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A B S T R A C T

Malaria is a severe infectious disease caused by the Plasmodium parasite. The early and accurate detection of
this disease is crucial to reducing the number of deaths it causes. However, the current method of detecting
malaria parasites involves manual examination of blood smears, which is a time-consuming and labor-intensive
process, mainly performed by skilled hematologists, especially in underdeveloped countries. To address this
problem, we have developed two deep learning-based systems, YOLO-SPAM and YOLO-SPAM++, which can
detect the parasites responsible for malaria at an early stage. Our evaluation of these systems using two
public datasets of malaria parasite images, MP-IDB and IML, shows that they outperform the current state-of-
the-art, with more than 11M fewer parameters than the baseline YOLOv5m6. YOLO-SPAM++ demonstrated
a substantial 10% improvement over YOLO-SPAM and up to 20% against the best-performing baseline in
preliminary experiments conducted on the Plasmodium Falciparum species of MP-IDB. On the other hand,
YOLO-SPAM showed slightly better results than YOLO-SPAM++ in subsets without tiny parasites, while YOLO-
SPAM++ performed better in subsets with tiny parasites, with precision values up to 94%. Further cross-species
generalization validations, conducted by merging training sets of various species within MP-IDB, showed
that YOLO-SPAM++ consistently outperformed YOLOv5 and YOLO-SPAM across all species, emphasizing its
superior performance and precision in detecting tiny parasites. These architectures can be integrated into
computer-aided diagnosis systems to create more reliable and robust systems for the early detection of malaria.
1. Introduction

Malaria is a severe and potentially deadly disease caused by the
Plasmodium parasite. This parasitic infection is spread primarily through
the bites of female Anopheles mosquitoes infected with the parasite. In
2021, there were approximately 247 million malaria cases worldwide,
with a staggering 619,000 deaths attributed to this disease. The ma-
jority of these cases (95%) and fatalities (96%) occurred in the World
Health Organization (WHO) African region, with children under the age
of five being the most vulnerable group, accounting for around 80% of
deaths [1].

In humans, the parasites of the genus Plasmodium cause malaria by
attacking red blood cells (RBCs), spreading to people through the bites
of infected female Anopheles mosquitoes. Five species of the parasite
can cause malaria in humans: P. falciparum (Pf), P. vivax (Pv), P. ovale
(Po), P. malariae (Pm), and P. knowlesi (Pk), with Pf and Pv posing
the most significant threat [1,2]. The life stages of the malaria parasite
within the human host include the ring, the trophozoite, the schizont,
and the gametocyte stages. Understanding these different stages is
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essential for developing effective treatments and prevention strategies
for this dangerous disease.

The WHO defines human malaria as a preventable and treatable
disease if diagnosed promptly, as the worsening illness can lead to
disseminated intravascular thrombosis, tissue necrosis, and spleen hy-
pertrophy [1,3]. Therefore, the key strategy is to diagnose the disease
accurately and as early as possible and provide prompt treatment.

Malaria diagnosis can be accomplished using various diagnosis
techniques, including microscopical analysis of blood smear, rapid di-
agnostic test (RDT), or real-time polymerase chain reaction (PCR). They
can overcome the complications brought by the fact that symptoms can
be easily confused with those of other diseases, such as viral hepatitis
or dengue fever [4].

Despite its heightened accuracy, the PCR test is not ideal for pro-
gram settings since it lacks the convenience of a point-of-care test
compared to RDT or microscopy. Also, it requires specialized laboratory
facilities to be conducted. To ensure accurate diagnosis in all situations,
the WHO has recommended that all suspected malaria cases be verified
vailable online 1 April 2024
746-8094/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.bspc.2024.106289
Received 23 September 2023; Received in revised form 4 January 2024; Accepted
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

25 March 2024

https://www.elsevier.com/locate/bspc
https://www.elsevier.com/locate/bspc
mailto:luca.zedda@unica.it
mailto:andrea.loddo@unica.it
https://doi.org/10.1016/j.bspc.2024.106289
https://doi.org/10.1016/j.bspc.2024.106289
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bspc.2024.106289&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Biomedical Signal Processing and Control 94 (2024) 106289L. Zedda et al.
through microscopy or an RDT before treatment. However, it is impor-
tant to note that false-negative results can result in delayed treatment
and an increased risk of spreading the disease.

Microscopy remains the method preferred by pathologists for diag-
nosing malaria [5–7], even in endemic countries, due to its sensitivity,
affordability, and ability to identify parasite species and density [4,8,9].
It consists of analyzing a peripheral blood smear (PBS) on a glass slide
to identify malaria parasites and their stages. This procedure is also
widely used for other blood tasks, like leukemia detection [10–12] or
blood cell counting [13,14].

However, microscopy has several drawbacks, as many issues can
occur in this process: (i) detecting infections in the early stages can
be challenging, and the presence of experienced microscopists is nec-
essary; (ii) in some malaria-endemic regions, the scarcity of qualified
microscopists, poor quality control, and misdiagnosis due to low para-
sitemia or mixed infections can limit microscopic diagnosis; (iii) some
rural health facilities may not have access to this diagnostic method;
(iv) identifying Plasmodium species can also be difficult under the
microscope, leading to possible misreporting of certain species, such
as P. ovale, which looks like P. vivax. Although this does not affect
treatment because the patient will receive the same treatment for both
species, it has crucial implications in the epidemiology and mapping of
malaria [8,9]; (v) technical skills in slide preparation are required; (vi)
lysis of red blood cells and related modifications in parasite morphology
can happen, leading to errors in species identification; (vii the quality
and illumination of the microscope are rarely guaranteed and are not
standard; (viii) staining procedure can also affect the procedure; (ix)
finally, the level of parasitemia plays a role as well [4].

Last but not least, there is the need to keep infectious diseases under
control, especially in underdeveloped countries with no medical centers
nearby or capable of handling many patients [3].

Accurate and timely malaria diagnosis is crucial for effective treat-
ment and preventing severe complications. Although traditional meth-
ods like microscopy are still considered the gold standard, recent
developments in deep learning have shown promising results in malaria
cell image analysis, particularly with Convolutional Neural Networks
(CNNs).

Several studies have explored the application of CNNs in malaria
diagnosis at the single-cell level. These studies have highlighted the
significance of accurately identifying whether a cell is infected with
the malaria parasite [15–17].

However, using monocentric cell image datasets represents an overly
ideal scenario in which salient and highly discriminating features can
be extracted from the images. This scenario, more realistically, can be
achieved by a previous step of detection or segmentation of a full-size
image.

In real-world application scenarios, the systems are fully automated,
and the images may not always be accurately centered or have perfect
crops. This aspect can result in less-than-ideal detection and, thus, less
precision in diagnosis. Previous studies have shown the effectiveness
of detection systems in real-world application scenarios for computer-
aided diagnosis (CAD) systems, including those that are robust and can
handle such issues with image quality [18–22].

CAD systems can assist pathologists in diagnosing diseases and post-
therapy monitoring. CAD systems excel at replicating manual analysis
with significantly higher precision and faster results while minimizing
subjectivity [23–25].

Additional challenges include distinguishing between various Plas-
modium species and addressing the intricacies associated with low lev-
els of parasitemia and asymptomatic infections. As a result, achieving
precise bounding box detection for the exact localization of parasites
within cells holds significant promise for comprehensive investigations
and detailed diagnostic endeavors [7,26,27].

Therefore, incorporating deep learning techniques with object de-
tection capabilities becomes imperative in this context, enabling the ac-
curate classification of infected cells and the exact localization of para-
sites within them. This integration provides comprehensive information
2

for detailed analysis and diagnosis.
The challenges and motivations presented so far motivated this
work. Here, we present a new CAD approach for the automated, early
identification of malaria parasites and early quantification of para-
sitemia with the dual purpose of assisting pathologists and overcoming
the challenges described in gold-standard microscopy.

The main contributions are listed as follows. (i) We propose
YOLO-SPAM and YOLO-SPAM++, two novel deep learning (DL)-based
architectures projected for real-time, early detection of malaria through
the identification of tiny parasites; (ii) the detection of four different
malaria species and life stages, for mixed or intra-species detection is
considered; (iii) an extensive evaluation of two different datasets and a
comparison with three off-the-shelf object detectors is performed.

Our study employed the You Only Look Once (YOLO) architecture,
a well-established approach that has demonstrated impressive results
in our previous research [28]. Nevertheless, we implemented several
architectural modifications to improve its accuracy in detecting tiny
parasites to allow an early diagnosis and to perform multi-species
detection of malaria parasites.

The remainder of this article is organized as follows. First, a back-
ground about the task at hand and an overview of the literature is given
in Section 2. Then, materials and methods are described in Section 3,
while Section 4 describes the proposed architectures. The experimental
evaluation and the obtained results follow in Section 5. A detailed
discussion and a description of the limitations are given in Section 6.
Finally, conclusions are drawn in Section 7.

2. Background

CAD systems developed in medicine are not only limited to a
particular area but can also be applied to hematology. Many CAD-based
solutions have already been suggested for the automatic detection
of malaria parasites in hematology. These solutions reduce manual
analysis errors and offer a consistent interpretation of blood samples.
Ultimately, this leads to a decrease in the cost of diagnosis [27,29].

By applying this promising technology to hematology, researchers
hope to enhance the accuracy and speed of diagnosis in this field as
well, thus leading to improved patient outcomes and a more efficient
healthcare system [23].

Both traditional image processing methods and advanced deep
learning techniques have been used in studies on automatic parasite
detection. Conventional image processing involves detecting (or seg-
menting) the parasites, extracting features, and performing parasite
classification that can be carried out independently or interrelatedly.
In contrast, end-to-end deep learning approaches integrate all the steps
and have become more prevalent after AlexNet’s proposal [30].

Traditional pipeline methods in this area have included mathemat-
ical morphology techniques for preprocessing and segmentation [18,
19]. Handcrafted feature extraction [21] has also been used to train
machine learning classification methods.

Meanwhile, DL approaches have become more prominent over the
last decade, with numerous works published [7,15,17,27,31].

These studies leverage DL techniques to improve the accuracy and
efficiency of the detection process, often achieving superior perfor-
mance compared to traditional methods.

The current literature on malaria parasite analysis from blood smear
images can be organized into four main topics: (i) parasite detection
and classification from full-size images (see Section 2.1; (ii) parasite
classification from single-cell images (see Section 2.2; (iii) domain
generalization methods from high- to low-cost devices (see Section 2.3);
(iv) methods for low-cost sensor image devices (see Section 2.4).

2.1. Parasite detection and classification from full-size images

Detecting malaria parasites from blood images is a challenging task

that requires analyzing full-size images depicting sections of a blood
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Fig. 1. Overview of the two datasets exploited in this study: MP-IDB and IML. MP-IDB contains four species of malaria: P. falciparum, P. malariae, P. ovale, and P. vivax. The
IML dataset, on the other hand, only includes P. vivax samples. The MP-IDB dataset shows variations within each species, while the two datasets differ from each other.
smear. This analysis is critical for near real-time diagnosis, especially
in settings where clinical facilities are limited, like underdeveloped
countries where access to medical resources is restricted [21].

However, detecting parasites can be challenging because their struc-
tures can be similar to those of other cell regions, such as white blood
cells and platelets. Microscopic evaluation of PBS typically takes more
than 15 min per slide. Moreover, identifying the various species of
Plasmodium can be challenging due to the parasites’ different life-cycle
stages [32].

Conducting a fine-grained examination is crucial to accurately di-
agnose diseases (e.g., malaria parasites, leukemia) from images of
blood samples. This kind of examination requires segmentation or
detection techniques to identify regions of interest (ROIs) before per-
forming a further classification and providing the pipeline with relevant
information for a thorough understanding of these regions [33].

However, some works involve directly classifying full-size images,
often utilizing CNNs or traditional machine learning techniques, trained
using handcrafted features or those extracted from pre-trained CNNs.
An example of this strategy is the work of Vijayalakshmi et al. [5],
who used an SVM trained with features extracted from a VGG-19 net
to distinguish between infected and non-infected malaria images.

In this context, the newest approach for handling a multi-stage
pipeline involves deep learning techniques. For example, Arshad et al.
[31] proposed a method based on a segmentation step that combines
U-Net and watershed algorithms, followed by a binary classification
to separate healthy and infected cells and a further life cycle-stage
classification for the infected cells. Both classifications are based on
ResNet50v2’s CNN.

Similarly, Maity et al. [7] adopted a semantic segmentation fol-
lowed by a Capsule Network to classify Pf rings. On the contrary,
instead of using a segmentation approach, Sultani et al. [27] performed
a comparison of different off-the-shelf object detectors, viz. Faster R-
CNN (FRCNN), RetinaNet, FCOS, and YOLO on Pv’s life stages. In
contrast, Lin et al. [34] and Manescu et al. [35] proposed two custom
object detection (OD) pipelines to diagnose malaria and identify the
parasites.

Our research has identified three other studies that also use YOLO
to detect parasites, but they focus on thick blood smear images and
use datasets different from ours. They used YOLO versions, including
YOLOv3 and YOLOv4 [36–38].

2.2. Parasite classification from single-cell images

Since malaria parasites always affect the RBCs, these methods focus
on the classification of individual cells from images to distinguish
between parasitized and healthy erythrocytes [15–17,39,40].
3

These studies are typically benchmarked on the NIH dataset. More
recently, there have been investigations into using vision transform-
ers on the same dataset. These investigations, as explored in Sengar
et al. [41] with a classification of Pv life stages, are part of a growing
trend that seeks to explore the potential benefits of vision transformers
in deep learning-based malaria research.

The specific solutions in this sense are novel ad-hoc designed CNN
architectures [15], use of the transfer learning on CNNs pre-trained on
ImageNet [42], e.g., ResNet-50 [16] and VGG-19 [39], or ensemble
with VGG-19 and SqueezeNet [17]. In a recent study, Diker et al. [40]
presented a residual CNN architecture that uses Bayesian optimization
to extract key features from both classes. The identified features are
then used as input to an SVM classifier.

2.3. Domain generalization methods from high- to low-cost devices

When it comes to computer-aided medical image analysis, machine
learning techniques often encounter a challenge known as the domain
shift problem caused by different distributions between source data and
target data. Domain adaptation has emerged as a potential solution and
has gained significant attention in recent years [43].

In their study, Sultani et al. [27] tackled the challenge of obtaining
images in areas with limited medical resources by collecting a dataset
using low-cost and high-cost microscopes. They tested different domain
adaptation techniques to determine the most suitable way to use high-
cost microscope images as the source domain and low-cost microscope
images as the target domain.

Further possible domain adaptation tasks still need to be addressed
in this field. One example is the ability to classify different Plasmodium
species based on knowledge of only one species (e.g., being able to
recognize Pm, Pv, and Po when only Pf is the source domain).

2.4. Methods for low-cost sensor image devices

Low-cost mobile devices like smartphones and tablets, often paired
with microscope cameras, have been used in studies for image acqui-
sition and analysis processes. Smartphone-specific apps typically based
on pre-trained or customized CNN have been developed to automate
malaria diagnosis [21,44], resulting in excellent classification rates in
as little as ten seconds [44].

The use of affordable and easy-to-use mobile devices has signifi-
cantly expanded in recent years, especially in resource-limited coun-
tries with a high incidence of malaria deaths and a lack of special-
ized personnel and equipment for proper diagnosis [44]. This technol-
ogy can provide a cost-effective solution for accurate malaria diagno-
sis [32].
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2.5. Limitations of the existing literature

There are some limitations in the existing literature regarding an-
alyzing full-size images. Direct classification using CNN or traditional
machine learning techniques may oversimplify the task, leading to the
loss of fine-grained details essential for accurate diagnosis. Therefore,
some studies opt for off-the-shelf object detectors on custom datasets.
However, previous works on malaria parasite detection mainly focused
on thick blood smears. They may not be generalized to other datasets,
as differences in datasets and features can significantly affect model
performance. Furthermore, there is a lack in the analysis of multiple
malaria species and life stages since the existing literature’s main goal
is to address a specific species.

Our work has focused on analyzing two public thin blood smear
image datasets. This choice has allowed us to perform a detailed
examination of the fine-grained details in the images. Such an analysis
helps in the identification and detection of different species and stages
of life, both from a quantitative and qualitative perspective.

Additionally, as depicted in Fig. 1, the two datasets exhibit distinct
intrinsic characteristics, including variations in coloration, illumination
conditions, composition, and types of parasites. This diversity enables
the demonstration of the proposed method’s capability to not only
tackle the detection of tiny parasites but also address the identification
of fully developed parasites within the context of an infection.

3. Materials and methods

This section describes the datasets employed in Section 3.1 and
gives an overview of the state-of-the-art object detectors in Section 3.2
and the YOLO family in Section 3.3. Furthermore, it delves into the
concept of attention and its applications in the field (Section 3.4).
Finally, insights on Swin transformers are provided in Section 3.5.

3.1. Datasets

Some samples of the two public datasets used in this work are shown
in Fig. 1.
MP-IDB is an image dataset including 210 pictures of four types
of malaria species. These are made up of 104 P. falciparum, 37 P.
malariae, 29 P. ovale, and 40 P. vivax images. The life cycle of every
species comprises four distinct stages: ring, trophozoite, schizont, and
gametocyte [6].

Each picture has a corresponding ground truth that indicates the
resence of one or more of these life stages. The images were taken at
high resolution of 2592 × 1944 pixels and with a 24-bit color depth.
s shown in Fig. 1, the dataset features significant variation within and
cross species.
ML [45] comprises images of blood samples collected from individuals
nfected with malaria in Pakistan’s Punjab province. The images were
aken with a camera attached to a microscope from the XSZ-107 series,
agnified at 100×. The dataset comprises 345 images, each containing

n average of 111 blood cells. The only malaria species represented is
. vivax. Each image has its corresponding ground truth that indicates
ne or more life stages or red blood cells. The images have a resolution
f 1280 × 960 pixels with a 24-bit color depth.

.2. Object detectors

Object detection is a critical task based on deep learning object
etectors in computer vision. They are conventionally divided into two
ategories: two-stage and one-stage.

Two-stage architectures, such as Faster R-CNN [46], first identify
OIs and then perform classification and bounding box regression

n a coarse-to-fine process. In contrast, one-stage detectors, including
4

etinaNet [47], FCOS [48], and YOLO family [49], produce bounding
oxes and classes directly from predicted feature maps with predefined
nchors.

Two-stage architectures generally provide slightly higher accuracy,
hile single-stage detectors are faster and more compact, making them
ore suitable for time-critical applications and computationally con-

trained edge devices [47,50,51].
More recently, the success of Transformers in image recognition has

ed to the development of Swin Transformers-based (see Section 3.5), or
nd-to-end DEtection TRansformers (DETRs). Despite their high recog-
ition accuracy, DETRs are hampered by their complex architectures
nd slow convergence problems [50].

To address the existing limitations, we propose a modified version
f the one-stage YOLOv5 detector’s architecture to enhance its accuracy
nd efficiency in detecting malaria parasites, particularly the smallest
nd earliest ones.

.3. The YOLO family of detectors

The YOLO family of detectors uses a different approach compared
o traditional methods. Instead of a two-step process based on region
election, it uses an end-to-end differentiable network that integrates
ounding box estimation and object identification. The input image is
ivided into 𝑆 × 𝑆 constant-size grids, and a CNN predicts bounding
oxes and classes for each grid. If the confidence of a bounding box is
igher than a fixed threshold, it is selected to locate the object in the
mage. The CNN performs one pass and produces known objects and
heir bounding boxes, ensuring that each object is detected only once
fter non-maximum suppression.

However, despite their significant improvement in detection speed,
OLO architectures struggle to detect small objects compared to two-
tage detectors [49,51]. This limitation was considered one of the
bjectives of the proposed work, as the scenario includes cases in which
he first parasites appear tiny. The smallest ones, i.e., the smallest rings,
re typically not large enough to be considered by a generic detector.
OLOv5.This architecture has been chosen as a baseline for our pur-

pose because of its speed, accuracy, and ease of training.
It is a family of OD architectures and models pre-trained on the

Common Object in Context (COCO) dataset [52] and used for various
object detection tasks [53].

The family includes five different models that share the same archi-
tecture but differ in size and complexity: YOLOv5n for nano, YOLOv5s
for small, YOLOv5m for medium, YOLOv5l for large, and YOLOv5x for
extra-large models.

Each model is available pre-trained on 640 × 640 or 1280 × 1280
resolution images, with varying numbers of trainable parameters. For
the first dimension, YOLOv5n contains 1.9 million parameters, YOLOv5s
7.2, YOLOv5m 21.2, YOLOv5l 46.2 and YOLOv5x 86.7. The latter con-
tains 3.2, 12.6, 35.7, 76.8, and 140.7 million parameters, respectively.

The architecture of YOLOv5 consists of three components, similar
to other object detection models: backbone, neck, and prediction head.
The backbone is a pre-trained network dedicated to image feature
extraction, and the neck combines the extracted features and creates
three different scales of feature maps (also known as feature pyramids)
to help the model generalize well to objects of different sizes and
scales. The prediction head applies anchor boxes to the feature maps
and detects objects based on the previously created feature maps.
YOLOv5 uses the CSPDarknet53 architecture with a Spatial Pyramid
Pooling (SPP) layer [54] as the backbone, Path Aggregation Network
(PANet [55] as the neck, and the YOLO detection head [49].

3.4. Attention mechanism

Attention is a crucial cognitive process that affects how humans
perceive the world. Instead of processing an entire visual scene si-
multaneously, humans selectively focus on the most important parts
to capture its structure more accurately [56]. This mechanism helps
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Fig. 2. Schematic representation of the architecture of the Convolutional Block Atten-
tion Module. Two consecutive attention sub-modules refine feature maps in channel
and space, respectively.

filter out unnecessary information, making perceptual processing more
efficient and accurate [57,58].

Recently, attention has become increasingly relevant in the com-
puter vision field [57,58]. Here, attention focuses on specific input
data when generating an output. The process involves weighting the
importance of different input features to produce a set of weights for
each feature, followed by a weighted sum to generate the output.

The attention module’s structure involves two sets of vectors: 𝑥1 and
𝑥2. 𝑥2 generates a ‘query,’ while 𝑥1 creates a ’key’ and ‘value’ pair.
The attention function aims to connect the query with the key–value
pairs to produce an output. This output is achieved by calculating a
weighted sum of the value vectors. The compatibility function assigns
weights based on the similarity between the query and each key. The
output is obtained by taking the dot product between the softmax of
the compatibility scores and the values, as discussed in [59].

In formal terms, when provided with a group of input features
labeled as 𝑥1, 𝑥2,… , 𝑥𝑛 and a desired output labeled as 𝑦, the attention
mechanism calculates a weighted sum of the input features using the
formula shown in Eq. (1) [59].

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 , (1)

where 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, respectively,
and 𝑑𝑘 is the dimension of the key vectors.

Various attention mechanisms are available, but two of the most
commonly used are spatial attention, and channel attention [57,58].

Spatial attention focuses on identifying the important positions in
an image that the neural network needs to learn. This mechanism
transforms the spatial information of the original picture into another
space while retaining the key information.

Channel attention focuses on the inter-channel relationship of fea-
tures to create a channel attention map. This mechanism considers each
channel in a feature map as a feature detector and concentrates on what
is meaningful in the input image.

A combination of the two mechanisms, namely Convolutional Block
Attention Module (CBAM), was proposed by Woo et al. to improve
informative channels and significant regions [56]. In particular, CBAM
uses two sub-modules, channel and spatial. It separates the channel
and spatial attention maps to make computations more efficient. It also
introduces global pooling to utilize global spatial information.

Combining channel and spatial attention in sequence helps the
network understand the relationships between different features. This
way, the network knows what to focus on and where to focus.

Attention mechanisms play a critical role in enhancing the perfor-
mance of object detection models. These mechanisms work by refining
feature maps and are typically included in the model. In OD tasks,
attention modules are designed to focus on three-dimensional feature
maps and learn both channel-related features and spatial attention.
However, the CBAM module uniquely separates channel and spatial
awareness into two distinct sub-modules. A schematic representation
of CBAM is shown in Fig. 2.
NAM.A modified version of the CBAM module created for image clas-
sification is the Normalized Attention Module (NAM). It was designed to
address the common problem of varying dot-product attention scores,
which can be influenced by the input’s dimensionality [60]. This in-
consistency can lead to training instability and affect the attention
5

mechanism’s quality. The NAM solves this issue by normalizing the dot-
product attention scores and dividing them by the square root of the
input’s dimensionality. It helps to stabilize the attention mechanism
during training and ensures that the scores are appropriately scaled,
regardless of the input dimensionality, providing the network with
more stability. The normalization occurs before the softmax function
is applied to calculate the attention weights.

3.5. Swin transformers

Microsoft Research introduced the Swin Transformer in 2021 as a
new application for computer vision tasks [61]. This transformer-based
approach uses multi-headed self-attention modules to process patches
of input images that are converted into embeddings. The Swin Trans-
former allows for linear computation complexity with image size and
enables cross-window connection, resulting in more accurate detection.
Although it requires more parameters than convolutional models, Swin
Transformer can replace convolution for vision tasks.

This model uses hierarchical feature maps, like those in CNN, that
down-sample images by 4×, 8×, and 16×. This backbone helps with
tasks such as object detection and instance segmentation.

In this work, we explored using Swin Transformer to gather global
information. To improve the detection of tiny parasites, we enhanced
the detection heads of the YOLOv5 model by adding a target detection
head. Our modification included the integration of C3STR layers into
the original C3-based structure of the YOLOv5 model, which enhanced
its capability to gather feature information.

4. Proposed approach

This section provides an overview of our customizations to the
YOLO architecture proposed to solve the problem faced. We will first
introduce the architectural concept of YOLO-SPAM and its details in
Section 4.1. Following that, in Section 4.2, we will describe the two pro-
posed architectures and their relative additions and implementations of
attention blocks.

4.1. The proposed networks: YOLO-SPAM and YOLO-SPAM++

This work aims to create an accurate malaria parasite detector by
incorporating attention modules to improve the current methods of
detecting malaria parasites by addressing their inherent limitations.

Our goals are to: (i) obtain the speed and compactness of one-
stage detectors but achieve high accuracy without the need for a
subsequent phase; (ii) identify small parasites within the same system;
(iii) integrate Transformers without over-complicating or slowing down
the architecture.

The YOLOv5 model was chosen as the baseline for its convenience
and efficiency as a one-stage detector [53]. Specifically, we used the
YOLOv5m6 version pre-trained on 1280 × 1280 pixels images, which
has 41.2 million trainable parameters.

This model balances network depth and parameter count, making
it suitable for use on low-end machines and mobile devices with
limitations for real-time detection of malaria parasites [6,21].

We propose two architectures: a base version, YOLO-SPAM, and
its relative extension, YOLO-SPAM++. Both architectures use CBAM
modules, but YOLO-SPAM++ includes NAM and Swin Transformer
modules and a feature merging strategy.

The key idea behind our additional layers is related to the lack of
inherent attention mechanisms in the YOLOv5 architecture. Attention
mechanisms aim to refine feature maps from intermediate layers to
improve detection results while minimizing computational overhead.
Specifically, we introduced the CBAM, composed of spatial and channel
attention modules, as defined in Section 3.4. Prior research has shown
that CBAM is a practical addition and improves classification and
detection tasks [56].
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Fig. 3. The YOLO-SPAM architecture is presented, incorporating Convolutional Block
Attention Modules (CBAM) to enhance the detection of the smallest parasites. These
attention modules are strategically integrated into the backbone and neck, contributing
to the effective identification of malaria parasites, especially those of small size. The
additional CBAM layers are depicted in blue.

We studied where to insert such layers to maximize benefit while
requiring the fewest additions. In both architectures, we strategically
place a CBAM layer immediately after the last C3 layer in the backbone
and near each prediction head. This choice is based on the shape
of the features within the selected layers. Deeper feature maps have
reduced spatial resolution but higher-dimensional channel informa-
tion. By leveraging the CBAM module, we prioritize channel-related
attention, which is computationally less demanding using 1 × 1 con-
volutions. In contrast, spatial attention requires a 7 × 7 convolution.
Not only does this placement reduce computational requirements, but
it also allows for a larger receptive field for spatial attention due to the
limited spatial dimension.

Both architectures are described as follows.

4.2. YOLO-SPAM proposed architectures

YOLO-SPAM In Fig. 3, YOLO-SPAM is presented. As can be seen
from the figure, our research introduces multiple attention modules
integrated into the backbone and neck of the model, along with a new
prediction head specifically designed to detect tiny object parasites.
This innovative head utilizes information from the second neck block,
which acts as a lower-level feature map extractor, achieved by concate-
nating the data from the second backbone C3 layer right before the
head’s C3 layer.

This novel approach enhances predictions across various object sizes
and serves as the primary means for detecting small objects in the net-
work. Higher-level feature maps can sometimes collapse the intensity of
parasite presence into small, point-like spaces due to reduced spatial di-
mensions. For example, multiple instances of ring-stage parasites within
a single red blood cell may be treated as a single prediction, leading to
reduced spatial resolution. Similarly, smaller spatial resolutions may
overlook a single-ring stage with a low pixel count.

However, lower-level feature maps maintain higher spatial reso-
lution, mitigating the risk of prediction collapse. By leveraging these
maps and incorporating attention modules, our research addresses
these challenges. It significantly improves the model’s ability to accu-
rately detect and classify malaria parasites, particularly those that are
tiny in size.
YOLO-SPAM++.The architectural design of this model is depicted in
Fig. 4. It incorporates NAM and C3’s Swin Transformer modules into
the YOLO-SPAM architecture, resulting in a more advanced and lighter
design.
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Fig. 4. YOLO-SPAM++ architecture featuring Convolutional Block Attention Modules
(CBAM), Normalized Attention Modules (NAM), and Swin Transformers’ C3STR mod-
ules. This model has two prediction heads, significantly enhancing its capability for
detecting small objects. The feature arcs connected to the novel feature merging strategy
are highlighted with red arrows, and the layers related to the merging strategy are
emphasized in an orange box.

To enhance the performance of YOLO-SPAM, the refined features
from the CBAM layers are merged with those obtained from sequential
C3STR layers (see Section 3.5). In this way, two new models specialized
in detecting small objects are proposed. Also, a NAM module was then
used to assign higher weight to the most important features and lower
weight to less significant ones, further enriching the merged features.

The lower backbone layers extract less refined features but have
a higher resolution, allowing them to detect parasites with minimal
pixels. On the other hand, the higher levels can more accurately dis-
tinguish medium-sized parasites while potentially losing information
about small parasites due to the lower feature map resolution obtained
through the convolution process.

Compared with the YOLO-SPAM, the YOLO-SPAM++ architecture
has fewer parameters and two prediction heads than three, making it
suitable for small and medium-sized objects.

Research has shown that when transformers and attention are com-
bined, they can enhance the YOLOv5 framework. By using vision trans-
formers to extract global features, these techniques improve the model’s
performance compared to its original version. One way to achieve
this is by replacing the last C3 layer with transformer blocks [53,62].
However, our approach takes a different direction. We aim to integrate
local specialized features of the CNN with the global features in the
model heads. To do this, we added C3STR modules while retaining the
original C3 ones. In simpler terms, our approach maintains both local
and global features in the model.

5. Experimental results

The primary objective of the experiments is to evaluate the effec-
tiveness of the proposed architectures in improving the detection of
malaria parasites, with a particular focus on identifying tiny ring-stage
parasites. By achieving early detection, we can take proactive measures
and combat the disease more effectively.

This section begins by outlining the experimental setup (Section 5.1)
and continues with a preliminary experiment conducted on the Pf split
of MP-IDB (Section 5.2). Then, the description of the experimental
results obtained on MP-IDB and IML are given in Sections 5.3 and 5.4,
respectively. The performance of the proposed architectures is further
evaluated with two cross-dataset experiments, described in Section 5.5.
Additionally, a qualitative analysis is provided in Section 5.6.
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Table 1
Composition of the two datasets considered in the experimental evaluation. The table shows the experimental splits adopted for the four species
of parasites for MP-IDB, and for IML.

Dataset Species Train set imgs Val set imgs Test set imgs

or. size aug. size or. size or. size

MP-IDB

P. falciparum 83 2,905 10 11
P. malariae 29 1,015 4 4
P. ovale 23 805 3 3
P. vivax 32 1,120 4 4

IML P. vivax 241 8,435 35 69
Table 2
Distribution of the parasites of both datasets based on their size, measured in pixels. S, M and L indicate small, medium and large parasites.

Dataset Species Parasites

Train set Val set Test set

S M L S M L S M L

MP-IDB

P. falciparum 370 408 0 123 136 0 123 136 1
P. malariae 1 25 0 1 8 0 0 8 0
P. ovale 0 20 0 0 6 0 0 7 0
P. vivax 2 29 2 1 10 1 3 10 5

IML P. Vivax 6 128 249 1 9 49 3 16 89
Table 3
Image augmentation parameters for models training.

Augmentation Parameters Probability

Rotation range iterations: [0, 3] 1
Gaussian Noise variance range: [50, 100] 0.3
HSV - Hue shift limit: 20 0.3
HSV - Saturation shift limit: 30 0.3
HSV - Value shift limit: 20 0.3

5.1. Setup

The experiments were conducted on a workstation equipped with
an Intel(R) Xeon(R) Gold 6136 CPU @ 3.00 GHz CPU, 64 GB RAM,
and an NVIDIA Tesla P6 GPU with 16 GB memory.

We utilized the PyTorch implementation of YOLOv5,1 created by
the Ultralytics LLC team [63], and the yoloair’s implementation of
C3STR.2 In addition, Faster R-CNN, RetinaNet, and FCOSwere trained
using the Detectron library [64].

Every YOLO-based architecture was initialized with pre-trained
weights from the COCO2017 dataset [52]. For YOLO, Darknet53 was
selected as the backbone, while the other detectors utilized ResNet-50
pre-trained on ImageNet.

Every method was trained with the following hyperparameters:
Adam was set as the optimizer with a weight decay of 1 × 10−2 and
momentum of 0.9. The initial learning rate was 1 × 10−4 across a total
of 100 epochs. Dropout was set to 0.2.
Datasets split. The MP-IDB dataset was divided into three splits: train-
ing, validation, and testing, with each parasite class divided into 60%
for training, 20% for validation, and 20% for testing. The splits were
constructed for IML using the guidelines provided by the authors [31].
Details are given in Table 1. Additionally, Table 2 furnishes the specific
details on the dimensions of the parasites.
Data augmentation. To improve the accuracy of our models and
address the issue of data imbalance, we created 35 augmented samples
for each species based on the original data. This approach also helps to
enhance the models’ ability to handle object rotations and generalize to
different scenarios. However, we used a lighter augmentation method
to avoid damaging small parasites, identified as a significant concern
in a previous study (see [28]). We avoided techniques such as shearing

1 Available at the official repository.
2 Available at the official repository.
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Fig. 5. This image illustrates how incorrect augmentations can distort small parasites,
making them appear different from their actual shape and becoming unrepresentative
of their class. In this example, shearing augmentation is applied. The ring stage,
represented by a circular pattern with a pixel intensity spike, is compromised by the
shear transformation. Another important issue is related to the pixel count for smaller
instances of this class; in the image, the original ring stage parasite has halved its
width, making the detection task more challenging.

that could potentially harm these small parasites, as illustrated in Fig. 5.
Table 3 details the augmentation methods used.
Metrics. Object detection methods are commonly evaluated with mean
average precision (AP) metric and its variants [65]. Precision uses the
Intersection over Union (IoU) concept to determine detection accuracy.
Specifically, the IoU is the ratio of the overlap area between the
predicted bounding box and the actual object compared to the total
area of both. If the IoU is above a certain threshold, the detection is
correct and labeled as a true positive (TP). However, if the IoU falls
below the threshold, the detection is considered a false positive (FP).
Additionally, if the model fails to detect an object present in the ground
truth, this is referred to as a false negative (FN).

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

where:

• true positives (TP) represents the number of instances belonging
to the positive class that have been correctly predicted;

• false positives (FP) indicates when a nonexistent object is incor-
rectly detected or an existing object is detected in the wrong
location;

• false negatives (FN) represents when a ground truth bounding box
goes undetected.

In general, precision is defined in Eq. (2). In this work, the exper-
imental evaluations were conducted considering five variants of the
mAP metric:

https://github.com/ultralytics/yolov5
https://github.com/iscyy/yoloair
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Table 4
Results of the preliminary study on the Pf subset of MP-IDB. The table shows the results
of YOLO-SPAM and YOLO-SPAM++ against the three variants of the YOLOv5 baseline
architecture (small, medium and large).

Method AP (%) AP50 APs APm APL

YOLOv5s6 57.5 92.6 55.7 59.2 0.0
YOLOv5m6 62.5 93.5 57.8 66.4 100.0
YOLOv5l6 63.6 93.6 56.6 69.2 100.0
YOLO-SPAM 74.7 98.7 65.6 69.8 100.0
YOLO-SPAM++ 84.6 99.1 75.5 80.3 100.0

• AP is evaluated with 10 different IOUs varying in a range of 50%
to 95% with steps of 5%;

• AP50 is evaluated with a single values of IOU corresponding to
50%;

• APs is the AP determined for small objects (with area < 322

pixels);
• APm is the AP determined for medium objects (with 322 < area
< 962 pixels);

• APL is the AP determined for large objects (with area > 962

pixels).

5.2. Preliminary study on P. falciparum

We conducted a preliminary study using the two proposed architec-
tures against the YOLOv5 architecture to compare their performance on
the P. falciparum species of MP-IDB. This choice has been made for the
following reasons: (i) Pf is the most numerous species in MP-IDB; (ii)
Pf contains an adequate number of small, medium, and large parasites,
as shown in Table 2.

We trained each architecture for 100 epochs to ensure fairness using
the same structures, hyperparameters, and settings. After training, we
evaluated the models using identical hyperparameters and settings for
inference, leading to comparable results.

This experiment’s results, shown in Table 4, indicate that both
YOLO-SPAM and YOLO-SPAM++ significantly increased AP by 12.2%
and 22.1%, respectively. The improvement is satisfactory even concern-
ing the YOLOv5l6 baseline model, by 11.1% and 21%, respectively.
This performance suggests that the addition of CBAM and the adoption
of C3STR and NAM are effective when integrated into the model.

5.3. Experimental results on MP-IDB

Species-specific detection. Table 5 shows the performance obtained
by both YOLO-SPAM architectures against four state-of-the-art object
detectors (i.e., Faster R-CNN, RetinaNet, FCOS, and YOLOv5m6) on the
four parasite species included in MP-IDB. Some performance values are
missing because that particular sample was not included in the subset
considered, e.g., Pm and Po do not contain any small or large parasite
in their test sets (see Table 2).

The results obtained on P. falciparum show that YOLO-SPAM++
outperforms all the other methods in all reported metrics. YOLOv5m6
also performs well on this subset, with an AP of 62.5%. Interestingly,
the FCOS method performs the worst with an AP of only 10.1%. In
addition, this subset contains an extensive presence of tiny parasites,
given the distribution shown in Table 2. The performance of YOLO-
SPAM++ and YOLO-SPAM are the best even in this case, as they
reach 75.5% and 65.6% of APs respectively, about 20% and 8% above
YOLOv5m6, which is the third best detector. These results show the
effectiveness of the proposed architectures in detecting tiny parasites.

As for P. malariae, the best performing method is YOLO-SPAM with
an AP of 94.1% and AP50 of 99.5%. YOLOv5m6 and YOLO-SPAM++
also perform well, with AP of 80.0% and 93.6%, respectively. FCOS
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performs the worst again, with an AP of only 4.7%.
As for P. ovale, YOLO-SPAM is the best-performing method with an
AP of 93.8% and AP50 of 99.5%. YOLO-SPAM++ and YOLOv5m6 also
perform well, with AP of 87.4% and 83.9%, respectively.

The most effective method for detecting P. vivax is YOLO-SPAM++,
which has an AP of 87.5%. YOLO-SPAM is a close second, with an
AP of 83.6%. It should be noted that all methods struggle to detect
small parasite objects. Our proposed architectures can achieve a 15.2%
detection rate, making them the third-best performer after YOLOv5m6
and FRCNN. In this subset, the low results are considered acceptable
because the number of training samples for tiny Pv parasites is meager,
as indicated in Table 2.

Overall, it can be observed that YOLO-SPAM-based methods per-
form better than the other four methods on all four subsets. YOLO-
SPAM++ performs the best among all the methods, achieving the
highest AP for Pf and Po and the second-highest AP for Pm and Pv.
YOLO-SPAM also performs well, especially on Pm and Po subsets.
FCOS performs the worst among all the methods on all four datasets.
In conclusion, the results suggest that YOLO-SPAM-based methods,
especially YOLO-SPAM++, are more effective than the other methods
reported for malaria parasite detection.
Species-generalization detection. In order to address the possibility
of detecting mixed or intra-species, we propose an approach that in-
volves training both models with the complete training set of all four
species simultaneously. More precisely, in Table 7, it is shown that
YOLO-SPAM generally outperforms YOLOv5m6 for all species in terms
of AP, with the highest improvement observed for P. falciparum and
P. vivax. For P. falciparum, YOLO-SPAM achieved an AP of 68.1%
compared to 62.9% for YOLOv5m6, while for P. vivax, the AP values
are 73.1% and 68.9% for YOLO-SPAM and YOLOv5m6, respectively.
However, both methods show similar performance for P. malariae and
P. ovale, with YOLOv5m6 achieving slightly higher results for both
species.

Overall, the results suggest that the proposed YOLO-SPAM method
can improve the detection performance for malaria parasites in a mixed
or intra-species scenario, even for tiny parasites, compared to the
baseline YOLOv5m6 method.

5.4. Experimental results on IML

Table 8 presents the performance obtained by our two proposed
architectures on the IML dataset [31].

As can be seen, they outperform the baseline established with
YOLOv5m6. In particular, YOLO-SPAM++ obtained an AP of 61.5%,
while YOLO-SPAM achieved the best overall performance with an AP
of 62.0%, outperforming YOLO-SPAM++ on every other metric. These
results suggest that YOLO-SPAM-based architectures can be considered
effective object detection methods even for the IML dataset compared
to the baseline, as they both improve it.

To the best of our knowledge, only the dataset’s authors report the
detection performance on this dataset [31]. In particular, they disclosed
their findings on the detection of both healthy and infected red blood
cells by employing two segmentation approaches. They reported that
the morphological method had an 89.3% bounding box precision, while
the U-net-based approach had an 82.4% precision rate. Notably, these
results included healthy cells, which makes it unfair to compare them
directly to our approaches that solely target infected cells. However,
we would like to highlight that in addition to the results presented
in Table 8, our YOLO-SPAM method achieved a bounding box precision
of 80.5%, while YOLO-SPAM++ achieved 89.0%.

5.5. Cross-dataset results

The last evaluation of the proposed architectures is devoted to estab-
lishing the performance with two cross-dataset experiments, reported
in Table 9. In particular, considering the models trained on the Pv
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Table 5
Quantitative evaluation on the four classes of parasites present in MP-IDB. Best results are emphasized in bold.

Class Method AP (%) AP50 APs APm APL

P.
falciparum

FRCNN 39.2 80.6 33.7 44.3 0.0
RetinaNet 34.0 78.5 23.9 42.6 0.0
FCOS 10.1 39.9 5.6 14.5 0.0
YOLOv5m6 62.5 93.5 57.8 66.4 100.0
YOLO-SPAM 74.7 98.7 65.6 69.8 100.0
YOLO-SPAM++ 84.6 99.1 75.5 80.3 100.0

P.
malariae

FRCNN 75.1 98.4 – 75.1 –
RetinaNet 76.0 95.0 – 76.2 –
FCOS 4.7 21.2 – 8.8 –
YOLOv5m6 80.0 96.4 – 72.0 –
YOLO-SPAM 94.1 99.5 – 85.9 –
YOLO-SPAM++ 93.6 98.5 – 84.2 –

P.
ovale

FRCNN 71.0 89.1 – 71.0 –
RetinaNet 74.3 91.5 – 74.3 –
FCOS 44.2 81.8 – 45.1 –
YOLOv5m6 83.9 96.8 – 76.3 –
YOLO-SPAM 93.8 99.5 – 83.9 –
YOLO-SPAM++ 87.4 92.8 – 79.2 –

P.
vivax

FRCNN 60.3 87.7 20.2 61.5 85.0
RetinaNet 62.8 85.5 10.1 65.7 84.1
FCOS 53.0 81.0 5.1 53.8 83.1
YOLOv5m6 83.1 93.2 21.9 79.8 92.5
YOLO-SPAM 83.6 92.9 15.2 79.2 89.8
YOLO-SPAM++ 87.5 93.5 15.2 82.4 92.7
Table 6
Indication of the number of parameters of every ar-
chitecture used. Considering YOLOv5m6, the proposed
architectures offer better results with lower parameters.

Models Parameters(M)

YOLOv5m6 (baseline) 41.2
FRCNN 41.2
RetinaNet 34.1
FCOS 32.3
YOLO-SPAM 29.8 (−11.4)
YOLO-SPAM++ 23.6 (−17.6)

subset of MP-IDB and tested on the IML dataset, YOLOv5m6 performs
best in all the reported metrics.

Although the three models are in line with AP, YOLOv5m6 is the
best in terms of AP50 and APL. The main motivations in this sense
re related to the fact that the images of the two datasets are broadly
ifferent, and also, YOLO-SPAM models mainly aim to target small and
edium-sized objects for the earliest possible detection. At the same

ime, IML comprises almost large parasites (see Table 2).
Moving on to the results obtained on the Pv subset of MP-IDB

ith models trained on IML, YOLO-SPAM++ demonstrates superior
erformance across all metrics, except for APL (−3.2% if compared

to YOLOv5m6), confirming its promising performance on small and
medium-sized objects even in a cross-dataset scenario. YOLO-SPAM
struggles more than YOLO-SPAM++ in the detection of large objects,
but it improves the results of YOLOv5m6 in terms of AP, AP50, and
APm.

According to the findings, YOLO-SPAM++ shows potential as an
effective architecture even in cross-data scenarios. However, it is im-
portant to note that YOLO-SPAM++ was explicitly designed to detect
tiny parasites in their early stages. Therefore, it must be optimized
for scenarios where medium or large parasites are more prevalent and
established.

5.6. Qualitative analysis

Fig. 7 shows the predicted bounding boxes that our two proposed ar-
chitectures have predicted. These predictions are highly accurate when
compared to the ground truth. To better understand the results, we
have also included the results obtained from Faster R-CNN, RetinaNet,
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and FCOS for comparison. During the testing phase, we found that
Pf was the most difficult species to detect accurately. This difficulty
was primarily due to the presence of tiny rings that represent an
early infection and can be found in large numbers, with some images
containing more than ten parasites. It is essential to note that this
condition is unique to the Pf split. When examining Pf, it is important
to consider the detection results of various detectors. YOLO-SPAM and
YOLO-SPAM++ could accurately match the ground truth, while other
detectors generated excess predictions. This surplus of predictions led
to incorrect interpretations of certain areas, such as white blood cell
nuclei being classified as parasites. This error is particularly exempli-
fied by the FRCNN, RetinaNet, and FCOS detection results on the P.
falciparum split, shown in Fig. 7(a).

YOLO-SPAM has demonstrated remarkable progress compared to
our previous model, as evidenced by the findings in Fig. 6. Upon
scrutinizing Fig. 6(a), it becomes apparent that our former model
had difficulties detecting tiny parasites, such as early rings. However,
the new architecture, notably YOLO-SPAM++, has successfully tackled
this challenge. In fact, upon analyzing Fig. 6(b), every tiny ring was
accurately identified, signifying a significant improvement in the task
at hand.

6. Discussion

The proposed method is based on the YOLOv5 object detector, with
the addition of the proposed attention mechanism to focus on tiny
parasites without losing details on the fully developed ones.

The experimental results have demonstrated that YOLO-SPAM and
YOLO-SPAM++ are highly effective in parasite detection in different
MP-IDB configurations and IML datasets.

As shown in Table 4, the preliminary study on the Pf subset
of MP-IDB revealed that the architectural modifications significantly
improved the results compared to the baseline. YOLO-SPAM++ showed
a 10% improvement compared to YOLO-SPAM and up to 20% improve-
ment against the best-performing baseline (YOLOv5l6).

An improvement was confirmed in the next task, reported in Ta-
ble 5, which involved the detection of parasites in all subsets com-
prising MP-IDB (Pf, Pm, Po, Pv). However, there was one relevant
distinction: YOLO-SPAM produced slightly higher results than YOLO-
SPAM++ in the Pm and Po subsets (+0.5% and +6% in terms of AP,
respectively), which have no tiny parasites. In contrast, YOLO-SPAM++
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Fig. 6. Details on the improvements provided by the proposed YOLO-SPAM++ architecture. The upper section shows a sample image taken from the P.f. split of MP-IDB with its
own ground-truth. The middle section shows the detection outcomes obtained with the baseline method, YOLOv5m6. Here, a closer look (at the right) reveals missing parasites in
the detection results. In contrast, the lower section presents the results obtained with the proposed method, YOLO-SPAM++. Here, all the parasites are accurately detected, even
the tiniest. This comparison underscores the enhanced precision and accuracy achieved by YOLO-SPAM++.
produced higher results in subsets containing tiny parasites like Pf and
Pv. Therefore, YOLO-SPAM is proposed to be a more accurate detector
of already fully developed parasites, whereas YOLO-SPAM++ sacrifices
this aspect to some extent by providing results that are more focused
on detecting smaller parasites, a known first sign of early infection.
10
We conducted cross-species generalization experiments to address
the challenges posed by fully developed parasites in the context of
YOLO-SPAM++ and demonstrate the robustness of the proposed ar-
chitectures. This setting involved merging the training sets of various
species within MP-IDB (refer to Table 7). Compared to the results
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Table 7
Detection results on the four different MP-IDB species obtained with the proposed architectural variants trained with the merged training sets
of the four species.

Dataset Species Method AP (%) AP50 APs APm APL

MP-IDB

P.
falciparum

YOLOv5m6 62.9 92.3 64.5 67.1 100.0
YOLO-SPAM 68.1 95.0 70.2 71.0 100.0
YOLO-SPAM++ 73.7 96.5 74.1 76.9 100.0

P.
malariae

YOLOv5m6 82.1 94.5 – 81.7 –
YOLO-SPAM 81.4 96.4 – 82.4 –
YOLO-SPAM++ 84.3 96.5 – 84.0

P.
ovale

YOLOv5m6 81.6 90.9 – 81.6 –
YOLO-SPAM 83.1 94.9 – 83.1 –
YOLO-SPAM++ 87.9 94.9 – 87.9 –

P.
vivax

YOLOv5m6 68.9 86.7 10.0 73.8 89.5
YOLO-SPAM 73.1 87.7 20.0 76.2 90.9
YOLO-SPAM++ 76.9 89.3 11.8 81.3 94.4
Table 8
Detection results on IML dataset.

Dataset Species Method AP (%) AP50 APs APm APL

IML P.
vivax

YOLOv5m6 60.4 86.5 0.0 61.7 63.0
YOLO-SPAM 62.0 89.1 0.0 64.2 64.2
YOLO-SPAM++ 61.5 86.9 0.0 57.7 64.4
Table 9
Experimental results obtained with the cross-dataset scenario. The first column represents the results obtained with the models trained on the training set of the Pv subset of
MP-IDB and tested on the test set of IML. The second column shows the results with the same models trained on the training set of IML and tested on the test set of the Pv split
of MP-IDB.

Method Train: MP-IDB (P. vivax) Train: IML

Test: IML Test: MP-IDB (P. vivax)

AP (%) AP50 APs APm APL AP (%) AP50 APs APm APL

YOLOv5m6 13.7 29.1 0.0 3.1 21.1 7.2 16.9 0.0 6.7 24.0
YOLO-SPAM 11.4 24.3 0.0 2.6 15.4 7.4 17.0 0.0 6.9 12.4
YOLO-SPAM++ 10.1 18.6 0.0 1.0 14.0 8.6 19.4 0.0 9.5 20.8
obtained from the previous configuration, YOLO-SPAM++ consistently
outperformed the YOLOv5 baseline and YOLO-SPAM across all sub-
sets. These results highlight how including diverse representations of
different parasite species contributed to the model achieving supe-
rior performance while maintaining high precision on tiny parasites.
Notably, the relatively low detection rate of tiny parasites in the Pv
subset could be attributed to their limited representation, introducing
additional complexities to the detection process.

To further validate the proposed architectures, they were tested
on an external dataset, i.e., IML, and in a cross-dataset scenario, as
indicated in Table 8 and Table 9, respectively. Again, the improvement
provided by YOLO-SPAM in both its architectures over the baseline
was consistent. In the first case, YOLO-SPAM outperformed the baseline
provided by YOLOv5 and YOLO-SPAM++ by 0.5% and 6.5% in terms
of AP and APm, respectively. This result is motivated by the absence
of tiny parasites in the composition of IML, leading YOLO-SPAM++ to
some issues when generalization is needed.

When testing cross-datasets, YOLO-SPAM++ performs better when
trained on IML and tested on the Pv partition of MP-IDB. However,
when the Pv partition of MP-IDB is used as the training set and IML
as the testing set, YOLO-SPAM and YOLO-SPAM++ show lower results
than the baseline provided by YOLOv5. This result is understandable,
given the wide range of variations present in MP-IDB from multiple
perspectives, such as staining, illumination, and Pv life stage composi-
tion, compared to what is present in IML. Under these circumstances,
the proposed specialized architectures face more significant challenges
in detecting parasites.

From a general point of view, however, the proposed architec-
tures are suitable for detecting malaria parasites from full-size images,
especially when dealing with small-size parasites.

A final significant improvement over state of the art is represented
in Table 6. As can be seen, the performance improvements are to be
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considered even more consistent because the two proposed architec-
tures have significantly fewer parameters than YOLOv5m6, i.e., the
architecture considered as the baseline. Specifically, YOLO-SPAM has
11.4M fewer parameters than the baseline, while YOLO-SPAM++ has
17.6M.

Limitations. Although the two types of architecture improved the task,
they exhibit some limitations. Firstly, detecting small parasites was
successful on the Pf subset, but the results on the P. vivax subset
were unsatisfactory due to their low representation. To address this,
techniques like class imbalance or few-shot learning could be used in
the future. Secondly, there was no clear best in some cases, as different
approaches performed better depending on the subset. For example,
YOLO-SPAM++ worked best on Pf and Pv subsets, while YOLO-SPAM
was better on Pm and Po. This variation could be because, having only
two prediction heads, YOLO-SPAM++ struggles with limited samples
as in Pm and Po.

Additionally, Fig. 8 graphically represents how the proposed ar-
chitectures exhibit some issues, exemplified by several illustrations.
Fig. 8(a) shows that only one parasite is correctly detected. On the
other hand, Fig. 8(e) displays an additional parasite detected in the
top border. In this case, we pinpoint that a postprocessing step may be
implemented to clean the border. However, for fairness, we left the de-
tectors as implemented. In addition, YOLO-SPAM accurately pinpoints
the parasite in Fig. 8(b), but YOLO-SPAM++ fails to detect the same
parasite in Fig. 8(f). Conversely, in Figs. 8(c) and 8(g), YOLO-SPAM++
identifies all of them, while YOLO-SPAM misses the correct detection.
Lastly, Figs. 8(d) and 8(h) demonstrate that both models struggle with
some WBC nuclei components by detecting them as parasites.

Finally, moving to the cross-dataset results, three main limitations
were found. First, the images of MP-IDB and IML are largely different
between them. This aspect causes a first domain shift. Second, YOLO-

SPAM-based models mainly aim to target small and medium-sized
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Fig. 7. Each column represents a different malaria species included in MP-IDB. From left to right: Pf, Pm, Po, Pv. The first row (GT) represents the ground truth. Every subsequent
row represents the results obtained by the detection methods used for comparison purposes. From the second to the last row: FRCNN, RetinaNet, FCOS, YOLO-SPAM, and
YOLO-SPAM++. Finally, □ represent the ground truth, while □ indicates the detected parasites.
objects for the earliest possible detection, but IML is composed almost
of large objects, as indicated in Table 2. Therefore, this aspect causes
the second structural domain shift. Third, certain critical aspects were
found to be problematic for detection in the IML dataset. These issues
are highlighted in Fig. 9, where object detectors can be misled by
bounding boxes that encompass areas beyond the parasites.
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7. Conclusions

The two architectures of the malaria parasite detector proposed in
this study make a substantial contribution to the detection of malaria.

Recalling that the main objective of this work was to address the
problem of detecting tiny parasites for early diagnosis, we implemented
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Fig. 8. Examples of detection issues found in the proposed architectures. □ indicates the detected parasites. Fig. 8(a) shows the correct detection of the only parasite present,
while Fig. 8(e) shows a further parasite detected in the top border. Fig. 8(b) shows the correct detection by YOLO-SPAM. In contrast, Fig. 8(f) represents the same parasite,
undetected by YOLO-SPAM++. Fig. 8(c) and Fig. 8(g) show the same problem in reverse parts, with YOLO-SPAM missing the correct detection and YOLO-SPAM++ identifying all
of them. Finally, Figs. 8(d) and 8(h) show that, in some cases, both models detect some components of WBC nuclei as parasites.
Fig. 9. Examples of critical aspects found in the ground truth provided with IML. All the images show bounding box including parts of further regions that can challenge the
detectors with extra zones and edges.
two new architectures that offered promising results and improved
state of the art in terms of AP and APs. Both architectures possess
fewer parameters than the baseline considered, adapting to the use case
represented by low-end devices.

Benchmarking two public datasets has demonstrated that the pro-
posed approach is highly effective and superior to existing state-of-the-
art methods. This result is achieved through multiple attention mech-
anisms that solve the problem of detecting tiny parasites, a significant
challenge current methods face.

The study unveils that the proposed architectures demonstrate out-
standing performance in identifying malaria parasites in diverse sit-
uations, including the detection of multiple species simultaneously.
Furthermore, the outcomes of cross-dataset experiments are also en-
couraging despite the challenges faced during the procedure.

Moving forward, we have identified various research initiatives
we intend to pursue. Our overarching objective is to enhance our
methodology to enable us to detect all types of malaria parasites with
greater precision. While our current dataset has yielded encouraging
outcomes, we are eager to refine our system to operate on a cross-
dataset model using, for instance, synthetic images produced with
generative adversarial networks or diffusion models. Doing so will
enable it to effectively contend with environmental variances between
varying datasets. Furthermore, our ultimate aspiration is to extend our
approach to encompass a multi-magnification image representation of
the same blood smear. This aspect will allow us to more accurately
identify malaria parasites across differing magnifications.
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