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This paper discusses and develops new methods for fitting trigonometric curves, such as circles, 
ellipses, and dumbbells, to data points in the plane. Available methods for fitting circles or ellipses 
are very sensitive to outliers in the data, and are time consuming when the number of data 
points is large. The present paper focuses on curve fitting methods that are attractive to use 
when the number of data points is large. We propose a direct method for fitting circles, and two 
iterative methods for fitting ellipses and dumbbell curves based on trigonometric polynomials. 
These methods efficiently minimize the sum of the squared geometric distances between the 
given data points and the fitted curves. In particular, we are interested in detecting the general 
shape of an object such as a galaxy or a nebula. Certain nebulae, for instance, the one shown 
in the experiment section, have a dumbbell shape. Methods for fitting dumbbell curves have not 
been discussed in the literature. The methods developed are not very sensitive to errors in the 
data points. The use of random subsampling of the data points to speed up the computations also 
is discussed. The techniques developed in this paper can be applied to fitting other kinds of curves 
as well.

1. Introduction

Problems that require fitting circles, ellipses, and curves of other shapes such as dumbbell curves to data points in the plane arise 
in many application areas such as pattern recognition, computer vision, statistics, and data analysis; see, e.g., [1–5]. This paper is 
concerned with minimization problems that arise when fitting curves in the (𝑥, 𝑦)-plane defined in the standardized parametric form{

𝑥(𝑡) =
∑3

𝑖=1(𝑎2𝑖−1,1 cos(𝑖𝑡) + 𝑎2𝑖,1 sin(𝑖𝑡)),

𝑦(𝑡) =
∑3

𝑖=1(𝑎2𝑖−1,2 cos(𝑖𝑡) + 𝑎2𝑖,2 sin(𝑖𝑡)),
(1)

where −𝜋 < 𝑡 ≤ 𝜋, and the 𝑎𝑖𝑗 ∈ ℝ are coefficients to be determined with 𝑎11, 𝑎22 > 0. For our applications of interest, it suffices to 
consider the sums (1), however, the methods discussed also can be applied when the sums include higher frequencies. We assume 
that the curve 𝑡 → (𝑥(𝑡), 𝑦(𝑡)), −𝜋 < 𝑡 ≤ 𝜋, does not intersect itself, i.e., it is a one-to-one mapping for −𝜋 < 𝑡 ≤ 𝜋. The curve is assumed 
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to be centered at the origin and to have zero tilt angle, i.e., the major axis of the curve lies on the 𝑥-axis. Section 3 discusses how to 
handle the situations when the tilt angle is nonvanishing or the curve is not centered at the origin.

We consider two minimization problems in this paper. Let (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛, be given data points in the (𝑥, 𝑦)-plane and define 
the data matrix

𝑍 =
⎡⎢⎢⎢⎣
𝑥1 𝑦1
𝑥2 𝑦2
⋮ ⋮
𝑥𝑛 𝑦𝑛

⎤⎥⎥⎥⎦ ∈ℝ𝑛×2. (2)

Introduce the model matrices

𝑇̃ =
⎡⎢⎢⎢⎣
cos(𝑡1) sin(𝑡1) cos(2𝑡1) sin(2𝑡1) cos(3𝑡1) sin(3𝑡1)
cos(𝑡2) sin(𝑡2) cos(2𝑡2) sin(2𝑡2) cos(3𝑡2) sin(3𝑡2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
cos(𝑡𝑛) sin(𝑡𝑛) cos(2𝑡𝑛) sin(2𝑡𝑛) cos(3𝑡𝑛) sin(3𝑡𝑛)

⎤⎥⎥⎥⎦ ∈ℝ𝑛×6 (3)

and

𝑇 =
[
𝑇̃ 0
0 𝑇̃

]
(4)

with parameters 𝑡𝑖 ∈ (−𝜋, 𝜋]. These parameters define the vector 𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑛]𝑇 ∈ (−𝜋, 𝜋]𝑛, where the superscript 𝑇 denotes 
transposition. We are interested in the situation when a large number of points has to be fitted. Throughout this paper we assume 
that 𝑛 ≫ 6. Our first minimization problem is

min
𝒕,𝒂

‖𝑇𝒂− 𝒛‖22, (5)

where 𝒂 = [𝑎11, 𝑎21, … , 𝑎61, 𝑎12, 𝑎22, … , 𝑎62]𝑇 , 𝒛 = [𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 ∈ ℝ2𝑛 is the data vector, and ‖ ⋅ ‖2 denotes the 
Euclidean vector norm. We note that (5) minimizes the sum of the squared geometric distances, i.e., the sum of the squared distance 
between each given data point 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) and the point (𝑥(𝑡𝑖), 𝑦(𝑡𝑖)) on the fitted curve.

The second problem we consider is the regularized minimization problem,

min
𝒕,𝒂

{‖𝑇𝒂− 𝒛‖22 + 𝜇‖𝑊 𝒂‖𝑞𝑞} , (6)

where ‖ ⋅ ‖𝑞 denotes the vector 𝓁𝑞 -norm for 𝑞 ∈ {1, 2}, 𝜇 > 0 is a regularization parameter, and

𝑊 = diag[𝑤11,𝑤21,… ,𝑤61,𝑤12,𝑤22,… ,𝑤62] ∈ℝ12×12

is a diagonal weighting matrix whose entry 𝑤𝑖𝑗 > 0 is referred to as the weight of 𝑎𝑖𝑗 . The first and second terms of the expression 
(6) are called the fidelity term and the regularization term, respectively. The regularization parameter 𝜇 determines the relative 
importance of these terms. Depending on the shape of the curve to be fitted, different choices of weights and parameter 𝜇 may be 
employed. We discuss these choices in Sections 3.5 and 4.4. In this paper we will choose 𝑞 = 1 since 𝓁1-regularization promotes 
sparsity of the computed solution. We illustrate in Section 3.5 that most coefficients of the curves that we are particularly interested 
in fitting to standardized data vanish.

To the best of our knowledge, dumbbell curve fitting methods have not been considered in the literature. As for circle and ellipse 
fitting, available methods that minimize the sum of the squared geometric distances are iterative and tend to be time-consuming, 
in particular when there are many data points; see, e.g., Gander et al. [6]. More efficient methods such as the direct ellipse-specific 
fitting method [2] and the direct least-algebraic-residuals method [7] are good candidates when the number of data points is large, 
because they are faster than the iterative method described in [6]; however, the former methods do not minimize the sum of the 
squared geometric distances and, thus, it is not clear which physical quantities they minimize. This can make it difficult to determine 
the significance of the determined curve. Moreover, the ellipses determined by the methods described in [2,7] may be severely 
affected by outliers among the data points; this is illustrated by examples in Sections 4.1 and 4.3. This paper presents a direct 
circle fitting method that generates a unique solution to the minimization problem (5), and two alternating iterative methods for 
fitting ellipses and dumbbell curves, that solve the minimization problem (5) and (6), respectively. These methods are efficient, not 
very sensitive to outliers, and either minimize the geometric distance (5) or an accurate approximation thereof if the regularization 
parameter 𝜇 > 0 in (6) is small. The techniques developed in this paper also can be applied to fitting curves of higher degrees; then 
the sum (1) has more terms.

The organization of this paper is as follows. Section 2 briefly reviews methods for fitting circles and ellipses in the current 
literature. In Section 3, we propose a direct circle fitting method (DCF), an iterative alternating least-squares fitting method (AFM-

LS) for ellipse fitting, and another iterative alternating fitting method with soft-thresholding (AFM-FISTA) for dumbbell curve fitting. 
We also show in this section that the AFM-LS method converges to a solution that is a stationary point of the objective function of 
the minimization problem (5). A few related results on the convergence also are provided. Section 4 illustrates the performance of 
the proposed methods and compares them to some available schemes. The use of random subsampling to speed up the computations 
2

is illustrated. Concluding remarks can be found in Section 5.
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2. Review of current methods for circle and ellipse fitting

Available least-squares methods for circle or ellipse fitting can be classified into two categories: i) minimizing the sum of the 
squared geometric distances, and ii) minimizing the sum of the norms of algebraic residuals. The algebraic residual is also referred 
to as the algebraic distance. This section reviews some available methods for ellipse fitting; see [6,8] for circle fitting methods.

2.1. Minimizing the squared sum of geometric distances

One approach to fit an ellipse to given data points is to minimize the sum of the square of geometric distances between the given 
point set and the desired ellipse. Consider an ellipse in its parametric form

𝒛 = 𝒛𝑐 +𝑄(𝛼)
[
𝑎 cos(𝑡)
𝑏 sin(𝑡)

]
, −𝜋 < 𝑡 ≤ 𝜋,

where 𝒛 = [𝑥, 𝑦]𝑇 , 𝒛𝑐 = [𝑥𝑐, 𝑦𝑐]𝑇 is the center of the ellipse, 𝛼 is the counterclockwise angle from the horizontal axis to the major axis 
of the ellipse, and

𝑄(𝛼) =
[
cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

]
is a rotation matrix. To determine the ellipse that minimizes the sum of the squared geometric distances between the given points 
(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛, and an ellipse, one solves the minimization problem

min
𝑥𝑐 ,𝑦𝑐 ,𝛼,𝑎,𝑏,𝑡𝑖

𝑛∑
𝑖=1

‖‖‖‖‖
[
𝑥𝑖

𝑦𝑖

]
−
[
𝑥𝑐

𝑦𝑐

]
−𝑄(𝛼)

[
𝑎 cos(𝑡𝑖)
𝑏 sin(𝑡𝑖)

]‖‖‖‖‖
2

2
;

see Gander et al. [6] for details on the geometric least-squares (GLS) algorithm for determining the 𝑛 +5 unknowns 𝑥𝑐, 𝑦𝑐, 𝛼, 𝑎, 𝑏, 𝑡1, 𝑡2,
… 𝑡𝑛. Gander et al. [6] illustrate that geometric algorithms in general produce more visually pleasing ellipses than algebraic algo-

rithms to be described below. However, the GLS algorithm is much more computationally expensive than the ones described in the 
sequel.

2.2. Minimizing algebraic residuals

In analytic geometry, an ellipse is defined as a set of points 𝒛 = [𝑥, 𝑦] ∈ℝ2 that satisfy the equation

𝑎𝑥2 + 𝑏𝑥𝑦+ 𝑐𝑦2 + 𝑑𝑥+ 𝑒𝑦+ 𝑓 = 0, (7)

where 𝑓 ≠ 0 and 𝑏2 − 4𝑎𝑐 < 0. Let

𝜶 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ]𝑇 , 𝒖 = [𝑥2, 𝑥𝑦, 𝑦2, 𝑥, 𝑦,1]𝑇

and define

𝑟(𝜶,𝒖) = 𝜶𝑇 𝒖 = 𝑎𝑥2 + 𝑏𝑥𝑦+ 𝑐𝑦2 + 𝑑𝑥+ 𝑒𝑦+ 𝑓.

Then, the algebraic residual of a point 𝒛𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇 to the ellipse 𝑟(𝜶, 𝒖) = 0 is defined as 𝑟(𝜶, 𝒖𝑖), where

𝒖𝑖 = [𝑥2
𝑖
, 𝑥𝑖𝑦𝑖, 𝑦

2
𝑖
, 𝑥𝑖, 𝑦𝑖,1]𝑇 . (8)

The optimal ellipse in the sense of least-algebraic-residuals is determined by the vector 𝜶 that minimizes

𝑛∑
𝑖=1

𝑟(𝜶,𝒖𝑖)2; (9)

see [9].

The ellipse determined by equation (7) is invariant under scaling of the vector 𝜶. To avoid the trivial solution 𝜶 = 𝟎, a constraint 
such as ‖𝜶‖2 = 1 could be imposed. The disadvantage of this particular constraint is that it is not invariant under Euclidean trans-

formation. To overcome this issue, Bookstein [1] proposes the constraint 𝑎2 + 𝑏2∕2 + 𝑐2 = 1 when fitting ellipses, hyperbolas, and 
parabolas. When fitting ellipses, Gander et al. [6], Porrill [4], and Rosin [5] impose the constraint 𝑎 + 𝑐 = 1.

2.3. Direct methods

The minimization problems in Sections 2.1 and 2.2 are usually solved by iterative methods. For example, Bookstein [1] and 
Gander et al. [6] apply Gauss-Newton methods for minimizing the algebraic residual norms and for minimizing the squared sum of 
the geometric distances, respectively. Fitzgibbon et al. [2] propose a direct ellipse-specific fitting (DEF) method, which is significantly 
3

faster than the iterative methods, and Bookstein [1] demonstrates that when a quadratic constraint is imposed on the coefficients to 
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avoid the trivial solution 𝜶 = 𝟎, the minimization problem (9) can be solved by computing the solution of a generalized eigenvalue 
problem

𝑈𝑇𝑈𝜶 = 𝜆𝐶𝜶 subject to 𝜶𝑇 𝐶𝜶 = 1, (10)

where 𝑈 = [𝒖1, 𝒖2, … , 𝒖𝑛]𝑇 is the design matrix of the data, 𝒖𝑖 is defined as in (8), and the matrix 𝐶 ∈ℝ6×6 expresses the quadratic 
constraint on 𝜶. The existence of a nontrivial solution 𝜶 of (10) implies that the matrix 𝑈𝑇𝑈 − 𝜆𝐶 is rank-deficient. Since the 
minimization problem (9) with the constraint 𝑏2 − 4𝑎𝑐 < 0 is difficult to solve, Fitzgibbon and Fisher [3] impose the equality 
constraint 4𝑎𝑐 − 𝑏2 = 1. The corresponding constraint matrix then is

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

and the constrained ellipse fitting problem is transformed to

min
𝜶
‖𝑈𝜶‖22 subject to 𝜶𝑇 𝐶𝜶 = 1. (11)

Differentiating ‖𝑈𝜶‖22 and introducing the Lagrange multiplier 𝜆, one can determine a solution of (11) by solving{
𝑆𝜶 = 𝜆𝐶𝜶, (a)

𝜶𝑇 𝐶𝜶 = 1, (b)
(12)

where 𝑆 =𝑈𝑇𝑈 . The solution of (11) is given by 𝜶 = 𝜇𝜷 , where

𝜇 =

√
1

𝜷𝑇 𝑆𝜷

and (𝜆, 𝜷) is a generalized eigenpair of (12)(a).

Ohad [7] describes another direct method to fit an ellipse algebraically. Consider the ellipse equation

𝑎𝑥2 + 𝑏𝑥𝑦+ 𝑐𝑦2 + 𝑑𝑥+ 𝑒𝑦 = 1

with 𝑏2 − 4𝑎𝑐 < 0, and let ⊛ denote the Hadamard product of two vectors of the same size, i.e.,

𝒔⊛ 𝒕 = [𝑠1𝑡1, 𝑠2𝑡2,… , 𝑠𝑛𝑡𝑛]𝑇 ,

where 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝑛]𝑇 and 𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑛]𝑇 . Given the data matrix (2), introduce the vectors 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 and 𝐲 =
[𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 . The cost function for fitting an ellipse to the points 𝒛𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇 , 𝑖 = 1, 2, … , 𝑛, is defined as

𝐶(𝜶) = (𝑍𝜶 − 𝟏)𝑇 (𝑍𝜶 − 𝟏), (13)

where 𝜶 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑒]𝑇 , the matrix

𝑍 = [𝐱⊛ 𝐱,𝐱⊛ 𝐲,𝐲⊛ 𝐲,𝐱,𝐲] ∈ℝ𝑛×5

is assumed to have full column rank, and 𝟏 = [1, 1, … , 1]𝑇 ∈ ℝ𝑛. The cost function (13) can be treated as the sum of the squared 
algebraic residuals for all points to the ellipse defined by 𝜶. At the minimum, the gradient of 𝐶(𝜶) vanishes, i.e.,

∇𝐶(𝜶) = 2𝜶𝑇𝑍𝑇𝑍 − 2 ⋅ 𝟏𝑇𝑍 = 𝟎.

Thus, 𝜶 is the solution of the linear system of equations

(𝑍𝑇𝑍)𝜶 =𝑍𝑇 𝟏.

We refer this method as the direct least-algebraic-residuals method (DLAR). Both direct methods described are efficient and avoid 
convergence issues that may arise with iterative methods. However, they do not minimize geometric distances and the computed 
solutions may be sensitive to the presence of outliers in the data.

3. Trigonometric polynomial-based methods

We will fit curves with the parametric representation of equation (1) to 𝑛 data points 𝒛𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇 , 𝑖 = 1, 2, … , 𝑛. These curves 
4

have zero tilt angle and are centered at the origin. If the data points suggest that the tilt angle is nonvanishing or the center of the 
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curve is not expected to be at the origin, then we standardize the data points by rotating and shifting them so that the parametric 
representation (1) can be employed.

3.1. Data standardization

The center 𝒛𝑐 = [𝑥𝑐, 𝑦𝑐]𝑇 of the given points 𝒛𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇 , 𝑖 = 1, 2, … , 𝑛, is the average of the 𝑥𝑖 and the 𝑦𝑖, i.e.,

𝒛𝑐 =
1
𝑛

𝑛∑
𝑖=1

[𝑥𝑖, 𝑦𝑖]𝑇 .

Let

𝒛
(𝑐)
𝑖

= [𝑢𝑖, 𝑣𝑖]𝑇 ∶= 𝒛𝑖 − 𝒛𝑐 = [𝑥𝑖 − 𝑥𝑐, 𝑦𝑖 − 𝑦𝑐]𝑇 .

We determine the tilt angle 𝜃 of the data set based on the idea that the standard deviation 𝜎 of the 𝑣𝑖 is minimal when 𝜃 = 0. The 
standardized data set can be written as

𝑍𝑠 =
[
cos𝜃 sin𝜃
−sin𝜃 cos𝜃

]
𝑍𝑇

𝑐
,

where

𝑍𝑠 =
⎡⎢⎢⎣
𝑥
(𝑠)
1 𝑦

(𝑠)
1

⋮ ⋮
𝑥
(𝑠)
𝑛 𝑦

(𝑠)
𝑛

⎤⎥⎥⎦ and 𝑍𝑐 =
⎡⎢⎢⎣
𝑢1 𝑣1
⋮ ⋮
𝑢𝑛 𝑣𝑛

⎤⎥⎥⎦ .
The standard deviation of the 𝑦(𝑠)

𝑖
is

𝜎 =

√√√√√ 𝑛∑
𝑖=1

(
𝑦
(𝑠)
𝑖

)2
𝑛− 1

.

Let

𝑉 (𝜃) = (𝑛− 1)𝜎2

=
𝑛∑

𝑖=1
(−𝑢𝑖 sin𝜃 + 𝑣𝑖 cos𝜃)2

=
𝑛∑

𝑖=1

[
(𝑢𝑖 sin𝜃)2 + (𝑣𝑖 cos𝜃)2 − 2𝑢𝑖𝑣𝑖 sin𝜃 cos𝜃

]
=

𝑛∑
𝑖=1

[
(𝑢𝑖 sin𝜃)2 + (𝑣𝑖 cos𝜃)2 − 𝑢𝑖𝑣𝑖 sin 2𝜃

]
.

Then,

𝑉 ′(𝜃) = 2 sin𝜃 cos𝜃
𝑛∑

𝑖=1
𝑢2𝑖 − 2sin𝜃 cos𝜃

𝑛∑
𝑖=1

𝑣2𝑖 − 2cos2𝜃
𝑛∑

𝑖=1
𝑢𝑖𝑣𝑖

= sin2𝜃
𝑛∑

𝑖=1
𝑢2
𝑖
− sin2𝜃

𝑛∑
𝑖=1

𝑣2
𝑖
− 2cos2𝜃

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖

= sin2𝜃
𝑛∑

𝑖=1
(𝑢2𝑖 − 𝑣2𝑖 ) − 2cos2𝜃

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖,

and

𝑉 ′′(𝜃) = 2cos2𝜃
𝑛∑

𝑖=1
(𝑢2𝑖 − 𝑣2𝑖 ) + 4 sin2𝜃

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖.

Setting 𝑉 ′(𝜃) = 0 yields

𝜃0 =
1
2
arctan

⎛⎜⎜⎜
2

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖

𝑛∑ 2 2

⎞⎟⎟⎟ .

5

⎜⎝ 𝑖=1
(𝑢

𝑖
− 𝑣

𝑖
)⎟⎠
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The tilt angle then is

𝜃𝑡 =

{
𝜃0, if 𝑉 ′′(𝜃0) > 0;
𝜃0 + 𝜋∕2, otherwise.

(14)

We remark that it is common to employ principal component analysis (PCA) to determine the tilt angle 𝜃𝑡, which usually requires 
the application of singular value decomposition to the centralized data, i.e., the mean of each variable is zero. We prove in the 
following theorem that the tilt angle determined by equation (14) equals the angle of the first right singular vector of 𝑍𝑐 up to 
±𝜋. Since our method avoids computing the singular value decomposition of 𝑍𝑐 , it is much faster than PCA. When applied to an 
experiment data set of 3,528 points, it is more than 35 times faster.

Theorem 1. The angle determined by equation (14) for a centralized data set 𝑍𝑐 ∈ℝ𝑛×2 equals the angle between the horizontal axis and 
the first right singular vector of 𝑍𝑐 up to ±𝜋.

Proof. Assume 𝑍𝑐 = 𝑃𝑆𝑄𝑇 is the reduced singular value decomposition of 𝑍𝑐 , where 𝑆 ∈ℝ2×2 is a diagonal matrix with singular 
values 𝑠1 > 𝑠2 > 0 on the diagonal, and 𝑃 ∈ℝ𝑛×2 and 𝑄 ∈ℝ2×2 are orthonormal matrices whose columns are the corresponding left 
and right singular vectors respectively. Then,

(𝑍𝑐𝑄)𝑇 = (𝑃𝑆)𝑇 ,

𝑄𝑇𝑍𝑇
𝑐 = 𝑆𝑃𝑇 =

[
𝑠1 0
0 𝑠2

][
𝑝11 ⋯ 𝑝𝑛1
𝑝12 ⋯ 𝑝𝑛2

]
, (15)

where 𝑝𝑖𝑗 is the entry of 𝑃 at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. Since 𝑄−1 =𝑄𝑇 , equation (15) can be represented as the change from the 
standard base to a new base formed by the columns of 𝑄 for the data points in 𝑍𝑐 .

For simplicity, we refer to the coordinates with respective to the first base vector as horizontal coordinates and the second as the 
vectical coordinates. The standard deviation of the new vertical coordinates is

𝜎𝑞 =

√√√√√ 𝑠22

𝑛∑
𝑖=1

𝑝2
𝑖2

𝑛− 1
.

Since 𝑃 is orthonormal,

𝑛∑
𝑖=1

𝑝2
𝑖2 = 1.

Hence,

𝜎𝑞 =
𝑠2√
𝑛− 1

.

Suppose the data represented by equation (15) are rotated by an angle 𝛼 ∈ (−𝜋∕2, 0) ∪ (0, 𝜋∕2],[
cos𝛼 −sin𝛼
sin𝛼 cos𝛼

]
𝑄𝑇𝑍𝑇

𝑐 =
[
𝑠1𝑝11 cos𝛼 − 𝑠2𝑝12 sin𝛼 ⋯ 𝑠1𝑝𝑛1 cos𝛼 − 𝑠2𝑝𝑛2 sin𝛼
𝑠1𝑝11 sin𝛼 + 𝑠2𝑝12 cos𝛼 ⋯ 𝑠1𝑝𝑛1 sin𝛼 + 𝑠2𝑝𝑛2 cos𝛼

]
.

The standard deviation of the rotated vertical coordinates is

𝜎𝛼 =

√√√√√ 𝑠21 sin
2 𝛼

𝑛∑
𝑖=1

𝑝2
𝑖1 + 𝑠22 cos

2 𝛼
𝑛∑

𝑖=1
𝑝2
𝑖2 + 2𝑠1𝑠2 sin𝛼 cos𝛼

𝑛∑
𝑖=1

𝑝𝑖1𝑝𝑖2

𝑛− 1
.

Since 𝑃 is orthonormal,

𝑛∑
𝑖=1

𝑝2
𝑖1 = 1, and

𝑛∑
𝑖=1

𝑝𝑖1𝑝𝑖2 = 0.

Then,

𝜎𝛼 =

√
𝑠21 sin

2 𝛼 + 𝑠22 cos
2 𝛼

𝑛− 1
=

√
(𝑠1 − 𝑠2)2 sin2 𝛼 + 𝑠22

𝑛− 1
.

Now that 𝑠1 > 𝑠2 and sin2 𝛼 > 0,

𝜎𝛼 > 𝜎𝑞.
6

Since 𝑄 is orthonormal, the translation of 𝑍𝑐 by equation (15) is invariant in Euclidean space. Thus, we have proven the theorem. □
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Algorithm 1: Algorithm for standardizing data.

Input : 𝑍0 =
⎡⎢⎢⎣
𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

⎤⎥⎥⎦
1 (𝑥𝑐 , 𝑦𝑐 ) =𝑚𝑒𝑎𝑛(𝑍0), where 𝑚𝑒𝑎𝑛 is the column-wise operation;

2 𝑍𝑐 =𝑍0 − (𝑥𝑐 , 𝑦𝑐 ) =
⎡⎢⎢⎣
𝑢1 𝑣1
⋮ ⋮
𝑢𝑛 𝑣𝑛

⎤⎥⎥⎦;
3 𝜃 =

1
2
arctan

⎛⎜⎜⎜⎜⎝
2

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖

𝑛∑
𝑖=1

(𝑢2
𝑖
− 𝑣2

𝑖
)

⎞⎟⎟⎟⎟⎠
;

4 if cos2𝜃
𝑛∑

𝑖=1
(𝑢2

𝑖
− 𝑣2

𝑖
) + 2 sin 2𝜃

𝑛∑
𝑖=1

𝑢𝑖𝑣𝑖 < 0 then

5 𝜃 = 𝜃 + 𝜋∕2;

6 𝑍 =
[
cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

]
𝑍𝑇

0 −
[
𝑥𝑐

𝑦𝑐

]
;

7 𝑍 =𝑍𝑇 ;

Output : The standardized data 𝑍 , the center (𝑥𝑐 , 𝑦𝑐 ) and the tilt angle 𝜃 of the original data set.

3.2. Direct circle fitting method

For a circle, the parameters 𝑡𝑖 are polar angles of the data points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛. The 𝑡𝑖 can easily be determined as follows,

𝑡𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

arctan(𝑦𝑖∕𝑥𝑖) if 𝑥𝑖 > 0,
arctan(𝑦𝑖∕𝑥𝑖) + 𝜋 if 𝑥𝑖 < 0 and 𝑦𝑖 ≥ 0,
arctan(𝑦𝑖∕𝑥𝑖) − 𝜋 if 𝑥𝑖 < 0 and 𝑦𝑖 < 0,
𝜋∕2 if 𝑥𝑖 = 0 and 𝑦𝑖 > 0,
−𝜋∕2 if 𝑥𝑖 = 0 and 𝑦𝑖 < 0.

(16)

When fitting a circle, the parametric form of (1) reduces to{
𝑥 = 𝑟 cos(𝑡),
𝑦 = 𝑟 sin(𝑡),

where 𝑟 is the radius to be determined. Let

𝑇 = [cos(𝑡1),… , cos(𝑡𝑛), sin(𝑡1),… , sin(𝑡𝑛)]𝑇 .

The minimization problem (5) then becomes

𝑟̂ = argmin
𝑟
‖𝑇 𝑟− 𝒛‖22. (17)

Let 𝜌 = ‖𝑇 ‖2 and 𝑄 = 𝑇 ∕𝜌. The unique solution of (17) can be written as

𝑟̂ = 𝜌−1𝑄𝑇 𝒛. (18)

We refer to the use of (16) and (18) for fitting a circle as the direct circle fitting (DCF) method.

3.3. An alternating fitting method

When the parameters 𝑡𝑖 are not polar angles, we propose the application of an alternating fitting method (AFM). We are particu-

larly interested in applying this method to fit ellipses and dumbbell curves. The method is suitable for fitting other kinds of shapes 
such as olives and pillows as well; see illustrations in Section 3.5.

Given the 𝑡𝑖 ’s, one can solve the minimization problem

𝒂̂ = argmin
𝒂
‖𝑇𝒂− 𝒛‖22, (19)

where the matrix 𝑇 is defined in (4). If a weighting matrix 𝑊 is introduced, then one may solve the 𝓁1-regularized problem instead, 
i.e., { }
7

𝒂̂ = argmin
𝒂

‖𝑇𝒂− 𝒛‖22 + 𝜇‖𝑊 𝒂‖1 , (20)
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where 𝜇 > 0 is a regularization parameter and the nonzero entries of the diagonal matrix 𝑊 ∈ℝ12×12 are referred to as weights.

Conversely, given the coefficient vector 𝒂̂, one can determine a set of parameters −𝜋 < 𝑡𝑖 ≤ 𝜋, 1 ≤ 𝑖 ≤ 𝑛, by solving

𝒕̂ = argmin
𝒕
‖𝑇 (𝒕)𝒂̂− 𝒛‖22. (21)

Let

𝑇𝑖 =
[

𝑇̃𝑖 0
0 𝑇̃𝑖

]
,

where 𝑇̃𝑖 is the 𝑖𝑡ℎ row of 𝑇̃ as in (3). Define

𝑡𝑖 = argmin
𝑡𝑖
‖𝑇𝑖𝒂̂− 𝒛𝑖‖22 (22)

It is easy to see that 𝒕̂ ∶= [𝑡1, ̂𝑡2, … , ̂𝑡𝑛]𝑇 is a solution of (21).

We describe a heuristic way of choosing the matrix 𝑊 in Section 3.5 and of choosing 𝜇 in Section 4.4. Our reason for applying 𝓁1-

regularization is that the computed solution is less sensitive to outliers in the data than when no regularization or 𝓁2-regularization 
are used. Moreover, 𝓁1-regularization promotes sparsity of the computed solution. The proof of uniqueness of the solution to problem 
(21) for ellipse fitting is immediate. The uniqueness for dumbbell fitting follows from Theorems 2 and 3 in Section 3.5. The proposed 
AFM solves the minimization problems (5) or (6) by solving the problems (19) or (20), and problem (21) in an alternating fashion. 
The convergence of the AFM is shown in Section 3.6.

3.4. AFM for ellipse fitting

For an ellipse, the parametric form (1) reduces to{
𝑥 = 𝑎11 cos(𝑡),
𝑦 = 𝑎22 sin(𝑡),

− 𝜋 < 𝑡 ≤ 𝜋, (23)

where 𝑎11, 𝑎22 > 0 are coefficients to be determined. The matrix 𝑇 and vector 𝒂 in (19) are of the form

𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(𝑡1) 0
cos(𝑡2) 0

⋮ ⋮
cos(𝑡𝑛) 0

0 sin(𝑡1)
0 sin(𝑡2)
⋮ ⋮
0 sin(𝑡𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝒂 =

[
𝑎11
𝑎22

]
.

The AFM for the solution of the minimization problem (5) alternates between solving the problems (19) and (21): given the vector 
𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑛]𝑇 of parameter values, the unique solution of problem (19) can be evaluated by using a QR factorization of the matrix 
𝑇 . When, instead, the coefficient vector 𝒂̂ is given, one may solve problem (21) for 𝒕 by an interior-point or trust-region method; see, 
e.g., [10–12]. Alternatively, one may solve (22) for each 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑛, independently so that 𝑡𝑖 yields the shortest distance between 
the point (𝑥𝑖, 𝑦𝑖) and the ellipse defined by 𝒂. We propose to solve (22) in the following manner. Let 𝑑𝑖 be the squared distance 
between a point (𝑥𝑡𝑖

, 𝑦𝑡𝑖 ) on the defined ellipse and the given point (𝑥𝑖, 𝑦𝑖). Then,

𝑑𝑖 = (𝑥𝑖 − 𝑥𝑡𝑖
)2 + (𝑦𝑖 − 𝑦𝑡𝑖 )

2, (24)

where {
𝑥𝑡𝑖

= 𝑎11 cos(𝑡𝑖),
𝑦𝑡𝑖 = 𝑎22 sin(𝑡𝑖).

To minimize (24), we require

d

d𝑡𝑖
𝑑𝑖 = 2𝑎11 sin(𝑡𝑖)(𝑥𝑖 − 𝑎11 cos(𝑡𝑖)) − 2𝑎22 cos(𝑡𝑖)(𝑦𝑖 − 𝑎22 sin(𝑡𝑖)) = 0. (25)

When cos(𝑡𝑖) ≠ 0, equation (25) is equivalent to

𝑎11𝑥𝑖 tan(𝑡𝑖) − (𝑎211 − 𝑎222) sin(𝑡𝑖) − 𝑎22𝑦𝑖 = 0. (26)

It may be convenient to compute the solution of the nonlinear equation (26) by a trust-region algorithm, such as Powell’s dogleg 
method described in [11,12]. However, both approaches mentioned above for determining 𝒕 are time-consuming when the number 
of points 𝑛 is large. We therefore propose the following fast method for computing an accurate approximate minimizer of (24): let 
8

(𝑥𝑡𝑖
, 𝑦𝑡𝑖 ) be the intersection point of an ellipse and the segment that connects the center of the ellipse and a given point (𝑥𝑖, 𝑦𝑖). We 
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approximate the minimizer of (24) by testing either an increasing or a decreasing sequence for 𝑡𝑖, with the polar angle of (𝑥𝑖, 𝑦𝑖) as 
its starting value, until 𝑑 starts to increase. An outline of this scheme is

1. Calculate 𝜃𝑖, the polar angle of (𝑥𝑖, 𝑦𝑖).
2. Calculate the point (𝑥𝑡𝑖

, 𝑦𝑡𝑖 ) on the ellipse with 𝑡𝑖 = 𝜃𝑖 ∶= 𝜃.

3. Calculate 𝑑, the distance between (𝑥𝑖, 𝑦𝑖) and (𝑥𝑡𝑖
, 𝑦𝑡𝑖 ).

4. Increase 𝜃 by a small step 𝛿 > 0, i.e., let 𝜃 = 𝜃𝑖 + 𝛿, and update 𝑑.

5. If 𝑑 decreases, then compute 𝑑 for 𝜃 = 𝜃𝑖 + 𝑛𝑡𝛿, where 𝑛𝑡 = 2, 3, ⋯ until 𝑑 increases.

6. If 𝑑 increases, then compute 𝑑 for 𝜃 = 𝜃𝑖 − 𝑛𝑡𝛿, where 𝑛𝑡 = 2, 3, ⋯ until 𝑑 increases.

7. If necessary, then adjust the value of 𝜃 so that 𝜃 ∈ (−𝜋, 𝜋].
8. 𝑡𝑖 ∶= 𝜃 is an approximate minimizer of equation (24).

Details of the above process are described by Algorithm 2. Timings that compare this algorithm to an interior-point method and 
a trust-region dogleg method are presented in Table 2 of Section 4. We refer to the ellipse-fitting method that uses Algorithm 2 as 
AFM-LS since it solves the least-squares problem (19). We show in Section 3.6 that Algorithm 2 is a convergent descent method.

Algorithm 2: Fast algorithm for determining the parameter 𝑡 for a point on the ellipses closest to (𝑥0, 𝑦0).
Input : A point (𝑥0 , 𝑦0), coefficients 𝑎11 , 𝑎22 > 0 that define the ellipse (23), 𝑡0 the polar angle of (𝑥0, 𝑦0), 𝛿 > 0 step size for 𝑡, and the squared distance 

function 𝑑(𝑡) = (𝑎11 cos(𝑡) − 𝑥)2 + (𝑎22 sin(𝑡) − 𝑦)2 .

1 if 𝑥0 = 0 then

2 if 𝑦0 = 0 then

3 𝑡𝑚 = 𝜋∕2;

4 else

5 𝑡𝑚 = 𝑡0 ;

6 else

7 𝑑0 = 𝑑(𝑡0);
8 𝜃 = 𝑡0 + 𝛿 A value close to 𝑡0 ;
9 𝑑1 = 𝑑(𝜃);

10 if 𝑑0 > 𝑑1 then

11 𝑠 = 1
12 else

13 𝑠 = −1

14 for 𝑛𝑡 = 0, 1, 2, ⋯ do

15 ℎ = 𝑑(𝑡0 + 𝑠(𝑛𝑡 + 1)𝛿) − 𝑑(𝑡0 + 𝑠𝑛𝑡𝛿);
16 if ℎ > 0 then

17 𝑁 = 𝑛𝑡 ;

18 𝑡𝑚 = 𝑡0 + 𝑠𝑁𝛿;

Output : √𝑑(𝑡𝑚) the approximate minimal distance between (𝑥0, 𝑦0) and the ellipse, and 𝑡𝑚 , the approximate value of the parameter 𝑡 for the point on the 
ellipse closest to (𝑥0, 𝑦0).

3.5. AFM for dumbbell curve fitting

The fitting process for a dumbbell curve is similar to the one for an ellipse. An approximate solution of (20) can be determined 
by the fast iterative soft-thresholding method (FISTA) described in [13]. More details are provided below.

We assume the data to be standardized, i.e., the dumbbell curve is assumed to be symmetric about both the 𝑥- and 𝑦-axes, and 
the tangent lines of the dips are horizontal. The symmetry requires

𝑎12 = 𝑎21 = 𝑎31 = 𝑎32 = 𝑎41 = 𝑎42 = 𝑎52 = 𝑎61 = 0. (27)

Therefore, the parametric form (1) reduces to{
𝑥(𝑡) = 𝑎11 cos(𝑡) + 𝑎51 cos(3𝑡),
𝑦(𝑡) = 𝑎22 sin(𝑡) + 𝑎62 sin(3𝑡),

𝑎11, 𝑎22 > 0, −𝜋 < 𝑡 ≤ 𝜋. (28)

We require two more constraints on the coefficients 𝑎𝑖𝑗 to ensure that the fitted curve is dumbbell-shaped. First, we demand that 
the curve does not self-intersect above or below the 𝑥-axis.

Theorem 2. Assume that the coefficient 𝑎51 in (28) is nonvanishing. Then, the conditions 𝑎11∕𝑎51 < −9 and 𝑎11∕𝑎51 > 3 suffice to ensure 
that the curve defined by (28) does not self-intersect for 𝑡 ∈ (0, 𝜋) and 𝑡 ∈ (−𝜋, 0).

Proof. We consider the case when 𝑡 ∈ (0, 𝜋). Since the curve is symmetric about the 𝑥-axis, a sufficient condition for the curve 
9

𝑡 → (𝑥(𝑡), 𝑦(𝑡)) for 0 < 𝑡 < 𝜋 not to self-intersect is that 𝑥(𝑡) is a decreasing function of 𝑡 for 𝑡 ∈ (0, 𝜋), i.e., that d𝑥

d𝑡
< 0. Thus, we require
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d𝑥

d𝑡
= −𝑎11 sin(𝑡) − 3𝑎51 sin(3𝑡) < 0, 𝑡 ∈ (0, 𝜋).

Rearranging the terms and using the fact that sin(3𝑡) = 3 sin(𝑡) − 4 sin3(𝑡) yield

sin(𝑡)(𝑎11 + 9𝑎51 − 12𝑎51 sin2(𝑡)) > 0.

Since sin(𝑡) > 0, we obtain

𝑎51

(
𝑎11

𝑎51
+ 9 − 12 sin2(𝑡)

)
> 0.

If 𝑎51 > 0, then the above inequality implies that

𝑎11

𝑎51
> 12 sin2(𝑡) − 9. (29)

In order for (29) to hold for all 𝑡 ∈ (0, 𝜋), we obtain the necessary condition

𝑎11

𝑎51
> 3. (30)

If, instead, 𝑎51 < 0, then we obtain the inequality

𝑎11

𝑎51
< 12 sin2(𝑡) − 9. (31)

Since this inequality holds for all 𝑡 ∈ (0, 𝜋), it follows that

𝑎11

𝑎51
< −9. (32)

The proof for −𝜋 < 𝑡 < 0 follows similarly. □

We also demand that the curve only intersects the 𝑥-axis for 𝑡 = 0 and 𝑡 = 𝜋.

Theorem 3. Assume that 𝑎62 ≠ 0. Then, either one of the conditions 𝑎22∕𝑎62 < −3 or 𝑎22∕𝑎62 > 1 secure that the curve defined by (28) only 
intersects the 𝑥-axis at 𝑡 = 0 and 𝑡 = 𝜋.

Proof. Assume that 𝑦(𝑡) = 𝑎22 sin(𝑡) + 𝑎62 sin(3𝑡) = 0 for some 0 < 𝑡 < 𝜋. Then, using the same manipulations as in the proof of 
Theorem 2 shows that this equation is equivalent to

sin(𝑡)
(
𝑎22 + 𝑎62

(
3 − 4sin2 (𝑡)

))
= 0.

We have to ensure that

𝑎22∕𝑎62 +
(
3 − 4sin2 (𝑡)

)
= 0

has no solution for 0 < 𝑡 < 𝜋. This is the case when 4 sin2(𝑡) = 𝑎22∕𝑎62 + 3 < 0 or 4 sin2(𝑡) = 𝑎22∕𝑎62 + 3 > 4 Hence,

𝑎22∕𝑎62 < −3 or 𝑎22∕𝑎62 > 1. (33)

The proof for −𝜋 < 𝑡 < 0 follows similarly. □

Theorems 2 and 3 ensure that the curve does not self-intersect. In addition, since the dips of the desired dumbbell curve 𝑡 →
(𝑥(𝑡), 𝑦(𝑡)) are symmetric about the 𝑥-axis, the equation

d𝑦

d𝑡
= 𝑎22 cos(𝑡) + 3𝑎62 cos(3𝑡) = 0 (34)

has exactly 6 solutions. Using similar manipulations as in the proof of Theorem 2, we obtain that equation (34) is equivalent to

𝑎22 cos(𝑡) + 3𝑎62(4 cos3(𝑡) − 3cos(𝑡)) = 0,

which can be written as

cos(𝑡)(𝑎22 + 3𝑎62(4 cos2(𝑡) − 3)) = 0.

The factor cos(𝑡) vanishes for 𝑡 = ±𝜋∕2 and provides two solutions, and the other factor yields the remaining four solutions. In 
10

detail, using similar manipulations as above, the second factor gives
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Fig. 1. Curves with different coefficients: (a) 𝑎11 = 6, 𝑎51 = 3, 𝑎22 = 4, 𝑎62 = 2, (b) 𝑎11 = 10, 𝑎51 = −1, 𝑎22 = 4, 𝑎62 = 2, (c) 𝑎11 = 6, 𝑎51 = 1, 𝑎22 = 3, 𝑎62 = 2, (d) 𝑎11 =
6, 𝑎51 = 1, 𝑎22 = 4, 𝑎62 = 2, (e) 𝑎11 = 6, 𝑎51 = 1, 𝑎22 = 9, 𝑎62 = 1, (f) 𝑎11 = 6, 𝑎51 = 1, 𝑎22 = 8, 𝑎62 = 0.1. All other coefficients vanish.

4cos2(𝑡) − 3 = −𝑎22∕3𝑎62.

Thus, we need the relation

4cos2(𝑡) = 3 − 𝑎22∕3𝑎62 ∈ (0,4)

to hold to secure the existence of the other four solutions. Therefore, we require

−𝑎22∕𝑎62 ∈ (−9,3),

which can be expressed as

−3 < 𝑎22∕𝑎62 < 9. (35)

Combining (33) and (35), we obtain the constraints

1 < 𝑎22∕𝑎62 < 9. (36)

We illustrate in Fig. 1 different shapes of curves with different ratios of 𝑎11∕𝑎51 and 𝑎22∕𝑎62. Note that when 𝑎11∕𝑎51 < −9, the 
curve appears more like a pillow than a dumbbell; see Fig. 1(b). Thus, in our experiments for fitting dumbbell curves, we only 
consider the case when 𝑎11∕𝑎51 > 3. We also note that the closer the ratio 𝑎22∕𝑎62 is to 1, the deeper are the dips of the dumbbell 
curve. When the ratio is closer to 9, the dips are shallow and the curve appears elliptical; see Fig. 1(e). When the ratio keeps 
increasing above 9, the places where the dips are become “bumps” and an olive-shaped curve begins to form; see Fig. 1(f). The 
constraint (33) in Theorem 2 indicates that when solving the minimization problem (6), the weights for 𝑎51 and 𝑎62 should be large 
11

enough to secure that the desired inequalities hold. The upper bound of constraint (36) suggests that the weight for 𝑎62 should not 
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be too large. We describe a heuristic way of choosing weights for 𝑎51 and 𝑎62 after introducing the fast iterative soft-thresholding 
algorithm (FISTA) for solving problem (20).

The AFM for solving problem (6) for dumbbell curve fitting alternates between solving the minimization problems (20) and (21). 
The former problem is equivalent to

𝒂̂ = argmin
𝒂

{‖𝑇𝑊 −1𝑊 𝒂− 𝒛‖22 + 𝜇‖𝑊 𝒂‖1} . (37)

Let 𝑇𝑤 = 𝑇𝑊 −1 and 𝒂𝑊 =𝑊 𝒂. Then, (37) becomes

𝒂̂𝑊 = argmin
𝒂

{‖𝑇𝑤𝒂𝑊 − 𝒛‖22 + 𝜇‖𝒂𝑊 ‖1} , (38)

and we solve this problem instead of (37). The solution is computed by the fast iterative soft-thresholding algorithm (FISTA) [13].

FISTA-type methods are designed to solve convex optimization problems of the form

min
𝑥∈ℝ𝑛

{ (𝑥) ∶  (𝑥) ∶= 𝑓 (𝑥) + 𝑔(𝑥)},

with 𝑓 ∶ℝ𝑛 →ℝ a smooth convex function of type 𝐶1,1, i.e.,

‖∇𝑓 (𝑥) − ∇𝑓 (𝑦)‖2 ≤ 𝑙𝑓‖𝑥− 𝑦‖2, ∀𝑥, 𝑦 ∈ℝ𝑛,

where 𝑙𝑓 > 0 is a Lipschitz constant for the gradient ∇𝑓 and 𝑔 ∶ℝ𝑛 →ℝ is a continuous, possibly nonsmooth, convex function. The 
general idea of FISTA is that, after having determined the point 𝑥(𝑘) ∈ℝ𝑛 at iteration 𝑘, an additional point 𝑢(𝑘) ∈ℝ𝑛 is chosen as a 
linear combination of 𝑥(𝑘) and the previous point 𝑥(𝑘−1) ∈ℝ𝑛. Then,

𝑥(𝑘+1) = 𝑇𝑙𝑓

(
𝑢(𝑘)

)
∶= arg min

𝑥∈ℝ𝑛

{
𝑄𝑙𝑓

(𝑥, 𝑢(𝑘)) + 𝑔(𝑥)
}
,

i.e., 𝑥(𝑘+1) is the unique minimizer of 𝑄𝑙𝑓
(𝑥, 𝑢) + 𝑔(𝑥) at 𝑢 = 𝑢(𝑘), where

𝑥→𝑄𝑙𝑓
(𝑥, 𝑢) ∶= 𝑓 (𝑢) + ⟨𝑥− 𝑢,∇𝑓 (𝑢)⟩+ 𝑙𝑓

2
‖𝑥− 𝑢‖22

is a quadratic approximation of 𝑓 (𝑥). Since the term 𝑓 (𝑢(𝑘)) in 𝑇𝑙𝑓
(𝑢(𝑘)) is independent of 𝑥, we have

𝑥(𝑘+1) = 𝑇𝑙𝑓
(𝑢(𝑘))

= arg min
𝑥∈ℝ𝑛

{
𝑄𝑙𝑓

(𝑥, 𝑢(𝑘)) + 𝑔(𝑥)
}

= arg min
𝑥∈ℝ𝑛

{⟨𝑥− 𝑢(𝑘),∇𝑓 (𝑢(𝑘))⟩+ 𝑙𝑓

2
‖𝑥− 𝑢(𝑘)‖22 + 𝑔(𝑥)

}
= arg min

𝑥∈ℝ𝑛

{
𝑙𝑓

2

|||||
|||||𝑥− (𝑢(𝑘) − 1

𝑙𝑓
∇𝑓 (𝑢(𝑘)))

|||||
|||||
2

2
+ 𝑔(𝑥)

}
.

Let

𝑓 (𝑥) = ‖𝐴𝑥− 𝑏‖22 and 𝑔(𝑥) = 𝜇‖𝑥‖1, (39)

where 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚. Let 𝜆max(𝐴𝑇𝐴) denote the largest eigenvalue of 𝐴𝑇𝐴. Then, 𝑙𝑓 = 2𝜆max(𝐴𝑇𝐴) is the smallest Lipschitz 
constant of ∇𝑓 . The quotient

𝐿𝑓 =
𝑙𝑓

𝑠

serves as step size, where 0 < 𝑠 ≤ 1 is a scalar step size. Beck and Teboulle [13] show that with constant step size 𝐿𝑓 = 𝑙𝑓 , FISTA 
achieves a convergence rate of (1∕𝑘2), where 𝑘 denotes the number of iterations performed. The operator 𝑇𝐿𝑓

(𝑢) may be considered 
a proximal regularization operator for the non-smooth 𝓁1-regularized problem

min
𝑥∈ℝ𝑛

{‖𝐴𝑥− 𝑏‖22 + 𝜇‖𝑥‖1} . (40)

Since the ‖𝑥‖1-term in (40) is separable, we obtain

𝑥(𝑘+1) = 𝑇𝐿𝑓
(𝑢(𝑘)) = Φ𝑠𝜇∕𝑙𝑓

(
𝑢(𝑘) − 𝑠

𝑙𝑓
∇𝑓 (𝑢(𝑘))

)
,

where Φ𝛼(𝑥), for 𝛼 > 0, denotes the soft-thresholding operator, i.e.,
12

Φ𝛼(𝑥) = [𝜙𝛼(𝑥1), 𝜙𝛼(𝑥2),… , 𝜙𝛼(𝑥𝑛)]𝑇 ∈ℝ𝑛
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with 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 and

𝜙𝛼(𝑥) ∶=
{

0 if |𝑥| ≤ 𝛼,

sign(𝑥)(|𝑥|− 𝛼) if |𝑥| > 𝛼;

see [13] for details. For the functions 𝑓 (𝑥) and 𝑔(𝑥) given by (39), the iterations of FISTA, with 𝑥(0) = 𝑥(1) = 0 and 𝑡0 = 𝑡1 = 1, can be 
written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑧(𝑘) = 𝑥(𝑘) +
(

𝑡𝑘−1−1
𝑡𝑘

)(
𝑥(𝑘) − 𝑥(𝑘−1)

)
,

𝑢(𝑘) = 𝑧(𝑘) − 2𝑠
𝑙𝑓
𝐴𝑇 (𝐴𝑧(𝑘) − 𝑏),

𝑥(𝑘+1) = Φ𝑠𝜇∕𝑙𝑓 (𝑢
(𝑘)),

𝑡𝑘+1 =
1+
√

1+4𝑡2
𝑘

2 ,

𝑘 = 1,2,… ;

see [13]. The computations are described in Algorithm 3. Problem (40) becomes (38) when 𝑥 = 𝒂𝑊 , 𝐴 = 𝑇𝑤 and 𝑏 = 𝒛. Through 
experiments, we found that when employing FISTA, the weight of each edge should be set to the reciprocal value of the ratio of the 
corresponding constraints (30) and (36). For instance, when fitting a dumbbell curve, the coefficients 𝑎11 and 𝑎22 are not related by 
a constraint. Therefore, their weights should be the same, i.e., we may set 𝑤11 =𝑤22 = 1. Since

𝑎11

𝑎51
=

5
1

satisfies (30), and

𝑎22

𝑎62
=

2
1

satisfies (36), we set 𝑤51 = 5 and 𝑤62 = 2. We specify in Section 4 how the parameters are chosen in the computed examples.

Algorithm 3: Fast iterative soft-thresholding algorithm (FISTA).

Input : 𝐴 ∈ℝ𝑚×𝑛 , 𝑏 ∈ℝ𝑚 , 𝜇 > 0, 𝑙𝑓 = 2𝜆max(𝐴𝑇𝐴), 𝑠 ∈ (0, 1], 𝑡0 = 𝑡1 = 1, 𝑡𝑜𝑙 > 0, and the soft-thresholding operator Φ𝑠𝜇∕𝑙𝑓 (⋅).
1 𝑥(0) = 𝑥(1) = 0 ∈ℝ𝑛 ;

2 for 𝑘 = 1, 2, … do

3 𝑧(𝑘) = 𝑥(𝑘) +
𝑡𝑘−1 − 1

𝑡𝑘
(𝑥(𝑘) − 𝑥(𝑘−1));

4 𝑢(𝑘) = 𝑧(𝑘) −
2𝑠
𝑙𝑓

𝐴𝑇 (𝐴𝑧(𝑘) − 𝑏);

5 𝑥(𝑘+1) = Φ𝑠𝜇∕𝑙𝑓 (𝑢
(𝑘));

6 if ‖𝑥(𝑘+1) − 𝑥(𝑘)‖2 ≤ 𝑡𝑜𝑙‖𝑥(𝑘)‖2 then

7 exit;

8 𝑡𝑘+1 =
1 +

√
1 + 4𝑡2

𝑘

2
;

Output : Approximate solution 𝑥(𝑘+1) .

We employ Algorithm 1 to standardize the data. When applied to dumbbell curve fitting, the scheme for estimating the 𝑡’s for 
ellipses does not guarantee a global minimal distance between the point and the fitted curve, but only a local one; see the discussion 
in Section 3.6. We, therefore, propose a simple sampling method as an alternative; see Algorithm 5. We refer to the algorithm for 
fitting a curve with weights via FISTA as AFM-FISTA, which is described in Algorithm 4.

We also note that, for an ellipse or dumbbell curve centered at the origin with no tilt, a solution of (22) 𝑡𝑖 ∈ (−𝜋, 𝜋] is unique 
when 𝒛𝑖 is on neither of the axes. In the case when 𝒛𝑖 is on either one of the axes, one may choose to only keep the smallest solution 
of 𝑡𝑖 such that algorithms such as Algorithm 2 and Algorithm 5 generate unique solutions 𝑡𝑖’s, and thus determine a unique solution 
𝒕̂ ∶= [𝑡1, ̂𝑡2, … , ̂𝑡𝑛]𝑇 of (21) even though the solutions to those problems themselves are not necessarily unique.

3.6. Convergence of iterative alternating methods

This subsection shows several results on the convergence of the proposed iterative alternating methods.

Theorem 4. Let Γ be a curve in the (𝑥, 𝑦)-plane that is symmetric about both the 𝑥- and 𝑦-axes. Consider a point 𝑃𝑀 = (𝑥𝑀, 𝑦𝑀 ) on Γ, and 
let the point 𝑃0 = (𝑥0, 𝑦0) ∈ℝ2 be in a different quadrant than 𝑃𝑀 . Then, there exists a point 𝑃𝑚 = (𝑥𝑚, 𝑦𝑚) on Γ in the same quadrant as 
13

𝑃0 such that 𝑃0𝑃𝑚 < 𝑃0𝑃𝑀 , where 𝑈𝑉 denotes the distance between the points 𝑈 and 𝑉 .
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Algorithm 4: Iterative alternate method with FISTA (AFM-FISTA) for weighted curve fitting.

Input : 𝑍0 =
⎡⎢⎢⎣
𝑥1 𝑦1
⋮ ⋮
𝑥𝑛 𝑦𝑛

⎤⎥⎥⎦
𝑇

, soft-thresholding parameter 𝛼, weighting matrix 𝑊 , tolerance of the relative difference of error 𝜏 , and the initial relative 

difference of error 𝑟(0) =∞.

1 Apply Algorithm 1 on 𝑍0 for the center (𝑐𝑒𝑛𝑡𝑒𝑟𝑥, 𝑐𝑒𝑛𝑡𝑒𝑟𝑦), tilt angle 𝜃 of the curve, and the standardized data 𝑍 ;

2 Calculate 𝑇 (0) with 𝑍 via eq. (16);

3 Let 𝒛 be the column-stacked vector determined by the columns of 𝑍 ;

4 for 𝑘 = 1, 2, 3 … do

5 𝑇
(𝑘−1)
𝑤 = 𝑇 (𝑘−1)𝑊 −1 ;

6 𝜇 = 2𝛼𝜆𝑚𝑎𝑥(𝑇
(𝑘−1)𝑇
𝑤 𝑇

(𝑘−1)
𝑤 );

7 Apply FISTA to problem (38) to compute 𝒂(𝑘)
𝑊

, an estimate of 𝒂𝑊 ;

8 𝒂(𝑘) =𝑊 −1𝒂
(𝑘)
𝑊

;

9 for 𝑖 = 1, … , 𝑛 do

10 Apply Algorithm 5 for 𝑡(𝑘)
𝑖

and 𝑑(𝑘)
𝑖

with 𝒂(𝑘) and 𝑇 (𝑘−1) ;

11 𝑇 (𝑘) is obtained;

12 Fitting error 𝑒(𝑘) =∑𝑛

𝑖=1 𝑑
(𝑘)
𝑖

;

13 if 𝑟(𝑘) = ‖ 𝑒(𝑘) − 𝑒(𝑘−1)

𝑒(𝑘−1)
‖ ≤ 𝜏 then

14 𝒂 = 𝒂(𝑘) and 𝑒 = 𝑒(𝑘) ;

15 Form 𝐴 from 𝒂;

Output : Fitting error 𝑒 and the parametric form of the best fit dumbbell curve[
𝑥

𝑦

]
=
[
𝑐𝑒𝑛𝑡𝑒𝑟𝑥
𝑐𝑒𝑛𝑡𝑒𝑟𝑦

]
+
[
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]
([
cos(𝑡) sin(𝑡) cos(2𝑡) sin(2𝑡) cos(3𝑡) sin(3𝑡)

]
𝐴
)𝑇

.

Proof. We may, without loss of generality, assume that 𝑃0 is in the first quadrant, i.e., 𝑥0, 𝑦0 > 0. Consider the following three cases:

Case 1: Let 𝑃𝑀 be in the second quadrant, i.e., 𝑥𝑀 < 0 and 𝑦𝑀 > 0. Define 𝑥𝑚 = −𝑥𝑀 and 𝑦𝑚 = 𝑦𝑀 . Then, 𝑃𝑚 = (𝑥𝑚, 𝑦𝑚) is in the 
first quadrant. Since Γ is symmetric about the 𝑦-axis, 𝑃𝑚 is also on Γ. We have

𝑃0𝑃𝑀

2
= (𝑥0 − 𝑥𝑀 )2 + (𝑦0 − 𝑦𝑀 )2,

𝑃0𝑃𝑚

2
= (𝑥0 − 𝑥𝑚)2 + (𝑦0 − 𝑦𝑚)2

= (𝑥0 + 𝑥𝑀 )2 + (𝑦0 − 𝑦𝑀 )2.

It follows that

𝑃0𝑃𝑀

2
− 𝑃0𝑃𝑚

2
= −4𝑥0𝑥𝑀 > 0

and, therefore,

𝑃0𝑃𝑚 < 𝑃0𝑃𝑀.

Case 2: Let 𝑃𝑀 be in the third quadrant, i.e., and 𝑥𝑀 < 0 and 𝑦𝑀 < 0. Define 𝑥𝑚 = −𝑥𝑀 and 𝑦𝑚 = −𝑦𝑀 . Then, 𝑃𝑚 is on Γ and in 
the first quadrant. It follows that

𝑃0𝑃𝑚

2
= (𝑥0 − 𝑥𝑚)2 + (𝑦0 − 𝑦𝑚)2

= (𝑥0 + 𝑥𝑀 )2 + (𝑦0 + 𝑦𝑀 )2

and, therefore,

𝑃0𝑃𝑀

2
− 𝑃0𝑃𝑚

2
= −4𝑥0𝑥𝑀 − 4𝑦0𝑦𝑀 > 0,

which shows that

𝑃0𝑃𝑚 < 𝑃0𝑃𝑀.

Case 3: Let 𝑃𝑀 be in the fourth quadrant, i.e., 𝑥𝑀 > 0 and 𝑦𝑀 < 0. Define 𝑥𝑚 = 𝑥𝑀 and 𝑦𝑚 = −𝑦𝑀 . Then, 𝑃𝑚 is on Γ and in the 
first quadrant. We have

𝑃0𝑃𝑚

2
= (𝑥0 − 𝑥𝑚)2 + (𝑦0 − 𝑦𝑚)2

= (𝑥0 − 𝑥𝑀 )2 + (𝑦0 + 𝑦𝑀 )2.
14

Hence,
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𝑃0𝑃𝑀

2
− 𝑃0𝑃𝑚

2
= −4𝑦0𝑦𝑀 > 0,

and consequently

𝑃0𝑃𝑚 < 𝑃0𝑃𝑀.

The proofs for the cases when 𝑃0 is in one of the other quadrants are similar. □

Theorem 5. Let the point 𝑃0 = (𝑥0, 𝑦0) be in one of the quadrants of the (𝑥, 𝑦)-plane. The closest point to 𝑃0 on a non-self-intersecting curve 
Γ defined by equation (28) is in the same quadrant.

Proof. Suppose that 𝑃0 is in the first quadrant, i.e., 𝑥0, 𝑦0 > 0. Let 𝑃 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) for −𝜋 < 𝑡 ≤ 𝜋 be a parametric representation of 
Γ and define the squared distance function

𝑑(𝑡) = ((𝑥(𝑡) − 𝑥0)2 + (𝑦(𝑡) − 𝑦0)2, −𝜋 < 𝑡 ≤ 𝜋. (41)

Then,

𝑑′(𝑡) = 2(𝑎11 cos(𝑡) + 𝑎51 cos(3𝑡) − 𝑥0)(−𝑎11 sin(𝑡) − 3𝑎51 sin(3𝑡))

+2(𝑎22 sin(𝑡) + 𝑎62 sin(3𝑡) − 𝑦0)(𝑎22 cos(𝑡) + 3𝑎62 cos(3𝑡)).

Hence,

𝑑′(0) = −2𝑦0(𝑎22 + 3𝑎62)

and

𝑑′(𝜋∕2) = 2𝑥0(𝑎11 − 3𝑎51).

If 𝑎62 = 0, then 𝑑′(0) < 0, and if 𝑎51 = 0, then 𝑑′(𝜋∕2) > 0. Moreover, if 𝑎62 ≠ 0, then the constraint (33) ensures that 𝑑′(0) < 0. 
Finally, if 𝑎51 ≠ 0, then the constraints (30) and (32) ensure that 𝑑′(𝜋∕2) > 0. Since 𝑑′(𝑡) is a continuous function, there is some 
𝑡0 ∈ (0, 𝜋∕2) such that

𝑑′(𝑡0) = 0

and

𝑑(𝑡0) ≤ 𝑑(𝑡), ∀𝑡 ∈ (0, 𝜋∕2).

Theorem 4 ensures that for any point

𝑃𝑀 = (𝑥(𝑡𝑀 ), 𝑦(𝑡𝑀 )), 𝑡𝑀 ∈ (−𝜋,−𝜋∕2) ∪ (−𝜋∕2,0) ∪ (𝜋∕2, 𝜋)

on Γ, one can find a point

𝑃𝑚 = (𝑥(𝑡𝑚), 𝑦(𝑡𝑚)), 𝑡𝑚 ∈ (0, 𝜋∕2),

on Γ in the first quadrant such that 𝑃0𝑃𝑚 < 𝑃0𝑃𝑀 , i.e., 𝑑(𝑡𝑚) < 𝑑(𝑡𝑀 ). It follows that

𝑑(𝑡0) ≤ 𝑑(𝑡𝑚) < 𝑑(𝑡𝑀 ), where 𝑡0, 𝑡𝑚 ∈ (0, 𝜋∕2).

The proofs for the cases when 𝑃0 is in one of the other three quadrants are similar. □

Theorem 6. With the notation of Algorithm 2 it holds that the algorithm stops after a finite number of steps and, if 𝑛𝑡 < 𝑁 ,

𝑑(𝑡0 + 𝑠(𝑛𝑡 + 1)𝛿) < 𝑑(𝑡0 + 𝑠𝑛𝑡𝛿).

Therefore, Algorithm 2 is a descent method. Moreover, let 𝑡𝛿𝑚 denote the output of Algorithm 2 with parameter 𝛿 and let 𝑡∗𝑚 be the global 
minimizer of the squared distance function (41). Then, it holds

lim
𝛿→0

𝑡𝛿𝑚 = 𝑡∗𝑚.

Proof. Algorithm 2 details how we determine the closest point on an ellipse centered at the origin, with zero tilt angle to a given 
point 𝑃0 = (𝑥0, 𝑦0) in the (𝑥, 𝑦)-plane. The algorithm considers two situations:

(i) 𝑃0 is in one of the four quadrants;
15

(ii) 𝑃0 is on one of the axes or at the origin.
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The proof below is divided into four cases. Case 1 is for the situation (i), and Cases 2 to 4 are for the situation (ii).
We express the ellipse (23) in standard form,

𝑥2

𝑎211

+
𝑦2

𝑎222

= 1.

Without loss of generality, we may assume that 𝑎11 > 𝑎22 > 0. Consider for now the piece of the ellipse where 0 ≤ 𝑥 ≤ 𝑎11 and 𝑦 ≥ 0. 
Expressing 𝑦 in terms of 𝑥 gives

𝑦 =

√√√√𝑎222 −
𝑎222

𝑎211

𝑥2.

Then, the squared distance between 𝑃0 and a point on this piece of the ellipse is

𝑑(𝑥) = (𝑥− 𝑥0)2 +
⎛⎜⎜⎝
√√√√𝑎222 −

𝑎222

𝑎211

𝑥2 − 𝑦0

⎞⎟⎟⎠
2

.

The first and second derivatives of 𝑑(𝑥) are

𝑑′(𝑥) = 2(𝑥− 𝑥0) + 2
⎛⎜⎜⎝
√√√√𝑎222 −

𝑎222

𝑎211

𝑥2 − 𝑦0

⎞⎟⎟⎠
1
2

(
𝑎222 −

𝑎222

𝑎211

𝑥2

)−1∕2(
−2

𝑎222

𝑎211

𝑥

)

= 2𝑥− 2𝑥0 − 2
𝑎222

𝑎211

𝑥

⎛⎜⎜⎝1 − 𝑦0

(
𝑎222 −

𝑎222

𝑎211

𝑥2

)−1∕2⎞⎟⎟⎠
= 2𝑥− 2𝑥0 − 2

𝑎222

𝑎211

𝑥+ 2𝑦0
𝑎22

𝑎211

𝑥

(
1 −

𝑥2

𝑎211

)−1∕2

and

𝑑′′(𝑥) = 2 − 2

(
𝑎22

𝑎11

)2

+ 2𝑦0
𝑎22

𝑎11

⎡⎢⎢⎣
(
1 −

𝑥2

𝑎211

)−1∕2

−
𝑥

2

(
1 −

𝑥2

𝑎211

)−3∕2

(−2𝑥)
⎤⎥⎥⎦

= 2 − 2

(
𝑎22

𝑎11

)2

+ 2𝑦0
𝑎22

𝑎11

⎡⎢⎢⎣
(
1 −

𝑥2

𝑎211

)−1∕2

− 𝑥2

(
1 −

𝑥2

𝑎211

)−3∕2⎤⎥⎥⎦
= 2 − 2

(
𝑎22

𝑎11

)2

+ 2𝑦0
𝑎22

𝑎11

(
1 −

𝑥2

𝑎211

)−1∕2
⎛⎜⎜⎜⎜⎜⎝
1 +

𝑥2

1 −
𝑥2

𝑎211

⎞⎟⎟⎟⎟⎟⎠
,

respectively.

In the following, we show that there is a unique global minimizer of 𝑑(𝑥).
Case 1: Let 𝑃0 be in the first quadrant, i.e., 𝑥0, 𝑦0 > 0. Consider the last factor of the last term of 𝑑′(𝑥). One has

lim
𝑥→𝑎−11

(
1 −

𝑥2

𝑎211

)−1∕2

=∞ (42)

and, therefore,

lim
𝑥→𝑎−11

𝑑′(𝑥) =∞ > 0. (43)

Moreover,

lim
𝑥→0

𝑑′(𝑥) = 𝑑′(0) = −2𝑥0 < 0. (44)
16

Thus, there exists some 𝑥𝑚 ∈ (0, 𝑎11) such that 𝑑′(𝑥𝑚) = 0.
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Now consider 𝑑′′(𝑥). It follows from 𝑎11 > 𝑎22 that

2 − 2

(
𝑎22

𝑎11

)2

> 0,

and, therefore,(
1 −

𝑥2

𝑎211

)−1∕2

> 0 and 1 +
𝑥2

1 −
𝑥2

𝑎211

> 0.

Thus, 𝑑′′(𝑥) > 0 for 0 < 𝑥 < 𝑎11. It follows that 𝑑′(𝑥) is monotonically increasing for 0 < 𝑥 < 𝑎11, 𝑥𝑚 is a unique minimizer of 𝑑(𝑥), 
and 𝑑(𝑥) is monotonically decreasing for 0 ≤ 𝑥 ≤ 𝑥𝑚. Since the points

𝑃𝑚 =
⎛⎜⎜⎝𝑥𝑚,

√√√√𝑎222 −
𝑎222

𝑎211

𝑥2
𝑚

⎞⎟⎟⎠
and 𝑃0 are in the same quadrant, Theorem 5 ensures that 𝑥𝑚 is a global minimizer of 𝑑(𝑥).

Case 2: Let 𝑃0 be on the positive 𝑦-axis, i.e., 𝑥0 = 0 and 𝑦0 > 0. The limits (42) and (43) are still valid, and the limit (44) becomes

lim
𝑥→0

𝑑′(𝑥) = 𝑑′(0) = −2𝑥0 = 0. (45)

Since the expression for 𝑑′′(𝑥) is independent of 𝑥0, it still holds that 𝑑′′(𝑥) > 0. This property together with (45) shows that 𝑑′(𝑥)
is positive on this interval. Consequently, 𝑑(𝑥) is monotonically increasing for 0 ≤ 𝑥 ≤ 𝑎11. Hence, 𝑥𝑚 = 0 is a unique minimizer of 
𝑑(𝑥).

It is easy to show that 𝑥𝑚 = 0 also is a global minimizer. Let the point 𝑃3 = (𝑥′, 𝑦′) be on the ellipse in the third quadrant. Then, 
𝑃2 = (𝑥′, −𝑦′) is on the ellipse in the second quadrant and 𝑃1 = (−𝑥′, −𝑦′) is on the ellipse in the first quadrant. Since 𝑃0 = (0, 𝑦0) is 
on the positive 𝑦-axis, we have

𝑃0𝑃3 > 𝑃0𝑃2 = 𝑃0𝑃1 =
√

𝑑(−𝑥′) ≥
√

𝑑(𝑥𝑚) = 𝑃0𝑃𝑚.

Case 3: Let the point 𝑃0 = (𝑥0, 𝑦0) be on the positive 𝑥-axis, i.e., 𝑥0 > 0 and 𝑦0 = 0. Then,

𝑑′(𝑥) = 2𝑥− 2𝑥0 − 2
𝑎222

𝑎211

𝑥 = 2

[
𝑥

(
1 −

𝑎222

𝑎211

)
− 𝑥0

]
.

Thus,

lim
𝑥→0

𝑑′(𝑥) = 𝑑′(0) = −2𝑥0 < 0,

and

lim
𝑥→𝑎−11

𝑑′(𝑥) = 2

[
𝑎11

(
1 −

𝑎222

𝑎211

)
− 𝑥0

]
.

Moreover, since 𝑦0 = 0, one has

𝑑′′(𝑥) = 2

(
1 −

𝑎222

𝑎211

)
> 0.

To show the existence of a unique minimizer 𝑥𝑚 ∈ [0, 𝑎11] of 𝑑(𝑥), we consider three subcases:

Subcase 3a: Assume that 0 < 𝑥0 < 𝑎11

(
1 −

𝑎222

𝑎211

)
. Then,

lim
𝑥→𝑎−11

𝑑′(𝑥) > 0.

Similarly to the argument in Case 1, there is a unique minimizer 𝑥𝑚 ∈ (0, 𝑎11) of 𝑑(𝑥), 𝑑(𝑥) is monotonically decreasing for 0 ≤ 𝑥 ≤ 𝑥𝑚, 
and 𝑑′(𝑥𝑚) = 0.

Subcase 3b: Assume that 𝑥0 = 𝑎11

(
1 −

𝑎222

𝑎211

)
. Then,

′

17

lim
𝑥→𝑎−11

𝑑 (𝑥) = 0.
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Since 𝑑′′(𝑥) > 0 and 𝑑′(𝑥) is continuous, 𝑑′(𝑥) < 0 on [0, 𝑎11). Thus, 𝑑(𝑥) is strictly decreasing on [0, 𝑎11) until 𝑥 → 𝑎−11. It follows that 
𝑥𝑚 = 𝑎11 is a unique minimizer.

Subcase 3c: Assume that 𝑥0 > 𝑎11

(
1 −

𝑎222

𝑎211

)
. Then,

lim
𝑥→𝑎−11

𝑑′(𝑥) < 0.

Since 𝑑′′(𝑥) > 0 and 𝑑′(𝑥) is continuous, 𝑑′(𝑥) < 0 on [0, 𝑎11). Thus, 𝑑(𝑥) is strictly decreasing on [0, 𝑎11]. It follows that 𝑥𝑚 = 𝑎11 is 
a unique minimizer.

It is easy to show that 𝑥𝑚 = 𝑎11 also is a global minimizer of all subcases of Case 3. Let the point 𝑃2 = (𝑥′, 𝑦′) be in the second 
quadrant on the ellipse. Then, 𝑃1 = (−𝑥′, 𝑦′) is on the ellipse in the first quadrant. Since 𝑃0 = (𝑥0, 0) is on the positive 𝑥-axis, it 
follows that

𝑃0𝑃2 > 𝑃0𝑃1 =
√

𝑑(−𝑥′) ≥
√

𝑑(𝑥𝑚) = 𝑃0𝑃𝑚.

Case 4: Let the point 𝑃0 = (𝑥0, 𝑦0) be at the origin, i.e., 𝑥0 = 𝑦0 = 0. Then,

𝑑′(𝑥) = 2𝑥− 2
𝑎222

𝑎211

𝑥 = 2𝑥

(
1 −

𝑎222

𝑎211

)
.

It follows that 𝑑′(𝑥) = 0 if and only if 𝑥 = 0. Since 𝑑′′(0) > 0, 𝑥𝑚 = 0 is the unique minimizer of 𝑑(𝑥). By a similar argument as in 
Case 3, 𝑥𝑚 = 0 also is a global minimizer.

Algorithm 2 determines the exact global minimizer for Cases 2 to 4. For Case 1, the algorithm searches for a point that reduces 
the squared distance function 𝑑(𝑡), see (41), and terminates once 𝑑(𝑡) starts to increase. It is immediate to see that, since 𝛿 > 0 and 
the function 𝑑(𝑡) is monotonically increasing or decreasing on each quadrant, the algorithm stops after a finite number of iterations, 
𝑁𝛿 , that depends on 𝛿. Let 𝑡∗

𝑚
denote the global minimizer of 𝑑(𝑡), and let 𝑡𝛿

𝑚
be the approximation obtained with the algorithm. By 

construction, we have

|𝑡𝛿𝑚 − 𝑡∗𝑚| ≤ 2𝛿.

Therefore,

0 ≤ lim
𝛿→0

|𝑡𝛿
𝑚
− 𝑡∗

𝑚
| ≤ lim

𝛿→0
2𝛿 = 0,

which concludes the proof. □

When replacing the squared distance function by

𝑑(𝑡) = (𝑎11 cos(𝑡) + 𝑎51 cos(3𝑡) − 𝑥0)2 + (𝑎22 sin(𝑡) + 𝑎62 sin(3𝑡) − 𝑦0)2 (46)

for dumbbell curves, Algorithm 2 is not guaranteed to determine a global minimize, but only a local one. This is illustrated by Fig. 2: 
Let 𝑃0 = (𝑥0, 𝑦0) be a point in the first quadrant of the (𝑥, 𝑦)-plane, and let 𝑀1 and 𝑀2 be two points on the dumbbell curve that 
correspond to local minima of (46). Algorithm 2 terminates once it has determined 𝑡𝑚, an approximation of the parameter value 𝑡
for the point 𝑀1. However, 𝑃0𝑀1 > 𝑃0𝑀2. Therefore, 𝑡𝑚 is not a global minimizer for (46).

To determine an approximation of a global minimum, we apply a simple sampling method. The idea is to sample points (𝑥(𝑡), 𝑦(𝑡))
on the dumbbell curve for equidistant values of 𝑡 in −𝜋 < 𝑡 ≤ 𝜋, see (28), in one of the four quadrants, possibly including a point 
on the axes, and to choose the value of the parameter 𝑡 that produces the smallest squared distance to a given data point (𝑥0, 𝑦0); 
see Algorithm 5 for details. As the number of sample points increases, Algorithm 5 will produce more accurate approximations of a 
global minimizer of the squared distance function.

To show convergence of AFM, we first present the 2-block Gauss-Seidel (GS) method described in [14]. Suppose that 
𝑔(𝑎1, … , 𝑎𝑚, 𝑡1, … , 𝑡𝑛) ∶ℝ𝑚+𝑛 →ℝ is a continuously differentiable function. Let 𝒂= [𝑎1, … , 𝑎𝑚] and 𝒕 = [𝑡1, … , 𝑡𝑛] be the two compo-

nents, i.e., the two blocks, of the variables of 𝑔. The 2-block GS method minimizes the objective function 𝑔 by alternating between 
fixing one block of variables at a time; see Algorithm 6 for details. The proposed AFM-LS scheme is a 2-block GS method since the 
objective function in problem (5) can be written as

𝑓 (𝒕,𝒂) = 𝑓 (𝑡1,… , 𝑡𝑛, 𝑎11,… , 𝑎62) =
𝑛∑

𝑖=1
(𝑍2

𝑥,𝑖 +𝑍2
𝑦,𝑖), (47)

where

𝑍 =
3∑
(𝑎 cos(𝑗𝑡) + 𝑎 sin(𝑗𝑡)) − 𝑥 ,
18

𝑥,𝑖

𝑗=1
2𝑗−1,1 2𝑗,1 𝑖
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Fig. 2. 𝑃0 = (𝑥0, 𝑦0) is a point in the (𝑥, 𝑦)-plane, and 𝑀1 and 𝑀2 are two points on a dumbbell curve that correspond to local minimizers of the squared distance 
function (46) in the first quadrant.

Algorithm 5: Fast algorithm of estimation of the parameter 𝑡 for dumbbell curves.

Input : A point (𝑥0 , 𝑦0), coefficients 𝑎11 , 𝑎51 , 𝑎22 , and 𝑎62 that define the dumbbell curve (28), 𝑛𝑡 ≥ 2 the number of sample points of 𝑡, the squared distance 
function 𝑑(𝑡) = (𝑎11 cos(𝑡) + 𝑎51 cos(3𝑡) − 𝑥0)2 + (𝑎22 sin(𝑡) + 𝑎62 sin(3𝑡) − 𝑦0)2 .

1 𝛿 = 𝜋∕2(𝑛𝑡 − 1);
2 if 𝑥0 ≥ 0 and 𝑦0 ≥ 0 then

3 𝑡0 = 0;

4 if 𝑥0 ≥ 0 and 𝑦0 < 0 then

5 𝑡0 = −𝜋∕2;

6 if 𝑥0 ≤ 0 and 𝑦0 ≤ 0 then

7 𝑡0 = −𝜋;

8 if 𝑥0 ≤ 0 and 𝑦0 > 0 then

9 𝑡0 = 𝜋∕2;

10 for 𝑖 = 0, 1, ⋯ , 𝑛𝑡 − 1 do

11 𝑑𝑖 = 𝑑(𝑡0 + 𝑖𝛿)

12 Find 𝑚 such that 𝑑𝑚 is the minimum of all 𝑑𝑖 ’s;

13 𝑡𝑚 = 𝑡0 +𝑚𝛿;

Output : √𝑑(𝑡𝑚) the approximate minimal distance between (𝑥0, 𝑦0) and the dumbbell curve, and 𝑡𝑚 the approximate solution of the parameter.

𝑍𝑦,𝑖 =
3∑

𝑗=1
(𝑎2𝑗−1,2 cos(𝑗𝑡) + 𝑎2𝑗,2 sin(𝑗𝑡)) − 𝑦𝑖,

and (𝑥𝑖, 𝑦𝑖) is the 𝑖𝑡ℎ given data point in the (𝑥, 𝑦)-plane. It is clear that the function 𝑓 (𝒕, 𝒂) is continuously differentiable.

The minimization problem

argmin
𝒕,𝒂

{𝐹 (𝒕,𝒂) = 𝑓 (𝒕,𝒂) + 𝜇‖𝑊 𝒂‖1},
where 𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑛]𝑇 ∈ (−𝜋, 𝜋]𝑛 and 𝒂 = [𝑎11, 𝑎21, … , 𝑎61, 𝑎12, 𝑎22, … , 𝑎62]𝑇 , is equivalent to problem (5) when 𝜇 = 0 and to 
problem (6) when 𝜇 > 0. The following result is a rewording of [14, Theorem 6.3(ii)].

Theorem 7. Suppose that global minimization of the function 𝑔(𝒂, 𝒕) with respect to each component of the argument vectors is well defined. 
Then, the 2-block GS method generates an infinite sequence {𝒂(𝑘), 𝒕(𝑘)}∞

𝑘=0 such that if the level set of 𝑔 corresponding to the initial point 
[𝒂(0), 𝒕(0)],

 = {[𝒂, 𝒕] ∈ℝ𝑚+𝑛 ∶ 𝑔(𝒂, 𝒕) ≤ 𝑔(𝒂(0), 𝒕(0))},

is compact, then lim𝑘→∞∇𝑔(𝒂(𝑘), 𝒕(𝑘)) = 0 and there exists at least one limit point that is a stationary point of 𝑔.
19

To apply Theorem 7 to AFM-LS, we need the following result.
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Algorithm 6: 2-Block Gauss-Seidel method.

Input : 𝑔([𝒂, 𝒕]) and initial guess [𝒂(0), 𝒕(0)] ∈ℝ𝑚+𝑛 .

1 for 𝑘 = 1, 2, … do

2 𝒂(𝑘) = argmin𝒂 𝑔(𝒂, 𝑡(𝑘−1));
3 𝒕(𝑘) = argmin𝒕 𝑔(𝒂(𝑘), 𝒕);

Output : [𝒂(𝑘), 𝒕(𝑘)] ∈ℝ𝑚+𝑛 .

Proposition 1. Let the function 𝑓 be defined by (47). Then, the level set

 =
{
[𝒂, 𝒕] ∈ℝ12+𝑛 ∶ 𝑓 (𝒂, 𝒕) ≤ 𝑓 (𝒂(0), 𝒕(0))

}
of 𝑓 corresponding to the point [𝒂(0), 𝒕(0)] is compact, where we assume that the level set is non-empty.

Proof. The proposition follows from the continuity of the function (47). □

Proposition 2. AFM-LS generates a sequence [𝒂(𝑘), 𝒕(𝑘)], 𝑘 = 0, 1, …, that converges to a stationary point [𝒂(𝐾), 𝒕(𝐾)] of 𝑓 as in (47), which 
is another form of the objective function of (5).

Proof. Problems (19) and (21) are minimization problems with respect to the two components of problem (5). Thus, the first 
assumption of Theorem 7 is satisfied.

By Proposition 1, the level set  of 𝑓 corresponding to the initial point [𝒂(0), 𝒕(0)] is compact. Hence, the second assumption of 
Theorem 7 is satisfied.

The function 𝑓 is continuously differentiable. Therefore, by Theorem 7,

lim
𝑘→∞

∇𝑓 (𝒂(𝑘), 𝒕(𝑘)) = 0.

The proposition is thus established. □

Recall that, for the model matrix 𝑇̃ ∈ ℝ𝑛×6 in (3), we assume that the parameters 𝑡𝑖 are in the interval (−𝜋, 𝜋]. Moreover, we 
assume that the fitted curve does not intersect itself. These two assumptions secure that any point on the curve corresponds to a 
unique parameter value 𝑡𝑖. This is trivial for an ellipse, and it is not hard to arrive at the same conclusion for a curve defined by 
(28) by using Theorem 2. Hence, under the condition that there are at least 6 points, whose closest points on the curve are pair-wise 
distinct, the matrix 𝑇̃ has full column rank. In addition, when these points on the curve are not too close to each other, 𝑇̃ is fairly 
well-conditioned. In this case,

𝑇 =
[
𝑇̃ 0
0 𝑇̃

]
also has full column rank and is fairly well-conditioned. Since we seek to fit a curve to a large number, 𝑛, of points, one has 𝑛 ≫ 6. 
The two conditions mentioned above are typically satisfied. Therefore, for the remainder of this section, we assume that the iterates 
𝑇 (𝑘) generated by AFM have full column rank and their condition numbers are uniformly bounded.

Theorem 8. Let 𝒛 = [𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 ∈ ℝ2𝑛, where (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … , 𝑛, are the 𝑛 given points, and 𝑛 ≫ 6. Suppose that 
[𝒂∗, 𝑇 ∗] is an optimal solution of (5). Let the matrix 𝑇 (𝑘) be determined by 𝒕(𝑘) as in (4) and assume the condition numbers of 𝑇 (𝑘) are 
uniformly bounded. Let 𝒂(𝐾) ∶= lim𝑘→∞ 𝒂(𝑘) and 𝑇 (𝐾) ∶= lim𝑘→∞ 𝑇 (𝑘) be the two components of the stationary point generated via AFM-LS. 
Then,

‖𝑑𝐾 − 𝑑∗‖ ≤ ‖𝜃𝒂∗‖, (48)

where 𝑑𝐾 = ‖𝑇 (𝐾)𝒂(𝐾) − 𝒛‖, 𝑑∗ = ‖𝑇 ∗𝒂∗ − 𝒛‖, and 𝜃 = 𝑇 ∗ − 𝑇 (𝐾).

Proof. Let

𝑑′ = ‖𝑇 (𝐾)𝒂∗ − 𝒛‖.
Given 𝑇 (𝐾), 𝒂(𝐾) is the unique solution of

min
𝒂
‖𝑇 (𝐾)𝒂− 𝒛‖22.

Thus,

𝑑𝐾 ≤ 𝑑′.
20

The definition of 𝑑∗ guarantees
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𝑑∗ ≤ 𝑑𝐾 ≤ 𝑑′. (49)

By the Cauchy-Schwarz inequality, we have

𝑑′ = ‖(𝑇 ∗ − 𝜃)𝒂∗ − 𝒛‖ = ‖𝑇 ∗𝒂∗ − 𝒛− 𝜃𝒂∗‖ ≤ 𝑑∗ + ‖𝜃𝒂∗‖. (50)

If 𝑑′ ≤ 𝑑∗ + ‖𝜃𝒂∗‖ < 𝑑𝐾 , then 𝑑𝐾 > 𝑑′, contradicting inequality (49). If 𝑑′ ≤ 𝑑∗ + ‖𝜃𝒂∗‖ = 𝑑𝐾 , then via (49),

𝑑′ = 𝑑𝐾.

Then,

𝑑′ = 𝑑∗ + ‖𝜃𝒂∗‖ = 𝑑𝐾.

It follows that

𝑑𝐾 − 𝑑∗ = ‖𝜃𝒂∗‖.
If 𝑑∗ + ‖𝜃𝒂∗‖ > 𝑑𝐾 , then via (49) and (50),

𝑑𝐾 ≤ 𝑑′ ≤ 𝑑∗ + ‖𝜃𝒂∗‖.
Therefore,

0 ≤ 𝑑𝐾 − 𝑑∗ ≤ ‖𝜃𝒂∗‖. □

As for AFM-FISTA (𝜇 > 0), since the 𝓁1-regularization term is not continuously differentiable, we cannot apply Theorem 7. 
Nevertheless, we have the following results.

Theorem 9. The objective function values of problem (6) with 𝑞 = 1 generated by the iterates of AFM-FISTA form a strictly monotonically 
decreasing sequence which converges to a positive value, assuming any two consecutive iterates of 𝒂 are not equal and the condition numbers 
of all iterates 𝑇 (𝑘) are uniformly bounded.

Proof. Define the objective function value at the 𝑘𝑡ℎ iteration to be

𝑑(𝑘) = ‖𝑇 (𝑘)𝒂(𝑘) − 𝒛‖22 + 𝜇‖𝑊 𝒂(𝑘)‖1, 𝑘 = 1,2,… , (51)

where 𝑇 (𝑘) and 𝒂(𝑘) are the 𝑘𝑡ℎ determined by AFM-FISTA. These iterates are calculated at the end of the 𝑘𝑡ℎ iteration.

Since the 𝑑(𝑘) are bounded below by zero, to prove the convergence, we only need to show that the sequence is strictly mono-

tonically decreasing. Based on the analysis of the basic approximation model of the iterative soft-thresholding algorithm (see [13, 
Section 2.3]), the unique minimizer of problem (20) with the given matrix 𝑇 (𝑘) is

𝒂(𝑘+1) = argmin
𝒂

{
𝜇‖𝑊 𝒂‖1 + 𝐿

2
‖‖‖‖𝒂−

(
𝒂(𝑘) − 1

𝐿
∇𝑓 (𝒂(𝑘))

)‖‖‖‖2
}

,

where 𝑓 (𝒂) = ‖𝑇 (𝑘)𝒂− 𝒛‖22, ∇𝑓 denotes the gradient of 𝑓 , and 𝐿 = 2𝜆𝑚𝑎𝑥(𝑇 (𝑘)𝑇 𝑇 (𝑘)). Since 𝒂(𝑘+1) ≠ 𝒂(𝑘), one has

𝑑(𝑘) > 𝑑
(𝑘+1)
0 ∶= ‖𝑇 (𝑘)𝒂(𝑘+1) − 𝒛‖22 + 𝜇‖𝑊 𝒂(𝑘+1)‖1.

Let 𝑡(𝑘+1)𝑡𝑟𝑢𝑒𝑖
be a true solution that minimizes the distance function 𝑑(𝑡) in Algorithm 5 defined by 𝒂(𝑘+1) and 𝒛𝑖. We have that 

𝑡
(𝑘+1)
𝑖

→ 𝑡
(𝑘+1)
𝑡𝑟𝑢𝑒𝑖

as the number of samples increases to infinity.

Since Algorithm 5 determines the unique solution 𝑇 (𝑘+1) of (21), given 𝒂(𝑘+1), one has

𝑑
(𝑘+1)
0 ≥ 𝑑(𝑘+1).

Hence,

𝑑(𝑘) > 𝑑(𝑘+1), 𝑘 = 1,2,… . □

One can show the following theorem similarly as Theorem 9.

Theorem 10. The objective function values of problem (5) generated by the iterates of AFM-LS form a strictly monotonically decreasing 
sequence, which converges to a positive value, under the assumption that any two consecutive iterates 𝒂(𝑘) are not equal and the condition 
numbers of all iterates 𝑇 (𝑘) are uniformly bounded.
21

The following theorem gives conditions when a stationary point of AFM is found.
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Theorem 11. Define 𝑑(𝑘) as in (51) and assume that the condition numbers of all iterates 𝑇 (𝑘) are uniformly bounded. Consider AFM-LS 
(𝜇 = 0) and AFM-FISTA (𝜇 > 0). If 𝑇 (𝐾−1) = 𝑇 (𝐾) or 𝒂(𝐾−1) = 𝒂(𝐾) for some 𝐾 , then for all 𝑘 ≥𝐾 , one has

𝑑(𝑘) = 𝑑(𝑘+1), 𝑇 (𝑘) = 𝑇 (𝑘+1), 𝒂(𝑘) = 𝒂(𝑘+1).

Proof. We divide the proof of the theorem into two parts.

Part 1: Assume that 𝑇 (𝐾−1) = 𝑇 (𝐾). Then,

𝒂(𝐾) = argmin
𝒂
‖𝑇 (𝐾−1)𝒂− 𝒛‖22 + 𝜇‖𝑊 𝒂‖1

= argmin
𝒂
‖𝑇 (𝐾)𝒂− 𝒛‖22 + 𝜇‖𝑊 𝒂‖1

= 𝒂(𝐾+1).

Since the Algorithms 2 and 5 determine a unique solution to problem (21), we have

𝑇 (𝐾) = 𝑇 (𝐾+1). (52)

It follows by (51) that 𝑑(𝑘) = 𝑑(𝑘+1), for 𝑘 ≥𝐾 .

Part 2: Assume that 𝒂(𝐾−1) = 𝒂(𝐾). Similarly to the process of reaching (52), one has 𝑇 (𝐾−1) = 𝑇 (𝐾). The rest of the proof is the 
same as in Part 1. □

4. Computed examples

In this section, we seek to fit a curve to the edge of the black hole at the center of galaxy M87 [15], the edge of the Andromeda 
galaxy [16], and the edges of two different brightnesses of MyCn18 [17], a young planetary nebula; see the first column of Fig. 3 for 
the images of these celestial bodies. Each of the original color images from NASA.org has three color channels, referred to as red, 
green and blue. For our experiments, we extract data points only from the red channel; see the second column of Fig. 3. The pixel 
values from the red channel vary from 0 to 255, with 0 meaning no red color to 255, meaning the brightest red.

Define the fitting error of the fitted curve generated at the 𝑘𝑡ℎ iteration as

𝑒(𝑘) =
𝑛∑

𝑖=1
𝑑
(𝑘)
𝑖

, (53)

where 𝑑(𝑘)
𝑖

is the shortest distance between the point (𝑥𝑖, 𝑦𝑖) and the curve generated in the iteration. Since the 𝑒(𝑘) decrease mono-

tonically with 𝑘 according to Theorems 9 and 10, we let the stopping criterion for AFM be

𝑒(𝑘−1) − 𝑒(𝑘)

𝑒(𝑘−1)
≤ 10−3.

For Algorithm 2, we set the step size to 𝛿 = 𝜋∕1080, and for Algorithm 5 the number of sample points is 𝑛𝑡 = 540.

The experiments are run on an Apple MacBook Air laptop with an M2 8-Core 3.49 GHz chip and 8 GB of RAM, using macOS 
Ventura 13.0 and 64-bit arithmetic. All computations are carried out in MATLAB R2022b with about 15 significant decimal digits.

4.1. Circle fitting

Fig. 4 (a) is the central portion of an image of the black hole at the center of galaxy M87 taken by the Event Horizon Telescope. 
The original resolution is 2330 × 4000 pixels, from which we downsize the image to about 25% of the original size and crop it to 
its central region. The resulting resolution is 980 × 980 pixels. We seek to fit a circle to points whose pixel value in the red channel 
equals 60; see panel (b). There are a total of 1,946 such points. Results for the direct circle-fitting method (DCF), the iterative 
least-algebraic-residuals (LAR) method, the iterative geometric least-squares (GLS) method described in [6], and the direct geometric 
least-squares (DGLS) method proposed in [8] are listed in Table 1. DCF and DGLS are at least more than 100 times faster than LAR 
and GLS while DCF produces the smallest fitting error, which is more than 12% smaller than the next smallest fitting error produced 
by GLS. The fitted circles and their corresponding individual fitting errors, i.e., the shortest distance from a point to the fitted circle 
for CDF and GLS are shown in Fig. 5. These experiments demonstrate that, compared with other methods, DCF is efficient and 
accurate.

4.2. Methods of computing the 𝑡𝑖’s

Fig. 6(a) shows the main portion of a two-color composite image of the Andromeda galaxy from NASA’s Galaxy Evolution 
Explorer. Here blue represents far-ultraviolet light and orange represents near-ultraviolet light. The resolution of the original image 
is 7, 000 × 9, 400 pixels, which we downsize to a smaller image about 4% of the original size and crop to show the central region of 
22

the original large image. The resulting image has 760 × 1, 320 pixels. We filter out the points whose pixel value in the red channel 
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Fig. 3. (a1) The black hole at the center of galaxy M87 and (a2) its red channel image; (b1) The Andromeda galaxy and (b2) its red channel image; (c1) MyCn18 and 
(c2) its red channel image. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Table 1

Circle fitting test for 1,946 points in Fig. 4(b): Method, CPU time in 
seconds, fitting error, center and radius.

Method Time Error Center Radius

DCF ≤ 0.0001 32,022 (503.5, 529.95) 292.78

LAR 0.0109 37,804 (512.95, 540.25) 293.38

GLS 0.0091 36,556 (512.87, 537.83) 293.18

DGLS ≤ 0.0001 36,801 (512.2, 538.78) 293.64
23
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Fig. 4. (a) The black hole at the center of M87, and (b) The points where the pixel value in the red channel equals 60.

Fig. 5. Fitted circles for data points in Fig. 4(b) by (a, b) DCF, and (c, d) GLS. Each gray line segment represents the shortest distance between a point and the fitted 
circle.

equals 45; see panel (b). There are 3, 528 such points, which we first standardize by using Algorithm 1. We then apply Algorithm 2, 
the interior point method, and the trust-region method to compare their performances.

Table 2 lists results for the computed 𝑡𝑖’s, where the ellipse is defined by 𝑎11 = 622.26 and 𝑎22 = 163.39. For each method, the 
initial guess of the parameter value 𝑡𝑖 associated with a given point is obtained by (16). The step size of Algorithm 2 is set to 
𝛿 = 𝜋∕1080. We measure the error of the computed solution by

𝑛∑√
2 2
24

𝑖=1
(𝑎11 cos(𝑡𝑖) − 𝑥𝑖) + (𝑎22 sin(𝑡𝑖) − 𝑦𝑖) .
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Fig. 6. (a) The Andromeda galaxy, and (b) the points whose pixel value in the red channel equals 45.

Table 2

Computation of 𝑡𝑖 ’s for the standardized 3, 528 points 
in Fig. 6(b). The major and minor axes of the ellipse 
are listed in the first line of Table 3. The CPU time is 
measured in seconds.

Method Time Error

Algorithm 2 0.0117 200,556

Interior points 2.3085 529,429

Trust-region 19.6524 729,690

Table 3

Ellipse fitting test for the 3,528 points in Fig. 6(b): Method, CPU time in seconds, fitting error, 
center, major axis, minor axis, and the tilt angle of the fitted ellipse in degrees.

Method Time Error Center Major Axis Minor Axis Tilt

AFM-LS 0.0417 200,556 (672.43, 379.94) 622.26 163.39 24.27

LAR 6.3654 325,955 (617.44, 366.47) 480.45 244.22 16.72

GLS - - - - - -

DEF ≤ 0.0001 314,228 (655.74, 373.65) 516.58 258.62 15.48

DLAR 0.0013 381,297 (654.96, 373.41) 613.59 328.14 8.48

Both the interior point method and the trust-region method terminate the computations prematurely, because they exceed the default 
upper bound of the number of function evaluations in MATLAB, 8, 500 and 352, 800, respectively. Table 2 shows Algorithm 2 to be 
faster than the other methods in our comparison and to determine the most accurate approximations of the 𝑡𝑖 ’s.

4.3. Ellipse fitting

We compare several methods for fitting ellipses to the set of data points shown in Fig. 6(b). The test results are listed in Table 3. 
AFM-LS shows its superiority over the other methods in our comparison with regard to efficiency, fitting error, and robustness against 
outliers. LAR is applied with the constraint 𝑎 + 𝑐 = 1 as proposed in [6]. Due to the amount of noise in the data, GLS fails to detect 
an ellipse. DEF and DLAR are the fastest of the methods, but the computed ellipses are strongly affected by the outliers and these 
methods produce large fitting errors.

To compare the fitting results obtained with GLS to those of other methods, we rotate all the points in Fig. 6(b) around its 
center (672.43, 379.94) by 24.27 degrees clockwise, and discard points whose 𝑥- or 𝑦-coordinates are more than 650 and 250, 
respectively, away from the center to reduce the number of outliers. We then rotate all the remaining 3,112 points around the center 
counterclockwise by 24.27 degrees. GLS still fails to converge within 30 minutes. We, therefore, reduce the data set by picking every 
10th point; see Fig. 7 for a display of the resulting 312 points. The results obtained when fitting ellipses to this small set of points are 
listed in Table 4. GLS produces the smallest fitting error, but AFM-LS is more than 70 times faster and produces a similarly visually 
appealing ellipse; see Figs. 7–9.

4.4. Dumbbell curve fitting

Fig. 10(a) is a Hubble telescope snapshot of MyCn18, a young planetary nebula. The resolution of the image is 1, 280 × 1, 280
pixels. We form two sets of data points from the image. The first and second sets consist of the points whose pixel values in the red 
25

channel equal 46 and 160, respectively; see panel (b) and (c). There are 3, 528 points in the first set and 1, 601 in the second.
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Fig. 7. The 312 selected points from Fig. 6(b).

Fig. 8. Fitted ellipses for data points in Fig. 6(b) by (a, b) AFM-LS, and (c, d) DEF with trace constraint. Each gray line segment shows the distance between the point 
and the fitted ellipse.

Table 4

Ellipse fitting test for the 312 points in Fig. 7: Method, CPU time in seconds, fitting error, detected 
center, major axis, minor axis, and the tilt angle of the fitted ellipse in degrees.

Method Time Error Center Major Axis Minor Axis Tilt

AFM-LS 0.0039 11,519 (681.95, 370.31) 616.84 135.09 26.92

LAR 0.0076 12,718 (638.65, 355.58) 533.57 149.77 26.06

GLS 0.2755 9,466 (633.63, 365.26) 644.15 139.24 25.51

DEF ≤ 0.0001 12,570 (647.63, 368.76) 549.97 169.95 24.99

DLAR ≤ 0.0001 13,821 (648.31, 368.53) 588.22 188.35 24.38

This example uses FISTA to determine a suitable dumbbell curve. We set the step size in FISTA to 𝑠 = 1 for the fastest global 
convergence; see [13]. The regularization parameter 𝜇 is defined as

𝜇 = 𝛼𝐿𝑓 ,

where 𝐿𝑓 = 2𝜆𝑚𝑎𝑥(𝑇 𝑇
𝑤 𝑇𝑤) and 𝛼 > 0 is a user-specified parameter. This parameter also is used to define soft thresholding, which 

is carried out in each iteration of FISTA. Let 𝒂𝑊 be the available computed approximate solution and let 𝜙𝛼(⋅) denote the soft-

thresholding operator for a specified 𝛼 > 0,{
0 if |𝑤𝑖𝑗𝑎𝑖𝑗 | ≤ 𝛼,
26

𝜙𝛼(𝑤𝑖𝑗𝑎𝑖𝑗 ) ∶= sign(𝑤𝑖𝑗𝑎𝑖𝑗 )(|𝑤𝑖𝑗𝑎𝑖𝑗 |− 𝛼) if |𝑤𝑖𝑗𝑎𝑖𝑗 | > 𝛼.
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Fig. 9. Fitted ellipses for data points in Fig. 7 by (a, b) AFM-LS, and (c, d) GLS. Each gray line segment shows the distance between the point and the fitted ellipse.

Fig. 10. (a) MyCn18, (b) The points where the pixel value in the red channel equals 46, and (c) The points where the pixel value in the red channel equals 160.

Here 𝑤𝑖𝑗 is the weight for the coefficient 𝑎𝑖𝑗 . We have found that letting 500𝛼 be the half-length of the major axis of the dumbbell 
curve to be a suitable choice. For example, if the half-length is about 5, then we set 𝛼 = 0.01.

In our first experiment, we seek to fit a dumbbell curve to the points in Fig. 10(b). The simplest fitting method is to solve the 
least-squares problem (19) by QR factorization of 𝑇 . We obtain the solution

𝐴𝐿𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎣

421.8357 2.5434
3.2423 309.4641

−13.5107 −9.1222
22.8378 4.0918
49.1261 −5.1334
−2.3615 73.0413

⎤⎥⎥⎥⎥⎥⎥⎦
.

All the coefficients are nonvanishing. The computed dumbbell, therefore, is not symmetric about its center, because symmetry 
requires (27) to hold. The computed solution is displayed in Fig. 11(a).

We turn to an application of FISTA. Following the heuristics for determining weights for the coefficients discussed at the end 
of Section 3.5, we set 𝑤11 = 𝑤22 = 1, 𝑤51 = 3.1, and 𝑤62 = 2. To force the rest of the coefficients to vanish to preserve symmetry, 
we set their weights to 𝑤𝑖𝑗 = 10. The half-length of the major axis is about 500. We, therefore, set 𝛼 = 1. The iterations with FISTA 
are terminated when the relative difference of two consecutive iterates is smaller than 10−3. We use the same weights and 𝛼-value 
for fitting dumbbell curves to points in Fig. 10(b) and all the remaining AFM-FISTA fitting tests. For each test, we report the ratio 
𝑎22∕𝑎62 as the deepness of the dips of a symmetric dumbbell curve. The smaller this ratio is, the deeper are the dips. We list the 
results in Table 5. Fig. 11(c) demonstrates that AFM-FISTA determines dumbbell curves that capture the edge of the nebula and 
27

preserve symmetry is preserved. The latter is also evident from the zero entries of the computed solution
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Fig. 11. Fitted curves for data points in Fig. 10(b) by (a, b) AFM-LS, and (c, d) AFM-FISTA. Each gray line segment represents the shortest distance between a point 
and the fitted curve.

Table 5

Results for dumbbell curve fitting to data points in Fig. 10(b) and (c): Panel of the figure, number of data 
points, method, CPU time in seconds, number of iterations, fitting error, center, tilt angle in degrees, and 
deepness of the dips.

Panel Points Method Time Iter. Error Center Tilt Dip

(b) 3,975 AFM-LS 2.5558 9 70,901 (627.09, 646.39) 84.78 -

(b) 3,975 AFM-FISTA 1.3878 4 79,093 (627.09, 646.39) 84.78 4.40

(c) 1,601 AFM-LS 3.8086 33 48,803 (658.67, 649) 86.93 -

(c) 1,601 AFM-FISTA 3.6097 26 51,589 (658.67, 649) 86.93 1.73

𝐴𝐹𝐼𝑆𝑇𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣

425.7607 0
0 307.6677
0 0
0 0

44.0641 0
0 69.9298

⎤⎥⎥⎥⎥⎥⎥⎦
.

In our second experiment, we seek to fit a dumbbell curve to the points in Fig. 10(c). Straightforward solution of the least-

squares problem (19) by QR factorization of 𝑇 gives a self-intersecting curve; see Fig. 12(a). All coefficients of the solution are 
nonvanishing, similarly as in the previous example. AFM-FISTA generates a non-self-intersecting dumbbell curve that is symmetric 
about the center and captures the brighter edge of the nebula; see Fig. 12(b). The solutions determined by this method have many 
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vanishing coefficients,
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Fig. 12. Fitted curves for data points in Fig. 10(c) by (a, b) AFM-LS, and (c, d) AFM-FISTA. Each grey line segment represents the shortest distance between a point 
and the fitted curve.

Table 6

Results for fitting ellipses 10% of randomly subsampled points, and to all data points in Fig. 6(b) using 
AFM-LS. The number of data points, CPU time in seconds, number of iterations, fitting error, center of 
the curve, major axis, minor axis, and the tilt angle in degrees are shown. The first row shows the result 
when fitting all the data points.

Points Time Iter Error Center Major Axis Minor Axis Tilt

3,528 0.0417 14 200,556 (672.43, 379.94) 622.26 163.39 24.27

353 0.0079 18 194,929 (692.65, 361.69) 643.63 158.06 23.78

353 0.0044 14 210,027 (650.76, 390.22) 626.98 173.62 22.83

353 0.0050 16 192,947 (654.64, 381.15) 597.23 162.19 24.41

353 0.0044 14 235,286 (705.16, 385.48) 628.76 162.79 24.44

353 0.0037 11 213,995 (664.87, 393.36) 603.02 160.89 24.76

𝐴𝐹𝐼𝑆𝑇𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣

253.3355 0
0 162.5876
0 0
0 0

74.9386 0
0 94.1630

⎤⎥⎥⎥⎥⎥⎥⎦
.

4.5. Curve fitting to subsampled points

For the first test in this subsection, we randomly subsampled 10% of the data points in Fig. 6(b) five times and fit ellipses to them 
using AFM-LS. The results demonstrate that the subsampling method is up to more than 10 times faster and generates well-fitted 
29

ellipses; see Fig. 13 and Table 6.
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Fig. 13. Results for fitting ellipses to 10% of randomly subsampled points, and to all data points in Fig. 6(b) using AFM-LS. The solid curves and black asterisk 
are respectively the fitted ellipse and its centers for all the points. The dotted curves and hollow dots are respectively the fitted ellipses and their centers for the 
subsampled points.

Fig. 14. Fitted dumbbell curves for 10% of randomly subsampled points and all the data points in Fig. 10(b) by (a, b) AFM-LS, and (c, d) AFM-FISTA. The solid 
curves and black asterisks are respectively the fitted dumbbell curves and their centers for all the points. The dotted curves and hollow dots are respectively the fitted 
dumbbell curves and their centers for the subsampled points.

In the next experiment, we fit dumbbell curves to randomly subsampled 10% of the data points in Fig. 10(b) five times using AFM-

LS and AFM-FISTA with the same weighting matrix 𝑊 and soft-thresholding value 𝛼 as in Section 4.4. The subsampling combined 
with AFM-LS or AFM-FISTA is up to more than 12 times faster than using all points, and generates curves that capture the edge of 
the nebula; see Fig. 14 and Table 7.

5. Conclusion

The direct circle-fitting (DCF) method and the iterative alternating methods AFM-LS proposed in this paper minimize the sum of 
the geometric distances between the generated curves and the given data points. They are efficient methods for fitting curves to a 
30

large number of data points. The experimental results show that they are robust against noise in the data. We provide a heuristic 
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Table 7

Dumbbell curve fitting to randomly subsampled 10% of the data points and all the data points in 
Fig. 10(b). The table shows the number of data points, the method, CPU time in seconds, number 
of iterations, fitting error, center of the curve, tilt angle in degrees, and the deepness of the dips. 
The first and the seventh row display result for fitting all the data points.

Points Method Time Iter. Error Center Tilt Dip

3,975 AFM-LS 2.5558 9 70,901 (627.09, 646.39) 84.78 -

398 AFM-LS 0.4866 14 75,198 (618.40, 663.78) 79.35 -

398 AFM-LS 0.2741 8 68,080 (639.88 645.00) 83.19 -

398 AFM-LS 0.3827 11 73,198 (624.11, 661.13) -86.92 -

398 AFM-LS 0.5181 18 76,860 (613.61, 655.80) -89.63 -

398 AFM-LS 0.4601 16 79,767 (614.92, 627.94) 83.57 -

3,975 AFM-FISTA 1.3878 4 79,093 (627.09, 646.39) 84.78 4.40

398 AFM-FISTA 0.1769 5 94,007 (626.98, 622.60) 82.16 4.61

398 AFM-FISTA 0.1724 5 88,197 (630.18, 666.08) -87.62 4.88

398 AFM-FISTA 0.1140 4 90,915 (624.62, 643.87) -87.86 4.77

398 AFM-FISTA 0.1381 4 105,224 (620.72, 627.45) 89.50 4.30

398 AFM-FISTA 0.1378 4 93,980 (626.11, 662.86) -84.01 5.24

technique for choosing weights and the regularization parameter for fitting dumbbell curves using AFM-FISTA by exploring the 
relationship between the coefficients. We show that AFM-LS converges to a solution that is a stationary point of the objective function. 
We also demonstrate that the objective function values generated by iterates of AFM form a strictly monotonically decreasing 
convergent sequence. Compared with other methods for fitting circles and ellipses, DCF and AFM-LS are fast, outlier-resistant, and 
produce smaller fitting errors. The experimental results for subsampling methods illustrate that they are competitive with regard to 
CPU time and generally determine suitable curves.
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