168b° + 321792b — 12800a+
+509440b + 21120a*b* 4+ +80a°b + 5792a*b — 12288ab + 6506a*b> — 1670a*b* — 172480a°b+
+960a°b + 32a°b° + 128b°a — 40a°b* — 141632a°b* — 144a°b° — 2688ab” — 59856a°b° +
—10144a%b" + 2a°b*) P+
+(12288 + 39936a” + 1664a* — 12800a” — 6592a° + 1536b" + 9216b> — 74752a + 18432b+
—6a°b® — 64a’b® — 10608a°b + 704a*b — 314368ab — 12288a°b + 116608a>b + 30560a°b°+
—161024b%a + 1176a°b* — 2688a°b* + 98112a°b* + 40a°b — 359424ab* + 1284°b° — 600a°b" +
+1432a°b” + 2832a°b"* — 25280ab" 4 48a°)c+
—565248 — 5120a° — 38528a" + 294912a° + 512a° — 35328b" — 282624b° — 847872b° +
+12288a — 1130496b + 340a°b” — 20992a*b* + 320a°b — 49728a"b + 18432ab — 2976a"b* +
—48a*b* + 509440a°b — 5376a°b — 64a°b* + 1536b°a + 32a°b® + 321792a°b° — 96a°b" +
—1536a°b” + 4a"b — 808a°b + 216a°b® + 9216ab® + 87168a°b> + 8384a°b*.
and a similar (but more complicated) polynomial of degree 13 in a, b and ¢ for

ag(]_, 1)
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Capitolo 4

Szegb kernel on Cartan—Hartogs

domains

We have already seen that Z. Lu and G. Tian proved in [41] Theorem 3.19 which
states that if the Szegd kernel of the disk bundle of a compact complex manifold
(M,w) has no log-term, then the coefficients ay, of the TYZ expansion vanish for
k > n. Observe that an analogous result, with a completely similar proof, can be

stated also for the non—compact case:

Theorem 4.1. Let X, be the unit circle bundle of L* over M (not necessarily
compact). If the function b of the Szeqd kernel of Xy, vanishes, then the coefficients

ay of TYZ expansion vanish for k > n.

It is natural to ask if the converse of Theorem 3.19 holds true. In fact, Z. Lu

has conjectured (private communication) the following:

Conjecture 4.2 (Lu). Let (L, h) be a positive line bundle over a compact complex
manifold (M,w) of dimension n, such that Ric(h) = w. If the coefficients ay of
TYZ expansion in (3.7) vanish for all k > n, then the log—term of the Szeqd

kernel of the disk bundle over M wvanishes.
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In [38| we studied the analogue of this conjecture for the non—compact case, in

particular for an important family of manifolds called Cartan-Hartogs domains.

4.1 The TYZ expansion on non-compact manifolds.

In this section we define the Kempf distortion function for a non—compact ma-
nifold M. Analogously to the compact case, we need the Kéhler form w to be
integral, i.e. we require the existence of a linear holomorphic line bundle (L, h)
which polarizes (M,w). For the sake of simplicity, we will assume that M is
contractible, a condition which is satisfied by the Cartan-Hartogs domains we
are dealing with.

Consider the separable Hilbert space H,, consisting of L™’s global holomor-

phic sections bounded with respect to the hermitian product h,, = h™

M, — {s € Hol(M) | /Mhm(s(x),s(x))w—n < oo} | (4.1)

n!

Observe that if M is compact, the space H,, coincides with H°(L™) and the

Kempf distortion function is defined in Section 3.1. Consider the inner product

< 5t = / hun(5(2), ) ()
M n!
for s,t € Hp,. If H, # {0}, choose an orthonormal basis s™ = (si',...,s¥ )

(dim#H,, = N,, +1 < o0) of H,, with respect to h,, and define the Kempf

distortion function as

N

Ton() = > (] (), 57" (x) (4.2)

=0
where T, (x) € C*(M,R*). In this context, unlike in the compact case, we do not
have a general theorem which ensure the existence of a TYZ expansion for 7,,. A
partial result in this direction was given by M. Engli§ in [14], where he showed that

if M is a strictly pseudoconvex bounded domain in C" with real analytic boundary
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and M is a bounded symmetric domain equipped with its Bergman metric, then

the Kempf distortion function 7T,,(z) admits the asymptotic expansion
+o0 4
To(e) ~ 3 ay(e)m™ (13
§=0

where a;(x) are smooth coefficients and ag(xz) = 1. Equation (4.3) means that

for every integer [, r and every compact H C M

OZ,T,H

- ml+1

Tu(2) = ) aj(aym™

J=0

cr

where Cp, g > 0 is a constant depending on [/, r and H and on the Kéhler form
w. Moreover, ||+ ||cr is the C" norm in local coordinates.

Later, in [16] Englis also computed the first three coefficients of the TYZ
expansion for these manifolds. A different approach to that problem was taken
by X. Ma and G. Marinescu in [42, Th.6.1.1], where they proved the existence of
a TYZ expansion of T, under some assumptions on the curvature of the bundles

considered. More precisely, they proved the following:

Theorem 4.3 (X. Ma-G. Marinescu). Let (M,g,w = Ric(h)) be a complete
Kdhler manifold and for m > 0, h,, = h™ the hermitian metric defined on L™.
Then the Kempf distortion function T,,(x) admits an asymptotic expansion in m

with coefficients given by (4.3) if there exists ¢ > 0 such that
iR > —cw (4.4)
where R denotes the curvature of the connection on det(T™0 M) induced by g.

Remark 4.4. Observe that Theorem 6.1.1 in [42] is stated in a more general
setting. In particular, for the existence of the TYZ expansion of the Kempf
distortion function of a manifold (M, w), Ma and Marinescu required the existence

of e > 0 and C > 0 such that

iR" > ew, i(R™ + R”) > —Cwldp, |0w|;rx <C.
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On the other hand, the last condition is trivially satisfied if (M,w) is Kéahler.
Moreover, in our case, the bundle £ = M x C is the trivial line bundle endowed
with the flat metric hg, so R = 0. Finally, using that iRY = 2w (since the
metric in L is h, which induces the Kéhler form w) the first condition is always

satisfied if 0 < € < 2 and there remains only (4.4).

4.2 Hartogs domains

Let F : [0,29) — (0,+00] be a non-increasing lower semicontinuous function
from [0,z0) C R (29 < 400) to the positive real numbers. The domain Dp given
by

Dp = {(Zl, ZQ) € C? ’ ’21’2 < Zo, ‘22‘2 < F(|21|2)}
is called the Hartogs domain corresponding to the function F'. The lower semi-

continuity of F' is needed to have that D is an open set. If we assume that F' is

C? in [0, zg), we can define a real 2-form wr by

i
wr = —001o )
S Rl o (PR ST

In particular if (and only if) (%F/)/ < 0 for all z € [0,2) then wp is Kéhler,
where the prime denotes the derivative with respect to x. For more details on
this domains see for example [15]. Now we compute the Szegd kernel of the

Hartogs domain Dy using the volume form induced by the contact form a on

0Dp.
Example 4.5. Let Dr be the Hartogs domain defined by
Dr = {(z1,2) € C*, F(|z1|*) — |22|* > 0},

and consider the boundary 0Dp = {(z1,20) € C?, F(|z1]*) — |22]* = 0}. By

definition, the contact form « on ODp is given by o = —idpjsp,, where p =
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F(]21]*) = |22/*> > 0 is the defining function of Dy. Thus, we get:
a = —i(F'zZidz) — Zodzy).
Furthermore, by da = (0 4 0)a = —iddp, we get
do = —i[(F"|21)* + F')dz A dz — dzo A dZ).
The volume form a A da reads
aAda = F'zidz Adzg Ndzs + (F' + F"|21|*)Zadze A dzy A dz,
which in polar coordinates, restricted to dDp, becomes

rF’
Ada = —
a A da (F

/
) F2d7”/\d01/\d92.

For convenience in further computation, we set

e (F?) 1= /O P E()° (- (r]];)) dt.

An orthogonal basis of the Hardy space of D, is given by the monomials {z{ 25}

with j,k € IN (see [15, Sec. 3]) and norm

. . ) F/ /
kP = [ edPanda= [ EE (_ ( ))deelAde2
oDy oDp F

zo ) '\’ .
:471'2/ rk [it? (— (%) ) dr = e, (FIT2).
0

From [15, eq. (3.30), p.445|, there exists an infinite subset £ which contains all

(4.5)

the integers greater or equal then 2 and a real number « such that for all a € F,

) ck(t;a) = (a=1+7)F(@)"* vt € dDp. (4.6)

o
k=
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Then by the definition of the Szegd Kernel, using (4.5) and (4.6) and setting

ty = |z1]?, ta = |22|* we compute

N R SR S
S(Zl, 22) = - == —
P e b e D DN s
BRI ol S Ed ELI NI oY (/IR NCER E)
472 = F(t)i+2 472 = F(t) F(t1)?
1 = ta )’ ta \’
- = [ =2—
e 200 (wy) + (#6) (47
1 1 . 1
= v
s S
47T2F(t1)2 (F(tl) — t2)2 ’
where we are using that 3 °7°(j + 1)z = ﬁ and Y1) = (1;:)' Recall that

the defining function of D is p(21, 22) = F(|21|*) — |22/|*>. We have

F(|21?) +p
S(z1,20) = ()R

In particular, the Szeg6 kernel of the Hartogs domain D has vanishing log—term.

4.3 Cartan domains

Now we define an important family of domains called Cartan domains.

It is well known that every hermitian symmetric space of non—compact type
of complex dimension d is biholomorphically isometric to (€2, cgg), where € is a
bounded symmetric domain of C¢ endowed with its Bergman metric gz multi-
plied by a positive constant c¢. A globally defined potential for gg is given by
®(z2) = log K, where K is the Bergman kernel of Q2. The domain €2 can be chosen
to be circular (ie. 2 € Q, § € R = €%z € Q) and convex. Every bounded
symmetric domain is the product of irreducible factors, called Cartan domains.
From E. Cartan’s classification, Cartan domains can be divided into two catego-

ries, classical and exceptional ones (see [32] for details). Classical domains can
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be described in terms of complex matrices as follows (m and n are non—negative

integers, n > m):

M[m,n] ={Z € M, ,(C), I,, — ZZ* > 0} (dim(21) = nm),

V] = {Z € M,(C), Z=2", I, - 22" >0} (dim(Q,) = “51),

O3[n] ={Z € My(C), Z=-2", I,— 22" >0}  (dim(Q) = “%-1),

2

Uln] ={Z = (21,...,2.) €C", D |5 <1, 14> 22P=2) |5 >0}
j=1 j=1 j=1

(dim(©) = ), 0 #2,
where I,,, (resp. I,,) denotes the m x m (resp n x n) identity matrix and A > 0
means that A is positive definite. In the latter domain we are assuming n # 2
since €24[2] is not irreducible (and hence is not a Cartan domain).

The reproducing kernels of some classical Cartan domains are given by

1 - 212 - 2 -
KQ4<Z7Z> = V(Q4) <1+|;ZJ| - 2;|Z]| ) ) (48)

where V(€2;), = 1,...,4, is the total volume of §2; with respect to the Euclidean

measure of the ambient complex Euclidean space (see [12] for details).

In general, every bounded symmetric domain €2 is uniquely determined by a
triple of integers (r,a,b). The genus v of Qis v = (r — 1)a + b + 2 and the
dimension d is defined by d = @a + rb+ r. The table below summarizes the

numerical invariants and the dimension of €2 according to its type
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Tabella 4.1: Bounded symmetric domains, invariants and dimension.

Type r a b ~y dimension
Qim,n] m 2 n—m n+m nm
Qa[n] n 1 0 n+1 n(n+1)/2
0 (n even)
Q3ln]  [n/2] 4 2 (n odd) n—1 n(n—-1)/2
Q4[n] 2 n—2 0 n n

where V() is the total volume of € with respect to the Euclidean measure of C?
and K(z,z) is its Bergman kernel (see previous section or [1| for more details).
In particular, every Cartan domain €2 can be endowed with its Bergman metric

gp whose associated Kéahler form is
wp = —%85 log N7, (4.9)

that is a Kéhler form on (2. In the following, we consider the Cartan domain 2
endowed also with the form wq(p) = —290log N* for which the metric go ()
reads

1 0?log N*
=—gp=——. 4.10
ga(p) ,ygB 02,07 ( )

In particular, we have (see also [60])

PlogNe NN} — NN

= = 4.11
i) =~ - (4.11)
for all j,k = 0,...,d and where we denote by N} := %]\Zw, NY = %J;k and
. O’NH
N‘;uff T 62;‘62]9'

Finally, from the homogeneity of €2 it follows that (see [32, p.18-19]) gp is Kéhler—
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Einstein! and so

det(gp) = N7, (4.12)

4.4 Cartan—Hartogs domains

In 1998, Guy Roos and Weiping Yin [56] introduced the following Hartogs’ type
domains based on Cartan domains.

Given a bounded symmetric domain 2 C C? (i.e. the product of Cartan do-
mains as defined in the previous section) of rank r and positive invariant numbers

a and b, we can define a new family of domains in C4*% in the following way:

Definition 4.6. The Cartan-Hartogs domain M (1) based on Q is the pseudo-

convex domain of C% defined by (1 > 0 is a fized constant):
ME (1) = {(2,w) € Q x €, [[w]]? < N#(2)}. (4.13)

The Cartan-Hartogs domain Mgo (1) can be equipped with the natural Kahler

form
wiy = =500 10g(N"(2) = [[w] ).

Note that M2 (u) is a Hartogs domain (in the sense of the previous section)
with FF = N*. The Cartan-Hartogs domain (M2 (1), wq,) has been studied by
several authors from different analytical and geometrical points of view (see for
example [21] [20], [56], [57], [58], [60] and [62]). For all Cartan-Hartogs domains
an important inflation principle, very useful for future computation, holds. From
[56, Section 2.3|, there exists a function L(z,|w|?) for which the reproducing

kernel of M{ (1) can be written as
KMSIZ(Zaw) = L(Za |w|2)7

because of the circular symmetry with respect to the variable w.

'A manifold (M, g) is Kdhler-Einstein if M is Kihler (see Def.1.1) and if the Ricci tensor is such

that Ric = A\g for same constant .
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Proposition 4.7 (Inflation principle). Let M& (1) be the Cartan—Hartogs do-

main defined by
ME (1) = {(2,w) € 2 x €, [Jw]]? < N*(2)}.

The reproducing kernel of M (p) is

1 g%t
KMgo(Z,w) = d—O!WL(Z,T) H ||27

with [|w][* = [wy* + -+ + Jwg, [*.
Dimostrazione. The proof can be obtained by straightforward adaptation of the

proof given in Subsection 2.4 in [5] for the case of the Bergman kernel. ]

This theorem tells us that we can compute the Szegé kernel of a Cartan—
Hartogs domain M (1) of dimension d 4 do in the variable (z,wy,...wq,) by
simply replacing |w|? with ||w||* = |wi|* 4+ -+ - + |wg,|? in the Szegé kernel of the
Cartan-Hartogs of dimension d+1 in the variable (z, w). Consider the line bundle
L= M&® (1) x C on M&(u) and observe that is a trivial bundle since M () is
contractible and pseudoconvex, so any holomorphic line bundle over Mg(’(,u) is

holomorphically trivial. We can endowed L with the following hermitian metric
hao (2, w;€) = (N*(2) — |w][*) [€%, (2,w) € M (), € € C, (4.14)

which satisfies Ric(hg,) = wg,. In the following lemma we show that the di-
sk bundle Dy, ~of the Cartan-Hartogs domain M& (1), is the Cartan-Hartogs
domain M+ (1),

Lemma 4.8. The disk bundle Dy, = {v € L*|hy (v,v) < 1} C L*, with L =

M2 (1) xC is a Cartan—Hartogs domain of dimension d+dy+1, namely Ma+ (1),

Dimostrazione. Without loss of generality, we prove this assertion for dy = 1. Let

My () be the Cartan-Hartogs of dimension d + 1 defined as

My(p) = {(z,w) € A x C, |w|> < N*(2)}.
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endowed with the Kéhler form w; = —£09log(N*(z) — |w[?) such that Ric(h;) =

w1, with
hi(z,w;€) = (N*(2) — |[w]?) [€]%, (2,w) € My(p), € € C.

If a point v = (z,w, ) belongs to the disk bundle Dj,, C L* then

€2

. 1 1e2p-l g
L=hie ) = 1= e =1 - e —p

> 0, (4.15)

where ht = hy'. Since (z,w) € Mi(u), we have (N#(z) — |w|?) > 0, so the last
part of (4.15) becomes
(N#(2) = Jwl*) = [§]* > 0,
which implies that
N¥(z) > |w]” + €]

Comparing with (4.13) gives the assertion, where a point of MZ(u) is indicated
by the triple (z,w, &) with 2 € Q and (w, £) € C2. O

Now we are interested in the TYZ expansion of the Kempf distortion func-
tion of a Cartan—Hartogs domain. From Theorem 4.3, Remark 4.4 and the fact
that iR% = p, since the metric on det(T™% M) induced by g is exactly w (see
[31, p.18]), the Kempf distortion function of the Cartan-Hartogs domain Mg (1)
admits an asymptotic expansion if p > —cwy,. From [60], the Ricci form of the

Cartan-Hartogs domain (M3, w;) of dimension d + 1 reads

Cud4+1) =y 1 [(NF)(N)g — (N#)eN" 0

T 0...0 o) "
(4.16)
1 (N#);(N#)g = (N#)jp(N* = Jw?) - —(N#)jw
—(d+ 2)_(]\7” —wp)? (N N
where the metric g;(p) is
() = 1 (N#);(N#)g = (N#) e (N* = [w]?) - —=(N");jw
P (= Twp) (N N
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Clearly if ’MJFTI)_V > 0, then the previous condition holds for ¢ > d + 2. More

if LED)=3 () then the Kempf distortion function of (M2, wg, ) admits

generally,
an asymptotic expansion as in (4.3). The main result about the TYZ expansion
for Cartan-Hartogs domains is expressed by the following recent result in [21],

which shows that the expansion is indeed finite, namely it is a polynomial in m

of degree d + dy with computable (non-constant) coefficients.

Theorem 4.9 (Z. Feng—7. Tu). Let m > max {d—i—do,%l}, then the Kempf

distortion function associated to (M (1), wq,) can be written as

d k w2 d—k m —
*%ZDX (1Y Tt

0 N# F(m—d—do)
with
k r
- (u 2—(1+1 b
D’“X(d):z&) )i —7+2-(1+1)35 +a+ra).
— )=+ 1+ (- 1))

In [21] Z. Feng and Z.Tu used Formula (4.17) to prove that if the coefficient
ay of the TYZ expansion of M2 (u) is constant, then M (u) is the complex
hyperbolic space. In [61], M. Zedda generalized this result by proving that if
one of the coefficients a;, 2 < j < d + dy, of the TYZ expansion associated
to Mg(’(u) is constant, then the domain is biholomorphically equivalent to the
complex hyperbolic space.

In our context, formula (4.17) implies, in particular, that a;, = 0 for k > d+d,.
Therefore it is natural to ask if Conjecture 4.2 holds true in this (non—compact)

case. Observe that the boundary of Mg"“(u) is not smooth, being
OME (1) = 9Q U {(z,w) € Q x C% | ||w|]* = N*}.

More precisely, the only Cartan-Hartogs domain with smooth boundary is the
Cartan—Hartogs domain of rank 1, i.e. when 2 is the complex hyperbolic space.
Thus, it does not make sense to speak of the log—term of the Szegé kernel, since

Fefferman’s formula (2.5) applies only when the domain involved has smooth
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boundary. Nevertheless, in order to consider the case of Cartan-Hartogs domains,
we give the following definition (which in the smooth boundary case coincides

with the standard one).

Definition 4.10. Let D C M be a strictly pseudoconvex domain in a complex
n-dimensional manifold M. Let X = 0D be its boundary with defining function
p>0,ie D= {ve Mp(v) >0} Assume that the points where X fails to
be smooth are of measure zero. We say that the log—term of the Szegd kernel

vanishes if there exists a continuous function a on D with a # 0 on X such that

S(v) = 2

= p(v)n

In the following section we prove that

Theorem 4.11. The log—term of the Szeqd kernel of a Cartan—Hartogs domain

vanishes.

4.5 The Szegé kernel of Cartan—Hartogs domains

In this section we obtain the proof of Theorem 4.11 by finding explicitly the Szeg&
kernel of the disk bundle of the Cartan-Hartogs domain MQ(u) of dimension
d+1 and by Prop. 4.7 (inflation principle) we generalize this result to a Cartan—
Hartogs domain of dimension d + dy. First of all, we compute the volume form

a A (da)? on the boundary M (1) of the strictly pseudoconvex domain M3 (u).

Lemma 4.12. The volume form a A (da)? on the boundary OMY () is given in

polar coordinates (p, 8) by
wo

2 d
a A (da)? = (—“) NHHDdG, A 8

v

where %?i is the standard volume form of C¢ and 0, = Oqy1.
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Dimostrazione. By definition, the contact form « is given by a = —i@p‘aMé(M),

where p = N* — |w|? > 0 is the defining function of M{(u). Thus, we get
d
a=—1 (Z O;Ntdz; — ’u‘)dw> .
=1
Furthermore, by da = (0 + 9) a = —iddp, we get

d d
do = —i (Z Ntdz; A dzy, — dw A dw) = (dw Ndw =Y Nldz; A dzk> :

Ji,k=1 j,k=1

(da)? = (det “]—f d¢ + Z 1)** det(— ’%)Sngsq> ,

s,g=1
where we write N} = ON*/0z;, N = ON"/0z; and NG = 0°N*"/0z;0z; and
denote by d§ = dzy Adz N --- ANdzqg A dZg and by d(, (resp. d(s;) the form d€
where the term dz, (resp. the terms dz,, dz,) is replaced by dw (resp. dzs with
dw and dz; with dw). Further, we write (—N ﬁ;)s‘i for the matrix (—N 3#1}) where
the s-th row and the ¢-th column have been deleted. Thus, the volume form

a A (da)? is given by

d

A (da)® = —4+! (Z (—1)°TINY det(— N ) sqdzs A dCogt
s,q=1 (418)

—w det(—N})dw A dE) .

Observe first that
dzs N\ d(sg = —dw AN d(z; = dw A dw A d&g,

where d¢; is the form d§ where the term dz, is deleted. Further, evaluating at
the boundary, turning to polar coordinates (p,6) and denoting pg1 by p, and
0441 by O, from p? = N* we have 2p,dp, = 2?21 Nfe‘wj (dp; — ip;db;),

Wdw A d€ = pu(dpy + ipudfy) A dE = iNPd0, A dE, (4.19)

and

d
dw N dw = —=2ipydp, N db, = =iy N'dz; A db,,

J=1
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which yields
dzs N d(sqg = —iNydZg N dby, N dEg = —iNFdO, N dE. (4.20)

Substituting (4.19) and (4.20) into (4.18) we get

aA(da)t = i*Ado, NdE = 2°Adb, N ‘;—‘?,
where we used that %? = (%)ddf and sets
d
A= Nrdet ([=N5]) = ST (—1)7ENENE det ([-Ng)
k=1
It remains to show that
A= (%)dNMd“)—'Y. (4.21)

In order to prove (4.21), consider the metric go on the domain Q associated
to wq defined by equation (4.11).

A direct computation gives:

NENE — NENH
det(g@zdet([ ;K ik ])

N2

1
=~ det (| NENE = NN )

R I
T N2dw € N

d
1 1 -
= sy et ([~ ) = Sy 20 (CLPRNINE det ([N
— Nudry

The conclusion follows with the help of

det(ge) = (g)ddeugfg) - (%)N

where gp is the Bergman metric on €2 defined by (4.10) and we use (4.12). [
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Now we prove the Theoren 4.11

Proof of Theorem 4.11. Observe first that by Prop.4.7 (inflation principle) (see
also Section 2.3 in [56]) we can assume without loss of generality that dy = 1. In

this case the defining function is p(z, w) = N*(z) — |w|* and
OMy(p) = 0Q U {(z,w) € A x C | |w|* = N*}.

Although dM{ (1) is not smooth, the points where it fails to be smooth make
up a set of measure zero, so we can use Definition 4.10. From Lemma 4.12 the
volume form dv = a A (da)? reads

d

92 d
dv = a A (da)? = (-“) N9 A %, (4.22)
~y !

where %(?l is the standard Lebesgue measure on C? (wy is the flat Kihler form on
C?). In order to compute the Szegd kernel Sy, of M4 (u) one needs to find
an orthonormal basis of the separable Hilbert space H*(OM{, (1)) (Hardy space)

consisting of all holomorphic functions § on Mg (i), continuous on M} (u) and

such that

/ |3|%dv < oo.
OME (k)

Consider the Hilbert space

H2 (Q) = {5 € Hol(Q) ‘ /QN“m|s(z)P°;—% < oo} :

(where wq = %wB is the Kahler form in Q2 given by wq = —%85 log N* with wpg

given by (4.9)) and the map
A HE(Q) = HAOME(1) = s+ 8 (4.23)
defined by

_ p(d+1)

s(v) = 2’%N(z,z) 2 w"s(z), v=(z,w) € IMy(n).
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Notice that the Hardy space H?*(OMA (1)) admits a Fourier decomposition into

irreducible factors with respect to the natural $'-action, i.e.
H(OM(n @%2 (OMg (1
where HZ (OMY (1)) == {5 € H2(OML (1)) | 5(Av) = A™5(v)} and A := (2, dw),

d
wo _ (1" ytl
d! v dl’

it is not hard to see that the map A defines an isometry between HZ (Q2) and

for v = (z,w). Since

H2 (OM, (). Thus, if we consider the orthogonal projection of the Szegd kernel
on each H2,(OMy(w)), we get

+o0o +o0o “+0o0 +o00

Sarao () = D) & (0)87(v) = 27NN TN " wP s (2) P, (4.24)
m=0 j=0 m=0 j=0

where 57", j = 0,1,... is an orthonormal basis of H7,(€2) and 57" = A(s}") is the

corresponding orthonormal basis for H2 (OME(1)).
It is well-known (for a proof, see e.g. [18, p.77| or [19, Ch. XIIIL.1|) that
> oo NH™[sT(2)[? is a polynomial in m of degree d = dim Q. Hence it can be

written as
[
ZNms zbl(”” )

where b; depends on the metric gq associated to wgq. Thus, this formula together

with (4.24) yields

o) d
m \T—pum m+l
Sup o (v) =2 AN D NN [y 2y bl( z )

m=0 1=0
d
=S S () ey
=0
d

1

=2 IN MDY .
(1= [wN -

=0
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That is

boN* bgN#(+Y)
S —g—dn—pd+) | 0T
Mé(u)(v) (N1 — [w]?) toee Tt (N# — |w|2)d+1

BN (N — [w]?)* + -+ 4 bat N (N — wl?)’ + by

—9—d
(N# — |w]?) "

Observe that in the above expression, all terms except by = d!m? vanish once
evaluated at the boundary OM{ (). The vanishing of the log-term of S M (1) (as

in Definition 4.10) then follows by setting

a(v) = 9—d (bON—Md (Nu _ |w|2)d et by  NTH (N“ _ |w\2)2 N bd) .

This result together with Lemma 4.8 implies the following

Corollary 4.13. The log-term of the Szegd kernmel of the disk bundle over a

Cartan—Hartogs domain vanishes.

Thus the Cartan-Hartogs domains are a family of non—compact manifolds for

which Conjecture 4.2 holds true.
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