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Abstract. We advance on the conversion of bipartite quantum states via local
operations and classical communication for infinite-dimensional systems. We introduce
δ-LOCC convertibility based on the observation that any pure state can be
approximated by a state with finite-support Schmidt coefficients. We show that δ-
LOCC convertibility of bipartite states is fully characterized by a majorization relation
between the sequences of squared Schmidt coefficients, providing a novel extension of
Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent
to the one of ϵ-LOCC convertibility [Quantum Inf. Comput. 8, 0030 (2008)], but deals
with states having finitely supported sequences of Schmidt coefficients. Additionally,
we discuss the notions of optimal common resource and optimal common product
in this scenario. The optimal common product always exists, whereas the optimal
common resource depends on the existence of a common resource. This highlights a
distinction between the resource-theoretic aspects of finite versus infinite-dimensional
systems. Our results rely on the order-theoretic properties of majorization for infinite
sequences, applicable beyond the LOCC convertibility problem.

Page 1 of 15 AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



LOCC convertibility of entangled states in infinite-dimensional systems 2

1. Introduction

The purpose of this article is to explore the complexities that may arise for the infinite-
dimensional quantum systems when dealing with the convertibility of entangled states
by local operations and classical communication (LOCC) [1]. For example, it may be the
case that a state cannot be converted by LOCC to a target state but can be converted
to another state arbitrarily close to the former. To avoid such discontinuity, the notion
of ϵ-convertibility under LOCC (ϵ-LOCC) was introduced [2]. Roughly speaking, |ψ⟩
is ϵ-LOCC convertible to |ϕ⟩ if, for any neighborhood of |ϕ⟩, there exists a LOCC
operation that takes |ψ⟩ to a state in that neighborhood of |ϕ⟩. Furthermore, ϵ-LOCC
convertibility is completely characterized in terms of a majorization relation between
the sequences formed by the squared Schmidt coefficients [2, 3], which can be viewed as
an extension of Nielsen’s theorem [4] to the infinite-dimensional case. Additionally, a
generalization of this result is applicable to quantum systems represented by commuting
semi-finite von Neumann algebras [5].

Our contribution involves the introduction and discussion of a new definition of
approximate LOCC convertibility for infinite-dimensional systems, which we refer to as
δ-LOCC convertibility. This concept relies on the observation that, for any bipartite
pure state, there exists a state that is arbitrarily close to it (in terms of the trace
distance) and whose Schmidt coefficients have finite support. We will demonstrate that
this approach turns out to be equivalent to ϵ-LOCC convertibility, while offering the
added advantage of dealing with states whose sequences of Schmidt coefficients have
finite support.

Additionally, we consider the following problem: suppose that two separated parties
have to perform a series of quantum information tasks that require different entangled
states. Rather than sharing multiple states, they aim to use a single entangled state,
manipulating it to suit each task. Thus, the question arises: for any given set of target
states, is there a minimal entangled state that can be locally transformed into any other
target state using LOCC? This state, if exists, is known as an optimal common resource
of the set [6]. Similarly, we also explore the existence of a maximal entangled state that
can be obtained from any state of the original set by LOCC. This state, if exists, is
referred to as an optimal common product of the set [7]. Understanding these problems
is crucial from the perspective of quantum resource theories and entanglement [8].
By exploring these issues in the infinite-dimensional setting, we gain insights into the
fundamental properties of entanglement and its role as a quantum resource.

We recall that, in the case of pure bipartite finite-dimensional systems, the existence
of an optimal common resource and an optimal common product has been established
using the link between LOCC convertibility and majorization, as shown by Nielsen’s
theorem [4], and the fact that majorization forms a complete lattice [9, 10].

Here, we exploit the characterization of δ-LOCC (or, equivalently ϵ-LOCC) in terms
of majorization in order to describe the optimal common resource and optimal common
product for infinite-dimensional systems. Unlike the finite-dimensional case, we obtain
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that the existence of the optimal common resource is conditioned to the existence of
a common resource of the set state under consideration, which not always exist. This
poses a novel distinction in the entanglement resource theories of finite versus infinite-
dimensional quantum systems. On the other hand, we show that the optimal common
product always exists. These results stem from our characterization of the majorization
lattice for infinite-dimensional setting, which is a result of mathematical interest in itself
and can be applied beyond the scope of the LOCC convertibility problem addressed here.

2. Majorization for infinite sequences

In this section, we present two results regarding the concept of majorization for infinite
sequences, which will be useful to discuss the notion of LOCC convertibility. At the
same time, they hold mathematical interest in their own right. For references regarding
the finite-dimensional case, we recommend consulting the following sources [11, 9, 10].

To ensure clarity in our discussion, we introduce some notations. We consider the
space ℓ1 ([0, 1]) ≡ ℓ1 of sequences whose series is absolutely convergent, ℓ1[(0, 1)] ={
(xn)n∈N ∈ [0, 1]N :

∑
n∈N xn <∞

}
. Additionally, we define the space ℓ1 (ℓ with one

as sub index) as the set of sequences (xn)n∈N ∈ ℓ1[(0, 1)] for which some of these sets
{xn : xn = 0} or {xn : xn > 0} is finite [2, 12]. We deal with this class of sequences since
they can be rearranged into monotonically ordered sequences. Accordingly, we define x↓

as a sequence whose components are rearranged in non-increasing order, i.e., xn ≥ xn+1

for all n ∈ N, and ℓ↓1 as the set of correspondingly rearranged sequences.
We also introduce the space ∆∞ as the set of sequences on ℓ1 that satisfy the

normalization condition
∑∞

n=1 xn = 1. This is nothing else that the set of denumerable
probability vectors. We use ∆↓

∞ to denote the set denumerable probability vectors whose
components are sorted in non-increasing order. In addition, we consider the subset of
denumerable probability vectors with finite support, denoted as ∆′

∞.
We recall the notion of weak submajorization, which is defined as follows [13].

Definition 1. Let x, y ∈ ℓ1. Then, x is said to be weakly submajorized by y, denoted
as x ⪯w y, if

k∑
n=1

x↓n ≤
k∑

n=1

y↓n, ∀k ∈ N. (1)

In addition to weak submajorization, we are interested in the notion of majorization
in infinite dimensions. More precisely, if x and y are sequences on ∆∞ such that x ⪯w y

then x is said to be majorized by y, and denoted as x ⪯ y.

2.1. Majorization lattice for infinite sequences

We now present our first result.

Proposition 2. The poset
〈
ℓ↓1,⪯w,1,0

〉
is a complete bounded lattice with top element

1 = (1, 0, . . . , 0) and bottom element 0 = (0, 0, . . .).
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Proof. Let S be a non-empty subset and let M be a fixed positive integer. Consider the
infimum of the M -partial sums of the elements in S,

sM = inf{sM(x) : x ∈ S}.

The sequence of partial sums {sM}M∈N is increasing and, given that we are dealing with
non-increasing ordered sequences, it satisfies [9]

2sM ≥ sM−1 + sM+1.

Also for any x ∈ S, limM→∞ sM ≤ limM→∞ sM(x) <∞. Hence, the sequence {mM}M∈N,
mM = sM − sM−1 is in ℓ↓1 and clearly is the infimum of S.

Now, let S ′ ⊆ ℓ↓1 be another non-empty subset and consider the set Up(S ′) of all
upper bounds of S ′. The result follows by recalling that the supremum of S ′ is equal to
the infimum of Up(S ′). Notice that Up(S ′) ̸= ∅ since 1 ∈ Up(S ′).

We present the following observation of the order-structure of the set ∆↓
∞, which

arise as a peculiarity in the infinite-dimensional context.

Observation 3. The set ∆↓
∞ is not bounded from below.

In other words, there is no analog to the uniform probability vector for infinite-
dimensional systems. An instance of this situation is presented in the Example 7. On
the other side, it can be proved that any finite subset of ∆∞ is bounded from below.

Lemma 4. Let us consider the poset
〈
∆↓

∞,⪯,1
〉
. Then, for each non-empty finite subset

S of ∆↓
∞, S admits a lower bound, that is, there exist z ∈ ∆∞ such that z ⪯ x for all

x ∈ S.

Proof. Without loss of generality, we can assume S = {x, y}. Let sM =

min{sM(x), sM(y)} be the minimum of the M -partial sums. The sequence {sM}M∈N

is increasing and satisfies
2sM ≥ sM−1 + sM+1.

It remains to check that limM→∞ sM = 1, but this is direct since limM→∞ sM(x) = 1

and limM→∞ sM(y) = 1.

Lemma 5. Let S be a non-empty subset of ∆↓
∞ and assume that z ∈ ∆↓

∞ is a lower
bound. Then, there exists the infimum of S.

Proof. Let s ∈ ℓ↓1 be the infimum of S. Let us check that s is in fact in ∆↓
∞. Given that

z ⪯ s we have for all k ∈ N,
k∑

n=1

zn ≤
k∑

n=1

sn ≤ 1.

Taking k →∞, we get s ∈ ∆↓
∞.
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We are now able to state the main result of this section, in which we demonstrate
the lattice structure of the poset

〈
∆↓

∞,⪯,1
〉
, and its completeness properties.

Proposition 6. The poset
〈
∆↓

∞,⪯,1
〉

is a lattice with top element 1 = (1, 0, . . . , 0).
Moreover, it is

∨
-complete and conditionally

∧
-complete.

Proof. It is straightforward to observe that Lemma 4 guarantees that ∆↓
∞ is a lattice.

Moreover, by Lemma 5 the lattice is conditionally
∧

-complete. Let us prove now that
∆↓

∞ is indeed
∨

-complete. Let S ′ be another non-empty subset and let Up(S ′) be the
non-empty set of upper bounds. Notice that any element of S ′ is a lower bound of
Up(S ′). Hence, from the previous Lemma, Up(S ′) has an infimum in ∆↓

∞. In other
words, the supremum of S ′ is in ∆↓

∞.

Let us explore two illustrative examples that shed light on these results (later on, we
will discuss the physical relevance of these examples). In the first case, we present two
different families of sequences which infima do not exist, while in the second example,
the infimum is clearly defined.

Example 7. Consider the families of sequences {x(k)(λ)}k∈N0 and {x(k)(λ)}λ∈(0,1), where

x(k)n (λ) =

(
n+ k

k

)
(1− λ2)k+1λ2n, n = 0, 1, . . . . (2)

Let us show that the infima
∧
{x(k)(λ)}k∈N0 and

∧
{x(k)(λ)}λ∈(0,1) do not exist, whereas

the suprema are given by
∨
{x(k)(λ)}k∈N0 = x(0)(λ) and

∨
{x(k)(λ)}λ∈(0,1) = (1, 0, . . . , 0).

First, we prove that each component of x(k)(λ) tends to zero by proving that some
of its factors tends to zero and the others remain bounded. Let r > n be such that
δ := (1− λ2)(n/r + 1) < 1 and let k →∞, then

(1− λ2)k
(
n+ k

k

)
= (1− λ2)kn+ k

k

n+ k − 1

k − 1
. . .

n+ 1

1

= (1− λ2)k
(n
k
+ 1
)( n

k − 1
+ 1

)
. . .
(n
1
+ 1
)

≤ (1− λ2)k
(n
r
+ 1
)k−r (n

1
+ 1
)r

=
(
(1− λ2)

(n
r
+ 1
))k−r (

(1− λ2)
(n
1
+ 1
))r

< δk−r(n+ 1)r → 0.

Then x
(k)
n (λ) → 0 when k → ∞. It is easy to check that x(k)n (λ) → 0 when λ → 1.

Then, it follows the non-existence of the infima for both sets.
The form of the suprema follows from the fact that x(k+1)(λ) ⪯ x(k)(λ) and

x(k)(λ) ⪯ x(k)(λ′) with λ′ ≤ λ, see [14].

The following example is a family of incomparable sequences that admits an
infimum.
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Example 8. Consider the family of sequences {x(k)}k∈N≥3
defined as

x(k) =

1− 1

log k
,

k︷ ︸︸ ︷
1

k log k
, . . . ,

1

k log k
, 0, . . . , 0

 . (3)

First, we can prove that the infimum
∧
{x(k)}k∈N≥3

exists. The M -partial sum of the
sequence x(k) with k ≥ 3 is given by

sM(x(k)) =

{
1− 1

log k
+ (M − 1) 1

k log k
if 1 ≤M ≤ k + 1,

1 if M ≥ k + 1.

In order to compute infk≥3 sM(x(k)) we are going to use some techniques from calculus.
For a fixed M , consider the function s(ω),

s(ω) = 1− 1

logω
+ (M − 1)

1

ω logω
, ω ≥ 3.

For M = 1, 2, we have s′(ω) > 0, so the minimum is attained for ω = 3. For M ≥ 3,
taking derivatives and equating to 0, it follows that s(ω) has only one minimum at ω0,
where ω0 satisfies

ω0

1 + logω0

=M − 1.

Given that s(ω) has only one critical point, the number k such that sM(x(k)) is minimum
happens at k = ⌊ω0⌋ or at k = ⌈ω0⌉. In other words, given M ≥ 3, there exists k0 such
that

inf
k≥3

sM(x(k)) = sM(x(k0)).

It can be shown directly for M = 1, 2, 3 that

inf
k≥3

s1(x
(k)) = 1− 1

log 3
, inf

k≥3
s2(x

(k)) = 1− 2

3 log 3
, inf

k≥3
s3(x

(k)) = 1− 3

5 log 5
.

The value ω0 can be computed (if necessary) with a fixed-point iteration,

r0 = 1, ri+1 = (M − 1)(1 + log ri), i ≥ 1.

Notice that r1 =M−1 and if ri ≥ 1, the value of ri+1 is always greater than M−1. This
implies that the function (M − 1)(1 + log x) is a contraction implying the convergence
of the method to ω0.

Finally, it is easy to observe that the supremum of this family is
∨
{x(k)}k∈N≥3

=

(1, 0, . . .).
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2.2. Approximate majorization in terms of finite support probability vectors

We will now proceed to define a notion of majorization in the infinite-dimensional case,
based on approximations of the original sequences by sequences with finite support.
With that purpose in mind, we first prove Lemma 9 that provides an upper bound for
the trace distance between two sequences in ∆↓

∞ coinciding in the first N components.

Lemma 9. Let x, x′ ∈ ∆↓
∞ such that xn = x′n for all n ≤ N and

∑N
n=1 xn = sN . Then,

dtr(x, x
′) ≤

√
2(1− sN), (4)

where dtr(x, y) =
√
1−

(√
x · √y

)2 with
√
x = (

√
xn)n∈N and √y = (

√
yn)n∈N.

Proof. By direct calculation of the trace distance between x and its finite support
counterpart, x′, we have

dtr(x, x
′)2 = 1−

(√
x ·
√
x′
)2

=
(
1 +
√
x ·
√
x′
)
(1−

√
x ·
√
x′)

≤ 2
(
1−
√
x ·
√
x′
)

= 2

(
1−

N∑
n=1

xn −
∞∑

n=N+1

√
xn
√
x′n

)

≤ 2

(
1−

N∑
n=1

xn

)
.

Building on the previous Lemma, we can now demonstrate that any sequence
x ∈ ∆↓

∞ can be approximated by another finite-support sequence x′ ∈ ∆′↓
∞, which is

arbitrarily close to x and majorizes the latter.

Proposition 10. Let x ∈ ∆↓
∞. For any δ ∈ (0, 1), there exists x′ ∈ ∆′↓

∞ such that

x ⪯ x′ and dtr(x, x′) ≤ δ. (5)

Proof. In order to prove this result, we are going to construct one such x′ that fulfills
the requirements. Given x ∈ ∆↓

∞, δ ∈ (0, 1), let us prove that for any K ∈ N, there
exist N,M ≥ K and x′ = (x′n)n∈N ∈ ∆′↓

∞ where

(i) N is such that sN ≥ 1− δ2

2
with sN =

∑N
n=1 xn,

(ii) M is such that M =
⌊
1−sN
xN

⌋
+N ,

(iii) x′n = xn for 1 ≤ n ≤ N ,

(iv) x′n = xN for N + 1 ≤ n ≤M ,

(v) x′n = 1− sN − (M −N)xN for n =M + 1
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(vi) x′n = 0 for n > M + 1,

First, let us observe that x′ ∈ ∆′↓
∞. By construction,

∑∞
n=1 x

′
n = 1. Thus, all

that remains is to demonstrate that xN ≥ x′M+1, which is also directly satisfied by
construction, since M + 1 ≥ 1−sN

xN
+ N . Then, it follows that sk(x) = sk(x

′) for
1 ≤ k ≤ N , sk(x) ≤ sk(x

′) for k ≥ N + 1. Therefore, x ⪯ x′. Finally, by Lemma 9, one
has that dtr(x, x′) ≤ δ.

It is also interesting to note that, as we demonstrate in the following proposition, the
newly introduced approximation scheme preserves the majorization order (see Figure 1
(a)).

Proposition 11. Let x, y ∈ ∆↓
∞ be such that x ⪯ y and let δ > 0. Then there exist

x′, y′ ∈ ∆′↓
∞ such that dtr(x, x′) ≤ δ and dtr(y, y′) ≤ δ, and x′ ⪯ y′.

Proof. Given δ > 0, there exists y′ such that y ⪯ y′ and dtr(y, y′) ≤ δ, by Proposition 10.
Let K ∈ N be such that y′n = 0 for all n ≥ K. For this K and for the given δ > 0,
there exists x′ such that x ⪯ x′ and dtr(x, x

′) ≤ δ, by Proposition 10. Let us see that
x′ ⪯ y′. By construction, we have sk(x′) ≤ sk(y

′) for 1 ≤ k ≤ K. For all k ≥ K,
sk(x

′) ≥ 1 = sk(y
′).

In addition, we have the converse result.

Proposition 12. Let x, y ∈ ∆↓
∞. If for all δ > 0, there exists x′, y′ with finite support

such that dtr(x, x′) < δ, dtr(y, y′) < δ and x′ ⪯ y′. Then, x ⪯ y.

Proof. By hypothesis we can construct sequences {x′m}∞m=1 and {y′m}∞m=1 such that
dtr(x, x

′
m) < 1/m and dtr(y, y

′
m) < 1/m for all m ∈ N. Notice that the first k

coordinates of x′m (resp. y′m) converge to the first k coordinates of x (resp. y). Indeed,
let x = (x1, . . . , xk) and x′m = (x′m1, . . . , x

′
mk). Then,

∥
√
x−

√
x′m∥22 =

k∑
n=1

(
√
xn −

√
x′mn)

2

≤
∞∑
n=1

(
√
xn −

√
x′mn)

2

= 2− 2
∞∑
n=1

√
xn
√
x′mn

= 2− 2(x · x′m)
≤ 2− 2(x · x′m)2

= 2 dtr(x, x
′
m)

2

<
2

m2
.

Given that all norms are equivalent in Rk, we get that x′m converges to x and in
particular, being sk a continuous function, sk(x′m) converges to sk(x). But we have
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LOCC convertibility of entangled states in infinite-dimensional systems 9

Figure 1. Hasse diagrams showing the majorization relations proved in: (a) Prop. 11;
(b) and (c) Obs. 13.

the equalities sk(x′m) = sk(x
′
m) and sk(x) = sk(x) (same for sk(y′m) and sk(y)). Then,

taking limit in m to the relation sk(x′m) ≤ sk(y
′
m) it follows that sk(x) ≤ sk(y).

Finally, from Proposition 11 and appealing to the properties of the lattice, the
following observation about the infimum and supremum elements for infinite sequences
and their finite-support counterparts follows (see Figure 1 (b) and (c)).

Observation 13. Consider x, y ∈ ∆↓
∞ with x′ and y′ representing their respective

approximated finite-support sequences. Then, one has x∧ y ⪯ x′ ∧ y′. Similarly, for the
supremum, one can establish x ∨ y ⪯ x′ ∨ y′.

3. LOCC convertibility for infinite-dimensional systems

In this section, we present a new definition of LOCC convertibility for infinite-
dimensional systems. Later on, we will prove that our definition coincides with the
one already defined by Owari et al [2], which is known as ϵ-LOCC convertibility.

In what follows, we consider composite systems that consists of two parties, A and
B, such that the Hilbert space of the joint system is H = HA ⊗HB, with dimHA =∞
and dimHB =∞.

3.1. ϵ-LOCC convertibility

First, let us recall the Schmidt decomposition of bipartite pure states in the infinite-
dimensional case [2].

Theorem 14. [2, th.4] For any |ψ⟩ ∈ HA ⊗HB, there exist orthonormal sets (but not
necessarily basis sets) {|an⟩}n∈N and {|bn⟩}n∈N of HA, and HB, respectively, such that

|ψ⟩ =
∞∑
n=1

√
ψn |an⟩ |bn⟩ , (6)

where ψ = (ψi)i∈N ∈ ∆↓
∞.

Page 9 of 15 AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



LOCC convertibility of entangled states in infinite-dimensional systems 10

Second, we review the notion of ϵ-LOCC convertibility introduced in [2], defined in
terms of the trace distance ∥ |ψ⟩ − |ϕ⟩ ∥tr =

√
1− | ⟨ψ|ϕ⟩ |2 between pure states.

Definition 15. [2, def.1] |ψ⟩ is ϵ-convertible to |ϕ⟩ by LOCC, denoted as |ψ⟩ −→
ϵ−LOCC

|ψ⟩,
if for any ϵ > 0, there exists a LOCC operation Λϵ such that ∥Λϵ(|ψ⟩)− |ϕ⟩ ∥tr < ϵ.

Finally, we recall the following theorem stating the equivalence between ϵ-LOCC
and majorization of the squared Schmidt coefficients, which can be viewed as the infinite-
dimensional version of Nielsen’s theorem [4].

Theorem 16. [2, th.1] Let |ψ⟩ and |ψ⟩ bipartite pure states belonging to HA ⊗ HB.
Then, |ψ⟩ −→

ϵ−LOCC
|ϕ⟩ if and only if ψ ⪯ ϕ, where ψ and ϕ are the sequences formed by

the squared Schmidt coefficients of |ψ⟩ and |ϕ⟩, respectively.

3.2. δ-LOCC convertibility

Our definition of LOCC convertibility makes use of the construction proposed in
Proposition 11, where we demonstrated how to approximate infinite sequences by finite-
support probability vectors while preserving the majorization order. Before introducing
the new definition, we provide two observations. First, for any pair of pure states |ψ⟩
and |ϕ⟩ with same orthonormal Schmidt sets the trace distance is

∥ |ψ⟩ − |ϕ⟩ ∥tr = dtr(ψ, ϕ), (7)

where ψ and ϕ are the corresponding sequences formed by the squared Schmidt
coefficients of the states. Second, for any bipartite pure state |ψ⟩ belonging to HA⊗HB,
there exists another pure state |ψ′⟩ with same Schmidt set than |ψ⟩ and such that
∥ |ψ⟩ − |ψ′⟩ ∥tr = dtr(ψ, ψ

′) ≤ δ, with ψ′ having finite support. The state |ψ′⟩ can be
obtained, for instance, from Proposition 10. With this in mind, we define the concept
of δ-LOCC as follows.

Definition 17. |ψ⟩ is δ-convertible to |ϕ⟩ by LOCC, denoted as |ψ⟩ −→
δ−LOCC

|ψ⟩, if for

any δ > 0, there exist states |ψ′
δ⟩ and |ϕ′

δ⟩, both with sequences of Schmidt coefficients
with finite support, such that ∥ |ψ⟩ − |ψ′

δ⟩ ∥tr < δ, ∥ |ϕ⟩ − |ϕ′
δ⟩ ∥tr < δ and there exists a

LOCC operation Λδ such that |ϕ′
δ⟩ = Λδ(|ψ′

δ⟩).

From this definition, we can state the following version of Nielsen’s theorem in the
context of infinite-dimensional systems.

Proposition 18. Let |ψ⟩ and |ϕ⟩ be bipartite pure states belonging to HA⊗HB. Then,
|ψ⟩ −→

δ−LOCC
|ϕ⟩ if and only if ψ ⪯ ϕ, where ψ and ϕ are the sequences formed by the

squared Schmidt coefficients of |ψ⟩ and |ϕ⟩, respectively.

Proof. (=⇒)

By hypothesis, |ψ⟩ −→
δ−LOCC

|ϕ⟩, then for any δ > 0 there exist states |ψδ⟩ and |ϕδ⟩
with sequences of Schmidt coefficients of finite support such that ∥ |ψ⟩ − |ψδ⟩ ∥tr < δ,
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LOCC convertibility of entangled states in infinite-dimensional systems 11

∥ |ϕ⟩− |ϕδ⟩ ∥tr < δ and there exists a LOCC operation Λδ such that |ϕδ⟩ = Λδ(|ψδ⟩). Let
ψ, ϕ, ψ′, ϕ′ ∈ ∆↓

∞ be the Schmidt coefficients of |ψ⟩ , |ϕ⟩ , |ψδ⟩ , |ϕδ⟩, respectively. Then,
we have that ψ′, ϕ′ have finite support, dtr(ψ, ψ′) < δ, dtr(ϕ, ϕ′) < δ and by Nielsen’s
Theorem ψ′ ⪯ ϕ′. Then, by Proposition 12, ψ ⪯ ϕ.

( ⇐= ) Let |ψ⟩ and |ϕ⟩ such that ψ ⪯ ϕ. Then, from Proposition 11, for any
δ > 0, we can obtain states |ψ′⟩ and |ϕ′⟩ with ψ′, ϕ′ ∈ ∆′↓

∞ such that ψ′ ⪯ ϕ′

(hence |ψ′⟩ →
LOCC

|ϕ′⟩ by Nielsen’s theorem), and ∥ |ψ⟩ − |ψ′⟩ ∥tr = dtr(ψ, ψ
′) < δ and

∥ |ϕ⟩ − |ϕ′⟩ ∥tr = dtr(ϕ, ϕ
′) < δ. Therefore, |ψ⟩ −→

δ−LOCC
|ϕ⟩.

As a corollary, we obtain that ϵ-LOCC and δ-LOCC are equivalent notions:

Corollary 19. Given two bipartite pure states |ψ⟩ and |ϕ⟩, belonging to HA⊗HB, the
following three statements are equivalent:

• |ψ⟩ −→
δ−LOCC

|ϕ⟩

• |ψ⟩ −→
ϵ−LOCC

|ϕ⟩

• ψ ⪯ ϕ

4. Optimal common resource and optimal common product

We have already studied the convertibility between infinite-dimensional entangled states
via LOCC, and we have seen how this operation is subject to a majorization relationship
between the sequences of Schmidt coefficients. We now introduce the notions of optimal
common resource and optimal common product. Both concepts are related to the
completeness of the majorization lattice, i.e., on the ability to define supremum and
infimum elements for any subset of sequences. We will formulate these definitions in
terms of δ-LOCC convertibility, but they can be formulated in an equivalent way in the
ϵ-LOCC setting.

4.1. Optimal common resource

First, let us introduce the definitions of common resource and optimal common resource.

Definition 20. Let P be an arbitrary set of bipartite pure states in HA ⊗ HB. The
state |ψcr⟩ is said to be a common resource of P , if

|ψcr⟩ −→
δ−LOCC

|ϕ⟩ ∀ |ϕ⟩ ∈ P . (8)

Moreover, the state |ψocr⟩ is said to be an optimal common resource of P , if |ψocr⟩ is a
common resource and for any other common resource |ψcr⟩, one has

|ψcr⟩ −→
δ−LOCC

|ψocr⟩ . (9)
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LOCC convertibility of entangled states in infinite-dimensional systems 12

For finite-dimensional P , there always exists an optimal common resource. Unlike
the finite-dimensional case, the existence of an optimal common resource for infinite-
dimensional systems is conditioned to the existence of a common resource. At the
same time, this is subject to the completeness of the lattice of sequences discussed in
Proposition 6. More precisely,

Proposition 21. Let P be an arbitrary set of bipartite pure states in HA⊗HB. Then, if
there exists a common resource |ψcr⟩ of P, there also exists an optimal common resource
|ψocr⟩ of P.

Proof. Let |ψcr⟩ be a common resource for the set P , as in Definition 20. In that case,
Proposition 18 says that ψcr ⪯ ϕ ∀ |ϕ⟩ ∈ P , with ψcr, ϕ the corresponding sequences of
Schmidt coefficients. Thus, ψcr is a lower bound for all the considered sequences and,
by Lemma 5, there exists an infimum. That infimum gives us the sequence of Schmidt
coefficients associated with the optimal common resource |ψocr⟩.

Let us see two examples, where in the first an optimal common resource does not
exit whereas in the second it does. In particular, the next example was introduced
in [14] in the context of the Gaussian channel minimum entropy conjecture. Here, we
use this example in order to illustrate two sets of bipartite pure sates that do not admit
an optimal common resource.

Example 22. Let a two-mode squeezer of parameter r, that is, U(r) =

exp
[
r(ab− a†b†)

]
where a, b, a† and b† are the creation and annihilation operator of

the inputs modes, respectively. The action of the two-mode squeezer over the input
state |k⟩ |0⟩ can be expressed in the Schmidt decomposition as |ψ(k)

λ ⟩ = U(r) |k⟩ |0⟩ =∑∞
n=0

√
x
(k)
n (λ) |n+ k⟩ |n⟩ with x

(k)
n (λ) given by Eq. (2) and λ = tanh r [14]. Let

consider the sets
{
|ψ(k)

λ ⟩
}

k∈N0

and
{
|ψ(k)

λ ⟩
}

λ∈(0,1)
, which have the peculiarities that

|ψ(k+1)
λ ⟩ −→

δ−LOCC
|ψ(k)

λ ⟩ and |ψ(k)
λ ⟩ −→

δ−LOCC
|ψ(k)

λ′ ⟩ for λ′ ≤ λ. The corresponding sets of
sequences of Schmidt coefficients were studied in Example 7, in which we showed they
do not have infima. Then, optimal common resources for these sets do not exist.

The following example was introduced in [15] in order to show that the entropy of
entanglement for infinite-dimensional quantum systems is not necessarily continuous in
the trace-norm. We use this example in order to illustrate the case of a set of bipartite
pure sates having an optimal common resource.

Example 23. Let consider the set of bipartite pure sates
{
|ψ(k)⟩

}
k∈N≥3

, where |ψ(k)⟩ =∑k+1
n=1

√
x
(k)
n |an⟩ |bn⟩ with x(k) given by Eq. (3). In particular, we have that all the

states are not LOCC convertible to each other, that is, |ψ(k)⟩ ↚→
δ−LOCC

|ψ(k′)⟩ for all

k ̸= k′. However, an optimal common resource of the set
{
|ψ(k)⟩

}
k∈N≥3

exists and its
Schmidt coefficients can be computed algorithmically as shown in Example 8.
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LOCC convertibility of entangled states in infinite-dimensional systems 13

4.2. Optimal common product

We introduce now the notion of common product and optimal common product of a set
of states.

Definition 24. Let P an arbitrary set of bipartite pure states in HA ⊗HB. The state
|ψcp⟩ is said to be a common product of P , if

|ϕ⟩ −→
δ−LOCC

|ψcp⟩ ∀ |ϕ⟩ ∈ P . (10)

Moreover, the state |ψocp⟩ is said to be an optimal common product of P , if |ψocp⟩ is a
common product and for any other common product |ψcp⟩, one has

|ψocp⟩ −→
δ−LOCC

|ψcp⟩ . (11)

Just as the common resource problem is associated with the existence of lower
bounds in the space of Schmidt sequences, the common product problem is linked to
the existence of upper bounds. In that sense, given that the majorization lattice is∨

-complete, there always exists an optimal common product.

Proposition 25. Let P an arbitrary set of bipartite pure states in HA ⊗ HB. Then,
there exists an optimal common product |ψocp⟩ of P.

Proof. It follows directly from Proposition 6, noting that there always exists a supremum
for the corresponding set of sequences of squared Schmidt coefficients.

Reviewing the Examples 22 and 23 just discussed, it is evident that in both cases
there exist the so-called optimal common products, whose Schmidt coefficients are
determined by the suprema outlined in Examples 7 and 8.

5. Concluding remarks

In conclusion, this article delves into the intricacies of infinite-dimensional systems,
specifically focusing on the convertibility of entangled states through local operations
and classical communication (LOCC). In particular, we have introduced a new definition
of LOCC convertibility for infinite-dimensional systems, termed δ-LOCC convertibility,
which is fully characterized by a majorization relation between sequences of squared
Schmidt coefficients and proves to be equivalent to ϵ-LOCC convertibility. Notably,
this definition offers the mathematical advantage of dealing with finitely supported
sequences.

Moreover, we have explored the LOCC convertibility problem in practical situations
involving two parties aiming to perform various quantum information tasks using a
single entangled state. In these scenarios, the concepts of optimal common resource and
optimal common product for a given set of infinite-dimensional target states naturally
arise. While the existence of an optimal common product is always guaranteed, an
optimal common resource is conditionally dependent to the existence of a common
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LOCC convertibility of entangled states in infinite-dimensional systems 14

resource, highlighting a novel difference in the entanglement properties between finite
and infinite-dimensional systems.

We have leveraged the majorization lattice characterization for infinite sequences
to establish these results. This not only contributes to the understanding of the LOCC
paradigm in the infinite-dimensional case, but also presents mathematical insights with
broader applicability beyond the specific scope of the addressed problem. Moreover,
our results can be applied to other majorization-based resource theories. Overall, the
exploration of these issues for infinite-dimensional systems enhances our comprehension
of the fundamental properties of entanglement and its role as a quantum resource.
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