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Abstract
A Digital Twin is a virtual representation of a physical product, asset, process, system, or
service that allows us to understand, predict, and optimise their performance for better
business outcomes. Recently, the use of Digital Twin in industrial operations has attracted
the attention of many scholars and industrial sectors. Despite this, there is still a need to
identify its value in industrial operations mainly in production, predictive maintenance,
and after‐sales services. Similarly, the implementation of a Digital Twin still faces many
challenges. In response, a systematic literature review and analysis of 41 papers published
between 2016 and 11 July 2020 have been carried out to examine recently published
works in the field. Future research directions in the area are also highlighted. The result
reveals that, regardless of the challenges, the role of Digital Twin in the advancement of
industrial operations, especially production and predictive maintenance is highly signifi-
cant. However, its role in after‐sales services remains limited. Insights are offered for
research scholars, companies, and practitioners to understand the current state‐of‐the‐art
and challenges, and to indicate future research possibilities in the field.

1 | INTRODUCTION

Digital Twin (DT) is a new concept and technology that
evolved with the development of Industry 4.0. It is becoming
increasingly important and attracting the attention of many
sectors [1,2]. DT is one of the enabling tools of Industry 4.0
that integrates the actual physical system with its virtual replica
with the help of models, sensors, data, and software to monitor
and analyse future performance. It is the virtual model of a
product or asset, connected to the related physical prototype,
for instance via the Internet of Things (IoT), that visually
enhances data flow, communication, and collaboration across
engineering, operations, supply chain, and service. Many defi-
nitions have been provided by companies and researchers for
DT, however, there is no common definition. Conceptually, it
is a living model of the system that can continually be updated
with incoming data from the operating environment to
monitor the current status and predict the future behaviour of
a physical system using data and information (Figure 1). It is
considered as a concept model that contains three main parts:
physical product in real space, virtual product in virtual space,

and data and information connections that tie virtual and real
products together.

DT has become one of the hottest topics in manufacturing
today because it promises to improve innovation and design,
visually enhance collaboration, and enable the ongoing oper-
ation of connected products and assets. It provides live, or near
real‐time, information and insights for manufacturers and asset
operators to proactively improve, optimise, and transform
businesses using emerging technologies like IoT, Big Data,
edge computing, machine learning, and predictive analytics.

It is considered as a non‐destructive testing environment
developed with the emergence of Industry 4.0 and smart
manufacturing [3,4]. The realisation of this technology needs
supporting tools including cloud service, simulation, and ma-
chine learning algorithms [4–7]. With the help of these
enabling tools, it can enhance the transparency of the operating
environment, optimisation of multiple characteristics of the
system, and the prediction of future performance using real‐
time data. At its most base level, DT uses three‐dimensional
(3D) models and simulation software to create a full, living,
digital model of a product and its associated manufacturing
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processes, or assets, and their related environment. Essentially,
DTs are the extended application of simulation and visual-
isation throughout a digitally transformed organisation, for
better communication and collaboration.

In practice, DTmight not be an accurate copy of the product
or asset but is rather an applicable abstraction reflecting valuable
data. It should be developed based on being fit for purpose and it
is not inevitably a realistic representation of a system or a
physical asset. From the perspective of industrial operations, it
has the product's information from the beginning to disposal.
Thus, it becomes an important part of model‐based system
engineering to integrate simulation of a system into its corre-
sponding twin. Most significantly, it broadens the concept of
model‐based system engineering from the engineering and
manufacturing phase to operation and service.

Today, modelling and simulation have become standard for
engineering support, decision‐making process, and evaluation of
the impact of production changes by providing fast reacting on
time. Hence, using these standards, DT is becoming a vital tool
for system development, operation optimisation, and failure
prediction. It can help companies in several stages of operation
including production, predictive maintenance, and service
providing a reduction in both development time and time‐to‐
market, quality improvement, and meeting of customer de-
mands through virtual representations of physical systems.

DT replicates the physical properties of a product or sys-
tem and enables Multiphysics simulations to deliver predictive
engineering insight across the lifecycle of the product. During
this case, assets feed messages to the DT and help to resolve
possible issues, predict maintenance possibilities, and improve
the performance of next‐generation products. Therefore,
companies can use DT to optimise the designs before costly
prototyping and physical testing processes. To meet these
objectives and for proper functioning, it must be supported by
accurate information about the operations, history, and current
state of the system. Thus, based on available information, the
user or the autonomous system can make the proper decision
about the actual performance and future production
performance.

Unlike traditional simulation, DT has the capability to
determine the schedule for preventive maintenance, under-
standing how the physical twin is performing, observing system
performance, promoting traceability, facilitating refinement of
assumptions, enabling maintainers to troubleshoot, and
combining IoT data with the physical system. Therefore, the use

of DTcan support companies in terms of improving capabilities
in production optimisation and predictive maintenance during
industrial operations, providing a great business outcome.
Moreover, it can enable companies to gain a competitive
advantage through adaptation to increased uncertainties,
customer demands, and resource costs [3]. As a result, the in-
terest of organisations to adopt and deploy DT has increased
rapidly due to its capability to provide relevant and contextual
information on business, products, assets, operations, cus-
tomers, and driving operational efficiency and innovation.
Moreover, it can foster newmodels including customer intimacy,
new revenue streams, ecosystem collaboration, and more.

The role of DT in industrial operations, especially in pro-
duction, predictive maintenance, and after‐sale services, is not
well defined. Recently, several studies have been conducted on
the uses of DT models. Although past research works have
covered a wide range of DTapplications, the focus here is on the
role of DT in three phases of industrial operations analysing the
state‐of‐the‐art, common challenges during the implementation
of DT, and proposing the future direction of the research work.

Section 2 presents the research method used during the
review. Section 3 reports the results from the literature, while
Section 4 discusses the role of DT models in three application
phases. Section 5 provides information on the challenges
during the real‐world implementation of DT and possible so-
lutions. Finally, Section 6 provides the conclusions and di-
rections of future work.

2 | METHOD

An extension of work originally presented at an international
conference on Industry 4.0 and smart manufacturing is pre-
sented [8]. The systematic literature review method followed by
[8–11] has been used, with updates and extension provided
using recently published papers aiming to show the recent uses
of DT models in production, predictive maintenance, and af-
ter‐sales services. The following questions are answered: What
is the current state‐of‐the‐art on the use of DT models in
industrial operations mainly in production, predictive mainte-
nance, and after‐sale services? What are the common chal-
lenges during the implementation? What can be possible
solutions? Moreover, future research directions are indicated.

The methodology used to collect and analyse papers is
described in Figures 2 and 3. The search of papers was mainly
focussed on two databases, Web of Science and Scopus, well
organised and top academic databases for literature search and
survey. DT is a core, young, and recently growing technology
in the realisation of cyber‐physical systems in smart
manufacturing. Therefore, to analyse the current trend, recent
papers published between 2016 and 11 July 2020 have been
considered. During the search of papers, key terms of ‘digital
twin models’, ‘predictive maintenance’, ‘production’, ‘after‐sale
services’, and ‘operations’ have been used, combined with the
Boolean operator ‘AND’. In the databases, articles written only
in English were considered and analysed after uploading into
reference management software (i.e. Mendeley).

F I GURE 1 Concept of Digital Twin
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The selection of published papers was done following two
different phases. In the first phase, all the papers were checked
for relevance and clustered into ‘included’ and ‘excluded’ cat-
egories using the specific criteria described in Figure 3. The
screening criteria were applied based on the availability of full
articles, key concepts, and considering the link between DT
and the three phases of industrial operations. In the second

phase, the assessment of selected papers was done by reading
the full text of the articles. All articles were assessed to ensure
that they were a fit within the scope of the topic. Thus, articles
that made only a minor contribution to the topic area were
excluded. Finally, the extracted data was structured and stored
in MS Excel to analyse the result.

The characterisation of selected papers was done based on
different considerations. The first criterion was focussed on the
contribution and research method. Under contribution, papers
were classified in terms of objectives (i.e. state‐of‐the‐art,
framework development, method development, and others).
Similarly, the research methodology papers were arranged into
reviews, case studies, experimental, and others. To analyse the
impact of selected papers, the top 10 highly cited articles are
ranked in Table 1. Finally, the selected papers were charac-
terised in terms of the number of authors per each paper to
assess the effect of collaboration on the quality of work
(Table 2).

3 | RESULTS

Initially, 748 papers appeared in the search results using a
combination of key terms as described in Figure 3. After
removing duplicates, reading titles, abstracts, and keywords,
119 articles were screened out for the further review steps. In
the next phase of screening, the inclusion of 68 papers was
done considering the focus of the entire content on the role of
DT in industrial operations. In this stage, the paper quality and
the associations between DT modelling and the role in the
production, predictive maintenance, and after‐sales services
were strictly considered and 41 papers were included in the
final review and analysis.

According to the analysis of selected papers (Table 3), most
of the studies included in the final selection were articles
(67%), followed by conference papers (28%) and book chap-
ters (5%).

The use of DT technology is still attracting researchers in
different countries. To check the impact of individual countries
in the field, the analysis of countries of reference was done
based on the affiliation of the authors (Figure 4). Based on this
analysis, most of the researchers were from Germany, which is
the birthplace of Industry 4.0. Then, China took second po-
sition in the research of the focus area followed by France and
other European countries, Asian countries, African countries,
Canada, and the USA.

The strong dominance of authors from Germany and
China is believed to be highly linked with the effectiveness of
their proposed national strategies of Industry 4.0 [12] and
Made in China 2025 [13], respectively.

According to Table 4, the selected papers were classified
based on the publication year, application domains, contribu-
tion, and methodology. A rapid increase in the publication rate
can be seen for the years 2018 and 2019. The highest research
area appears to be production‐related and the research in this
phase is still increasing. In general, the research trend in the
application of DT in three application domains has recently

F I GURE 2 Review detail

F I GURE 3 Review process
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gained momentum and the interest of researchers has grown
rapidly (Figure 5). During this review, the 2020 data is still
incomplete and the number of papers this year appears to be
lower because the research was carried out focussing on papers
that appeared in the search until 11 July 2020.

Most of the selected publications have focussed on the
development of the framework and methodology. This
contribution mainly comes from review papers which focus on
the development of a framework for the application of DT. In

comparison with other methods, experimental works remain
limited. This could be due to the requirement of advanced
technology and the limitations of a knowledge‐based approach
towards creating DT models.

Nowadays, DT is attracting the attention of different sec-
tors (Table 5). The manufacturing sector has dominated using
this technology and the application in the service and other
sectors remains low and sectors like agriculture and the food
and beverage industry are showing good motivation to use DT.

The ranking of the top 10 authors has been summarised in
Table 1 to identify influential researchers in the field. Thus,
Tao, Sui, Liu, et al. lead the field with 141 citations followed by
Qi, Tao, Zuo, et al. and Stief, Dantan, Etienne, et al. It is
evident that the works of these authors have had a momentous
impact in three application domains from 2016 to 11 July 2020.

Based on the analysis of 41 selected papers, 51.2% of
contributions were derived from a collaboration between three

TABLE 1 Ranking of authors based on citation

Rank Title Authors
Number of
citations Journal

1 Digital Twin‐driven product design framework Tao et al. 141 International Journal of Production
Research

2 Digital Twin service towards smart manufacturing Qi et al. 72 Procedia CIRP

3 Integrating the Digital Twin of the manufacturing system into a decision
support system for improving the order management process

Stief et al. 37 Procedia CIRP

4 The role of data fusion in predictive maintenance using Digital Twin Liu et al. 34 AIP Conference Proceedings

5 Digital transformation of manufacturing through cloud services and
resource virtualization

Borangiu
et al.

30 Computers in Industry

6 Smart factories: South Korean and Swedish examples on manufacturing
settings

Wiktorsson
et al.

21 Procedia Manufacturing

7 Design and implementation of a Digital Twin application for a connected
micro smart factory

Park et al. 21 International Journal of Computer
Integrated Manufacturing

8 Modular fault ascription and corrective maintenance using a Digital Twin Vathoopan
et al.

17 IFAC‐PapersOnLine

9 Knowledge‐driven Digital Twin manufacturing cell towards intelligent
manufacturing

Zhou et al. 15 International Journal of Production
Research

10 Machine learning‐based Digital Twin framework for production
optimization in petrochemical industry

Min et al. 15 International Journal of Information
Management

TABLE 2 Number of authors per paper

Number of authors Number of papers Percentage

2 5 12.2

3 12 29.28

4 8 19.51

5 9 21.95

6 1 2.44

7 2 4.87

8 2 4.87

10 1 2.44

TABLE 3 Editorial classification of selected papers

Document type Number of papers (%)

Articles 67

Conference paper 28

Book chapters 5

F I GURE 4 Distribution of authors by geographical origin
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and five authors (Table 2). The highest number of citations was
also recorded for those with more than three authors.
Although these records sometimes lead to false information
because of errors during citation, the result reveals a direct
correlation between the impact and an increase in the number
of authors.

4 | DISCUSSION

DT is an important tool that can be used in many phases of
industrial operation from product design to the disposal stage.
Its role has extended to the design, manufacturing, prediction,
and monitoring of physical assets in a transparent manner
[25,51,52]. Besides, DT can enhance the optimisation, and
improve the communication and automation of a system [51].
It can be used in prediction, monitoring, and control of the
system for safety reasons, and system diagnosis aimed at the
analysis of unpredicted interruptions during the operation [53].
To realise this objective, the operational status of devices and
certain components should be captured in real time to reduce
disturbances and improve the accuracy of the operation. To
date, several companies have already implemented DT to
improve their operations and business outcomes, mitigating
different challenges (Table 6). Table 7 describes some of the
practical examples of DT found in the literature.

The value of DT has highly related to its capability to
utilise data generated during different stages of the product life
cycle from design to the disposal phase [55] (Figure 6). With
this motivation, traditional manufacturing is transforming into
smart manufacturing with the help of DT combined with
machine learning, the Internet of Things, and data analytics to
improve the level of automation and flexibility.

DT can be applied at different levels including component,
asset, system, or unit, or as a process twin [56] (Figure 7).

The component twin is a representation of a major part of
assets that has a significant impact on the operation of the
system and the asset twin focuses on the entire asset. Col-
lecting these assets will create a network of system or unit
twins that provides visibility in a set of different types of
equipment. Examples of different types of DT and their ap-
plications have been summarised (Table 8).

TABLE 4 Analysis based on the
contribution, method, year of publication, and
application domain

Classification criteria and
domain Production Predictive maintenance After‐sales services

Publication year 2020 4 4 1

2019 13 9 1

2018 3 3 1

2017 1 – –

2016 1 – –

Method Review 8 5 2

Case study 6 7 1

Experimental 4 3 –

Others 4 1 –

Contribution State‐of‐the‐art 4 3 –

Method 10 5 1

Framework 5 5 1

Others 3 3 1

F I GURE 5 Distribution of publications from 2016 to 11 July 2020

TABLE 5 Principal industrial sectors

Sectors Number of papers References

Manufacturing 27 [3,14–38]

Services 4 [39–42]

Oil and gas 3 [5,43,44]

Transportation 1 [45]

Food and beverage 1 [46]

Agriculture 1 [47]

Aerospace 2 [4,48]

Construction 1 [49]

Energy 1 [50]
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The section below discusses the roles of DT in selected
phases of industrial operations. Commonly mentioned roles of
DT in production, predictive maintenance, and after‐sales
services are summarised in Figure 8.

TABLE 6 Use of Digital Twin to mitigate challenges in the companies [54]

Problems Approach

Complexity Increasing product, supply chain, and demand complexity mandates manufacturers to manage
risk and safety, improve product and asset performance, and maintain high levels of
enterprise‐wide quality

Ecosystems Extending and broadening external networks of suppliers and partners, many of whom provide
design and operations support

Global and local market Highly competitive global markets need to be served at a local level with unique requirements and
capabilities

Customer experience Closer collaboration with customers is needed for customised or individualised products across
their life span

Data Massive amounts of structured and unstructured data from IoT, extended supply chains, and
multiple disparate manufacturing plants or facilities

Connected, "always‐on" Products and assets can be tracked throughout their life cycle, and customers expect high levels
of quality and service because of this

Service revenue Connectivity provides an opportunity for manufacturers to leverage connected asset and product
data to ensure high levels of service, value‐added services, and an increase in service revenue

TABLE 7 Real‐case examples of Digital Twin models

Sector Purpose Description

Oil and gas
industry

Studying erosion in an electrical submersible pump DT can be used to monitor and simulate erosion rates to predict the remaining life of
the physical pump

Energy Investigating stress and fatigue in a wind turbine yaw
motor

DT enables accurate monitoring of fatigue levels by early detection of faults and
improving diagnostic capabilities

Natural gas Analysing fatigue in a looped pipeline section Simulation with DT can be used in the prediction of faults that can cause gas leakage
in pipeline systems

Road Extending the lifetime of a bridge DT provides insights into the material behaviour DT of a bridge to analyse the stress
behaviour of the bridge during its lifetime by using sensors attached to the
structure

F I GURE 6 Use of Digital Twin in product life cycle management [55]

F I GURE 7 Levels of Digital Twin [56]
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4.1 | Utilising Digital Twin in production
phases

DT is a virtual model characterised by a continuous update of the
actual state using real‐time data. This can be helpful to evaluate
an operating system under different conditions. Therefore, using
what‐if analysis, various scenarios of the production system can
be improved and optimised. Moreover, visibility and trans-
parency of operations can be enhanced through virtualisation
during the production and the behaviour of individual devices
can be monitored to integrate the whole system of
manufacturing for a better business outcome [28]. DT has also
an important role in the development of new value creation using
product‐as‐a‐service business models. For instance, one study
[37] has described the use of this approach in the shop‐floor
management system in the Logistics Learning Factory.

Small and medium‐sized enterprises can improve the
capability of real‐time data acquisition systems and operational
performance using DT [30,55,60]. DT can enhance a virtual
representation and synchronisation of the production system
in the operational environment. For example, research [3] has
described the application of DT in object tracking using in-
dustrial robots. In this case, detected objects have been added
to the DT model of the cell along with the robot, creating a
synchronised virtual representation of the system. This work
has described the transformation of an extended environment
into a virtual representation where the sensor captures images
and information is extracted using the designed application.

Two studies [30,52] have shown the use of DT in the
simulation of the work environment for assembly tasks sup-
porting cooperation between humans and machines. They have
also presented the importance of DT in the human–robot
production system in the life cycle ranging from design to
operation, proposing an implementation framework and using
a case study to demonstrate the advantages. Accordingly, the
advantages have been described in terms of risks of financial
loss and due to human injury in a real‐world environment.

DT can improve the ergonomics and safety of the
manufacturing system. One study [14] has demonstrated the
application of DT in the production system to optimise the
safety and ergonomics of the working environment. Similarly,
it has the advantage of improving the level of automation,
adaptability, and flexibility [35,59,61,62], operational efficiency
[63], cost reduction [49], solving problems of regulatory dif-
ficulties [50], and the creation of new revenues adding product
features and business models [64]. Production optimisation
[24] is another key function of DT where many researchers are
currently focussing. The use case in petroleum industries [5,44]
describes the effectiveness of DT technology to optimise
production by using machine learning‐based frameworks.
Moreover, DT improves the status of companies in digital
monitoring and enhancing the function of interconnected
devices throughout the production system [6,25,32,33,65]. It
can be used as a supporting tool for other industrial operations
to reduce complexities in many processes, including order
management [55] and horizontal and vertical integration of
production systems [65]. These enable companies to meet
customer needs and manage their resources properly. Besides,
DT improves the safety and reliability of operations through
condition monitoring of the production system [45].

4.2 | Supporting predictive maintenance
with Digital Twin

These days, industries are shifting from reactive maintenance
to predictive and proactive maintenance to improve efficiency,
extend the life cycle, and reduce the operational costs of their
asset. The capability of DT to predict the future behaviour of
an operating system or asset is considered a great input in large
industrial sectors. By using real‐time data and data‐driven an-
alytics, DT can predict the future behaviour and impact of the
current operating conditions on the remaining life of an asset
[4,31,65,66]. Therefore, identifying potential problems can

TABLE 8 Common types of DT and
their applications

Type of DT Application References

Component Estimation of grasping point locations on objects [14]

System/unit Optical object tracking [3]

Process Smart manufacturing [16]

Process Augmented reality industrial solutions [17]

Process Decision support [24,29,55]

System Aircraft predictive maintenance [4,49]

System Maintenance [16,27]

Process System integration [57]

System Smart factory and cyber‐physical production systems [6]

System Optimisation of plant and machinery [46,47]

Component Human–robot collaborative system [52,58]

System Micro‐manufacturing [26,59]
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enable asset owners to perform predictive maintenance to
reduce downtime and operational cost. Thus, DT can deliver
accurate forecasting of system failure using incoming data
from physical assets [4,7,16,17,36,58,64,67] providing optimi-
sation, early warning, and prediction capabilities. This func-
tionality of DT is expected to have a paramount role in the
performance of future industries. For example, the use of DT
in the predictive maintenance of aircraft has been described by
[4]. This study has applied the use of integrating the simulation
and modelling ecosystem to maintain, overhaul, and repair
aircraft using IoT and cloud computing systems. The data
fusion technique was applied to improve the velocity, variety,
and volume of data flow. Similarly, [48] has created a mathe-
matical framework to establish DT for aircraft dynamic sys-
tems using sensors, the IoT, and deploying on the cloud
computing systems.

4.3 | Using Digital Twin in the after‐sales
services

According to the study [68], after‐sales services can improve
profit by 80% in many companies providing competitive ad-
vantages. Despite this, the efforts of research into the use of
DT in this application phase remain limited.

DT can support companies to monitor their sold items for
sudden failure. Therefore, the capability of monitoring the
overall performance and maintenance history of products can
help manufacturers to gain more trust from their customers,
detecting abnormal conditions and providing insights for
maintenance. Besides, DT can enable the service sector to
achieve the goal of smart manufacturing [16], improving in-
formation visibility throughout the life cycle. For instance, two
studies [57,69] have shown the application of DT to trace the
status of devices. The effectiveness of this traceability and
security can be improved with the use of blockchain technol-
ogy. Adaptation of this technology is considered as a key
solution to monitor a physical object from production to after‐
sales. With the help of DT, companies can also improve the
interaction with their customers to provide support and receive

feedback about their services. Ultimately, they can improve
brand loyalty by adapting to the needs of customers. One study
[47] has shown how manufacturers were able to optimise the
operation of smart farming of potato harvesting using feed-
back from customers.

5 | CHALLENGES IN THE
IMPLEMENTATION OF DIGITAL TWIN

Implementation of DT still faces challenges including lack of
detailed methodology and standards, difficulties in collecting
and storing large amounts of data [44,70,71], developing data
acquisition system, synchronisation problems, modelling of a
complex system, lack of awareness, resistance of companies to
adopting the technology [59], and difficulties in constructing,
understanding, controlling, and simulating real‐time changes in
the system.

High‐fidelity models are required to simulate and test the
product or process in a virtual environment by reducing
development time and cost [26,72] The issue of high invest-
ment cost and data security is still a hindrance to many com-
panies making DT part of their daily life [55]. There are also
problems related to the lack of suitable business models and
the use of digital services and goods is still new and imple-
mentation is difficult for many manufacturers [47].

A study [73] has identified challenges such as engineering,
technology, commercial, data, and others (Figure 9). Engineer-
ing challenges arise from the complexity of the system to make
system predictions and lack of standards to ensure efficient
communication, human and product safety, the security of the
data, and structural integrity. Technological development is also
a factor that is hindering the implementation of DT technology.
This can be evaluated in terms of cost and time. Therefore, the
highest cost of IT facilities, and the long time requirements to
develop adequate technologies are among critical challenges.
Removing cultural barriers, the mindset towards data sharing,
and investments to improve software and services can be so-
lutions to these challenges. The commercial challenge includes
scalability [41] issues due to the architecture, the capability to

F I GURE 8 Summary of the main roles of Digital Twin in three application phases of industrial operations
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change the level of parameters, the complexity of the supply
chain, and computational power. Also, information sharing is
considered the biggest obstacle created by the complex policies
of companies regarding the ownership of data.

The technological challenge is related to the servitisation
issue because service delivery remains difficult and is depen-
dent on the company's business model, and management of
customer and risk management. Therefore, end‐to‐end inte-
gration should be developed throughout communication to
solve the issue of privacy risk and improve transparency in data
flow during DT usage.

Cybersecurity is another challenge to DT use and there are
several pillars including security, data encryption, security
audit, monitoring live events, and responding to incidents,
identity, and management of devices [44,74]. To ensure data
security, DT should be supported by a security audit for the
visibility of the transaction and to identify the devices and
users. Moreover, it is mandatory to ensure the right level of
access to the activities they have performed. Similarly, data
encryption can be used as a solution to protect the injection of
false data by malicious actors and it should be enabled by the
capability of live event monitoring and responses to detect
abnormal behaviour during the operations. Thus, DT de-
velopers should be able to authenticate and identify users to
monitor who is attempting to access and send data to the data
set or system.

6 | CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

The roles of DT in three phases of industrial operations have
been presented, exploring the current trend of research in the
area, and identifying the challenges for its implementation by
using a systematic literature review. Therefore, one of the main
contributions has been analysing recently published works and

understanding the state‐of‐the‐art on the uses of DT in pro-
duction, predictive maintenance, and after‐sales services.

A discussion of these application phases has been provided
in detail. In particular, the discussion has focussed on the use
of DT to support the three phases of industrial operations in
their day‐to‐day performance to deliver business outcomes.
Another contribution relies on providing a solution to the
challenges of implementing DT models at the industrial level.

There are several gaps regarding the use of DT in three
phases of industrial operation that could benefit further
research in the field:

� More methods should be developed to implement DT,
based on current knowledge.

� Benchmark studies between models developed in the same
sector are needed to compare and identify best practices.

� The focus on the after‐sales field remains limited and more
research is needed to support this operational phase. There
is, therefore, a call for more research on the use of DT
technology in the area of after‐sales services.

� According to the literature analysis, the potential use of DT
in the support of the supply chain sector has not been well
studied. Therefore, future work is planned on the develop-
ment of the methodology and implementation of DT in this
area, with special emphasis on the food supply chain.
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