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Abstract
In this paper, we consider the Finsler 𝑝-Laplacian tor-
sion equation. The domain of the problem is bounded by
a conical surface supporting a Neumann-type condition,
and anunknown surface supporting both aDirichlet and
aNeumann condition. The casewhen the cone coincides
with the punctured space is included. We show that the
existence of a weak solution implies that the unknown
surface lies on the boundary of a Finsler-ball. Inciden-
tally, some properties of the Finsler–Minkowski norms
are proved here under mild smoothness assumptions.

MSC 2020
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1 INTRODUCTION

Let Ω ⊂ ℝ𝑛 (𝑛 ⩾ 2) be a bounded domain. The Finsler 𝑝-Laplacian of a twice differentiable
function 𝑢 at a point 𝑥 with 𝐷𝑢(𝑥) ≠ 𝑂 is denoted by Δ𝐹;𝑝 𝑢(𝑥) and defined by

Δ𝐹;𝑝𝑢 = div(𝐹(𝐷𝑢)𝑝−1𝐷𝐹(𝐷𝑢)), 1 < 𝑝 < ∞,

where 𝐹∶ ℝ𝑛 → [0,∞) is a Finsler–Minkowski norm, which is discussed in the next section.
When 𝐹 is the usual Euclidean norm, the Finsler 𝑝-Laplacian becomes the known 𝑝-Laplacian

Δ𝑝 𝑢 = div(|𝐷𝑢|𝑝−2𝐷𝑢), 1 < 𝑝 < ∞.

Recently, the Finsler 𝑝-Laplacian has attracted the attention of researchers. We may mention [4,
5, 7, 9, 10] and [13]. This paper is devoted to the study of problems related to the operator Δ𝐹;𝑝
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F IGURE 1 Ω∩ Σ.

in conjunction with Dirichlet and Neumann boundary conditions. Let the origin 𝑂 be contained
in Ω, and let Σ = {𝑡𝑥 ∶ 𝑥 ∈ 𝜔, 𝑡 ∈ ℝ+} ⊆ ℝ𝑛 be a cone for some domain 𝜔 ⊆ 𝑆𝑛−1 (see Figure 1).
We note that when 𝜔 = 𝑆𝑛−1, the cone Σ becomes the punctured space Σ = ℝ𝑛 ⧵ {𝑂} (not the
whole Euclidean space as mentioned in [8, p. 1026]). We require 𝜕Σ ⧵ {𝑂} to be a hypersurface
of class 𝐶1 when 𝜔 ⊂ 𝑆𝑛−1, and we denote the outward normal by 𝜈. Define Γ0 = Σ ∩ 𝜕Ω and
Γ1 = 𝜕(Σ ∩ Ω) ⧵ Γ0. As it was investigated in the recent paper [8], for norms 𝐻0 and 𝐻 (the dual
of𝐻0), if the problem

⎧⎪⎨⎪⎩
−Δ𝐻𝑢 = 1 in Ω∩ Σ

𝑢 = 0 on Γ0⟨𝐷𝐻(𝐷𝑢(𝑥)), 𝜈⟩ = 0 on Γ1 ⧵ {𝑂}

(1.1)

has a solution satisfying the condition

lim
𝑥→𝑧

𝐻(𝐷𝑢(𝑥)) = 𝑞(𝐻0(𝑧)) ∀𝑧 ∈ Γ0, (1.2)

where 𝑞(𝑟) is a positive, real-valued function such that 𝑞(𝑟)∕𝑟 is strictly increasing in 𝑟, then
Ω∩ Σ = 𝐵𝑅(𝑂,𝐻0) ∩ Σ for some 𝑅 > 0. In this paper, we generalize (1.1) and (1.2) by replacing the
Finsler Laplace operatorΔ𝐻 with the Finsler𝑝-Laplacian operatorΔ𝐹;𝑝. In particular,𝐹 is not nec-
essarily a norm in the sense of functional analysis, and we also take 𝑝 ∈ (1,∞). We denote by 𝐹∗

the dual norm of 𝐹 (see Section 2), and by 𝐵−
𝐹
(𝑂, 𝑅) = { 𝑥 ∈ ℝ𝑛 ∶ 𝐹∗(−𝑥) < 𝑅 } the corresponding

(opposite) ball. Furthermore, let 𝑞(𝑟) be a positive, real-valued function such that

𝑞(𝑟)∕𝑟𝑝
′−1 is strictly increasing in 𝑟 > 0, (1.3)

where 𝑝′ = 𝑝∕(𝑝 − 1). Finally, we define the function space

𝑊
1,𝑝
Γ0

(Ω ∩ Σ) =
{
𝑣∶ Ω ∩ Σ → ℝ with 𝑣 = 𝑤𝜒Ω∩Σ for some 𝑤 ∈ 𝑊

1,𝑝
0

(Ω)
}
, (1.4)
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where 𝜒Ω∩Σ stands for the characteristic function of Ω∩ Σ. If Γ0 is smooth enough, we may say
that functions in𝑊

1,𝑝
Γ0

have a null trace on Γ0. We are now in a position to state our main result
as follows.

Theorem 1.1. Let 𝑞(𝑟) be a positive, real-valued function satisfying (1.3), and let 𝑢 ∈ 𝑊
1,𝑝
Γ0

(Ω ∩ Σ)

be a weak solution of the problem

⎧⎪⎨⎪⎩
−Δ𝐹;𝑝 𝑢 = 1 inΩ∩ Σ;

𝑢 = 0 on Γ0;⟨𝐷𝐹(𝐷𝑢), 𝜈⟩ = 0 on Γ1 ⧵ {𝑂}.
(1.5)

If 𝑢 belongs to the smoothness class 𝐶1((Ω ∩ Σ) ∪ (Γ1 ⧵ {𝑂})) ∩ 𝐶0(Ω ∩ Σ ⧵ {𝑂}) and satisfies

lim
𝑥→𝑧

𝐹(𝐷𝑢(𝑥)) = 𝑞(𝐹∗(−𝑧)) ∀𝑧 ∈ Γ0, (1.6)

thenΩ∩ Σ = 𝐵−
𝐹
(𝑂, 𝑅) ∩ Σ for some 𝑅 > 0.

Observe that Theorem 1.1 also holds in the case when 𝜔 = 𝑆𝑛−1. In this case, the intersection
Ω∩ Σ becomes the punctured domain Ω ⧵ {𝑂}. We also prove a result valid in the case when the
cone Σ is replaced with the whole Euclidean space ℝ𝑛:

Theorem 1.2. Let 𝑞(𝑟) be a positive, real-valued function satisfying (1.3), and let 𝑢 ∈ 𝑊
1,𝑝
0

(Ω) be a
weak solution of the problem {

−Δ𝐹;𝑝 𝑢 = 1 inΩ;
𝑢 = 0 on 𝜕Ω.

(1.7)

If 𝑢 belongs to 𝐶1(Ω) ∩ 𝐶0(Ω) and satisfies

lim
𝑥→𝑧

𝐹(𝐷𝑢(𝑥)) = 𝑞(𝐹∗(−𝑧)) ∀𝑧 ∈ 𝜕Ω, (1.8)

thenΩ = 𝐵−
𝐹
(𝑂, 𝑅) for some 𝑅 > 0.

In this paper, we call the equation−Δ𝐹;𝑝 𝑢 = 1 Finsler 𝑝-Laplacian torsion equation. The proof
of Theorem 1.1 is obtained by comparisonwith solutions in Finsler-balls. The proof of Theorem 1.2
is quite similar. The main difficulty is to manage with condition (1.6), which is given in a limiting
form in place of the pointwise form 𝐹(𝐷𝑢(𝑧)) = 𝑞(𝐹∗(−𝑧)) because no regularity assumption is
imposed on Γ0 (to this purpose, cf. [11, Theorem 1] and [8]). In order to overcome such a difficulty,
we develop a direct argument, without proceeding by contradiction as done in [8]. All the nota-
tions we have used are standard in partial differential equations (PDEs). In the special case when
𝐹(𝜉) = |𝜉|, problem (1.7) reduces to {

−Δ𝑝 𝑢 = 1 in Ω;
𝑢 = 0 on 𝜕Ω.

(1.9)
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4 of 19 GRECO and MEBRATE

If, furthermore, 𝑢 ∈ 𝐶1(Ω), then (1.8) becomes

|𝐷𝑢(𝑧)| = 𝑞(|𝑧|) ∀𝑧 ∈ 𝜕Ω. (1.10)

Problem (1.9)–(1.10) is a special case of problem (1.6) in [12], where the more general right-hand
side 𝑓(|𝑥|, 𝑢) is considered in place of the constant 1, and the conclusion is obtained under the
assumption that the ratio 𝑞(𝑟)∕𝑟𝑝′−1 is nondecreasing: To see this, just let 𝜀0 = 𝑝 − 1 in [12, (1.10)].
The case of the normalized 𝑝-Laplacian Δ𝑁

𝑝 is considered in [2] and [6].
We now arrange the rest of the paper as follows. In Section 2, we explore some basic con-

cepts about Finsler–Minkowski norms. In Section 3, we see the definition of weak solutions and
some properties that are needed in the sequel. In Section 4, the proofs of Theorem 1.1 and The-
orem 1.2 are given. We also show the behavior of the operator Δ𝐹;𝑝 𝑢 upon the transformation
𝑣(𝑥) = 𝑢(−𝑥). Note that problem (1.5)–(1.6) under assumption (1.3) is not solvable, in general, even
in the case when Ω = 𝐵−

𝐹
(𝑂, 𝑅), and a similar remark holds for problem (1.7)–(1.8). It is easy to

identify the solvable instances:Wedo this in the final Section 5,wherewe also give some examples.

2 PRELIMINARIES

In this section, we will discuss the definition of a Finsler–Minkowski norm and its dual, and some
of their properties in relation to our problem.

2.1 Finsler–Minkowski norms

We consider a function 𝐹∶ ℝ𝑛 → ℝ+
0
with the following properties.

(A) 𝐹 ∈ 𝐶1(ℝ𝑛 ⧵ {𝑂}).
(B) 𝐹(𝑡𝜉) = 𝑡𝐹(𝜉) ∀𝜉 ∈ ℝ𝑛 and ∀𝑡 > 0.
(C) 𝐹(𝜆𝜉 + (1 − 𝜆)𝜁) ⩽ 𝜆𝐹(𝜉) + (1 − 𝜆)𝐹(𝜁) ∀𝜉, 𝜁 ∈ ℝ𝑛 and ∀𝜆 ∈ (0, 1). Equality holds if and

only if 𝜉 = 𝜅𝜁 or 𝜁 = 𝜅𝜉 for some 𝜅 ⩾ 0.
(D) 𝐹(𝜉) > 0 ∀𝜉 ∈ ℝ𝑛 ⧵ {𝑂}.

A function 𝐹∶ ℝ𝑛 → ℝ+
0
that satisfies the above four conditions is called a Finsler–Minkowski

norm on ℝ𝑛. By (𝐂), 𝐹 is convex: Hence 𝐹 ∈ 𝐶0(ℝ𝑛). Thus, letting 𝑡 → 0+ in (𝐁), we get 𝐹(𝑂) =
0. Furthermore, writing 2𝜉, 2𝜁 in place of 𝜉, 𝜁 in (𝐂), and letting 𝜆 = 1

2
, we obtain 𝐹(𝜉 + 𝜁) ⩽

1

2
𝐹(2𝜉) + 1

2
𝐹(2𝜁). This and (𝐁) imply

𝐹(𝜉 + 𝜁) ⩽ 𝐹(𝜉) + 𝐹(𝜁) ∀𝜉, 𝜁 ∈ ℝ𝑛. (2.1)

Equality holds in (2.1) if and only if 𝜉 = 𝜅𝜁 or 𝜁 = 𝜅𝜉 for some 𝜅 ⩾ 0. However, despite the word
“norm,” 𝐹 is not necessarily a norm in the sense of functional analysis because a norm must
satisfy 𝐹(𝑡𝜉) = |𝑡|𝐹(𝜉) ∀𝜉 ∈ ℝ𝑛 and ∀𝑡 ∈ ℝ (absolute homogeneity). For instance, the function
𝐹∶ ℝ𝑛 → [0,∞) given by

𝐹(𝜉) ∶= |𝜉| + ⟨𝑥, 𝜉⟩, 𝜉 ∈ ℝ𝑛
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AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 5 of 19

for a fixed 𝑥 ∈ ℝ𝑛 satisfying 0 < |𝑥| < 1 is a Finsler–Minkowski norm but not a norm in the sense
of functional analysis (see [15, p. 4]). The following lemma is a consequence of the definition of
a Finsler–Minkowski norm given above. It is found in [3] under more restrictive assumptions: In
particular, 𝐹 is taken in 𝐶∞(ℝ𝑛 ⧵ {𝑂}), and the Hessianmatrix of 𝐹2 is required to be positive defi-
nite inℝ𝑛 ⧵ {𝑂}. See also [16] for the case when 𝐹 ∈ 𝐶2(ℝ𝑛 ⧵ {𝑂}). We check that such restrictions
are not essential.

Lemma 2.1. Let 𝐹 be a Finsler–Minkowski norm. The following properties hold.

(1) ⟨𝐷𝐹(𝜉), 𝜁⟩ ⩽ 𝐹(𝜁) ∀𝜉 ∈ ℝ𝑛 ⧵ {𝑂} and ∀𝜁 ∈ ℝ𝑛. Equality holds if and only if 𝜁 = 𝜅𝜉 for some
𝜅 ⩾ 0.

(2) 𝐷𝐹(𝑡𝜉) = 𝐷𝐹(𝜉) ∀𝜉 ∈ ℝ𝑛 ⧵ {𝑂} and ∀𝑡 > 0.

Proof. Let us begin with proving that

⟨𝐷𝐹(𝜉), 𝜉⟩ = 𝐹(𝜉) ∀𝜉 ∈ ℝ𝑛 ⧵ {𝑂}. (2.2)

The linear function 𝓁(𝑡) = 𝑡𝐹(𝜉) clearly satisfies 𝓁(1) = 𝓁′(1). By (𝐁) we may write 𝓁(𝑡) = 𝐹(𝑡𝜉),
and therefore 𝓁′(1) = ⟨𝐷𝐹(𝜉), 𝜉⟩, whence (2.2). To prove the inequality (1), recall that 𝐹 is convex
by (𝐂), hence its graph lies above its tangent planes:

𝐹(𝜁) ⩾ 𝐹(𝜉) + ⟨𝐷𝐹(𝜉), 𝜁 − 𝜉⟩ ∀𝜉 ∈ ℝ𝑛 ⧵ {𝑂}, ∀𝜁 ∈ ℝ𝑛.

By (𝐂), and since the case 𝜉 = 𝑂 is excluded, equality holds if and only if 𝜁 = 𝜅𝜉 for some 𝜅 ⩾

0. Using (2.2), inequality (1) follows. Equality (2) is obtained by differentiating (𝐁) with respect
to 𝜉. □

It is important to state the following lemma for the purpose of proving the comparison principle
(Proposition 3.4). Similar results were presented in [19] for the case when 𝐹 ∈ 𝐶∞(ℝ𝑛 ⧵ {𝑂}), and
the Hessian matrix of 𝐹2 is positive definite inℝ𝑛 ⧵ {𝑂}. In [1] the norm 𝐹 is required, in addition,
to be absolutely homogeneous. We show that such restrictions are not necessary.

Lemma 2.2. Let 1 < 𝑝 < ∞. Then, the following hold true.

(1) 𝐹(𝜆𝜉 + (1 − 𝜆)𝜁)𝑝 ⩽ 𝜆𝐹(𝜉)𝑝 + (1 − 𝜆)𝐹(𝜁)𝑝 ∀𝜉, 𝜁 ∈ ℝ𝑛 and ∀𝜆 ∈ (0, 1). Equality holds if and
only if 𝜉 = 𝜁.

(2) The scalar function 𝜉 ↦ 1

𝑝
𝐹(𝜉)𝑝 belongs to the smoothness class 𝐶1(ℝ𝑁) and its gradient 𝑋(𝜉)

is given by

𝑋(𝜉) =

{
𝐹(𝜉)𝑝−1 𝐷𝐹(𝜉), 𝜉 ≠ 𝑂;

𝑂, 𝜉 = 𝑂.
(2.3)

(3) ⟨𝑋(𝜉) − 𝑋(𝜁), 𝜉 − 𝜁⟩ ⩾ 0 ∀𝜉, 𝜁 ∈ ℝ𝑛. Equality holds if and only if 𝜉 = 𝜁.

Proof.

(1) Since 𝑝 > 1, the power function 𝜑(𝑡) = 𝑡𝑝 is strictly increasing and strictly convex over the
closed interval [0,∞). If we take 𝜆 ∈ (0, 1) and 𝜉, 𝜁 ∈ ℝ𝑛 with 𝜉 ≠ 𝜁, two cases may occur:
Either 𝐹(𝜉) = 𝐹(𝜁) or 𝐹(𝜉) ≠ 𝐹(𝜁). In the first case, by the positive homogeneity (𝐁), the
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6 of 19 GRECO and MEBRATE

distinct points 𝜉 and 𝜁 do not lie on any half-line starting from the origin. Hence, by (𝐂), we
have the strict inequality 𝐹(𝜆𝜉 + (1 − 𝜆)𝜁) < 𝜆𝐹(𝜉) + (1 − 𝜆)𝐹(𝜁), which reduces to 𝐹(𝜆𝜉 +

(1 − 𝜆)𝜁) < 𝐹(𝜉). Raising both sides to the power 𝑝 we obtain

𝐹(𝜆𝜉 + (1 − 𝜆)𝜁)𝑝 < 𝐹(𝜉)𝑝

= 𝜆𝐹(𝜉)𝑝 + (1 − 𝜆)𝐹(𝜁)𝑝.

If, instead, 𝐹(𝜉) ≠ 𝐹(𝜁), then 𝜑(𝜆𝐹(𝜉) + (1 − 𝜆) 𝐹(𝜁)) < 𝜆 𝜑(𝐹(𝜉)) + (1 − 𝜆) 𝜑(𝐹(𝜁)) and the
conclusion follows.

(2) Since 𝐹 ∈ 𝐶1(ℝ𝑛 ⧵ {𝑂}) by assumption, we obviously have

𝑋(𝜉) = 𝐹(𝜉)𝑝−1 𝐷𝐹(𝜉) for 𝜉 ≠ 𝑂. (2.4)

Furthermore, since 𝐹(𝜉)𝑝 = 𝑜(|𝜉|) as 𝜉 → 𝑂, we also have 𝑋(𝑂) = 𝑂. It remains to check the
continuity of 𝑋(𝜉) at 𝜉 = 𝑂. By Lemma 2.1(2), we may write

sup
𝜉≠𝑂

|𝐷𝐹(𝜉)| = max|𝜉|=1 |𝐷𝐹(𝜉)|,
hence 𝐷𝐹(𝜉) is bounded in ℝ𝑛 ⧵ {𝑂}. Letting 𝜉 → 𝑂 in (2.4) the claim follows.

(3) Since 1

𝑝
𝐹𝑝 is strictly convex by (1), the graph of 1

𝑝
𝐹𝑝 lies above its tangent planes. Contact

occurs only at the point of tangency, hence

1

𝑝
𝐹(𝜉)𝑝 ⩾

1

𝑝
𝐹(𝜁)𝑝 + ⟨𝑋(𝜁), 𝜉 − 𝜁⟩ for all 𝜉, 𝜁 ∈ ℝ𝑛

and equality holds if and only if 𝜉 = 𝜁. Interchanging 𝜁with 𝜉, we obtain 1

𝑝
𝐹(𝜁)𝑝 ⩾

1

𝑝
𝐹(𝜉)𝑝 +⟨𝑋(𝜉), 𝜁 − 𝜉⟩, and summing term to term we obtain (3). □

Remark 2.3. Combining (2.2) with (2.3), we immediately obtain

⟨𝑋(𝜉), 𝜉⟩ = 𝐹(𝜉)𝑝 for every 𝜉 ∈ ℝ𝑛. (2.5)

2.2 The dual of F

Given a Finsler–Minkowski norm 𝐹∶ ℝ𝑛 → ℝ+
0
, we define the dual 𝐹∗ ∶ ℝ𝑛 → ℝ+

0
by

𝐹∗(𝑥) = sup
𝜉≠𝑂

⟨𝑥, 𝜉⟩
𝐹(𝜉)

. (2.6)

It is easily seen from (2.6) that 𝐹∗(𝑂) = 0, 𝐹∗(𝑥) > 0 for 𝑥 ≠ 𝑂 and 𝐹∗ is positively homogeneous
of degree 1. Furthermore, for every 𝑥1, 𝑥2 ∈ ℝ𝑛, 𝜉 ∈ ℝ𝑛 ⧵ {𝑂}, and 𝜆 ∈ (0, 1), we have

⟨𝜆𝑥1 + (1 − 𝜆) 𝑥2, 𝜉⟩
𝐹(𝜉)

= 𝜆
⟨𝑥1, 𝜉⟩
𝐹(𝜉)

+ (1 − 𝜆)
⟨𝑥2, 𝜉⟩
𝐹(𝜉)

⩽ 𝜆𝐹∗(𝑥1) + (1 − 𝜆) 𝐹∗(𝑥2),

hence 𝐹∗ is convex, and consequently it is continuous in ℝ𝑛 and differentiable a.e. in ℝ𝑛 ⧵ {𝑂}.
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AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 7 of 19

Remark 2.4. By positive homogeneity (B), there is no loss of generality if we replace the constraint
𝜉 ≠ 𝑂 with 𝐹(𝜉) = 1 in (2.6), and we see that the supremum is in fact attained by compactness.
Furthermore, since the set { 𝜉 ∈ ℝ𝑛 ∶ 𝐹(𝜉) ⩽ 1 } is strictly convex by (C), if 𝑥 ≠ 𝑂 the supremum is
attained at a unique point 𝜉𝑥 on the surface 𝐹(𝜉) = 1. When 𝜉 ranges inℝ𝑛 ⧵ {𝑂}, the ratio in (2.6)
attains its maximum at the point 𝑡𝜉𝑥 for every 𝑡 > 0.

Let us prove, for completeness, the following known result.

Lemma 2.5. If 𝐹 is a Finsler–Minkowski norm, then

𝐹(𝜉) = sup
𝑥≠𝑂

⟨𝑥, 𝜉⟩
𝐹∗(𝑥)

. (2.7)

Proof. Since 𝐹(𝑂) = 0, and by the definition of 𝐹∗, we get

⟨𝑥, 𝜉⟩ ⩽ 𝐹∗(𝑥) 𝐹(𝜉) ∀𝑥, 𝜉 ∈ ℝ𝑛.

Thus, given 𝜉 ∈ ℝ𝑛 we have

⟨𝑥, 𝜉⟩
𝐹∗(𝑥)

⩽ 𝐹(𝜉) ∀𝑥 ∈ ℝ𝑛 ⧵ {𝑂}. (2.8)

We note that equality holds in (2.8) if 𝜉 = 𝑂, as well as if we take 𝜉 ≠ 𝑂 and 𝑥 = 𝐷𝐹(𝜉) on the
left-hand side: In fact, by (2.2), we have ⟨𝑥, 𝜉⟩ = ⟨𝐷𝐹(𝜉), 𝜉⟩ = 𝐹(𝜉). It remains to check that

𝐹∗(𝐷𝐹(𝜉)) = 1 ∀𝜉 ∈ ℝ𝑛 ⧵ {𝑂}. (2.9)

We have seen before that there exists a unique 𝜉𝑥 satisfying 𝐹(𝜉𝑥) = 1 and such that 𝐹∗(𝑥) =⟨𝑥, 𝜉𝑥⟩. Here 𝑥 = 𝐷𝐹(𝜉) for a given 𝜉 ∈ ℝ𝑛 ⧵ {𝑂}. Hence, by Lemma 2.1, claim (1), we may write

𝐹∗(𝐷𝐹(𝜉)) = ⟨𝐷𝐹(𝜉), 𝜉𝑥⟩
⩽ 𝐹(𝜉𝑥) = 1.

This and (2.8) for 𝑥 = 𝐷𝐹(𝜉) imply

⟨𝐷𝐹(𝜉), 𝜉⟩ ⩽ ⟨𝐷𝐹(𝜉), 𝜉⟩
𝐹∗(𝐷𝐹(𝜉))

⩽ 𝐹(𝜉) = ⟨𝐷𝐹(𝜉), 𝜉⟩,
which proves (2.9), and (2.7) follows. □

Remark 2.6. By property (C) in the definition of a Finsler–Minkowski norm, it follows that the set
{ 𝜉 ∈ ℝ𝑛 ∶ 𝐹(𝜉) ⩽ 1 } is strictly convex, hence 𝐹∗ is differentiable in ℝ𝑛 ⧵ {𝑂} [18, Corollary 1.7.3].
Since 𝐹∗ is also convex, 𝐷𝐹∗ is continuous in ℝ𝑛 ⧵ {𝑂} [18, Theorem 1.5.2]. Finally, since 𝐹 ∈

𝐶1(ℝ𝑛 ⧵ {𝑂}) by property (A) in the definition, and in view of (2.7), we may apply [18, Corollary
1.7.3] again and conclude that the set { 𝑥 ∈ ℝ𝑛 ∶ 𝐹∗(𝑥) ⩽ 1 } is strictly convex: Hence, 𝐹∗ fully
satisfies the definition of a Finsler–Minkowski norm given in Section 2.1. Now the statement of
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8 of 19 GRECO and MEBRATE

Lemma 2.5 may be shortly expressed by

(𝐹∗)∗ = 𝐹.

We note that whenever 𝑥 ∈ ℝ𝑛 ⧵ {𝑂}, the inequalities

|𝑥|2
𝐹(𝑥)

⩽ sup
𝜉≠𝑂

⟨𝑥, 𝜉⟩
𝐹(𝜉)

⩽ sup
𝜉≠𝑂

|𝜉|
𝐹(𝜉)

|𝑥|
hold, and therefore we may write

𝛼|𝑥| ⩽ 𝐹∗(𝑥) ⩽ 𝛽|𝑥| ∀𝑥 ∈ ℝ𝑛, (2.10)

where

𝛼 = inf
𝜉≠𝑂

|𝜉|
𝐹(𝜉)

and 𝛽 = sup
𝜉≠𝑂

|𝜉|
𝐹(𝜉)

.

Similarly, we may write

𝜌|𝜉| ⩽ 𝐹(𝜉) ⩽ 𝜎|𝜉| ∀𝜉 ∈ ℝ𝑛, (2.11)

where 𝜌 = inf
𝑥≠𝑂

|𝑥|
𝐹∗(𝑥)

and 𝜎 = sup
𝑥≠𝑂

|𝑥|
𝐹∗(𝑥)

. We also remark that the following inequality is a direct

consequence of (2.10):

𝛼

𝛽
𝐹∗(𝑥) ⩽ 𝐹∗(−𝑥) ⩽

𝛽

𝛼
𝐹∗(𝑥) ∀𝑥 ∈ ℝ𝑛.

Given 𝑥0 ∈ ℝ𝑛 and 𝑅 > 0, the opposite Finsler-ball is defined by

𝐵−
𝐹 (𝑥0, 𝑅) ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝐹∗(𝑥0 − 𝑥) < 𝑅},

which is, in general, different from𝐵+
𝐹
(𝑥0, 𝑅) ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝐹∗(𝑥 − 𝑥0) < 𝑅}. Of course, the equal-

ity 𝐵+
𝐹
(𝑂, 𝑅) = −𝐵−

𝐹
(𝑂, 𝑅) holds. We adopt here the notation of [15, p. 3] and [16, p. 1143]. By

contrast, the notation in [9, (1.5)] is different. As a consequence of (2.10), we note that both
𝐵+
𝐹
(𝑥0, 𝑅) and 𝐵−

𝐹
(𝑥0, 𝑅) are bounded: In fact we find that

𝐵

(
𝑥0,

𝑅

𝛽

)
⊆ 𝐵±

𝐹
(𝑥0, 𝑅) ⊆ 𝐵

(
𝑥0,

𝑅

𝛼

)
.

We conclude this section by recalling two known properties that are needed in the sequel.

Lemma 2.7. Let 𝐹 be a Finsler–Minkowski norm. Then, 𝐷𝐹(𝐷𝐹∗(𝑥)) = 𝑥

𝐹∗(𝑥)
∀𝑥 ∈ ℝ𝑛 ⧵ {𝑂}.

Proof. We have observed in Remark 2.4 that for each 𝑥 ∈ ℝ𝑛 ⧵ {𝑂} there exists a unique 𝜉𝑥 ∈

ℝ𝑛 ⧵ {𝑂} such that 𝐹(𝜉𝑥) = 1 and

𝐹∗(𝑥) = ⟨𝑥, 𝜉𝑥⟩ = max
𝜉≠𝑂

⟨𝑥, 𝜉⟩
𝐹(𝜉)

. (2.12)

 20417942, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12267 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 9 of 19

We can also write (2.12) as ⟨𝑥, 𝜉𝑥⟩
𝐹∗(𝑥)

= 1 = 𝐹(𝜉𝑥). (2.13)

This and (2.7) imply

⟨𝑥, 𝜉𝑥⟩
𝐹∗(𝑥)

= max
𝑦≠𝑂

⟨𝑦, 𝜉𝑥⟩
𝐹∗(𝑦)

.

Since the gradient 𝐷𝐿 of the linear function 𝐿(𝜉) = ⟨𝑥, 𝜉⟩ is 𝐷𝐿 = 𝑥, the extremality conditions

𝐷𝜉

(⟨𝑥, 𝜉⟩
𝐹(𝜉)

)|||||𝜉=𝜉𝑥 = 𝑂 and 𝐷𝑦

(⟨𝑦, 𝜉𝑥⟩
𝐹∗(𝑦)

)|||||𝑦=𝑥 = 𝑂

give, respectively,

𝑥 = ⟨𝑥, 𝜉𝑥⟩𝐷𝐹(𝜉𝑥) and 𝜉𝑥 𝐹
∗(𝑥) = ⟨𝑥, 𝜉𝑥⟩𝐷𝐹∗(𝑥).

Using (2.13), these are transformed into

𝑥 = 𝐹∗(𝑥)𝐷𝐹(𝜉𝑥) (2.14)

and

𝜉𝑥 = 𝐷𝐹∗(𝑥). (2.15)

Substituting (2.15) into (2.14), we obtain the desired result. □

Remark 2.8. By (2.15) we immediately obtain

𝐹(𝐷𝐹∗(𝑥)) = 𝐹(𝜉𝑥) = 1 ∀𝑥 ∈ ℝ𝑛 ⧵ {𝑂}, (2.16)

which is the dual of (2.9).

3 WEAK SOLUTIONS

In this part, we examine the nonnegativity of a weak solution, and the comparison between two
weak solutions in nested domains. We also recall the explicit solution of (1.5) in the case when
Ω = 𝐵−

𝐹
(𝑂, 𝑅). We commence by the following definition.

Definition 3.1. Let 𝑓 ∈ 𝐿𝑝
′
(Ω ∩ Σ), and denote by 𝑋(𝜉) the vector field in (2.3). A weak solution

of the boundary value problem

⎧⎪⎨⎪⎩
−Δ𝐹;𝑝 𝑢 = 𝑓(𝑥) in Ω∩ Σ;

𝑢 = 0 on Γ0;⟨𝐷𝐹(𝐷𝑢), 𝜈⟩ = 0 on Γ1 ⧵ {𝑂}

(3.1)
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10 of 19 GRECO and MEBRATE

is a function 𝑢 belonging to the function space𝑊1,𝑝
Γ0

(Ω ∩ Σ) in (1.4) and satisfying

∫Ω∩Σ
⟨𝑋(𝐷𝑢(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 = ∫Ω∩Σ

𝑓(𝑥) 𝑣(𝑥) 𝑑𝑥 (3.2)

for every 𝑣 ∈ 𝑊
1,𝑝
Γ0

(Ω ∩ Σ). Similarly, if 𝑓 ∈ 𝐿𝑝
′
(Ω), then a weak solution of the boundary value

problem {
−Δ𝐹;𝑝 𝑢 = 𝑓(𝑥) in Ω;

𝑢 = 0 on 𝜕Ω;
(3.3)

is a function 𝑢 ∈ 𝑊
1,𝑝
0

(Ω) such that

∫Ω ⟨𝑋(𝐷𝑢(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 = ∫Ω 𝑓(𝑥) 𝑣(𝑥) 𝑑𝑥 (3.4)

for every 𝑣 ∈ 𝑊
1,𝑝
0

(Ω).

The well-posedness of problem (3.1) is readily established by the direct method of the calculus
of variations:

Lemma 3.2. Problem (3.1) (respectively, problem (3.3)) has a unique weak solution for every 𝑓 ∈

𝐿𝑝
′
(Ω ∩ Σ) (respectively, 𝑓 ∈ 𝐿𝑝

′
(Ω)).

Proof. Define the functional 𝐽 ∶ 𝑊
1,𝑝
Γ0

(Ω ∩ Σ) → ℝ by

𝐽(𝑢) = ∫Ω∩Σ
𝐿(𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)) 𝑑𝑥,

where 𝐿(𝑥, 𝑢, 𝜉) = 1

𝑝
𝐹(𝜉)𝑝 − 𝑓(𝑥) 𝑢. Due to (2.11), we may use the Poincaré inequality in 𝑊

1,𝑝
Γ0

(see [17, Theorem 7.91, p. 488] for the special case when 𝑝 = 2), and we can easily show that
𝐽 is coercive. By Lemma 2.2, the function 𝐿(𝑥, 𝑢, 𝜉) is strictly convex in 𝜉 ∈ ℝ𝑛, hence 𝐽 has a
unique minimizer 𝑢 ∈ 𝑊

1,𝑝
Γ0

(Ω ∩ Σ). Since 𝐽 is differentiable, the minimizer 𝑢 is the unique solu-
tion of (3.1). Finally, if we replace the cone Σwith the whole Euclidean space ℝ𝑛, and the Sobolev
space𝑊1,𝑝

Γ0
(Ω ∩ Σ)with𝑊1,𝑝

0
(Ω), the same argument still applies, thus proving thewell-posedness

of problem (3.3). The usual Poincaré’s inequality in𝑊
1,𝑝
0

is needed in this case. □

In the next lemma, we state and prove the nonnegativity of weak solutions of (3.1) and (3.3) in
the case when 𝑓 ⩾ 0.

Lemma 3.3. If 𝑓 is a nonnegative function in 𝐿𝑝
′
(Ω ∩ Σ), then the weak solution of (3.1) is

nonnegative. If 𝑓 is a nonnegative function in 𝐿𝑝
′
(Ω), then the weak solution of (3.3) is nonnegative.

Proof. We give details for the first claim, the second one being analogous. Take

𝑣(𝑥) =

{
0 if 𝑢 ⩾ 0

𝑢 if 𝑢 < 0
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AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 11 of 19

as a test function in (3.2). Using (2.5), almost everywhere, we have

⟨𝑋(𝐷𝑢(𝑥)), 𝐷𝑣(𝑥)⟩ = {
0, 𝑢 ⩾ 0;

𝐹(𝐷𝑢(𝑥))𝑝, 𝑢 < 0.

Let Ω− = {𝑥 ∈ Ω ∩ Σ ∶ 𝑢(𝑥) < 0}. Then

0 ⩽ ∫Ω−
𝐹(𝐷𝑢(𝑥))𝑝 𝑑𝑥 = ∫Ω−

⟨𝑋(𝐷𝑢(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥
= ∫Ω−

𝑓(𝑥) 𝑢(𝑥) 𝑑𝑥 ⩽ 0.

We conclude that

∫Ω−
𝐹(𝐷𝑢(𝑥))𝑝 𝑑𝑥 = 0

and therefore 𝑢 ⩾ 0 a.e. in Ω∩ Σ. □

Next, we compare two solutions in nested domains (cf. [9, Lemma 2.4]).

Proposition 3.4. Let Ω𝑖 , 𝑖 = 1, 2 be two bounded domains in ℝ𝑛, 𝑛 ⩾ 2, containing the origin and
satisfying Ω1 ∩ Σ ⊆ Ω2 ∩ Σ. Choose a nonnegative function 𝑓 ∈ 𝐿𝑝

′
(Ω2 ∩ Σ), and denote by 𝑢𝑖 the

weak solution of problem (3.1) with Ω = Ω𝑖 . Then, 𝑢1 ⩽ 𝑢2 a.e. in Ω1 ∩ Σ. In the case when Σ = ℝ𝑛,
the statement continues to hold for problem (3.3).

Proof. Let Γ0𝑖 = Σ ∩ 𝜕Ω𝑖 , 𝑖 = 1, 2. Since 𝑓 ⩾ 0, from Lemma 3.3, we have 𝑢2 ⩾ 0 a.e. in Ω2 ∩ Σ.
Hence the function

𝑣 =

{
𝑢1 − 𝑢2, 𝑢1 > 𝑢2

0, 𝑢1 ⩽ 𝑢2

belongs to𝑊1,𝑝
Γ01

(Ω1 ∩ Σ) and has an extension, still denoted by 𝑣, to𝑊1,𝑝
Γ02

(Ω2 ∩ Σ) vanishing iden-
tically outside Ω1 ∩ Σ. Therefore, 𝑣 is an admissible test function in Definition 3.1 for Ω = Ω𝑖 ,
𝑖 = 1, 2, and we may write

∫Ω1∩Σ
⟨𝑋(𝐷𝑢1(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 = ∫Ω1∩Σ

𝑓(𝑥) 𝑣(𝑥) 𝑑𝑥

and

∫Ω2∩Σ
⟨𝑋(𝐷𝑢2(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 = ∫Ω2∩Σ

𝑓(𝑥) 𝑣(𝑥) 𝑑𝑥.

By subtracting the second equality from the first one, we obtain

∫Ω1∩Σ
⟨𝑋(𝐷𝑢1(𝑥)) − 𝑋(𝐷𝑢2(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 = 0.
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12 of 19 GRECO and MEBRATE

Observe that the function under the sign of integral is nonnegative by claim (3) of Lemma 2.2.
Since the integral vanishes, the functionunder the sign of integralmust vanish almost everywhere.
Using claim (3) of Lemma 2.2 again, we deduce𝐷𝑣 = 𝑂 a.e. inΩ1 ∩ Σ and therefore 𝑢1 ⩽ 𝑢2 a.e. in
Ω1 ∩ Σ. In the case when Σ = ℝ𝑛, the argument proceeds identically after replacing𝑊1,𝑝

Γ0𝑖
(Ω𝑖 ∩ Σ)

with𝑊
1,𝑝
0

(Ω𝑖) for 𝑖 = 1, 2. □

Proposition 3.5. The weak solution of (1.5) in the case whenΩ = 𝐵−
𝐹
(𝑂, 𝑅) is

𝑢𝑅(𝑥) =
1

𝑝′ 𝑁𝑝′−1

(
𝑅𝑝′

− 𝐹∗(−𝑥)𝑝
′
)
, 𝑝′ =

𝑝

𝑝 − 1
.

Proof. Observe that 𝑢𝑅(𝑥) is well defined for all 𝑥 ∈ ℝ𝑛, and clearly vanishes on 𝜕𝐵−
𝐹
(𝑂, 𝑅). Being

𝑝′ > 1, the function 𝐹∗(𝑥)𝑝
′ belongs to 𝐶1(ℝ𝑛): See Lemma 2.2(2) and Remark 2.6. Hence, 𝑢𝑅 ∈

𝐶1(ℝ𝑛). Furthermore, by differentiation, we obtain

𝐷𝑢𝑅(𝑥) =
1

𝑁𝑝′−1
𝐹∗(−𝑥)𝑝

′−1 𝐷𝐹∗(−𝑥) for 𝑥 ≠ 𝑂 (3.5)

and so by the positive homogeneity condition (𝐁) and by Lemma 2.1 (2), we have, respectively,

𝐹(𝐷𝑢𝑅(𝑥)) =
1

𝑁𝑝′−1
𝐹∗(−𝑥)𝑝

′−1 𝐹(𝐷𝐹∗(−𝑥)) for 𝑥 ≠ 𝑂

and

𝐷𝐹(𝐷𝑢𝑅(𝑥)) = 𝐷𝐹(𝐷𝐹∗(−𝑥)) for 𝑥 ≠ 𝑂.

Consequently by (2.16) and Lemma 2.7, we get

𝐹(𝐷𝑢𝑅(𝑥)) =
𝐹∗(−𝑥)𝑝

′−1

𝑁𝑝′−1
, 𝑥 ∈ ℝ𝑛, and 𝐷𝐹(𝐷𝑢𝑅(𝑥)) =

−𝑥

𝐹∗(−𝑥)
, 𝑥 ≠ 𝑂.

The last equality implies ⟨𝐷𝐹(𝐷𝑢𝑅), 𝜈⟩ = 0 on Γ1 ⧵ {𝑂} because ⟨𝑥, 𝜈⟩ = 0 there, hence the third
condition in (1.1) is pointwise satisfied. Finally, by (2.3), we get 𝑋(𝐷𝑢𝑅(𝑥)) = −𝑥∕𝑁 for 𝑥 ∈ ℝ𝑛,
and therefore

∫𝐵−
𝐹
(𝑂,𝑅)∩Σ

⟨𝑋(𝐷𝑢𝑅(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 =
−1

𝑁 ∫𝐵−
𝐹
(𝑂,𝑅)∩Σ

⟨𝑥, 𝐷𝑣(𝑥)⟩𝑑𝑥
=

1

𝑁 ∫𝐵−
𝐹
(𝑂,𝑅)∩Σ

𝑣(𝑥) div(𝑥) 𝑑𝑥

= ∫𝐵−
𝐹
(𝑂,𝑅)∩Σ

𝑣(𝑥) 𝑑𝑥

for every 𝑣 ∈ 𝑊
1,𝑝
Γ0

(Ω ∩ Σ), and the proof is complete. □
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AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 13 of 19

It is readily seen that if 𝑢 is harmonic in a domain Ω, then the function 𝑢̌(𝑦) = 𝑢(−𝑦) is
harmonic in the set −Ω = { 𝑦 ∶ −𝑦 ∈ Ω}. In the present case, we may prove the following
three-minuses formula:

−Δ𝐹;𝑝 𝑢(𝑥) = Δ𝐹;𝑝 (−𝑢(−𝑥)). (3.6)

To be more specific, we confine ourselves to problem (3.1). We have the following:

Lemma 3.6. Let 𝑓 ∈ 𝐿𝑝
′
(Ω ∩ Σ), and denote by 𝑋(𝜉) the vector field in (2.3). A function 𝑢 ∈

𝑊
1,𝑝
Γ0

(Ω ∩ Σ) is a weak solution of (3.1) if and only if 𝑢̌ solves the boundary value problem

⎧⎪⎨⎪⎩
Δ𝐹;𝑝 (−𝑢̌) = 𝑓(𝑦) in −(Ω ∩ Σ);

𝑢̌ = 0 on −Γ0;⟨𝐷𝐹(−𝐷𝑢̌), 𝜈⟩ = 0 on −Γ1 ⧵ {𝑂}.

(3.7)

Proof. Suppose 𝑢̌ ∈ 𝑊
1,𝑝
−Γ0

(−(Ω ∩ Σ)) is a weak solution of (3.7). For every 𝑣 ∈ 𝑊
1,𝑝
Γ0

(Ω ∩ Σ), the

function 𝑣(𝑦) = 𝑣(−𝑦) belongs to𝑊1,𝑝
−Γ0

(−(Ω ∩ Σ)) and therefore we may write

−∫−Ω∩Σ
⟨𝑋(−𝐷𝑢̌(𝑦)), 𝐷𝑣(𝑦)⟩𝑑𝑦 = ∫−Ω∩Σ

𝑓(𝑦) 𝑣(𝑦) 𝑑𝑦.

Taking into account that −𝐷𝑢̌(𝑦) = 𝐷𝑢(−𝑦) and −𝐷𝑣(𝑦) = 𝐷𝑣(−𝑦), by the change of variable
𝑥 = −𝑦, we immediately obtain

∫Ω∩Σ
⟨𝑋(𝐷𝑢(𝑥)), 𝐷𝑣(𝑥)⟩𝑑𝑥 = ∫Ω∩Σ

𝑓(𝑥) 𝑣(𝑥) 𝑑𝑥,

hence 𝑢 is a weak solution of (3.1). The converse is proved similarly. □

4 PROOF OF THEMAIN RESULTS AND ALTERNATIVE
FORMULATION

In the present section, we prove the main results of this paper. We also derive an alternative
formulation of Theorem 1.1 using the three-minuses formula (3.6).

Proof of Theorem 1.1. Define 𝑅1 = min
𝑧∈Γ0

𝐹∗(−𝑧) and 𝑅2 = max
𝑧∈Γ0

𝐹∗(−𝑧). Let 𝑢𝑖 , 𝑖 = 1, 2, be
the weak solution of the Dirichlet problem in the opposite Finsler-ball Ω𝑖 = 𝐵−

𝐹
(𝑂, 𝑅𝑖), 𝑖 = 1, 2.

Then, Ω1 ∩ Σ ⊆ Ω ∩ Σ ⊆ Ω2 ∩ Σ. We want to show Ω1 = Ω2. By Lemma 3.3 and Proposition 3.4,
we have

𝑢1 ⩽ 𝑢 a.e. in Ω1 ∩ Σ, 𝑢 ⩽ 𝑢2 a.e. in Ω∩ Σ.

Let us take 𝑧𝑖 ∈ Γ0 ∩ 𝜕Ω𝑖 and observe that 𝑅𝑖 = 𝐹∗(−𝑧𝑖), 𝑖 = 1, 2. Furthermore, we have 𝑢𝑖(𝑧𝑖) =
𝑢(𝑧𝑖) = 0, and taking into account that 𝑢𝑖 is continuously differentiable up to 𝑧𝑖 , we will show the
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14 of 19 GRECO and MEBRATE

following two inequalities.

𝑅
𝑝′−1
1

𝑁𝑝′−1
= 𝐹(𝐷𝑢1(𝑧1)) ⩽ 𝑞(𝑅1) (4.1)

and

𝑞(𝑅2) ⩽ 𝐹(𝐷𝑢2(𝑧2)) =
𝑅
𝑝′−1
2

𝑁𝑝′−1
. (4.2)

We first prove (4.1). Letting 𝑥(𝑡) = 𝑧1 − 𝑡 |𝑧1|−1𝑧1 ∈ Ω1 ∩ Σ for 𝑡 ∈ (0, |𝑧1|), we compute the limit
𝑙 = lim

𝑡→0+

𝑢1(𝑥(𝑡))

𝑡

following two different arguments.

(i) Since 𝑢1 is differentiable at 𝑧1, we may write 𝑙 = −
⟨|𝑧1|−1𝑧1, 𝐷𝑢1(𝑧1)

⟩
. But using (3.5), we

get 𝐷𝑢1(𝑧1) =
𝑅
𝑝′−1
1

𝑁𝑝′−1
𝐷𝐹∗(−𝑧1). Hence applying (2.2) for 𝐹∗, we have

𝑙 = −
𝑅
𝑝′−1
1

𝑁𝑝′−1

⟨|𝑧1|−1𝑧1, 𝐷𝐹∗(−𝑧1)
⟩
=

|𝑧1|−1𝑅𝑝′

1

𝑁𝑝′−1
. (4.3)

(ii) By the mean value theorem, we have 𝑢(𝑥(𝑡)) = −
⟨
𝑡|𝑧1|−1𝑧1, 𝐷𝑢(𝑥̃)

⟩
for a convenient point

𝑥̃ on the segment from 𝑧1 to 𝑥(𝑡). Letting 𝜉 = 𝐷𝑢(𝑥̃) and 𝑥 = −𝑡|𝑧1|−1𝑧1 in (2.7), and since
𝐹∗(−𝑧1) = 𝑅1, we may estimate

𝑢(𝑥(𝑡)) ⩽ 𝑡𝑅1|𝑧1|−1𝐹(𝐷𝑢(𝑥̃)).

As 𝑡 → 0+, using assumption (1.6), we obtain

𝑙 ⩽ 𝑅1 |𝑧1|−1 𝑞(𝑅1). (4.4)

By comparing (4.3) with (4.4), the inequality in (4.1) follows. We now prove the inequality in
(4.2). Take 𝜖 ∈ (0, 𝑞(𝑅2)). By (1.6), there exists 𝛿 > 0 such that for every 𝑥 ∈ Ω ∩ Σ satisfying |𝑥 −

𝑧2| < 𝛿, we have

0 < 𝑞(𝑅2) − 𝜖 < 𝐹(𝐷𝑢(𝑥)). (4.5)

Without loss of generality we may take 𝛿 < 𝜖 and we define 𝑈𝛿 = {𝑥 ∈ Ω ∩ Σ ∶ |𝑥 − 𝑧2| < 𝛿} =

Ω ∩ Σ ∩ 𝐵(𝑧2, 𝛿). Pick 𝑥0 ∈ 𝑈𝛿 and consider the initial value problem{
𝑥′(𝑡) = 𝐷𝐹(𝐷𝑢(𝑥(𝑡)))

𝑥(0) = 𝑥0.
(4.6)

Note that (4.5) implies 𝐷𝑢 ≠ 𝑂 in 𝑈𝛿. Since 𝐷𝐹 and 𝐷𝑢 are continuous vector fields, by Peano’s
theorem [14] the initial value problem (4.6) has a local solution (possibly many). Let us denote by
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AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 15 of 19

𝑥(𝑡) amaximal extension of a local solution, subject to𝑥(𝑡) ∈ 𝑈𝛿 ⧵ 𝜕𝐵(𝑧2, 𝛿) for 𝑡 ∈ [0, 𝑇). Observe
that𝐷𝐹(𝐷𝑢(𝑥)) is bounded by Lemma 2.1(2) and so is |𝑥′(𝑡)|. Furthermore, |𝑥′(𝑡)| keeps also away
from zero. By differentiation, and using (2.2), we find

𝑑

𝑑𝑡
𝑢(𝑥(𝑡)) =

⟨
𝐷𝑢(𝑥(𝑡)), 𝑥′(𝑡)

⟩
= ⟨𝐷𝑢(𝑥(𝑡)), 𝐷𝐹(𝐷𝑢(𝑥(𝑡)))⟩
= 𝐹(𝐷𝑢(𝑥(𝑡))).

Hence, 𝑑

𝑑𝑡
𝑢(𝑥(𝑡)) is positive and keeps away from zero: This and 𝑢(𝑥0) > 0 prevent 𝑥(𝑡) from

approaching Γ0. Note, finally that 𝐷𝐹(𝐷𝑢(𝑥)) is tangent to 𝜕Σ whenever 𝑥 ∈ Γ1 ⧵ {𝑂} as a con-
sequence of the Neumann condition in (1.5). Therefore, the maximal solution 𝑥(𝑡) not only does
not approach Γ0, but it will also proceed further even in case 𝑥(𝑡) ∈ Γ1 for some 𝑡 > 0 and it will
eventually satisfy |𝑥(𝑇) − 𝑧2| = 𝛿 for some finite𝑇. Let us estimate 𝑢(𝑥(𝑇)). On the one side, since
𝑑

𝑑𝑡
𝑢(𝑥(𝑡)) = 𝐹(𝐷𝑢(𝑥(𝑡))) > 𝑞(𝑅2) − 𝜖 by (4.5), we may write

𝑢(𝑥(𝑇)) = 𝑢(𝑥0) + ∫
𝑇

0

𝑑

𝑑𝑡
𝑢(𝑥(𝑡)) 𝑑𝑡 > 𝑢(𝑥0) + (𝑞(𝑅2) − 𝜖) 𝑇.

On the other side, by differentiation and using Lemma 2.1(1), we find

𝑑

𝑑𝑡
𝑢2(𝑥(𝑡)) =

⟨
𝐷𝑢2(𝑥(𝑡)), 𝑥

′(𝑡)
⟩

= ⟨𝐷𝑢2(𝑥(𝑡)), 𝐷𝐹(𝐷𝑢(𝑥(𝑡)))⟩
⩽ 𝐹(𝐷𝑢2(𝑥(𝑡))). (4.7)

Since 𝐹(𝐷𝑢2(𝑥)) < 𝐹(𝐷𝑢2(𝑧2)) in Ω2 by Proposition 3.5, and using (4.7), we have

𝑢2(𝑥(𝑇)) = 𝑢2(𝑥0) + ∫
𝑇

0

𝑑

𝑑𝑡
𝑢2(𝑥(𝑡)) 𝑑𝑡 < 𝑢2(𝑥0) + 𝑇𝐹(𝐷𝑢2(𝑧2))

and consequently

(𝑞(𝑅2) − 𝜖) 𝑇 < 𝑢(𝑥(𝑇)) − 𝑢(𝑥0)

⩽ 𝑢2(𝑥(𝑇)) − 𝑢(𝑥0)

< 𝑢2(𝑥0) − 𝑢(𝑥0) + 𝑇𝐹(𝐷𝑢2(𝑧2)),

whence

𝑞(𝑅2) − 𝐹(𝐷𝑢2(𝑧2)) − 𝜖 <
𝑢2(𝑥0) − 𝑢(𝑥0)

𝑇
. (4.8)

Let us estimate 𝑇 from below. Since |𝑥′(𝑡)| ⩽ 𝑀 = max
𝜉≠𝑂 |𝐷𝐹(𝜉)|, we obtain

|𝑥(𝑇) − 𝑥0| ⩽ ∫
𝑇

0
|𝑥′(𝑡)|𝑑𝑡 ⩽ 𝑀𝑇.
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16 of 19 GRECO and MEBRATE

Letting𝑥0 → 𝑧2 in (4.8), the value of𝑇 varies aswell as the point𝑥(𝑇), however lim
𝑥0→𝑧2

|𝑥(𝑇) − 𝑥0| =
𝛿 and therefore lim inf

𝑥0→𝑧2
𝑇 ⩾

𝛿

𝑀
. Hence, we have 1

𝑇
⩽

2𝑀

𝛿
for 𝑥0 close to 𝑧2. Using this last estimate

in (4.8), we obtain

𝑞(𝑅2) − 𝐹(𝐷𝑢2(𝑧2)) − 𝜖 < (𝑢2(𝑥0) − 𝑢(𝑥0))
2𝑀

𝛿
. (4.9)

Keeping 𝜖 fixed and letting 𝑥0 → 𝑧2, we arrive at 𝑞(𝑅2) − 𝐹(𝐷𝑢2(𝑧2)) ⩽ 𝜖. Since 𝜖 is arbitrary,
the inequality in (4.2) follows. Using condition (1.3), and inequalities (4.1) and (4.2), we obtain
𝑅1 = 𝑅2. □

Proof of Theorem 1.2. We argue as in the preceding proof. The definitions of 𝑅𝑖 ,Ω𝑖 and 𝑢𝑖 , 𝑖 = 1, 2

are identical. It follows that Ω1 ⊆ Ω2, and we prove that in fact Ω1 = Ω2. Since Lemma 3.3 and
Proposition 3.4 are applicable to the case when Σ = ℝ𝑛, we have now

𝑢1 ⩽ 𝑢 a.e. in Ω1, 𝑢 ⩽ 𝑢2 a.e. in Ω.

We take 𝑧𝑖 ∈ 𝜕Ω ∩ 𝜕Ω𝑖 and prove the inequalities (4.1) and (4.2). The derivation of (4.1) is identical,
apart from the fact that we use condition (1.8) in place of (1.6), and the point 𝑥(𝑡) = 𝑧1 − 𝑡 |𝑧1|−1𝑧1
now ranges in Ω1, being Σ = ℝ𝑛. For proving (4.2), we take 𝜖 as before, and using (1.8), we
determine 𝛿 ∈ (0, 𝜖) such that (4.5) holds for every 𝑥 ∈ Ω satisfying |𝑥 − 𝑧2| < 𝛿. Next we pick
𝑥0 ∈ 𝑈𝛿 = { 𝑥 ∈ Ω ∶ |𝑥 − 𝑧2| < 𝛿 } and consider a maximal solution 𝑥(𝑡) of the initial value prob-
lem (4.6): Since in the present case Γ1 = ∅, the solution 𝑥(𝑡)will eventually satisfy |𝑥(𝑇) − 𝑧2| = 𝛿,
as before, for some finite 𝑇. The estimate of 𝑇 is identical, and we arrive again at (4.9), whence
the inequality in (4.2) is obtained. Using the assumption (1.3), and the inequalities (4.1) and (4.2),
we finally prove 𝑅1 = 𝑅2 and the theorem follows. □

As stated at the beginning of this section, we now derive an alternative formulation of
Theorem 1.1 using the three-minuses formula (3.6). Here, 𝐵+

𝐹
(𝑂, 𝑅) = { 𝑥 ∈ ℝ𝑛 ∶ 𝐹∗(𝑥) < 𝑅 }.

Theorem 4.1. Let 𝑞(𝑟) be a positive, real-valued function satisfying (1.3), and let 𝑣 ∈ 𝑊
1,𝑝
Γ0

(Ω ∩ Σ)

be a weak solution of the problem

⎧⎪⎨⎪⎩
Δ𝐹;𝑝 (−𝑣) = 1 inΩ∩ Σ;

𝑣 = 0 on Γ0;⟨𝐷𝐹(−𝐷𝑣), 𝜈⟩ = 0 on Γ1 ⧵ {𝑂}.
(4.10)

If 𝑣 belongs to the smoothness class 𝐶1((Ω ∩ Σ) ∪ (Γ1 ⧵ {𝑂})) ∩ 𝐶0(Ω ∩ Σ ⧵ {𝑂}) and satisfies

lim
𝑥→𝑧

𝐹(−𝐷𝑣(𝑥)) = 𝑞(𝐹∗(𝑧)) ∀𝑧 ∈ Γ0, (4.11)

thenΩ∩ Σ = 𝐵+
𝐹
(𝑂, 𝑅) ∩ Σ for some 𝑅 > 0.
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AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 17 of 19

Proof. By Lemma 3.6, the function 𝑢 = 𝑣 is a solution of

⎧⎪⎨⎪⎩
−Δ𝐹;𝑝 𝑢 = 1 in −(Ω ∩ Σ);

𝑢 = 0 on −Γ0;⟨𝐷𝐹(𝐷𝑢), 𝜈⟩ = 0 on −Γ1 ⧵ {𝑂}.

Furthermore, if we pick 𝑧 ∈ −Γ0, we obviously have −𝑧 ∈ Γ0 and by (4.11)

lim
𝑥→−𝑧

𝐹(−𝐷𝑣(𝑥)) = 𝑞(𝐹∗(−𝑧)).

Since −𝐷𝑣(𝑥) = 𝐷𝑢(−𝑥), letting 𝑦 = −𝑥 we arrive at

lim
𝑦→𝑧

𝐹(𝐷𝑢(𝑦)) = 𝑞(𝐹∗(−𝑧)) ∀𝑧 ∈ −Γ0,

which is (1.6) in different notation. Therefore, by Theorem 1.5 we may conclude that −(Ω ∩ Σ) =

𝐵−
𝐹
(𝑂, 𝑅) ∩ (−Σ) for some 𝑅 > 0, hence Ω∩ Σ = 𝐵+

𝐹
(𝑂, 𝑅) ∩ Σ as claimed. □

5 EXAMPLES

As mentioned at the end of the introduction, problem (1.5)–(1.6) under assumption (1.3) is
not solvable, in general, even in the case when Ω = 𝐵−

𝐹
(𝑂, 𝑅), and a similar remark holds for

problem (1.7)–(1.8). Let us identify the solvable instances. For simplicity, we focus on the last
problem.

Proposition 5.1. Let 𝑞(𝑟) be a positive, real-valued function, and let Ω = 𝐵−
𝐹
(𝑂, 𝑅). Problem (1.7)

has a weak solution 𝑢 ∈ 𝑊
1,𝑝
0

(Ω) ∩ 𝐶1(Ω) ∩ 𝐶0(Ω) satisfying (1.8) if and only if

(
𝑅

𝑁

)𝑝′−1

= 𝑞(𝑅). (5.1)

Proof. The unique solution 𝑢𝑅 ∈ 𝑊
1,𝑝
0

(Ω) of problem (1.7) in the ball Ω = 𝐵−
𝐹
(𝑂, 𝑅) is given in

Proposition 3.5, and has an extension to 𝐶1(ℝ𝑛). The gradient 𝐷𝑢𝑅 is found in (3.5). Taking (2.16)
into account, condition (1.8) reduces to (5.1). □

Therefore, if the function 𝑞(𝑟) satisfies (1.3), then the solvability of the overdetermined
problem (1.7)–(1.8) depends on the existence of a solution 𝑟0 = 𝑅 > 0 to the equation

(
𝑟

𝑁

)𝑝′−1
= 𝑞(𝑟). (5.2)

By (1.3), the equation above may have at most one solution, but it may well happen that (5.2) is
unsolvable. On the basis of this discussion, we exhibit the following examples.

Example 5.2. If we choose 𝑞(𝑟) = (𝑟𝑝
′−1 + 𝑟𝑝

′
)∕𝑁𝑝′−1, then assumption (1.3) is satis-

fied. However, Equation (5.2) has no positive solutions, hence the overdetermined problem
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(1.7)–(1.8) is unsolvable. If, instead, we take 𝑞(𝑟) = 𝑟𝑝
′ , then assumption (1.3) is still satisfied,

and Equation (5.2) has the unique solution 𝑟0 = 1∕𝑁𝑝′−1. Consequently, the overdetermined
problem (1.7)–(1.8) is solvable if and only if Ω = 𝐵−

𝐹
(𝑂, 𝑅) with 𝑅 = 1∕𝑁𝑝′−1.

ACKNOWLEDGMENTS
We are grateful to the referee for having helped us to improve the paper. The authors are par-
tially supported by the research project Analysis of PDEs in connection with real phenomena, CUP
F73C22001130007, funded by Fondazione di Sardegna, annuity 2021. The first author is a member
of theGruppoNazionale per l’AnalisiMatematica, la Probabilità e le loroApplicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).

JOURNAL INFORMATION
Mathematika is owned byUniversity College London and published by the LondonMathematical
Society. All surplus income from the publication of Mathematika is returned to mathematicians
and mathematics research via the Society’s research grants, conference grants, prizes, initiatives
for early career researchers and the promotion of mathematics.

ORCID
AntonioGreco https://orcid.org/0000-0002-5772-7951

REFERENCES
1. K. Bal, P. Garain, and T.Mukherjee,On an anisotropic p-Laplace equationwith variable singular exponent, Adv.

Differential Equations 26 (2021), no. 11-12, 535–562.
2. A. Banerjee and B. Kawohl, Overdetermined problems for the normalized 𝑝-Laplacian, Proc. Amer. Math. Soc.

Ser. B 5 (2018), 18–24.
3. D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Springer, New York, 2000.
4. M. Belloni, B. Kawohl, and P. Juutinen, The p-Laplace eigenvalue problem as 𝑝 → 1 in a Finsler metric, J. Eur.

Math. Soc. (JEMS) 8 (2006), no. 1, 123–138.
5. C. Bianchini and G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems,

Comm. Partial Differential Equations 43 (2018), no. 5, 790–820.
6. L. Cadeddu, A. Greco, and B. Mebrate, Non-autonomous overdetermined problems for the normalized 𝑝-

Laplacian, Rend. Mat. Appl. (7), online first (2024), 12 pp. https://www1.mat.uniroma1.it/ricerca/rendiconti/
latest/latest.html.

7. A. Cianchi and P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann. 345 (2009), no. 4, 859–
881.

8. G. Ciraolo and A. Greco, An overdetermined problem associated to the Finsler Laplacian, Commun. Pure Appl.
Anal. 20 (2021), no. 3, 1025–1038, DOI 10.3934/cpaa.2021004.

9. G. Ciraolo and X. Li, An exterior overdetermined problem for Finsler N-Laplacian in convex cones, Calc. Var. 61
(2022), no. 121, 27 pp, DOI 10.1007/s00526-022-02235-2.

10. V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc. 137 (2009), no. 1, 247–
253.

11. N. Garofalo and J. L. Lewis, A symmetry result related to some overdetermined boundary value problems, Amer.
J. Math. 111 (1989), 9–33.

12. A. Greco and F. Pisanu, Improvements on overdetermined problems associated to the p-Laplacian, Math. Eng.
(Springfield) 4 (2022), no. 3, Paper No. 17, 14 pp, DOI 10.3934/mine.2022017.

13. B. Kawohl and M. Novaga, The p-Laplace eigenvalue problem as 𝑝 → 1 and Cheeger sets in a Finsler metric, J.
Convex Anal. 15 (2008), no. 3, 623–634.

14. R. López Pouso, Peano’s existence theorem revisited, arXiv:1202.1152 [math.CA], DOI 10.48550/arXiv.1202.1152.

 20417942, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12267 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.fondazionedisardegna.it/
https://orcid.org/0000-0002-5772-7951
https://orcid.org/0000-0002-5772-7951
https://www1.mat.uniroma1.it/ricerca/rendiconti/latest/latest.html
https://www1.mat.uniroma1.it/ricerca/rendiconti/latest/latest.html
https://doi.org/10.3934/cpaa.2021004
https://doi.org/10.1007/s00526-022-02235-2
https://doi.org/10.3934/mine.2022017
https://doi.org/10.48550/arXiv.1202.1152


AN OVERDETERMINED PROBLEM RELATED TO THE FINSLER p-LAPLACIAN 19 of 19

15. B. Mebrate and A. Mohammed, Harnack inequality and an asymptotic mean-value property for the Finsler
infinity-Laplacian, Adv. Calc. Var. 14 (2021), no. 3, 365–382, DOI 10.1515/acv-2018-0083.

16. B. Mebrate and A. Mohammed, Infinity-Laplacian type equations and their associated Dirichlet problems,
Complex Var. Elliptic Equ. 65 (2020), no. 7, 1139–1169, DOI 10.1080/17476933.2018.1544632.

17. S. Salsa, Partial differential equations in action, From Modelling to Theory, 3rd ed., Springer International
Publishing, 2016.

18. R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and Its Applications,
vol. 44, Cambridge University Press, 1993.

19. Q. Xia, Sharp spectral gap for the Finsler 𝑝-Laplacian, Sci. China Math. 62 (2019), no. 8, 1615–1644.

 20417942, 2024, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/m
tk.12267 by C

ochraneItalia, W
iley O

nline L
ibrary on [21/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1515/acv-2018-0083
https://doi.org/10.1080/17476933.2018.1544632

	An overdetermined problem related to the Finsler -Laplacian
	Abstract
	1 | INTRODUCTION
	2 | PRELIMINARIES
	2.1 | Finsler-Minkowski norms
	2.2 | The dual of F

	3 | WEAK SOLUTIONS
	4 | PROOF OF THE MAIN RESULTS AND ALTERNATIVE FORMULATION
	5 | EXAMPLES
	ACKNOWLEDGMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


