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Abstract: Current treatment for Multiple Sclerosis (MS) consists of a multidisciplinary approach
including disease-modifying therapies. The response to treatment is heterogeneous, representing
a crucial challenge in the classification of patients. Metabolomics is an innovative tool that can
identifies biomarkers/predictors of treatment response. We aimed to evaluate plasma metabolic
changes in a group of naïve Relapsing-Remitting MS patients starting Fingolimod treatment, to
find specific metabolomic features that predict the therapeutic response as well as the possible side
effects. The study included 42 Relapsing-Remitting MS blood samples, of which 30 were classified
as responders after two years of FINGO treatment, whereas 12 patients were Not-Responders. For
fifteen patients, samples were collected at four time points: before starting the therapy; at six months
after the initiation; at twelve months after; and at twenty-four months after initiation. The serum was
analysed through Nuclear Magnetic Resonance and multivariate and univariate statistical analysis.
Considering the single comparison between each time point, it was possible to identify a set of
metabolites changing their concentrations based on the drug intake. FINGO influences aminoacidic
and energy metabolisms and reduces oxidative stress and the activity of the immune system, both
typical features of MS.

Keywords: multiple sclerosis; Fingolimod treatment; metabolomics; nuclear magnetic resonance;
aminoacids metabolism; energy homeostasis

1. Introduction

Multiple sclerosis (MS) is a chronic disease of the central nervous system (CNS) that
results from immune-mediated inflammation, demyelination, and axonal damage, charac-
terized by dysfunctions in multiple CNS functions. The total number of people living with
MS worldwide is estimated to be 2.5 million. It affects mainly young females with a rate of
3:1, with onset ranging from 20–50 years [1]. The aetiology of MS is still not completely
understood, and several causes are responsible for this multifactorial disease [2]. Further-
more, MS shows a particularly complex pathophysiology that hinders the identification of
effective therapy, which may have several significant side effects [3]. Current treatment
for MS consists of a multidisciplinary approach including disease-modifying therapies
(DMTs) which, by acting mainly on the inflammatory processes underlying MS, decrease
the frequency of relapses and reduce short-term disability [4]. However, the response to
treatment is quite heterogeneous because many patients continue to experience MS disease
activity [5]. These aspects represent a crucial challenge in managing MS and highlight the
need to identify biomarkers that allow the classification of patients based on their potential
responsiveness to different drugs and risk of severe adverse events [6,7].
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Fingolimod (FINGO) (Gilenya; 1.25 mg) is an oral drug approved for relapsing-
remitting (RR) MS by the FDA in 2010 as a first-line treatment, and by the EMA in 2011
as a second-line treatment. FINGO modulates sphingosine-1-phosphate (S1P) receptors,
inducing inhibition of the egress of T cells and B cells from lymph nodes into blood, and
thus their traffic into the CNS, with favorable effects on MS inflammatory damage. Several
trials and real-world studies have been conducted, indicating the efficacy/effectiveness
of FINGO on MS activity as well as on disease progression in adult and pediatric MS
patients [8–10]. After the first dose, rare transient FINGO-associated bradycardia, and heart
conduction abnormalities, usually asymptomatic, have been reported. While there is a risk
of infections during treatment, even if severe, opportunistic infections are rarely observed.

However, the most important challenge in clinical practice is to identify the best patient
candidate for each disease-modifying treatment (DMT), as well as predictors of a better
response to the drug. Recently, the metabolomic approach has emerged as an innovative
and effective tool that, through a non-invasive analysis, allows for describing the phenotype
of patients, recognizing metabolic patterns that are disease-related, and identify biomarkers
as predictors of treatment response. Based on these considerations, the present study aimed
to evaluate the plasma metabolic modifications in a group of naïve RRMS patients starting
FINGO, also analysing whether specific metabolomic characteristics present at baseline
could predict the FINGO therapeutic response as well as the possible side effects.

2. Materials and Methods
2.1. Patients

The study included a group of RRMS patients (diagnosed according to the McDonald
2010 criteria) who had been therapy-free for at least 90 days, to be initiated on therapy
with FINGO, and a healthy control group. The blood samples of MS patients, drawn in
the morning after overnight fasting, were collected at four time points: (1) before starting
the therapy with FINGO—Time 0 (T0); (2) six months after FINGO initiation—Time 6
(T6); (3) twelve months after FINGO initiation—Time 12 (T12); and twenty-four months
after FINGO—Time 24 (T24). The patients’ clinical features (disease duration and level
of disability evaluated using the Expanded Disability Status Scale (EDSS) and MRI data
(presence of Gd-enhancing lesions)) were recorded prior to FINGO initiation, whereas the
number of clinical relapses, EDSS variations, and the presence of new/enlarging T2 or T1
Gd-enhancing lesions on MRI were collected at T12 and T24.

Patients were categorized at T24 in two groups: responders (R) and no responders
(NR), according to the NEDA 3 definition (absence of clinical relapses, no EDSS con-
firmed disability progression sustained for 6 months, and no new/enlarging T2 or T1
Gd-enhancing lesions on MRI). Metabolomic profiles at baseline and during treatment
were compared.

The local institutional Ethics Committee approved the study and written informed
consent was obtained from each participant.

2.2. Sample Preparation

Ten mL of blood were collected from each sample, and the plasma samples were stored
at −80 ◦C until analysis. The plasma samples were extracted as previously described [11,12].
The hydrophilic phase was concentrated overnight using a speed vacuum centrifuge for
the subsequent 1H-NMR analysis.

2.3. H-NMR Analysis and Data Processing

Seven hundred microliters of the water-phase of each sample were concentrated
overnight in a speed-vacuum. Then, it was resuspended in 690 µL of phosphate buffer
pH = 7.0 in D2O and 10 µL trimethylsilyl propanoic acid (TSP) 5.07 mM. Samples were
analysed as previously described [12].

The obtained spectra were manually phased and baseline corrected. To minimize the
effects of the different concentrations of serum samples, the integrated area within each bin
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was normalized to a constant sum of 100. The final data set consisted of a 146 × 82 matrix.
The columns represent the normalized area of each bin (variables), and the rows represent
the samples (subjects).

2.4. Statistical Analysis

A multivariate statistical analysis was performed using SIMCA-P software (ver. 16.0,
Umetrics, Sweden) [13]. The variables were Pareto scaled. The initial data analyses were
conducted using the Principal Component Analysis (PCA), which is important for exploring
the sample distributions without classification. The DmodX and Hotelling’s T2 tests were
applied to identify potential outliers. To evaluate a possible linear relationship between
a matrix Y (dependent variables, for example, increasing therapy time) and a matrix X
(predictor variables, e.g., metabolites) Partial Least Squares projection to latent structures
regression (PLS) model was performed [14]. Orthogonal Partial Least Square (OPLS-DA)
was subsequently applied to compare the different time point classes [15]. The variance
and the predictive ability (R2X, R2Y, Q2) were established to evaluate the suitability of the
models. OPLS-DA models were performed using only bins corresponding to VIP (Variable
Influence on Projection) value > 1. Terms with VIP larger than 1 are the most relevant for
explaining Y (assignment of two classes) [16]. In addition, a permutation test (n = 400) was
performed to validate the models [16]. Finally, the scores from each OPLS-DA model were
subjected to a CV-ANOVA to test for significance (p < 0.05). The S-plot extracted the most
significant variables from each model, and the 1H-NMR data were identified using the
Chenomx NMR Suite 7.1 (Chenomx Inc., Edmonton, AB, Canada) [17].

GraphPad Prism software (version 7.01, GraphPad Software, Inc., San Diego, CA,
USA) was used to perform the univariate statistical analysis of the data. To verify the
significance of the metabolites resulting from multivariate statistical analysis, two tests
were used: (1) Wilcoxon test, and (2) U-Mann Whitney test.

3. Results

The study included 42 RRMS patients (54.8% female), of which 30 (71.43%) were
classified as R after two years of FINGO treatment, whereas 12 patients were NR. Blood
samples collected at all 4 timepoints were available for 15 patients; thus, only these patients
were used to analyze the metabolic variation during the FINGO treatment. Twenty-two
control subjects were also included in the study. The summary of the demographic is re-
ported in Table 1. Samples were analysed through the 1H-NMR, and forty-four hydrophilic
compounds were correctly identified.

The non-supervised multivariate PCA was firstly applied using the bins dataset to
examine clustering or separation trends between samples and find potential outliers. The
obtained score plots and the result of the T2 Hotelling test did not indicate the presence
of outliers.

A longitudinal grouping of the samples was observed based on the period of the
therapy intake and was subsequently observed by the application of the supervised model
OPLS-DA.

Firstly, a supervised model was built considering all the samples, and Figure 1A
shows a clear distribution of the samples based on the different time points (T0, T6, T12,
T24). Furthermore, the close correlation between changes in metabolic profile and the
FINGO treatment period (considered as months) is represented also in Figure 1B, where an
R2 = 0.65 was achieved when a PLS model was performed.

Subsequently, to better explore metabolic changes that occurred during the two years
of FINGO exposure, supervised single models were built comparing T0 with T6, with T12,
and with T24. Figure 2 shows the results of the single comparisons between the classes.
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Table 1. Demographic characteristics of MS patients and healthy controls.

Characteristics of Patients and Controls

MS patients

Patients Age ± SD
Range F/M MS duration

(mean years)
EDSS score

(mean) Inclusion criteria Exclusion criteria

42
SM-RR

39 ± 8.7
(22–56) 23/19 10 ± 6 3 ± 1.7 Adults ≥ 18 years of age Corticosteroids exposure

in the previous 30 days

MS diagnosis according to
McDonald 2010 criteria

Presence of other chronic
comorbidities

Relapsing remitting course Use of other chronic
medications

Scheduled Fingolimod
treatment

Healthy controls

22
C

40.8 ± 13.8
(20–67) 17/5 Adults ≥ 18 years of age No family history of MS Presence of chronic disease

Use of chronic medications
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Figure 1. Multivariate models generated comparing all the groups of patients. Blood samples were
collected at baseline (T0) and then at 6 (T6), 12 (T12), and 24 (T24) months of FINGO treatment.
(A) OPLS-DA model including all the samples; (B) PLS correlation model generated using the
x-variables (bins) and the y-variable as months of therapy (R2 = 0.65).
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Table 2. Summary of the statistical parameters of the multivariate models of the comparisons be-
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(T12), and 24 (T24) months of FINGO treatment. 

 

SUPERVISED MODELS 

N R2X R2Y Q2 p-Value 
Permutation 

test: Intercept 
R2/Q2 

T0 vs. T6 vs. T12 vs. T24 60 0.52 0.39 0.27 0.02 0.2/−0.33 
T0 vs. T6  30 0.40 0.60 0.08 ns 0.38/−0.4 
T0 vs. T12  30 0.42 0.76 0.52 <0.001 0.39/−0.55 
T0 vs. T24 30 0.51 0.90 0.72 <0.0001 0.59/−0.7 

 
T0 vs. T24 vs. C  52 0.44 0.67 0.49 <0.0001 0.24/−0.35 

R vs. NR 42 0.60 0.70 0.49 0.002 0.38/−0.6 

Figure 2. Supervised OPLS-DA models generated comparing the different classes of patients. Blood
samples were collected at baseline (T0) and then after 6 (T6), 12 (T12), and 24 (T24) months of
FINGO treatment. (A,B) OPLS-DA model between T0 and T6 and the respective permutation test.
(C,D) OPLS-DA model between T0 and T12 and the respective permutation test. (E,F) OPLS-DA
model between T0 and T24 and the respective permutation test.

The statistical parameters (R2X, R2Y, Q2, p-value, and data relative to the permutation
tests) of the models were reported in Table 2. By analysing the VIPs list and the S-plot
relative to each model, it was possible to identify a set of metabolites changing their
concentrations based on the drug intake.

Table 2. Summary of the statistical parameters of the multivariate models of the comparisons between
the classes of subjects. Blood samples were collected at baseline (T0) and then at 6 (T6), 12 (T12), and
24 (T24) months of FINGO treatment.

SUPERVISED MODELS

N R2X R2Y Q2 p-Value Permutation Test: Intercept R2/Q2

T0 vs. T6 vs. T12 vs. T24 60 0.52 0.39 0.27 0.02 0.2/−0.33

T0 vs. T6 30 0.40 0.60 0.08 ns 0.38/−0.4

T0 vs. T12 30 0.42 0.76 0.52 <0.001 0.39/−0.55

T0 vs. T24 30 0.51 0.90 0.72 <0.0001 0.59/−0.7

T0 vs. T24 vs. C 52 0.44 0.67 0.49 <0.0001 0.24/−0.35

R vs. NR 42 0.60 0.70 0.49 0.002 0.38/−0.6
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In Figure 3 the concentrations’ graphs, where almost one comparison showed a
p-value < 0.05, are represented. The amino acids, alanine, phenylalanine, glycine, pyroglu-
tamic acid, and tryptophan showed a linear increase during the two years of treatment with
FINGO. The same trend was also observed for fructose, glucose, 2-hydroxisovalerate and
creatinine, whereas lactate, isoleucine, and glutamate showed a decreased trend during the
two years of treatment.
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Figure 3. Most important metabolites identified by the analysis of the multivariate models
(T0 vs. T6, T0 vs. T12, and T0 vs. T24) and the control group. Graphs indicating trend of the
most important metabolites having p-value < 0.05 in at least one comparison of the different groups
after the application of Wilcoxon test (T0 vs. T6, T12, T24) or U-Mann Whitney test (SM vs. C).
* means p < 0.05, ** means p < 0.01, *** means p < 0.001. **** means p < 0.0001.

Figure 4 shows an OPLS-DA model with three classes, including each patient’s T0,
T24 and the controls’ samples. This model demonstrated that the metabolomic profile of
patients treated for 24 months is different from the basal profile and more similar to the
control one (R2X = 0.44, R2Y = 0.67, Q2 = 0. 49, p < 0.001), although constituting a distinct
class as shown in the scores plot of the model.

Moreover, the supervised OPLS-DA model (Figure 5A, R2X = 0.6, R2Y = 0.7,
Q2 = 0.493, p = 0.002) shows the comparison between not-responders (NR) and responders
(R) patients (according to NEDA 3 definition) considering only the T0 samples (Table 3).
The model was validated through the respective permutation test (Figure 5B), and the most
important variables were identified by analysing the V-plot and using the corresponding
VIP value. Variables with a value > 1 were considered the most relevant (Figure 5C). The R
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group was characterized by an increased concentration of lactate and lysine, while the NR
group showed a high glucose level.
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Figure 5. (A) OPLS-DA model obtained from 42 plasma samples of MS patients at time point T0.
Patients were classified as responders (R) and non-responders (NR) after FINGO treatment, according
to NEDA 3 definition. Statistical parameters were R2X = 0.592, R2Y = 0.70, Q2 = 0.493, p = 0.002.
(B) The model was validated through the respective permutation test. (C) Volcano plot indicating the
most important variables responsible of the separation of the samples.
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Table 3. Baseline characteristics of responder (R) and not-responder (NR) patients.

Baseline
Characteristics

R Patients
(n = 30)

NR Patients
(n = 12)

Age (mean) ± SD 37 ± 8.6 43 ± 7.8

Gender F/M 18/12 5/7

MS duration (mean years) 9 13

EDSS score (mean) 3 ± 1.8 3 ± 1.6

MRI activity (Gd + lesions) 0 8 (67%)

Finally, a supervised model was built between patients who showed cardiac-adverse
events after the FINGO treatment (n = 3) and patients who did not show any cardiac-
adverse events. For this aim, only the T0 samples were considered (Figure 6). The statistical
parameters were R2X = 0.53, R2Y = 0.86, and Q2 = 0.49, but the p-value was not significant,
probably due to the small size of the group.
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Figure 6. Supervised model of patients who showed cardiac-adverse events after the FINGO treat-
ment and patients who did not show any cardiac-adverse events. The statistical parameters were
R2X = 0.53, R2Y = 0.86, and Q2 = 0.49, but the p-value was not significant.

4. Discussion

The active form of FINGO binds a G protein receptor subtype (S1P1), inducing the
sequester of lymphocytes inside the lymphoid organs, strongly reducing the number of
circulating CD4+ and CD8+ cells [18]. As a result, an effective reduction in inflammatory
disease activity is observed. A recent Cochrane revision by La Mantia et al. performed
on 3531 RRMS patients treated with FINGO indicated that 24 months of treatment had an
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increased probability of being relapse-free compared with 6 and 12 months [19]. Notably,
the same revision also shows substantial variability in the response to the drug among
RRMS patients.

Our first aim was to identify plasma metabolic modifications in a group of naïve
RRMS patients starting FINGO treatment and monitored periodically (four time points) for
two years. As expected, FINGO induced significant changes in the patients’ metabolomic
profile related with the time of the drug exposure (see Figure 1). Intriguingly, considering
this metabolic shift observed during the treatment, the T24 time point resulted in being
almost similar to the metabolomic profile identified in the healthy control group, which can
be interpreted as an indicator of a reapproaching to health’s normality (Figures 2 and 3).
This is suggested by the series of OPLS-DA models shown in Figure 2, where naïve patients
(T0) are compared at 6, 12, and 24 months. As hypothesized below, the resulting metabolic
phenotype identified indicates a shared pattern of metabolites characterized by two main
modifications: (1) the reduction in the inflammatory process, and (2) the reduction in
oxidative stress, both typical features in RRMS patients.

According to the recent literature, the AAs metabolism is highly involved in MS
patients [20,21]. MS is a chronic inflammatory demyelinating disease mediated by Th1,
Th17, and B cell activities that need continuous access to AAs to maintain basal metabolism.
Considering the time points from T0 to T24, RRMS patients showed different AA trends
during the treatment.

Circulating branched-chain AAs, valine, and isoleucine levels were gradually reduced
in RRMS patients compared with the controls (see Figure 3). By contrast, plasma leucine
incremented after six months and remained stable until the end of the two years of therapy.
Thus, reduced plasma valine and isoleucine levels could indicate a weakened T cell activity
and a process of restoring immune homeostasis [22].

An indication of reduction in inflammation is indicated by the gradual increase in
plasma glycine at T6 while reaching a steady state during the rest of the two years of therapy.
Glycine is the major inhibitory neurotransmitter in the brain and shows anti-inflammatory
properties by a systemic modulation of immune cell functions [23]. The increase in glycine
concentration may be linked to a glutamate level, which could influence the release of
inhibitory amino acids from neurons and astrocytes to maintain neural homeostasis [24].
Indeed, plasma glutamate concentration significantly decreased in treated RRMS patients.
Glutamate is a critical mediator of brain function, and its excess can cause damage to the
neurological tissue due to overstimulation of its receptors and subsequent excitotoxic injury
of neurons, glial cells, and blood-brain barrier [25,26]. This is particularly important for MS
patients, as demonstrated by Sarchielli et al., where either RRMS or secondary progressive
MS patients displayed an increased concentration of glutamate in the CSF during relapse
and a stable clinical phase [27]. Thus, the linear and significant decrease in RRMS patients
treated with FINGO may indicate the restoration of the normal physiology of the blood-
brain barrier and reduced damage to the CNS. In agreement with this hypothesis, recent
works from Noda and Serpero demonstrated that patients treated with FINGO had a
down-regulation of microglial production of the proinflammatory cytokines, such as tumor
necrosis factor-alpha, interleukin-1, and interferon-gamma, which are known to induce
hyperactivity of glutamatergic transmission [28–33].

A precursor of glutamate is pyroglutamic acid, which resulted in a significantly
increased. It is formed through the cleavage by the 5-oxoprolinase in the γ-glutamyl
cycle, in which glutathione is decomposed into γ-glutamyl amino and again converted
to pyroglutamic acid through γ-glutamyl cyclotransferase [34]. Therefore, the increase
in pyroglutamic acid may indicate the restoration of sera glutathione in RRMS patients
associated with the pharmacological treatment, in turn counteracting the oxidative stress, a
typical feature of the MS disease.

Plasma arginine concentration significantly increased during the FINGO treatment.
As demonstrated by several studies, arginine metabolism results frequently altered in
MS in both human and animal models [35–37]. The conversion of arginine to citrulline
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represents an important event in the chemical pathogenesis of the demyelinating disease.
Therefore, in RRMS patients, a high concentration of plasma arginine achieved during the
treatment may indicate a reduced conversion rate to citrulline, which, according to the
neurodegenerative hypothesis, causes a destabilization of the membrane architecture and
myelin degradation [38].

Tryptophan has also been shown to contribute to the disease progression of MS
through the kynurenine pathway (KP) [39]. Considering all the time points, tryptophan
was significantly increased, and a possible explanation regards the reducing activity of the
KP. This finding is in line with our previous study, where we evaluated the effect of the
treatment with Interferon-β on RRMS patients. Moreover, tryptophan was one of the main
metabolites differentiating MS patients and healthy controls, being significantly lower in
patients [12].

A mechanistic explanation is that FINGO modulates cytokines (including IFN-γ
and TNF-α), potent inducers of the first-rate limiting enzyme of the KP, indoleamine-2-3
dioxygenase (IDO), preventing the conversion in quinolinic acid. The latter is a strong
N-methyl-D-aspartate (NMDA) receptor agonist that can over-activate NMDA receptors
to increase intracellular Ca2+ levels, leading to oxidative stress and cell death through
glutamatergic excitotoxicity [40,41]. Moreover, KP is also implicated in the regulatory
function of the immune system [42]. IDO is present in various immune cells and can be
induced by interferons and LPS [43]. The activation of IDO is an important regulator of
immune activation, as it counteracts the proliferation of reactive lymphocytes [39].

Thus, RRMS patients treated for two years with FINGO by reaching the plasma
tryptophan concentration of the control group may have reduced oxidative stress, cell
death, and immune activity.

Plasma glucose and fructose was statistically increased from the naïve (T0) up to
the T24 time point, reaching the level of the control group. In particular, glucose is the
primary source of energy in the mammalian brain, where it is used in the form of ATP for
neuronal and non-neuronal cell survival and the generation of neurotransmitters. Apart
from survival, glucose is also a substrate consumed by immunity cells for sustaining
inflammatory conditions [44]. A situation of chronic immune activation can exceed the
physiological bioenergetics metabolism, consuming a considerable amount of energy (up
to 2000-kJ/day and more) [45]. Therefore, lower glucose concentrations at T0 can be
interpreted as being used for greater production of the proinflammatory cytokine, whereas
its increase may indicate a reduction in inflammation due to FINGO treatment. A marker
of impaired glucose regulation and oxidative stress is also indicated by a high level of
2-hydroxybutyrate at T0, which arises from lipid oxidation. Several studies suggested
the correlation between 2-hydroxybutyrate and the pathogenesis of MS. However, RRMS
patients treated with FINGO for two years showed a significant plasma reduction in
2-hydroxybutyrate, which indirectly indicates a reduction in oxidative stress [46].

The metabolites that have not particularly improved are creatine and creatine phos-
phate, which, compared to the T0, did not change their concentrations during the treatment.
This probably indicates muscle weakness, a typical feature in MS patients.

In summary, considering the first aim of the analysis, it is possible to state that a
characteristic profile of the patient affected by RRMS is identifiable at T0. Nevertheless, this
metabolic phenotype undergoes a significant evolution due to pharmacological treatment,
such that it significantly approaches the group of healthy controls [11].

Specific metabolomic characteristics present at baseline (T0) could predict the thera-
peutic response to FINGO. Indeed, the R group was characterized by an increased concen-
tration of lactate and lysine, while the NR group showed a high glucose level. Lactate is
the product of anaerobic glycolysis, and the increase in patients who will respond to the
therapy may indicate the presence of an energy impairment. Conversely, NR showed a
high concentration of glucose, which could indicate an impairment of glucose metabolism.
In any case, these preliminary data must be verified in a more extensive series to confirm
these metabolic hypotheses.
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Finally, an explorative analysis was conducted between patients at the T0 who showed
cardiac-side effects after the FINGO treatment and patients who did not show any cardiac-
side effects. Regrettably, the mathematical model was not statistically significant, probably
due to the small size of the cardiac-side effects group; therefore, we could not speculate
about the possible predictive metabolic biomarkers of this adverse event.

5. Conclusions

Our results suggest that treatment with FINGO influences aminoacidic and energy
metabolisms and reduces oxidative stress and the activity of the immune system, both
typical features of MS. Interestingly, some baseline metabolites were indicative of a better
response to treatment, indicating their possible role as surrogate biomarkers to predict the
FINGO response.

The achieved results are in line with our previous studies where we found the same
altered pattern of metabolites correlated with pathways involved essentially in energetic
homeostasis and immuno-inflammation, such as the tryptophan metabolism (Table 4).
In our studies, tryptophan played a pivotal role in the definition of the basal metabolic
profile of MS patients compared to controls but also in the response to the Interferon-β
therapy, where it showed the same trend found in this latter study here presented. This
demonstrated that the possibility of deeply investigating the tryptophan metabolism could
represent a potential future target to improve the management of MS patients, especially in
terms of response to the therapy. Considering the complexity of MS management, especially
from the pharmacological point of view, 1H-NMR spectroscopy-based metabolomic analysis
of blood appears to be a promising, innovative, and non-invasive approach to contribute to
predicting the response to MS therapies, with possibly important implications for future
personalized therapeutic decision-making processes.

Table 4. Summary of the results of the studies performed by our research group.

Author Years Sample Size Biofluid Technique Results Pathways

Basal metabolic profile

Cocco et al. [11] 2015
161 subjects:

73 MS
77 controls

Plasma 1H-NMR

Increase: 3-OH-butyrate,
acetoacetate, acetone, alanine,

choline
Decrease: Glucose,

5-OH-tryptophan, tryptophan

Tryptophan metabolism
Energy metabolism

Poddighe et al. [47] 2017
65 subjects:

32 MS
33 controls

Plasma GC-MS

Increase: asparagine, L-ornithine,
glutamine, glutamate

Decrease: Fructose, myo-inositol,
pyroglutamate, threonate, leucine

Asparagine and Citrulline
biosynthesis

Energy metabolism

MS subtypes

Murgia et al. [35] 2020
34 subjects
22 RRMS
12 PPMS

CSF
Serum

1H-NMR
GC-MS
L MS

Serum
Increase: PC aa C34:3, PC ae C38:1,
PC ae C38:2, methionine-Sulfoxide

Decrease: PC aa C38:4, PC aa
C40:5, SM C26:0, C5,

alpha-aminoadipic acid,
glutamate, valine, taurine,

spermidine
CSF

Decrease: PCae C42:2, Ornithine
Increase: Histidine, Phenylalanine,

Threonine

Serum
Glutathione metabolism,

nitrogen metabolism, arginine
and proline metabolism,

glutamine and glutamate
metabolism,

linoleic acid metabolism, taurine
and hypotaurine metabolism

alanine, aspartate, and
glutamate metabolism.

CSF
Nitrogen metabolism, arginine

and ornithine metabolism,
branched chain amino acid

(BCAAs) biosynthesis,
phenylalanine, tyrosine and
tryptophan biosynthesis and

histidine metabolism.
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Table 4. Cont.

Author Years Sample Size Biofluid Technique Results Pathways

Response to the IFN-β therapy

Lorefice et al. [12] 2019
37 subjects:

21 MS
16 controls

Plasma 1H-NMR

Decrease: Acetoacetate, acetone,
3-hydroxybutyrate, glutamate,

methylmalonate
Increase: Tryptophan

Energetic pathways Tryptophan
metabolism
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