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We study the flow past a permeable sphere modeled using homogenization theory. The flow through the porous medium8

is described by the Darcy law, in which the permeability quantifies the resistance for the fluid to pass through the micro-9

structure. A slip condition on the tangential velocity at the interface between the fluid and porous region is employed to10

account for the viscous effects in the proximity of the interface. The steady and axisymmetric flow is first characterized11

under the assumption of a homogenous and isotropic porous medium. In a certain range of permeability, the recircula-12

tion region penetrates inside the sphere, resulting in a strong modification of the linear stability properties of the flow13

and in a decrease of the critical Reynolds numbers for the flow instability. However, for very large permeabilities, a14

critical permeability value is identified, beyond which the steady and axisymmetric flow remains always linearly stable.15

The hypothesis of a homogenous porous medium is then relaxed, and the effect of polynomial distributions of perme-16

ability inside the body is studied. Interestingly, some macroscopic flow properties do not significantly vary with the17

permeability distributions, provided that their average is maintained constant. The analysis is concluded by outlining a18

simplified procedure to retrieve the full-scale structure corresponding to a considered distribution of permeability.19

I. INTRODUCTION20

Aerodynamic flows past permeable bodies are the object21

of growing interest since they are involved in several engi-22

neering applications and natural phenomena. Aquatic veg-23

etation plays an essential role in marine ecosystems. En-24

sembles of plants, the so-called canopies, deform in honami25

or monami shapes. They damp waves and therefore stabi-26

lize the seabed, among several other biological functions1–3.27

It is not surprising that canopy flows have received grow-28

ing attention over the past decades4,5. Owing to the sepa-29

ration of scales between the size of a single plant compared30

to the typical extent of a canopy, the latter is often consid-31

ered as a porous structure6,7. Canopies strongly modify tur-32

bulent flows inducing hydrodynamic instabilities, coherent33

structures8–11 and fluid-structure interactions12. Other bio-34

logical examples involve the silent flight of owls13,14, and the35

transport of dandelion seeds through a parachute-like struc-36

ture, called pappus, characterized by a separated recircula-37

tion region and a stable steady flow when transported by wind38

gusts15–17. Typical applications of permeable structures in-39

clude filtration problems such as wastewater recovery18,19 and40

fog water harvesting systems20,21. Porous clusters of particles41

are largely encountered in chemical engineering processes.42

Typical applications involve the dispersion in a fluid of the43

particles composing these clusters, because of hydrodynamic44

interactions22. Typically, these clusters are modeled as porous45

spherical agglomerates23,24. The settling of flocs and porous46

particles is also a common phenomenon occurring in fluidized47

beds and water treatment25–28.48

The presence of permeable structures strongly modifies the49

flow morphology, a topic of interest in the context of pas-50

sive flow control, e.g. to quench flow instabilities. In this51

respect, a wide class of instabilities that received large atten-52

tion in the literature concerns wake instabilities. Among the53

different prototypic bluff-bodies considered, the sphere is par-54

ticularly important. Indeed, the wake characteristics of the55

impervious sphere varying the Reynolds number have been56

widely examined in the literature. At low Reynolds num-57

bers, the wake presents a steady and axisymmetric toroidal58

recirculation eddy. A first pitchfork bifurcation with az-59

imuthal wavenumber |m| = 1 occurs at Re∗ = 212.6, consist-60

ing in a steady shift of the wake. The steady and axisym-61

metric wake undergoes a second instability at Re∗∗ = 280.729.62

Different studies have been focused on the competition be-63

tween these two modes in the dynamics at large Reynolds64

numbers30,31, showing the dominance of the second mode,65

while other authors investigated the bifurcation of the steady66

non-axisymmetric, bifurcated, wake (so-called secondary in-67

stability), finding a threshold at Re∗∗∗ = 271.832, beyond68

which an alternate shedding of hairpin vortices takes place33.69

Despite this plethora of bifurcations and flow morpholo-70

gies, a systematic analysis of the bifurcations that a perme-71

able sphere encounters is still missing. Permeable structures72

strongly modify the flow behavior and the resulting stability73

properties. Castro34 showed the flow modifications owing to74

the presence of holes in a flat plate. The mean recirculation75

region detaches from the body and the vortex shedding can76

be modified and eventually inhibited, as the permeability in-77

creases. Similar experimental35 and numerical36 investiga-78

tions showed the downstream displacement of the von Kàr-79

màn vortex streets when cylinders composed of small fibers80

are employed. More recently, Steiros and Hultmark37 de-81

veloped a theoretical model to evaluate the drag for holed82

flat plates, which was extended by including a relation for83

the height and position of recirculation bubble in Steiros et84

al.38. Steiros et al.39 investigated the effect of holes on85

a cylindrical circular membrane. Other studies on lami-86

nar flows through permeable bodies include the effect of87

porous membranes40, airfoils41,42, disks43–45, rectangular46
88

and square cylinders47,48, spheres49, and the fluid-structure89

interaction of porous flexible strips50. Porous structures are90
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FIG. 1. a) Sketch of the three-dimensional flow configuration. b) Sketch of the computational domain employed for the axisymmetric
simulations of this work, together with the global cylindrical and local spherical reference frames. The azimuthal direction is perpendicular to
the represented plane.

also employed for noise reduction, both on bluff-bodies51 and91

airfoils52,53. Owing to the large interest in the flow around92

permeable spheres, several works often studied the problem93

in the limit of negligible inertia of the fluid23,24,54–56. Yu et94

al.49 investigated the steady and axisymmetric flow around a95

porous sphere. In this case, the wake can exhibit a penetrating96

recirculation region. Although the effect of a detached recir-97

culation region on the stability properties of the wake has been98

widely investigated in the literature, the permeable sphere is99

identified as the perfect testing ground to study the effect of100

a penetrating recirculation region. In this work, the steady101

and axisymmetric flow past a permeable sphere and its bifur-102

cations are studied, with constant and variable permeability103

properties.104

The flow through the permeable sphere can be modeled105

via different approaches, from the well-known Darcy Law57,106

where the velocity is assumed to be proportional to the pres-107

sure gradient, to its Brinkman extension58. In the pres-108

ence of inertial effects, more complex behaviors are ob-109

served, which include symmetry breaking and unsteady in-110

stabilities within the porous medium59. Typical theoretical111

approaches are based on negligible inertia inside the porous112

medium and involve averaging methods60,61, or homogeniza-113

tion techniques62–65. Homogenization techniques have the114

great advantage to give a direct and immediate link with the115

micro-structure composing the porous medium, making them116

suitable for optimization approaches66. The homogenized117

model, predominantly validated for simple test cases62–65, is118

exploited to study an actual three-dimensional configuration119

of interest and highlight the potential of the direct link be-120

tween micro-structure and homogenized properties through an121

inverse procedure to retrieve the geometry.122

The use of variable permeability distributions, together with123

a strategy to identify a microscopic geometry that generates124

such permeability in practice, is a key ingredient for realistic125

flow control of bluff-body wakes in general and more specifi-126

cally in this work for the flow past a sphere. The paper is struc-127

tured as follows. Section II presents the mathematical formu-128

lation and the numerical implementation. Section III is de-129

voted to the study of the steady and axisymmetric flow and its130

bifurcations for a sphere composed by a homogenous porous131

medium, in which the homogenized properties are taken as pa-132

rameters. Section IV extends the previous results by consider-133

ing variable distributions of permeability along the radius. In134

Section V, a procedure to retrieve the micro-structure of the135

sphere and verify the faithfulness of the trends observed in the136

parametric study is outlined.137

II. MATHEMATICAL FORMULATION AND NUMERICAL138

IMPLEMENTATION139

The mathematical formulation and the numerical imple-140

mentation (whose validation is reported in Appendix A) of the141

problems analyzed in the present work are introduced in this142

section. We consider the flow of an incompressible Newtonian143

fluid of density ρ and viscosity µ past a permeable sphere of144

diameter D. The free-stream velocity is denoted as U∞ (figure145

1a). A cylindrical reference frame (x̄1, x̄2, x̄3) = (x̄, r̄,θ) is in-146

troduced. The velocity and pressure fields (ū, p̄), indicated as147

ū = (ū1, ū2, ū3) = (ūx, ūr, ūθ ), satisfy the Navier Stokes equa-148

tions in the fluid region Ω f :149

∇̄ · ū = 0
ρ

(
∂ ū
∂ t̄ + ū · ∇̄ū

)
+ ∇̄p̄−µ∇̄2ū = 0. (1)

The flow through the porous medium Ωp, characterized by150

the velocity and pressure fields (v̄,q), is described by employ-151

ing the homogenized model, formally analogous to the Darcy152

law62:153

∇̄q̄ =−µκ−1v̄, (2)
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where κ is the permeability tensor. Recent homogenization-154

based developments rigorously defined the conditions at the155

interface ∂Ωint between the fluid region and the porous156

one64,65,67,68, which read:157

ū−
(
−κint

µ
∇̄q̄
)
= Λ̄

[
Σ̄(ū, p̄)n

]
, q̄ =−[ Σ̄(ū, p̄)n] ·n (3)

where Σ̄(ū, p̄) =−p̄I+µ
(
∇̄ū+ ∇̄ūT

)
and κint represents the158

permeability tensor evaluated at the interface (which does not159

necessarily coincide with the bulk one κ) and Λ̄ is the slip160

tensor. The spherical coordinates radius, colatitude and az-161

imuth (rs,ϕs,θs = θ) are introduced, whose origin is located162

at the center of the sphere (see figure 1). At the sphere surface,163

t, s and n are the corresponding colatitude, azimuth and radial164

unit vectors. In this spherical reference frame, the slip tensor165

reads:166

Λ̄ =

 Λ̄t 0 0
0 Λ̄s 0
0 0 0

 (4)

The slip tensor is thus projected onto the cylindrical refer-167

ence frame employed in this work by introducing the notation168

(a⊗b)i j = aib j, obtaining as a result69:169

Λ̄ = Λ̄t t⊗ t+ Λ̄ss⊗ s, (5)

where t and s are expressed in the cylindrical reference frame.170

The macroscopic quantities, denoted here as permeability, in-171

terfacial permeability and slip, actually represent the macro-172

scopic effects of a given microscopic structure on the flow173

field. In Appendix B the formal problems which link the mi-174

croscopic structure to these quantities are given, while in sec-175

tions III and IV they are treated as free parameters to charac-176

terize the flow past a porous sphere. Depending on the values177

of the homogenized tensors, some limiting cases are identi-178

fied. The case κ= κitf = 0 with Λ̄ 6= 0 is equivalent to a first-179

order slip condition on a textured surface of a solid sphere69,180

since no flow occurs inside the body and the velocity normal181

to the surface is neglected. Another limiting condition occurs182

when κ→ ∞ and κitf→ ∞. In this case, the porous structure183

does not induce any resistance to the flow, which is equiva-184

lent to the absence of a solid structure. Finally, the condition185

Λ̄ = 0 means that the viscous diffusion effects in the proxim-186

ity of the fluid-porous interface are neglected.187

The macroscopic flow problem is completed by the far-field188

boundary conditions in the fluid domain. At the inlet, a uni-189

form free stream is imposed, i.e. ū = U∞ex, while on the lat-190

eral and outlet boundaries a zero-stress condition is imposed,191

Σ̄(ū, p̄)n = 0. The flow equations are non-dimensionalized by192

introducing the characteristic length D (the sphere diameter),193

velocity U∞, time D
U∞

and pressure ρU2
∞, obtaining the follow-194

ing set of non-dimensional equations:195

{
∇ ·u = 0
∂u
∂ t +u ·∇u+∇p− 1

Re ∇2u = 0 Ω f , (6)

196 {
v =−ReDa∇q
∇ ·v = 0 Ωp, (7)

together with the non-dimensional interface conditions at197

∂Ωint:198

u− (−ReDaint∇q) = Λ [Σ(u, p)n] , q =−[Σ(u, p)n] ·n,
(8)

where Σ(u, p) = −pI + 1
Re

(
∇u+∇uT

)
is the non-199

dimensional stress tensor, Re = U∞D
ν

is the Reynolds200

number, Da = κ
D2 and Daint =

κint
D2 are respectively the201

Darcy tensor in the bulk and at the interface, and Λ = Λ̄
D202

is the slip tensor, whose non-zero diagonal components are203

denoted with Λt and Λs, respectively along the colatitude and204

azimuthal directions.205

In this work, we focus on the steady and axisymmetric so-206

lution (i.e. ∂/∂ t = 0 and ∂/∂θ = 0) of the flow equations207

(6,7), so-called baseflow, and its stability with respect to az-208

imuthal disturbances, i.e. the perturbation is expanded in nor-209

mal modes along the azimuthal direction. Therefore, to com-210

pute the baseflow, the flow equations are solved in the az-211

imuthal plane θ = 0, leading to the two-dimensional domain212

reported in figure 1b. The steady and axisymmetric solution of213

the equations (U,P,V,Q), with U = (Ux,Ur) and V = (Vx,Vr),214

satisfies the following set of equations:215 {
∇ ·U = 0
U ·∇U+∇P− 1

Re ∇2U = 0 Ω f , (9)

216 {
V =−ReDa∇Q
∇ ·V = 0 Ωp, (10)

together with the non-dimensional interface conditions at Γint:217

U− (−ReDaint∇Q) = Λ [Σ(U,P)n] , Q =−[Σ(U,P)n] ·n.
(11)

The remaining boundary conditions to be imposed are the218

free-stream condition U = ex = [1,0,0]T at Γinlet, the free-219

stress condition Σ(U,P)n = 0 at Γlat∪Γout, and the boundary220

condition for the fluid region U ·er =Ur = 0 on the axis Γaxis.221

As mentioned above, the stability properties to perturba-222

tions of the baseflow (U,P) are investigated. To this purpose,223

a normal mode decomposition of azimuthal wavenumber m224

and complex frequency σ is considered, whose real and imag-225

inary parts are respectively the growth rate and the frequency.226

The following ansatz has been introduced227  u
p
v
q

=

 U(x,r)
P(x,r)
V(x,r)
Q(x,r)

 + ς

 û(x,r)
p̂(x,r)
v̂(x,r)
q̂(x,r)

 exp(imθ +σt), (12)

ς � 1. The flow equations (6,7), with the corresponding228

boundary conditions, are expanded in powers of ς , using the229

expression for the flow field given in equation (12). At order230

O(1), the baseflow equations for (U,P, V,Q) are retrieved,231

while at order O(ς) one obtains:232

{
∇ · û = 0
σ û+U ·∇mû+ û ·∇0U+∇m p̂− 1

Re ∇2
mû = 0 Ω f ,

(13)
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FIG. 2. Streamlines of the axisymmetric flow past a permeable sphere for Re = 200, Λt = 0 and different values of Da: a) Da = 10−10, b)
Da = 10−4, c) Da = 10−3, d) Da = 5×10−3, e) Da = 7.5×10−3, f ) Da = 10−2.

233 {
v̂ =−ReDa∇mq̂
∇m · v̂ = 0 Ωp, (14)

234

û− (−ReDaint∇mq̂) = Λ [Σ(û, p̂)n] , q̂ =−[Σm(û, p̂)n] ·n,
(15)

where the following operators are introduced29
235

∇m f =

 ∂ f
∂x
∂ f
∂ r
im f

r

 , (16)

236

∇mg =


∂gx
∂x

∂gx
∂ r

im
r gx

∂gr
∂x

∂gr
∂ r

im
r gr− gθ

r
∂gθ

∂x
∂gθ

∂ r
im
r gθ +

gr
r

 , (17)

237

∇m ·g =
∂gx

∂x
+

1
r

∂ rgr

∂ r
+

im
r

gθ , (18)
238

∇
2
mg = ∇m · (∇mg), (19)

239

Σm(g, f ) =−gI+
1

Re

(
∇mg+∇mgT ) . (20)

The homogenous condition û = 0 is imposed at the inlet,240

while on the lateral and outlet boundary the free-stress con-241

dition Σm(u, p)n = 0 is enforced. On the axis, the following242

regularity conditions have to be imposed29,70,71:243

ur = uθ =
∂ux

∂ r
= 0 for m = 0; (21)

∂ur

∂ r
= ux =

∂uθ

∂ r
= 0 for |m|= 1; (22)

ur = uθ = ux = 0 for |m|> 1; (23)

The outlined set of equations is an eigenvalue problem of244

complex eigenvalues σ = Re(σ) + iIm(σ), whose real part245

is the growth rate of the global mode, and the imaginary246

part is its angular velocity. The flow is asymptotically un-247

stable if at least one eigenvalue has a positive real part; oth-248

erwise, the flow is asymptotically stable. Therefore, stable249

modes are characterized by Re(σ) < 0, while unstable ones250

by Re(σ)> 0.251

A. Numerical implementation of the flow equations252

The numerical implementation of the flow equations is per-253

formed in COMSOL Multiphysics. The steady equations254

(9,10) and the eigenvalues problem (13,14) are implemented255

through their weak form, employing P2−P1 Taylor-Hood el-256

ements for the fluid domain. The steady solutions are obtained257

via the built-in Netwon algorithm, with a relative tolerance of258

10−6, while the eigenvalue problem is solved by employing259

the built-in eigenvalue solver based on the ARPACK library.260

The numerical implementation of the Darcy law is based on a261

second-order PDE for q obtained by taking the divergence of262

equation (7):263

∇ ·v =−Re∇ · (Da∇q) = 0⇒ ∇ · (Da∇q) = 0. (24)

The latter formulation holds both for the baseflow and lin-264

ear stability analysis formulation, substituting q with Q and q̂,265

respectively, for which P1 elements are employed. The two266

problems are numerically coupled via an implementation of267

the domain decomposition method72, where the free-fluid and268

the porous region exchange information thanks to equations269

(15). The interface conditions on the free-fluid velocity and270
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FIG. 3. Streamlines of the axisymmetric flow past a permeable sphere, for Da = 3.5×10−3, Λt = 0 and different values of Re: a) Re = 20, b)
Re = 50, c) Re = 100, d) Re = 300, e) Re = 550, f ) Re = 600.

Darcy pressure are imposed via a Dirichlet boundary condi-271

tion on Γint. The results of the convergence analysis in terms272

of domain size and discretization are reported in Appendix A.273

III. WAKE FLOWS PAST SPHERES OF CONSTANT274

PERMEABILITY275

The flow past a sphere of constant permeability is investi-276

gated in the present section. A locally isotropic Darcy tensor277

is considered, i.e. in cylindrical coordinates Da = DaI, where278

Da is the Darcy number. Typically, in a homogenous porous279

medium, the interfacial Darcy number is slightly larger to the280

bulk one Daint ≥ Da owing to the different boundary con-281

ditions applying in the proximity of the interface, but of the282

same order of magnitude64. Since in this section both Da and283

Daint are treated as free-parameters, for the sake of simplicity284

the interface permeability is assumed to be equal to the bulk285

one, i.e. Daint = Da. As concerns the slip tensor Λ, the steady286

and axisymmetric wake is influenced only by Λt , since Λs ap-287

pears when the azimuthal direction is considered. However,288

the latter affects the linear stability analysis results. In the289

first stage, we impose Λt = Λs = 0 and the effect of the sole290

Darcy number is investigated. In the second stage, the effects291

of positive entries in the slip tensor are studied.292

A. Steady and axisymmetric flow293

The steady and axisymmetric flow past a permeable sphere294

is now described. Previous works showed that the wake past295

permeable bodies is characterized by a recirculation region296

that moves downstream and becomes smaller as the perme-297

ability increases46. However, as already noted by Yu et al.49
298

with a different porous model and for Re< 200, the flow past a299

permeable sphere may present a recirculation region that pen-300

etrates inside the body. Figure 2 shows the flow streamlines301

for a fixed Reynolds number Re = 200 and for different val-302

ues of Da. At very low values of Da, the flow is analogous303

to the solid case. However, already at Da = 10−4, the recir-304

culation region penetrates in the rear of the sphere, with non-305

negligible values of the velocity. A closer look at the frontal306

part of the sphere shows that the streamlines entering inside307

the body tend to diverge and the flow leaves the body in the308

vicinity of the upper region of the sphere, upstream of the309

point beyond which the streamline that identifies the recircu-310

lation region starts. Increasing the permeability, the recircula-311

tion region increases its dimensions, as shown for Da = 10−3
312

and Da = 5×10−3. At Da = 7.5×10−3, the recirculation be-313

comes extremely small and detached from the body, while at314

Da = 10−2 it eventually disappears.315

Figure 3 shows the effect of the Reynolds number, for fixed316

Da = 3.5× 10−3. At Re ≈ 20, a penetrating recirculation re-317

gion develops, whose core is located close to the fluid-porous318

interface. As the Reynolds number increases, the recircula-319

tion region moves downstream, while increasing its dimen-320

sions. At Re = 300, the recirculation region leaves the body;321

a further increase in Re leads to smaller recirculations, and322

eventually their suppression at very large Re.323

From a quantitative viewpoint, the recirculation region324

boundary is defined by the streamline which presents two ze-325

ros of the streamwise component of the velocity ux = 0 along326

r = 0. The length of the recirculation region Lr is thus the327

distance between these two points, measured along the z axis.328

The distance between the rear of the sphere and the recircu-329

lation region Xr is instead the streamwise location, from the330

point x = 0.5, of the first zero of the axial velocity. Xr is neg-331

ative whenever the recirculation region starts inside the body.332

The results are reported in figure 4. For fixed Re, an increase333

in the Darcy number leads to an increase in the length of the334

recirculation region. However, at very large permeabilities, a335

steep decrease of the size of the recirculation is observed, un-336
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FIG. 4. Variation of a) the length of the recirculation region Lr and b) its distance from the rear of the sphere, Xr, with Da, in case of Λt = 0
and for different values of Re.

FIG. 5. Variation of the drag coefficient with Da, in case of Λt = 0
and for different values of Re.

til the recirculation disappears. This effect is observed in the337

whole range of Re and is enhanced as the latter increases. We338

finally note that the distance of the recirculation region from339

the rear is negative (i.e. the recirculation penetrates inside the340

sphere) in a large range of the considered parameters, and be-341

comes positive only at very large permeabilities and Reynolds342

numbers.343

The initial increase of Lr can be correlated to the stream-344

lines in figure 2. While in the solid case there is no flow, in345

the permeable case the flow passes through the body. Because346

of the presence of a massive separation, the strong recircu-347

lation has enough momentum to overcome the resistance to348

penetrate inside the rear of the sphere. As Da increases, the349

velocities inside the body increase while the separation point350

on the interface does not move appreciably. The presence of351

larger velocities at the interface enhances the gradients and352

thus the vorticity, whose effect is an increase of the counter-353

flow generating the recirculation bubble. However, this mech-354

anism enters in competition with the velocity gradients reduc-355

tion as the body becomes more permeable. As a net effect, the356

separation point moves downstream until it leaves the body,357

as the recirculation becomes progressively smaller until it dis-358

appears.359

The analysis of the steady and axisymmetric wake con-360

tinues by considering the drag coefficient, defined in non-361

dimensional form as:362

CD = 16
∫

Γint

[Σ(U,P) ·n] · exdΓ. (25)

Figure 5 shows the variation of CD with Da, for different val-363

ues of Re. The drag coefficient increases with Da, reaches a364

maximum and decreases. However, this decrease is observed365

at extremely large permeabilities. This non-monotonous be-366

havior relates to the one of the recirculation region, since both367

the drag coefficient and the recirculation size are a trace of the368

vorticity production46.369

The analysis of the steady and axisymmetric wake past a370

permeable sphere showed results similar to those obtained371

in Yu et al.49, although they are obtained here with a differ-372

ent formulation for the flow through the porous medium. In373

opposition to permeable rectangles46, thin disks16,43 (charac-374

terized by detached recirculation regions) and circular73 and375

square cylinders46 (characterized by a weak penetration of the376

recirculation inside the body), the permeable sphere is char-377

acterized by the presence of penetration of the recirculation378

region in a large range of the parameters space. Similar pen-379

etrating recirculation regions were observed in a limited pa-380

rameter range by Tang et al.45, for thick disks. The presence381

of penetration of the recirculation region inside the body is382

related to (i) the finite extent of the body compared to two-383

dimensional shapes and (ii) the streamline configuration as-384

sumed by the particular axisymmetric shape considered here,385

i.e. the sphere. The finite size of the body compared to nomi-386

nally two-dimensional plane shapes imposes a smaller pertur-387

bation of the flow, and thus the fluid experiences less resis-388

tance to pass through the body. The spherical shape also en-389

hances this behavior because of its streamwise extent, which390
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FIG. 6. Bifurcation diagram in the Da−Re plane, for Λt = 0. The black curve with diamonds denotes the critical Reynolds number for the
first bifurcation, beyond which the steady eigenvalue is unstable, while the black one with dots denotes the critical Reynolds number for the
second and unsteady bifurcation. The red crosses denote the values of the critical Reynolds numbers for the solid case. The colored and red
iso-contours denote the values of the length of the recirculation region Lr and its distance from the rear Xr, respectively. The iso-level Lr = 0
is highlighted in black dashed line.

allows the recirculation region to penetrate and the separation391

point at the interface to not move significantly while the inner392

velocities are increasing with Da. However, at some point,393

the sphere becomes extremely permeable and finally behaves394

as the other porous bluff-bodies already considered in the lit-395

erature.396

In this section, we described the steady and axisymmet-397

ric solution of the flow past a permeable sphere. However,398

not all the described configurations are likely to be observed.399

In the next section, we identify, via linear stability analy-400

sis, the regions of the parameters space where the steady401

and axisymmetric solution is linearly stable. Where instead402

such solutions are unstable, the possible non-steady and non-403

axisymmetric flow structures are characterized.404

B. Stability analysis of the steady and axisymmetric flow405

As introduced in Section II, a perturbation in normal form,406

of azimuthal wavenumber m, is considered. The wake past407

a solid sphere presents two bifurcations29, which occur for408

|m| = 1. The first one occurs at Re = 212.6 and it is char-409

acterized by Im(σ) = 0, i.e. the mode does not oscillate in410

time. In the non-linear regime, the mode saturates, leading to411

a steady breaking of the axisymmetry. We thus refer to this412

mode as the steady mode, always considering that, in the lin-413

ear regime, it presents a pure exponential growth in time. The414

second bifurcation of the steady and axisymmetric wake oc-415

curs at Re = 280.7 and is an alternate shedding of vortices,416

which will be called unsteady mode.417

Since here we focus on the effect of the permeability on418

the steady and axisymmetric wake and the eventual suppres-419

0.4

0.6

0.8

1

FIG. 7. Iso-contours of the drag coefficient CD in the Da−Re plane
superimposed onto the bifurcation diagram, for Λt = 0. The black
curve with diamonds denotes the critical Reynolds number for the
first bifurcation, beyond which the steady eigenvalue is unstable,
while the black one with dots denotes the critical Reynolds number
for the second and unsteady bifurcation.

sion of these instabilities, the behavior of these two unstable420

modes, with azimuthal wavenumber m = 1, is studied. The421

regions in the parameters space in which these two modes422

present a null growth rate, i.e. the so-called marginal or neu-423

tral stability conditions, are first identified.424

Figure 6 reports the marginal stability curves for the two425

modes in the Da− Re plane. We initially consider a fixed426

Da = 10−10 with an increase of the Reynolds number. For427

Re < 212.6, all eigenvalues have a negative real part and thus428

the steady and axisymmetric wake is stable. At Re = 212.6,429

the steady mode is in the neutral stability condition, and be-430

yond it becomes unstable. At Re = 280.7, the unsteady mode431

becomes unstable. In the range 10−10 < Da < 10−6, the crit-432
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FIG. 8. Iso-contours of the real part of the streamwise component of the velocity field, rescaled with its maximum absolute value, for the (a,c)
steady and (b,d) unsteady modes, at the marginal stability, for Λt = 0.

ical Reynolds numbers are constant. For larger Da, the criti-433

cal Reynolds number decreases more and more quickly until434

both curves reach a minimum. The marginal stability curves435

of both the steady and unsteady modes exhibit the minima at436

Re = 171.7 and Re = 205.1, respectively, at the same value437

of Da = 1.1× 10−3. Below Re = 171.7, the steady and ax-438

isymmetric wake is thus linearly stable independently of Da.439

For larger Da, the critical Reynolds numbers drastically in-440

crease, with a slight inversion of the curves, i.e. for fixed Da441

the mode becomes unstable and then stable again as Re in-442

creases, similarly to the behavior observed in Ledda et al.16,46
443

for different bluff bodies. A critical value of the Darcy number444

Da = 3.7×10−3 is finally obtained, beyond which the steady445

and axisymmetric wake is linearly stable independently of Re.446

Three regions in the parameters space (Re,Da) are identi-447

fied: one in which the steady and axisymmetric wake is stable,448

one in which the steady mode is unstable, and one in which449

both the steady and unsteady modes are unstable. In contrast450

to other bluff body wakes 16,46, the critical Reynolds numbers451

for the porous sphere drastically decrease as the permeabil-452

ity increases, and the complete stabilization of the flow inde-453

pendently of Re is reached only for very large values of Da,454

while at intermediate values of Da the flow instability is an-455

ticipated by the permeability. This behavior occurs when the456

recirculation region is penetrating inside the sphere. There-457

fore, the wake of a permeable sphere is more unstable to per-458

turbations compared to the solid one. This counterintuitive459

behavior vanishes at very large permeabilities, in which the460

recirculation region moves downstream of the body and even-461

tually disappears. According to Monkewitz74 and the recent462

analyses of Ledda et al.46, the wake instability is correlated463

to the extent of the recirculation region, which roughly iden-464

tifies the instability core75. Therefore, the iso-levels of the465

length of the recirculation region follow a trend similar to the466

marginal stability curves. The iso-levels of Lr indeed follow467

the same trend, as shown in figure 6. In particular, Lr ini-468

tially increases with Da, while Recr decreases, and succes-469

sively Lr decreases rapidly and Recr increases. The deviations470

in the proximity of the minimum of Recr may be related to the471

change of the velocity profiles composing the wake at each472

streamwise location74. The iso-levels of Xr become positive473

FIG. 9. Variation of the Strouhal number St = Im(σ)/(2π) of the
unsteady mode with Da, following the marginal stability curve for
the unsteady instability. The colored dots denote the values of Recr−
Resolid

cr , where Resolid
cr = 280.7.

close to the critical Darcy number for unconditional stability.474

Therefore, the marginal stability curves trend is related to the475

presence of a penetrating recirculation region.476

Figure 7 shows the iso-contours of the drag coefficient in477

the Da−Re plane together with the marginal stability curves.478

For fixed Re, the maximum of drag is attained at Da ≈ 10−3,479

in the vicinity of the minima in the Reynolds numbers of the480

marginal stability curves. This observation can be explained481

considering the correlation between the extent of the recircu-482

lation region and the critical Reynolds number. The drag in-483

crease is predominantly related to the decrease of the pressure484

in the rear part of the body, similarly to the case of a circu-485

lar membrane66. Stronger counterflow velocities imply, with486

a good approximation, smaller pressure values in the rear part487

and thus a positive drag contribution. At the same time, larger488

counterflows imply larger recirculation regions46. Larger val-489

ues of CD are thus related to larger values of Lr, and a more490

unstable wake, as previously discussed46,74, i.e. the maximum491

drag is attained in the vicinity of the marginal stability curves492

minima.493

While previous works described the downstream displace-494

ment of the mode46, it is not clear if the latter can move495

upstream and penetrate inside the body due to the penetrat-496

ing recirculation region. Figures 8a,b) show the unstable497

modes at the marginal stability conditions corresponding to498

the minima of the marginal stability curves (see details pro-499
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FIG. 10. Streamline identifying the recirculation region for Re =
150, a) Da = 10−4, b) Da = 10−3, c) Da = 5× 10−3, d) Da =
10−2. The different colors correspond to Λt = 10−4 (black), Λt =
10−3 (blue), Λt = 5×10−3 (red), Λt = 10−2 (green), Λt = 5×10−2

(magenta).

vided in the figure legend). The instability also develops500

inside the sphere, even if the associated magnitude is 10−2
501

times lower than the values attained outside, in particular for502

the unsteady mode. Therefore, an upstream displacement of503

the mode together with the recirculation region, which pene-504

trates inside the porous sphere, is observed. An increase of505

the Reynolds number following the marginal stability curve506

leads to a downstream displacement of the steady mode (fig-507

ure 8c), while the unsteady mode (figure 8d) is characterized508

by a periodic distribution with larger streamwise wavelength509

compared to case b). The resulting unsteady mode is thus510

characterized by a periodic shedding of vortical structures,511

whose streamwise wavelength increases with Re, following512

the marginal stability curve. As a consequence, the shedding513

frequency of these vortical structures decreases with Da, a514

conclusion which is quantitatively supported by figure 9. The515

imaginary part of the eigenvalue, which represents the shed-516

ding frequency, strongly decreases for Da > 10−3.517

In this section, we highlighted the peculiarities of the pen-518

etrating recirculation region and its consequences on the flow519

stability. In the following, we consider positive values of the520

slip tensor components.521

FIG. 11. Marginal stability curves, for the first bifurcation, for dif-
ferent values of Λt and Λs.

FIG. 12. Marginal stability curves, for the second bifurcation, for
different values of Λt and Λs.

C. Effect of the slip length522

The previous sections focused on the permeability effect on523

the flow past a sphere in the absence of slip. These results are524

complemented by including the effect of a difference in the525

velocity at the fluid-porous interface. In the stability analysis,526

also the azimuthal component of the slip tensor Λs has to be527

considered, owing to the presence of the azimuthal velocity528

perturbation.529

Figure 10 shows the streamlines identifying the recircula-530

tion region for Re = 150. In each frame, Da is fixed and Λt531

varies in the range 10−4 < Λt < 5× 10−2. The introduction532

of a finite slip length in the problem does not significantly af-533

fect the flow morphology, although some differences can be534

observed. An increase in Λt slightly modifies the position of535

the flow separation points and the recirculation region. At low536

permeabilities, larger values of slip imply smaller recircula-537

tion regions, whose effect becomes significant for Λt > 10−2.538

These differences become smaller as Da increases. At very539
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FIG. 13. Permeability as a function of the radius in spherical coordi-
nates rs for the distributions employed in the present analysis.

large permeabilities, an increase in slip leads to slightly larger540

recirculations.541

These differences in the flow morphologies have a strong542

effect on the marginal stability curves, as shown in figure 11543

for the steady mode and in figure 12 for the unsteady mode.544

Initially, the isotropic case is considered, i.e. Λs = Λt . The545

marginal stability curves with varying Λt follow the same546

trend. At low permeabilities, an increase in the slip leads to an547

increase in the critical Reynolds number, which becomes sig-548

nificant for Λt > 10−2, the minimum values of Recr slightly549

increase and the critical permeability for unconditional stabil-550

ity with Re are not significantly influenced by variations of Λt .551

We then investigate the effect of anisotropy in the slip tensor,552

i.e. Λt 6= Λs. The results show that the increase in the critical553

Reynolds number is significant when large values of Λt , with554

Λs = 0, are considered, while a large value of Λs with Λt = 0555

does not strongly influence the flow morphology. This behav-556

ior can be interpreted by considering that Λt influences both557

the baseflow and stability problems, while Λs affects only the558

stability problem. Very large values of Λt imply much smaller559

recirculation regions (for low permeabilities); therefore, the560

flow is stabilized owing to the reduction of the region in which561

the instability develops. Higher Reynolds numbers are thus562

needed to develop the instability, as shown in figures 11 and563

12. These differences become smaller in the proximity of the564

minima of Recr and of the critical value of Da for uncondi-565

tional stability.566

The variation of the slip length leads to quantitative differ-567

ences in the flow morphology and stability properties, with an568

overall reduction of the size of the recirculation region. How-569

ever, the physics is dominated by the permeability. To deepen570

the role of the permeability in the flow dynamics and stability,571

the following section focuses on the effect of variable perme-572

ability distributions inside the body, always keeping the hy-573

pothesis of an isotropic porous medium.574

FIG. 14. Streamlines for Da = 1.7× 10−3, Λt = 0 and Re = 150,
in the case of a) linear, b) quadratic and c) cubic distributions of
permeability along rs.

IV. WAKE FLOWS PAST SPHERES OF VARIABLE575

PERMEABILITY576

The previous section studied the effect of permeability and577

slip (kept constant inside the porous medium) on the flow mor-578

phology past a permeable sphere. However, typical porous579

spheres may present variable distributions of permeability580

rather than a constant one. To give an example, the sea urchin581

can be seen as a porous structure with a solid core, whose in-582

clusions are needles. Owing to the radial distribution of nee-583

dles, the permeability increases while reaching the tip of the584

needles. In addition, many seeds are transported in the air by585

parachute-like structures, called pappi, composed of filaments586

that can be arranged in disk or spherical arrays that lead to587

non-constant permeability distributions.588

Despite the increasing interest for these natural structures15,589

systematic works on the stability properties in the case of vari-590

able permeability are still limited in the literature16. This sec-591

tion proposes a parametric study in which the permeability592

varies inside the sphere while always considering an isotropic593

porous medium, i.e. Da = Da(x,r)I. We neglect variations of594

the slip lengths (Λt = Λs = 0) since they do not qualitatively595

modify the flow features.596

Three polynomial distributions of permeability, linear,
quadratic and cubic, are considered. The outlined varia-
tions occur along the radius of the spherical reference frame
(rs,ϕs,θs = θ) with origin the center of the sphere. A constant
average value of the Darcy number, Da, is imposed for each
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FIG. 15. a) Length of the recirculation region Lr and b) drag coefficient CD as functions of Da, in the absence of slip, for the linear (dots),
quadratic (diamonds) and cubic (squares) distributions. The different clusters of curves refer to Re = 100 (blue), Re = 200 (orange), Re = 300
(yellow) and Re = 400 (purple).

case:

Da =
1
V

∫
V

Da(x,r) dV

=
6
π

∫ 2π

0

∫
π

0

∫ 0.5

0
Da(rs)r2

s sinϑsdrsdϕsdθs. (26)

The different distributions as a function of Da are thus ob-597

tained:598

• constant: Da(rs) = Da,599

• linear: Da(rs) =
8
3 Dars,600

• quadratic: Da(rs) =
20
3 Dar2

s ,601

• cubic: Da(rs) = 16Dar3
s .602

For the sake of clarity, the notation Da ∝ rα
s is introduced,603

where α(= 0,1,2,3) is the order of the polynomial distribu-604

tion. Figure 13 shows the different distributions for Da =605

1.7× 10−3. An increase in α leads to two effects. First,606

the permeability decreases close to the sphere center; second,607

higher values are reached in the proximity of the interface.608

These considerations will find an application in the following609

sections, which describe the baseflow and its stability proper-610

ties.611

A. Steady and axisymmetric flow612

This section focuses on the effect of the permeability dis-613

tribution on the steady and axisymmetric flow. In figure 14, a614

qualitative visualization with the flow streamlines is proposed,615

for Da= 1.7×10−3. The flow morphology is not significantly616

affected, and a slight variation of the size of the recirculation617

region with α is observed. These slight differences are quan-618

tified in figure 15a, which shows the variation of the length619

of the recirculation region with Da and for different values of620

Re.621

In all cases, we observe a behavior similar to the one with622

constant permeability. An initial increase of Lr is followed by623

a rapid decay at very large permeabilities. As α increases, the624

maximum Lr presents slightly larger values attained at smaller625

values of Da. At very large permeabilities, the recirculation626

presents a slower decrease with Da as α increases, thus lead-627

ing again to slightly larger recirculations.628

The drag coefficient presents a similar behavior, as reported629

in figure 15b. Also in this case, the maximum is progressively630

anticipated as α increases. A slightly smaller maximum is631

attained for larger values of α .632

These observations are explained by an observation of the633

distributions of permeability outlined in figure 13. The initial634

slightly higher values of Lr for linear, quadratic and cubic dis-635

tributions are related to the increase of permeability close to636

the interface, for fixed Da. In the constant permeability case,637

an increase of permeability leads to an increase in the size of638

the recirculation region, for small enough Da. The outlined639

phenomenon also appears in this case since the permeability640

close to the interface increases with α . We thus observe a641

slight increase in the length of the recirculation region and a642

displacement of the maximum at smaller values of Da. Be-643

yond the maximum, the slower decrease with α is related to644

the presence of a core close to the center of small permeabil-645

ity. As a consequence, the fluid is constrained to pass around646

and through a region of lower permeability. The rapid drop647

of Lr is thus reduced by the presence of this core of low per-648

meability, which ensures the presence of larger recirculation649

regions. However, the drag coefficient presents a faster drop650

with α , at large permeabilities. Despite the presence of the651

core of low permeability, the pressure and velocity gradients652

at the interface are largely reduced, and thus the forces acting653

at the interface decrease.654
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FIG. 16. Critical Reynolds number as a function of Da, in the absence of slip, for different distributions of permeability, steady (diamonds)
and unsteady (dots) bifurcations.

B. Stability with respect to azimuthal perturbations655

In analogy with the constant permeability case, here we per-656

form a stability analysis of the steady and axisymmetric wake657

for the different polynomial distributions. The results are re-658

ported in terms of marginal stability curves in figure 16. The659

first bifurcation is denoted with diamonds, while the second660

one with dots. The different colors correspond to the dis-661

tributions employed in this work. Interestingly, the employ-662

ment of the average permeability Da leads to a collapse of the663

marginal stability curves for the different distributions. In all664

cases, a minimum in the critical Reynolds numbers is attained,665

which slightly decreases employing polynomials of higher or-666

der, and a critical value of the permeability beyond which the667

wake is stable independently of Re is identified, which in-668

creases with α . Also these results can be correlated to the669

different distributions of permeability. The slight decrease in670

the critical Reynolds number is related to the increase of per-671

meability at the interface which induces larger recirculations672

as polynomials of higher order are employed, since the sta-673

bility properties are directly related to the extent of the re-674

circulation regions. The increase in the critical Da with α675

is instead related to the core of low permeability, which en-676

sures larger recirculations compared to the constant perme-677

ability case. Larger recirculations thus imply more unstable678

configurations, and the instability is moved at larger Da.679

To summarize, the flows and the stability properties are680

very similar when the same average value of the permeabil-681

ity, Da, is considered. Moreover, the flow morphologies are682

weakly dependent on the employed distribution of permeabil-683

ity. The small differences were explained by recalling the684

constant permeability case and focusing on the (i) decrease685

of permeability close to the center and (ii) increase of the per-686

meability at the body/fluid interface as α increases. The sim-687

ilarities in the flow morphology result in very similar stability688

properties at a given Da.689

So far, we have focused on a systematic study in which690

the permeability and the slip were considered as parame-691

ters. However, a remarkable peculiarity of the employed ho-692

mogenized model is the direct link between the permeabil-693

ity and slip with the structure composing the porous body.694

While these techniques showed great potential in their em-695

ployment in the case of simple periodic arrays, applications696

to more elaborate geometries are still lacking. Henceforth,697

we aim at retrieving the full-scale structure for a constant per-698

meability in the local spherical reference frame, thus giving699

an example of how to close the link between porous models700

and the micro-structure of the porous body itself for a three-701

dimensional configuration of interest. The inversion of the702

classical paradigm “from geometry to macroscopic proper-703

ties" can be of paramount importance in multiple scales struc-704

tures design, as shown in Schulze and Sesterhenn76 and Ledda705

et al.66. Several benefits can be obtained by identifying the706

desired permeability distribution through the homogenized707

model and then retrieving the full-scale structure by an in-708

verse design that satisfies the macroscopic properties. There is709

an infinity of possible geometries with the same macroscopic710

properties, giving great potential to this inverse paradigm in711

terms of reduction of computational costs and in the possi-712

bility to explore different configurations66. In the considered713

case, different choices for the full-scale structures could be714

employed, e.g. arrays of cylinders propagating radially from715

the center or arrays of packed spheres. In this work, we con-716

sider a configuration that allows to directly study the full-scale717

structure with the axisymmetric Navier-Stokes equations, i.e.718

an array of concentric rings. Using this particular scaffold, we719

develop a procedure to obtain the geometrical details (the ra-720

dius and position of the rings) starting from the macroscopic721
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FIG. 17. a) Sketch of the three-dimensional structure of the sphere. b) Fluid domain internal to the sphere and distribution of rings at one
azimuthal section. c) Sketch of the geometrical approximation for each polar repetition which leads to an array of square elementary volumes.
d) Resulting elementary volume for the evaluation of the local permeability, highlighted in red in c).

properties of the permeable sphere. However, similar proce-722

dures can be developed for different full-scale structures.723

V. DESIGN OF A SPHERE OF CONSTANT724

PERMEABILITY: CONCENTRIC RINGS725

A. Design procedure726

The permeable sphere is composed of an array of toroidal727

fibers with circular cross-sections, oriented such that the rings728

axes are coincident with the r = 0 axis of the cylindrical refer-729

ence system, see figure 17a. The flow is axisymmetric when730

the array is invested by a uniform stream along the axial di-731

rection and thus solved in one azimuthal cross-section. In the732

azimuthal cross-section θ = 0, the rings are disposed with po-733

lar symmetry and are represented by circular inclusions (see734

figure 17b, where the fluid region inside the sphere is repre-735

sented in grey). The procedure consists in the determination736

of the radius of each ring composing the sphere to obtain the737

desired distribution of Da. In principle, the radius of each738

inclusion can be arbitrarily varied to obtain a desired distri-739

bution of permeability, as explained next. Since in the previ-740

ous section we have shown that permeability variations along741

the radius do not qualitatively change the flow phenomenol-742

ogy and stability properties of the wake, we focus on a con-743

stant distribution of permeability. Therefore, the first input744

parameter of the procedure is the bulk Darcy number Da. A745

structure composed of N polar repetitions of the element is746

adopted, sketched in the left frame of figure 17c. Each polar747

element can be divided in curved elementary cells of charac-748

teristic size l̄i (cf. left frame of figure 17c). The procedure749

to retrieve the full-scale structure is based on the knowledge750

of the separation of scales parameters of the interface cell of751

the periodic repetition ε = ε1 (cf. the cell highlighted in red752

in figure 17c). With the initial definition of ε and Da, the753

micro-structure is uniquely determined. We now outline the754

assumptions of the procedure to determine the radii of the755

rings. We assume l̄i � R̄c, where R̄c is the local spherical756

radius. Under this assumption, the curvature of each elemen-757

tary cell is neglected, implying that the rings can be consid-758

ered as three-dimensional cylinders. Owing to the azimuthal759

invariance, we can consider the two-dimensional problem at760

a fixed azimuthal section and thus each polar repetition can761

be decomposed in square elementary cells, each containing a762

single circular inclusion (cf. right frame of figure 17c). Ne-763

glecting the curvature in the azimuthal direction for the same764

reason, and assessing the invariance of the geometry along the765

same direction, two-dimensional cells can be finally adopted766

as microscopic domain. Note that these assumptions are rea-767

sonably respected at the interface, while they do not hold close768

to the center of the sphere. However, the effect on the results769

of a core of low permeability is weak and manifests itself770

only at very large permeabilities, as previously shown. The771

last assumption is equivalent to state that the variations of the772

micro-structure are sufficiently smooth to consider each cell773

as a periodic repetition. As will become clear once outlined774

the procedure, this assumption is respected provided that there775



14

FIG. 18. Variation of the permeability K, the interface permeability
Kitf, and the slip length λt with the radius ri, for circular inclusions
in a square domain.

is sufficient separation of scales for each cell:776

εi = l̄i/D� 1. (27)

The problem is thus simplified by considering two-777

dimensional elementary cells of different sizes and inclusion778

radii, whose macroscopic properties (permeability, interface779

permeability, and slip) are given by simulations with periodic780

conditions. We now outline the complete procedure, from the781

determination of the properties of the considered microscopic782

geometries to the final macro-structure. We can distinguish783

three different steps, (i) the determination of the properties of784

the considered micro-structure, i.e. circular inclusions with785

different radii, (ii) the determination of the distribution and786

size of the elementary cells composing the porous structure787

with input ε , and (iii) the determination of the circular inclu-788

sions radii with input Da.789

The elementary unit-cell characterizing the porous structure790

is sketched in figure 17d. The method outlined in Naqvi and791

Bottaro68 is exploited to evaluate the permeability, interface792

permeability, and slip number. The microscopic problems are793

solved by non-dimensionalizing them with the characteristic794

microscopic length l̄i. With this precaution, the permeabil-795

ity K = KI, the interface permeability Kint = KintI and slip796

λt , normalized with respect to the characteristic length of the797

square elementary cell l̄i, are evaluated by considering a two-798

dimensional array of inclusions and plotted as a function of799

the inclusion radius ri. We refer to Appendix B for further de-800

tail about the computations. The results, non-dimensionalized801

with the microscopic length, are reported in figure 18, in the802

range 10−3 < ri < 0.49. All quantities diverge as the inclusion803

radius goes to zero, while they tend to zero as the radius of the804

solid inclusion reaches ri = 0.5. The cells in figure 17c are la-805806

beled with the index i = 1,2, ..., increasing from the interface807

to the center. Each i-th cell is characterized by its arc length808

on the top boundary of the cell, equal to the radial dimension,809

l̄i, the radius of the solid inclusion r̄i
i, and the local spherical810

radius at the top boundary of the cell R̄s
i .811

The input separation of scales parameter at the interface el-812

ementary cell ε = ε1 is used to determine the angular distance813

between two polar repetitions:814

∆ϕ =
2π

N
=

2l̄1
D̂

= 2ε. (28)

The size εi+1 and radial position Rs
i+1 of the (i+1)th elemen-815

tary cell of the cross-section are determined via the following816

recursive relations:817

Rs
i+1 = Rs

i − l̄i/D = Rs
i − εi, (29)

εi+1 =
2π

N (Rs
i − εi) , (30)

which are non-dimensionalized with the diameter of the818

sphere. The initial step is given by the external elementary819

cell (Rs
1 = 0.5) with the input separation of scales parameter820

ε1 = ε . The recursive algorithm is stopped at the index i− 1821

such that Rs
i < 0.05 to avoid extremely small inclusions, i.e.822

approximately less than 10−6 times the sphere radius.823

Once the size and position of the elementary cells (each824

one assumed to be square, cf. left frame of figure 17c) is de-825

termined, one should define the radius of the microscopic in-826

clusions inside each elementary cell. A constant value of Da827

is thus imposed by exploiting the results of the microscopic828

simulations shown in figure 18, in which the microscopic ra-829

dius is related to the permeability K. In each cell of size εi,830

the permeability Ki is given by:831

Ki
(
ri

i
)
= Da/ε

2
i . (31)

Exploiting the bijective relation between ri
i and Ki (cf. figure832

18), the radius ri
i of the inclusions in each elementary cell is833

thus determined.834

For the analysis of the permeable sphere with the homog-835

enized model two additional parameters are needed, i.e. the836

slip length and the interface Darcy number. At this stage, one837

could modify the radius of the inclusion close to the inter-838

face to obtain the desired values of interface permeability and839

slip. To avoid further complications in the design procedure,840

the interface permeability and slip are a posteriori evaluated841

without modifying the microscopic inclusion at the interface:842

Λt = ε1λt
(
ri

1
)
, (32)

Daint = ε2
1 Kint = ε2

1 Kint
(
ri

1
)
, (33)

The geometry of the sphere and its properties are now843

uniquely determined for a given value of Da and ε . In the844

following, the results given by the full-scale simulations are845

compared with the homogenized model where Da, Daint and846

Λt are provided.847

B. Comparison with the homogenized model848

We conclude the analysis by comparing some full-scale849

simulations (FSS) with the homogenized model (HM) for dif-850

ferent permeability values. By FSS, we intend simulations851



15

Case N ε Da Daint Λt
I 14 0.22 1.7×10−3 3.2×10−3 0.079
II 30 0.11 5×10−4 10−3 0.044
III 60 0.05 10−5 4.3×10−5 0.009

TABLE I. Values of the geometrical parameters and homogenized
properties for each case.

FSS(I) HM(I) FSS(II) HM(II) FSS(III) HM(III)
Lr 1.24 1.42 1.36 1.46 1.48 1.5
CD 0.76 0.80 0.82 0.89 0.86 0.87

TABLE II. Comparison between the full-scale simulations (FSS) and
the homogenized model (HM) for the three outlined cases.

that explicitly account for the micro-structure composing the852

sphere. Such simulations are computationally expensive ow-853

ing to the scale separation between the macroscopic diameter854

and the typical micro-structure size li. The purpose of the855

comparison carried out in the present section is to appraise856

the accuracy of the much simpler model obtained by homog-857

enization. The following three cases, summarized in table I,858

are considered:859

• Case I, characterized by N = 14 polar repetitions and860

Da = 1.7×10−3.861

• Case II, characterized by N = 30 polar repetitions and862

Da = 5×10−4.863

• Case III, characterized by N = 60 polar repetitions and864

Da = 10−5.865

The FSS results are compared to those of the HM. The866

Reynolds number is fixed to Re = 150, less than the minimum867

value of Recr to ensure the linear stability of the FSS and HM868

solutions. Table II shows the results in terms of length of the869

recirculation region and drag coefficient for the three differ-870

ent cases introduced above. The accuracy of the HM is O(ε)871

as predicted by the homogenization theory. In particular, the872

HM is progressively more accurate as ε decreases; at the same873

time, while the computational cost of the HM is constant with874

ε , the FSS are progressively more CPU-demanding as ε de-875

creases.876

In figure 19 the flow streamlines are qualitatively compared.877

The flow morphology is well reproduced, in particular when878

the separation of scales increases. Surprisingly, there is a qual-879

itative agreement even in Case I, for which the separation of880

scales parameter ε = 0.22 is relatively large and thus violates881

the hypothesis ε � 1. Figure 20 shows a final quantitative882

comparison, in which the axial velocity profiles at x = 0.0175883

well agree, for Cases II and III.884

Despite the numerous assumptions made to exploit the two-885

dimensional HM results for the case of a three-dimensional886

sphere, the FSS well agree with the HM. Therefore, the HM887

is suitable even for complex flows such as the one outlined888

in the present work. The flow morphologies outlined in the889

parametric studies of Sections III and IV were recovered, thus890

showing the great potential of the homogenization technique891

in predicting wake flows via simple equations and boundary892

FIG. 19. Comparison of the flow streamlines between the full-scale
simulation (on the top) and homogenized model (on the bottom), a)
Case I, b) Case II, c) Case III.

FIG. 20. Streamwise velocity profile at x = 0.0175, homogenized
model results (orange dashed lines) and full-scale simulations (blue
lines), for Cases a) II and b) III.
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conditions, and in reproducing actual wake structures down-893

stream the considered bluff body.894

VI. CONCLUSIONS895

In this work, we studied the morphology and stability prop-896

erties of the steady and axisymmetric flow past a permeable897

sphere. A homogenized model was employed, consisting in898

the Darcy law inside the porous medium, with a slip condition899

on the tangential velocity at the interface between the fluid900

and porous region. The main character in the Darcy model is901

the permeability, which quantifies the resistance for the fluid902

to pass through the micro-structure. The slip length appears903

in the interface condition as well and accounts for the viscous904

effects in the proximity of the interface. The initial part of905

the work was devoted to the steady and axisymmetric flow906

in the presence of a constant and isotropic permeability and907

zero slip length. The flow presents a penetration of the re-908

circulation region inside the sphere, which increases its di-909

mensions as the permeability increases, as already observed910

in Yu et al.49, where a different porous model was employed.911

However, at very large permeabilities, the recirculation region912

leaves the body, moves downstream, and eventually disap-913

pears. The non-monotonous behavior of the recirculation re-914

gion resulted in a particular behavior of the marginal stability915

curves for the two bifurcations of the steady and axisymmet-916

ric wake. The critical Reynolds numbers for the instability917

reached a minimum, much lower than the ones of the solid918

case, and then drastically increased for very large permeabili-919

ties. A critical permeability was identified, beyond which the920

steady and axisymmetric wake is linearly stable independently921

of the Reynolds number. A consequent analysis showed that922

the slip length weakly influences the flow morphology. There-923

fore, the latter is largely affected by the permeability.924

We then focused on the effect of various polynomial dis-925

tributions of permeability along the spherical radial direction926

rs, i.e. proportional to rα
s , still under the assumption of an927

isotropic porous media. The results showed a similar behav-928

ior to the case of constant permeability, with only slight dif-929

ferences. Interestingly, the flow morphologies and stability930

curves collapse when an average permeability is employed,931

thus highlighting the secondary role of the spatial distribution932

of permeability for the considered cases.933

While in the previous sections the permeability and slip934

length were treated as free parameters, in the last section these935

properties were linked with an actual porous structure. The936

homogenization theory enabled us to retrieve an actual per-937

meable sphere through some reasonable assumptions. We938

showed the potential of homogenization theory in the mod-939

elization of actual three-dimensional configurations of interest940

by comparing the homogenized model against the reference941

cases obtained by full-scale simulations.942

This work provides an example of the application of the943

porous homogenized model with slip to a three-dimensional944

configuration of interest, together with the characterization of945

the effect of a penetrating recirculation region on the steady946

and axisymmetric flow past a permeable sphere, with a focus947

on its stability properties. In opposition to other bluff body948

wakes, a remarkable and counterintuitive effect is the decrease949

of the critical Reynolds number for the marginal stability. The950

homogenized model was applied to a three-dimensional con-951

figuration of interest. Thanks to the direct link with the ac-952

tual full-scale structure, we showed the potential of the inverse953

procedure to retrieve the geometry starting from the homog-954

enized parameters. These considerations may find applica-955

tion in the optimization and design of porous structures, not956

only in aerodynamic flows. The inverse paradigm can sig-957

nificantly decrease the computational effort needed for opti-958

mization procedures since (i) the homogenized model con-959

tains only few parameters, which describe the macroscopic960

effect of the microscopic geometry, that can eventually vary in961

space66, with great advantage compared to the large numbers962

of degrees of freedom needed to optimize a micro-structured963

medium, and (ii) the decoupling between macroscopic effect964

and microscopic structure design helps in considering differ-965

ent structures without loss of generality. These results can be966

extended in several ways. While detached recirculation re-967

gions are receiving growing attention, further developments968

may include the analyses of penetrating recirculation regions969

for different flow configurations. These findings can be ap-970

plied in classical environmental studies such as porous parti-971

cle or seed transport15,16 or in chemical engineering processes972

which involve the presence and settling of spherical, porous973

particle clusters23,25,77. In this work, we characterized the974

two bifurcations of the steady and axisymmetric wake. Fur-975

ther developments may include the non-linear interactions of976

these two modes varying the permeability and slip length and977

the secondary instability of the steady non-axisymmetric bi-978

furcated state. Finally, we retrieved the full-scale structure979

by exploiting the homogenization theory developed for the980

two-dimensional case. A natural extension of this theory to981

cylindrical and spherical coordinates would give access to a982

broader range of geometries and applications.983
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FIG. 21. Sketch of the refinement regions of the computational domain.

Mesh x−∞ x+∞ r∞ nc n2 n3 n4 n5 Ntot
M1 −50 100 40 200 15 6.25 2 1.5 334534
M2 −37.5 75 30 200 15 6.25 2 1.5 222393
M3 −30 60 24 200 15 6.25 2 1.5 169039
M4 −25 50 20 200 15 6.25 2 1.5 136696
M5 −25 50 20 220 22.5 7.5 2.5 1.75 158954
M6 −25 50 20 240 27.5 7.5 2.5 1.75 213713
M7 −25 50 20 260 30 7.5 3 2 274383

TABLE III. Different meshes employed for the validation procedure.
The upstream and downstream location of the domain boundaries
are denoted x−∞ and x+∞, respectively, the radial size as r∞, nc is
the number of vertices at the interface, while n2,n3,n4 and n5 are the
vertex densities on the external sides of the corresponding refinement
regions; Ntot is the total number of elements.

DATA AVAILABILITY994

The data which support this study are available from the cor-995

responding author upon reasonable request.996

Appendix A: Numerical validation997

Da = 0.0036 Da = 0.0032
Mesh σ1 CD σ2 CD
M1 −0.0035510 0.6255 −0.0013298+0.30833i 0.63275
M2 −0.0035462 0.62558 −0.0013150+0.30835i 0.63277
M3 −0.0035322 0.62560 −0.0012567+0.30839i 0.63280
M4 −0.0035178 0.62562 −0.0012567+0.30839i 0.63282
M5 −0.0034105 0.62594 −0.0011703+0.30847i 0.63311
M6 −0.0033208 0.62618 −0.0011307+0.30853i 0.63335
M7 −0.0032129 0.62637 −0.0010653+0.30860i 0.63354

TABLE IV. Results of the validation procedure for Re = 390, with
Da = 0.0036 (for the steady mode) and Da = 0.0032 (for the un-
steady mode). We also report the values of the drag coefficient for
the corresponding baseflows.

Da = 0.0037 Da = 0.0031
Mesh σ1 CD σ2 CD
M1 8.3077×10−4 0.67046 −0.0042442+0.34859i 0.68891
M2 8.3525×10−4 0.67047 −0.0042320+0.34860i 0.68893
M3 8.4511×10−4 0.67050 −0.0042127+0.34862i 0.68896
M4 8.5985×10−4 0.67053 −0.0041836+0.34864i 0.68899
M5 9.0638×10−4 0.67078 −0.0041290+0.34867i 0.68921
M6 9.3256×10−4 0.67098 −0.0041154+0.34869i 0.68940
M7 9.7854×10−4 0.67113 −0.0040814+0.34872i 0.68954

TABLE V. Results of the validation procedure for Re = 330, with
Da = 0.0037 (for the steady mode) and Da = 0.0031 (for the un-
steady mode). We also report the values of the drag coefficient for
the corresponding baseflows.

In this section, the mesh validation procedure is outlined.998

The computational domain is sketched in figure 21. The999

extension of the computational domain is from x = x−∞ to1000

x = x+∞ along the x direction and from r = 0 (i.e. the sym-1001

metry axis) to r = r∞ along the radial direction. The sphere1002

center is at the origin of the reference system. Five refinement1003

regions are present, labeled with integers from 1 to 5, start-1004

ing from inside the sphere and moving outward. The mesh is1005

composed of triangular elements. Table III shows the different1006

meshes considered for the validation.1007

We consider four different cases, in the vicinity of the1008

marginal stability curves. We verify the convergence of drag1009

coefficient and eigenvalues:1010

1. Re=390 and:1011

• a) Da = 0.0032 for the unsteady bifurcation;1012

• b) Da = 0.0036 for the steady bifurcation;1013

2. Re=330 and:1014

• a) Da = 0.0031 for the unsteady bifurcation.1015

• b) Da = 0.0037 for the steady bifurcation;1016



18

To verify the eigenvalues and CD convergences, we vary (i)1017

the domain size and (ii) the mesh resolution. Starting from1018

Mesh M4 (table III), we progressively increase the domain1019

size (meshes M3,M2 and M1). We then increase the mesh1020

resolution with meshes M5,M6 and M7. The eigenvalues and1021

drag coefficient for the different cases are reported in tables1022

IV,V. In overall, the relative error on the drag coefficient is1023

always less than 1%. The relative error on the eigenvalues1024

is approximately constant for all cases and ∼ 10%. To have1025

a clear picture of the expected accuracy in terms of critical1026

Reynolds number, we evaluate Recr with meshes M4 and M71027

in the vicinity of the considered cases (with fixed Da) :1028

• for case 1a), the critical Reynolds numbers for the un-1029

steady bifurcation at Da = 0.0032 read ReM4
cr = 398.221030

and ReM7
cr = 396.63 for meshes M4 and M7, respec-1031

tively, leading to an error of ∆Recr = 1.58.1032

• for case 1b), the critical Reynolds numbers for the1033

steady bifurcation at Da = 0.0036 read ReM4
cr = 383.541034

and ReM7
cr = 384.07 for meshes M4 and M7, respec-1035

tively, leading to an error of ∆Recr = 0.53.1036

• for case 2a), the critical Reynolds numbers for the un-1037

steady bifurcation at Da = 0.0031 read ReM4
cr = 337.321038

and ReM7
cr = 337.13 for meshes M4 and M7, respec-1039

tively, leading to an error of ∆Recr = 0.19.1040

For case 2b), we evaluate the variation of the critical Darcy1041

number in the vicinity of the value for unconditional stabil-1042

ity, with fixed Re = 330. The critical values read DaM4
cr =1043

0.003706 and DaM4
cr = 0.003707.1044

The error on the critical Reynolds number increases with Re1045

itself and is, at most, of order ∆Recr ≈ 1.6, and the associated1046

maximum relative error is ≈ 0.4%. Also, the precision on the1047

critical Darcy number appears to be satisfactory. Therefore,1048

we conclude that mesh M4 is a good compromise between the1049

accuracy and the computational times for the large paramet-1050

ric study considered, which involves five different parameters1051

(Re,Da, Λt , Λs, α), with a relative error less than 1% on the1052

critical Reynolds numbers.1053

Appendix B: Evaluation of permeability and slip via1054

homogenization theory1055

Several recent works based on multi-scale homogeniza-1056

tion aimed at linking the microscopic structure of a porous1057

medium to its macroscopic feedback on the surrounding flow,1058

i.e. the bulk permeability and slip interface effects62,64,65,67.1059

In these works, the microscopic structure is assumed to be1060

periodic within the porous medium so that the bulk perme-1061

ability can be calculated once for all in a periodic microscopic1062

elementary cell. Additionally, an interface microscopic cell1063

containing few inclusions across the fluid-porous boundary1064

can be identified where some microscopic problems can be1065

solved to retrieve the interface permeability and slip. In par-1066

ticular, Bottaro67 and Naqvi and Bottaro68 have shown that1067

both bulk and interface macroscopic properties can be de-1068

duced from a unique interfacial microscopic problem, pro-1069

vided that the normal-to-the-interface size of the microscopic1070

domain is large enough. Adopting this last development, all1071

macroscopic quantities can be retrieved by the solution of the1072

two sets of equations. We introduce the two-dimensional lo-1073

cal reference frame (xn,xt ), where n and t denote the normal1074

and tangent directions to the interface, respectively. The mi-1075

croscopic problems to be solved involve the tensor quantities1076

λ
†
i j, κ

†
i j and the vector quantities ξ

†
j and χ

†
j , where i, j = n, t.1077

The equations, written in components for the sake of clarity,1078

read:1079

∂λ
†
i j

∂xi
= 0, −

∂ξ
†
j

∂xi
+

∂ 2λ
†
i j

∂x2
l

= 0, (B1)

lim
xn→+∞

∂λ
†
i j

∂xn
= δi j, lim

y→+∞
ξ

†
j = 0,

and1080

∂κ
†
i j

∂xi
= 0,−

∂ χ
†
j

∂xi
+

∂ 2κ
†
i j

∂x2
k

= δi jH(−xn), (B2)

lim
xn→+∞

∂κ
†
i j

∂xn
= 0, lim

xn→+∞
χ

†
j = 0,

where H is the Heaviside function centered in xn = 0, cor-1081

responding to the starting point of the first interface unit1082

cell. The macroscopic quantities used in the interface con-1083

ditions (15) can be then retrieved by the solutions of problems1084

(B1,B2) introducing the following relations1085

λt =
∫ 1

0
λ

†
tt (xn→+∞)dt− xn, Kint =

∫ 1

0
κ

†
tt(xn→+∞)dt

(B3)
and1086

K =
∫ 1

0
κ

†
nn(xn→+∞)dt. (B4)

The solution for λ
†
tt , κ†

nn and κ
†
tt is represented in the micro-1087

scopic interface cell in figure 22 for a periodic array of cylin-1088

ders of radius equal to 0.4. Once the average values of the1089

microscopic quantities are evaluated using equations (B3,B4),1090

upon rescaling with the macroscopic length, they can be used1091

in equations (2) and (3) to establish a link between the mi-1092

croscopic structure and the corresponding macroscopic flow1093

field.1094
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FIG. 22. Overview of the microscopic solution in the interface cell for a given circular inclusion whose radius is 0.4. a) λ
†
tt in the whole

interface cell. b),c) Zoom in on the first three solid inclusions in the interface cell for b) κ
†
nn and c) κ

†
tt .
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