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The increase of greenhouse gases into the atmosphere represents today one of the most global concern. The 

inevitable depletion of fossil fuels and the adverse climate changes push the scientific community to seek 

renewable and sustainable sources of fuel. In this scenario microalgae can be potentially exploited as 

renewable and environmentally friendly fuel resources. Wastewaters (WW) can be used as culture media 

reducing the costs associated to their cultivation. Hence, the goal of this study was to examine the effect of an 

organic rich WW on Chlorella vulgaris growth and fatty acid methyl esters (FAME) profile. This strain shows 

high biomass productivity thriving in a wide range of WWs and is able to shift its metabolism from autotrophic 

to hetero/mixotrophic one. Glycerol can be used to convey metabolism towards lipids production. Therefore, 

C. vulgaris was cultivated in dairy waste (DWW) with different concentrations of glycerol under both 

metabolisms. When C. vulgaris was cultivated under mixotrophy attained a high biomass yield compared to 

heterotrophy. The highest biomass yield (1.72 g L-1) was obtained with 10 mL of glycerol in DWW compared to 

the control (1.08 g L-1). When a two-phase metabolism was adopted, that is the first ten days under 

mixotrophy followed by the last five days in heterotrophy (MHD), the biomass was almost doubled with 2 mL of 

glycerol in DWW. FAME profile reveled that compared to the control the highest saturated fatty acids (SFA), 

monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) content were obtained under 

heterotrophy with 10 mL of glycerol, under MHD with 2 mL and with 4 mL of glycerol (46.73%wt, 41.79%wt, 

and 30.34%wt, respectively). A preliminary analysis on the saturated and unsaturated components of the 

FAME suggests that lipids extracted from C. vulgaris biomass cultivated mixotrophically and heterorophically 

in DWW could represents a feedstock to be exploited for biodiesel production. 

1. Introduction 

The increase of anthropogenic carbon dioxide (CO2) emissions in the atmosphere and the depletion of the 

fossil fuels reservoirs represent a challenge for the scientific community and governments. Therefore, there is 

an urgent call at global level to seek renewable and sustainable sources of fuel (Zhao et al, 2022). In this 

scenario the exploitation of environmentally friendly resources is emphasized. To this aim, microalgae show 

high productivities in terms of biomass and lipid content making them suitable for biofuels production (Concas 

et al., 2021a). Wastewaters (WWs) typically contain large amounts of nutrients, such as carbon (C), nitrogen 

(N), phosphorus (P) and trace elements to sustain algal growth. It is well demonstrated the ability of 

microalgae to combine their growth with the biological WW treatment (Lutzu et al., 2020a; Concas et al., 

2021b).  
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The presence inside a WW of inorganic and organic C makes some algae strains able to modulate their 

metabolism from autotrophic into a mixotrophic one depending on the carbon sources available. The use of 

food industry WWs, such as dairy, brewery and molasses sugarcane as a nutrient medium for microalgae 

cultivation is well established (Miotti et al., 2022). In addition, exogenous organic C sources added to a 

heterotrophic/mixotrophic cultivation of microalgae pushes metabolic apparatus of cells towards an enhanced 

lipid production (Whangchai et al., 2021; Yun et al., 2021). In this light, glycerol (a by-product of biodiesel 

industry) can be seen as a metabolic stress inducer to push production of lipids (Xue et al., 2017).  

The microalga Chlorella vulgaris can accumulate lipids and produce biodiesel under suitable stress conditions 

(Ratomski and Hawrot-Paw, 2021; Korozi et al., 2021). This strain is also able to shift its exclusively 

photoautotrophic or heterotrophic metabolism into a mixotrophic one, leading to an increase in biomass 

production. The influence of heterotrophy and mixotrophy on lipid content and FAME composition is well 

documented for many Chlorella strains (Rahimi et al., 2021; Vitali et al., 2022). DWW is particularly rich in 

sugars (high BOD and COD values varying from 0.1 to 100 g L-1) which can enhance biomass productivity by 

microalgae once available in the culture medium (Slavov, 2017). Hence, by considering the potential use of 

DWWs as media for microalgae cultivation, the effect of different concentration of glycerol as additional 

organic sources able to stress lipid metabolism on C. vulgaris biomass accumulation and lipid production is 

reported in this study. A close analysis of FAMEs profile is also assessed based on the addition of glycerol 

under heterotrophy, mixotrophy and a two-phase mixo-heterotrophic metabolism.  

2. Material and Methods 

2.1 Experimental setup 

Chlorella vulgaris metabolic behaviour was monitored for 17 days under heterotrophy (HD) and mixotrophy 

(MD) condition using dairy WW (DWW) as culture medium and Doucha medium as control (CTRL), 

respectively. A two-phase metabolic condition (MHD) was obtained cultivating Chlorella for the first 12 days in 

mixotrophy and the last 5 days in heterotrophy. For each of the three metabolic conditions (HD, MD and MHD) 

three replicates were run with four different concentrations of glycerol: 0 mL, 2 mL, 4 mL, and 10 mL. 

2.2 Inoculum and wastewater preparation 

The strain used in this study, C. vulgaris SAG 211-12, was obtained from the culture collection of algae at the 

University of Gottingen, Germany (SAG, 2021). Detailed chemical composition of the culture maintenance 

media is available on the SAG official website. The strain was maintained in 150 mL glass tubes containing 

the growth medium recommended by SAG at room temperature. Two 32 W white fluorescent tubes 

continuously provided a photosynthetic photon flux density (PPFD) of 50 µmol m−2 s−1. During HD PBRs were 

wrapped up by aluminium foils to prevent light penetration. Inoculum was cultured for about one week once it 

reached the end of exponential growth phase. DWW was collected from a brewery facility located in Cremona, 

Italy. An average range of the main chemical-physical parameters for this effluent is shown in Table 1. Once 

collected DWW was stored at 4 ºC before its use. Later it was filtered using glass filter microfiber disks 

(GF/CTM 47 mm diameter, Whatman, Incofar Srl, Modena, MO, Italy), deprived of solid materials and then 

sterilized at 121 ºC and 0.1 MPa for 20 min before microalgae cultivation.  

2.3 Culture medium and algae cultivation 

1 L glass flasks, referred as PBRs, were used for algae cultivation. PBRs were covered with a cotton cup for 

air diffusion (0.03% CO2 v v-1) and daily shaken manually at room temperature. They were illuminated with a 

photoperiod of 12 h light/12 h dark by white fluorescent lamps providing a light intensity of 85 µmol m-2 s-1. The 

initial working volume of the PBRs and cell concentration were 500 mL and 0.1 g L-1, respectively. The culture 

medium used as control was a modified Doucha whose composition was obtained by adding to 1 L of distilled 

water 10 mL of five stock solutions, NaNO3 (38.92g 250mL
-1 H2O), KH2PO4 (2.96g 250mL

-1 H2O), MgSO4 ∙ 7H2O 

(2.55g 250mL
-1 H2O), CaCl2 ∙ 6H2O (2.17g 250mL

-1 H2O), EDTA-FeNa (0.5g 250mL
-1 H2O), 1 mL of microelements 

solutions I and II, and 0.5 mL of NaOH 1 M. Microelements solution I was prepared in the following manner 

(mg L-1): H3BO3 415, MnCl4∙ 4H2O 1650, ZnSO4∙ 7H2O 1350, CoSO4∙ 7H2O 300, and CuSO4∙ 5H2O. For 

solution II (mg L-1): (NH4)6Mo7O24∙ 4H2O 85 and NH4VO3 7. After two weeks of cell growth, the cultures were 

centrifuged at 9722 g for 10 min. The liquid phase was separated from the pellet and the latter used for fatty 

acids methyl esters (FAME) analysis.  

2.4 Characterization of microalgae growth pattern    

Microalgae growth in the culture was monitored by measuring the optical density (OD) at 680 nm. The detailed 

procedure adopted for monitoring algal growth was reported in Lutzu et al. (2020b). The cell concentration (dry 
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weight V-1) Xdw (g L−1), specific growth rate (μ), and doubling time (td) calculations were performed according 

to Zhou and Dunford (2017). The average biomass productivity (∆X) was expressed as: 

max 0

max 0

dw

X X
X

t t

−
 =

−
    (1) 

where 𝑡0 represent initial time of the cultivation period. The pH of the cultures was recorded using a pH-meter 

(HI 2210, Hanna Instruments, Woonsocket, RI, USA).  

2.5 FAMEs determination  

FAMEs were prepared according to a modified protocol reported by Lage and Gentili (2018). Briefly, a toluene 

solution and a 1% H2SO4 solution in anhydrous methanol were used to re-suspend freeze-dried cells to 

improve the methylation of non-polar lipids and their trans-methylation, respectively. A tricosanoic acid methyl 

ester (TAME) (CH3(CH2)21COOCH3) in hexane was added as an internal standard. The FAMEs were then 

extracted with an extractive solution (5 mL aqueous 5% NaCl + 7 mL hexane) and after separation the organic 

phase was analyzed by a 7820A Gas Chromatopraph (Agilent Technologies, Palo Alto, CA, USA) coupled to a 

5977B Mass Spectrometer (Agilent Technologies Palo Alto, CA, USA). The GC-MS system (split mode 20:1, 

split flow 19.6 mL min-1) was equipped with a low polarity Supelco SLB-5 GC capillary column (30 m x 0.25 

mm x 0.25 µm). Helium was used as carrier gas. The injector and detector temperatures were set at 280 and 

230 °C, respectively. The chromatogram was recorded in the scan mode (40-500 m z-1) with a programmed 

temperature from 60 to 280 °C. The identification and quantification of individual FAMEs were performed by 

using a standard reference solution obtained by mixing Supelco 37 Component FAME Mix® (Sigma Aldrich, 

Saint Louis, MO, USA), TAME internal standard solution and hexane. The content of FAMEs was calculated 

by manually integrating their peak areas with respect to the internal standard TAME, after calculation of the 

response factor (RF) using the standard reference solution. Finally, fatty acid (FA) levels were expressed as g 

100 g-1 total FAs. 

2.6 Data Analysis 

All the experiments with algae and analytical tests were carried out in triplicate, with mean values for them. 

MataboAnalyst 5.0, tuned by the McGills University (Montreal, Canada), was used for the statistical analyses 

of the data. The regression equations correlating dry biomass concentration to OD and to µ were calculated 

using Microsoft Office Excel program (Excel 2016 Ink, Microsoft, USA). 

3. Results and Discussion 

3.1 C. vulgaris growth in dairy wastewater supplemented with glycerol 

DWWs are characterized by huge amount of organic matter as demonstrated by the high BOD and COD 

values reported in Table 1. On the other hands, these effluents are poor in N and P. 

Table 1: Range of main physical-chemical parameters reported for dairy wastewaters  

          BOD5 (g L-1)    COD (g L-1)        TSS (g L-1)     TN (g     TN (g L-1)      TP (g L-1)     pH              Ref. 

         0.24-5.90         0.50-10.40   0.06-5.80          0.01-0.66       0-0.060       4.0-11.0      Slavov, 2017        

          0.087               0.215             0.147            0.091          0.014           7.95            Licata et al., 2021 

          1.3-1.6             2.50-3.0                        72-80           -         -                 7.2-7.5        Demirel et al., 2005 

Note: BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand, TSS = Total Suspended Solids, TN = Total 

Nitrogen, TP = Total Phosphorous. 

To verify the effect of three trophic conditions such as MD, HD and MHD on C. vulgaris biomass production a 

series of growth experiments were carried out using DWW as culture medium and a regular Doucha medium 

as control (CTRL). For each trophic condition four glycerol concentrations (0, 2, 4 and 10 mL) were tested. As 

it can be seen in Table 2, MD with all the three glycerol amount tested greatly increased the biomass 

concentration (1.57, 1.62, 1.72 g L-1, respectively) compared to the control (1.08 g L-1), while under MHD 

mode only the addition of 2 mL of glycerol increased the biomass compared to CTRL, being the other three 

concentrations statistically not significant. On the other hand, under HD the biomass accumulation was 

considerably reduced. The glycerol supplementation stimulated C. vulgaris growth under MD while under HD 

and MHD its effect was negligible. Also the µ in HD conditions were lower compared to those in MD 

conditions. It has been also reported that algal µ can be significantly improved by nutrient supplementation 

(Lutzu et al., 2020b). In our study µ was lowered in CTRL, while when the dairy medium was amended with 
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glycerol µ increased. These results are in agreement with previous works showing that mixotrophy 

significantly increases Chlorella sp. biomass concentration and productivity in batch systems, compared to 

autotrophy and heterotrophy (Miotti et al., 2022, Vitali et al., 2022). A possible explanation could be the fact 

that mixotrophic cultures are characterized by an accelerated anabolism due to adenosine triphosphate 

formed both in photochemical reactions during the photosynthesis and in mixotrophic reactions. 

Table 2: Growth characteristics of C. vulgaris cultivated with dairy wastewater under different metabolic 

conditions 

Growth medium   µ (day-1) td (day) Xmax (g L-1)            ∆X (mg L-1 day-1) 

CTRL 0.119 ± 0.013 5.81 ± 0.34           1.08 ± 0.06              82 ± 0.004           

MD0 0.362 ± 0.063 1.91 ± 0.34 1.13 ± 0.05              63 ± 0.003           

MD2 0.446 ± 0.015 1.55 ± 0.05 1.57 ± 0.13              92 ± 0.007           

MD4 0.318 ± 0.030 2.18 ± 0.21 1.66 ± 0.84              97 ± 0.005           

MD10 0.391 ± 0.025 1.77 ± 0.13 1.72 ± 0.05            101 ± 0.003 

HD0 0.048 ± 0.001 8.72 ± 1.18 0.40 ± 0.01              31 ± 0.007           

HD2 0.133 ± 0.015 5.21 ± 0.73 0.69 ± 0.02              42 ± 0.001 

HD4 0.132 ± 0.009 5.25 ± 0.37 0.58 ± 0.01              42 ± 0.001 

HD10 0.126 ± 0.003 5.50 ± 0.12 0.62 ± 0.01              41 ± 0.010 

MHD0 0.365 ± 0.027 1.90 ± 0.14 0.94 ± 0.05              44 ± 0.002 

MHD2 0.387 ± 0.030 1.80 ± 0.15 1.19 ± 0.05              61 ± 0.002 

MHD4 0.443 ± 0.045 1.57 ± 0.16 0.96 ± 0.03              61 ± 0.002 

MHD10 0.363 ± 0.045 1.99 ± 0.16 0.88 ± 0.03              67 ± 0.002 

Note: µ: specific growth rate, td:  doubling time, Xmax:  maximum biomass concentration, ∆X: average biomass productivity. 

CTRL: Doucha medium, MD: mixotrophy in DWW, HD: heterotrophy in DWW, MHD: mixo-hetrotrophy in DWW. 0 mL, 2 mL, 

4 mL, and 10 mL represent the amount of glycerol added to the media 

Many studies reported that C. vulgaris growth is directly influenced by the N:P ratio found in the culture 

medium, being P the limiting factor for its growth. The optimum N/P ratio for C. vulgaris’s growth is set as 16:1 

(Wu et al. 2014). In our growth test, N/P ratios of DWW both under MD and HD are far away from this 

optimum, while only the control is close with a N/P ratio of 13:1. Organic sources can be used by microalgae 

to shift their metabolism from autotrophy to mixothophy. This can explain why C. vulgaris, when cultivated in 

DWW, attained a better biomass concentration compared to CTRL where there are not at all organic 

compounds. On the other hand, the scarcity of N and P, typical of wastes rich in organic matter (Table 1), 

leads to an imbalance between the ratios C:N:P with respect to the optimal values for algae. This would lead 

to an excessive intracellular storage of C in the form of neutral lipids such as triacylglycerols rather than as 

proteins which would require N. 

3.2 FAME profile of C. vulgaris under mixotrophy and heterotrophy mode 

The composition of FAs in terms of length and branching of the carbon chain, and degree of unsaturation is a 

fundamental prerequisite for considering microalgal biomass as a feedstock for biodiesel production. 

Therefore, the FAME profile of C. vulgaris, obtained after the esterification of FAs, is reported in Figure 1. 

FAME obtained in MHD and in CTRL exhibithed higher percentages of long-chain compounds C16-C18 (97-

99%wt and 96%wt, respectively) compared to those obtained under MD (90-92.5%wt) and HD (89-93%wt) 

(Fig 1b). The most represented FAs in MD were oleic (C18:1) > palmitic (C16:0) > linoleic (C18:2) > stearic 

(C18:0), in HD were C16:0 > C18:1 > C18:0 > C18:2, and in MHD were C18:1 > C16:0 > C18:2 > the ω-3 

palmitolinolenic C16:3 FA (Fig. 1a). By considering the addition of glycerol on the three trophic systems it can 

be seen that in MD there were not statistically significant differences in the range 0-10 mL of glycerol except 

for 2 mL of glycerol that produced a % reduction of C18:1. In HD the addition of glycerol doubled the % of 

C16:0 while reduced to 1/3 that of C18:2. On the other hand, the presence of glycerol in MHD did not produce 

significant changes in the % of FAs. Interestingly, compared to CTRL the addition of glycerol almost halved 

the % of C18:1 in MD, increased considerablty the % of palmitoleic (C16:1) and C18:0 FAs and reduced that 

of C16:3 in HD, while in MHD increased hexadecadienoic (C16:2) and C18:1 FAs and decreased the % of 

myristoleic (C14:1), C16:0, palmitidonic (C16:4), and C18:2 FAs. In terms of degree of saturation and 

unsaturation (Fig 1b) the addition of glycerol produced an increase of unsaturated fatty acids (UFA) in MHD 

(68.90-70.38%) and a decrease in MD (54.57-61.36%wt) and HD (53.27-58.36%wt), while conversely the 

84



saturated fatty acids (SFA) decreased in MHD (29.62-30.60%wt) and increased in MD (38.64-45.43%wt) and 

HD (41.64-46.73%wt), compared to CTRL (62.33%wt of UFA and 37.67%wt of SFA). The most represented 

UFA were obtained in HD without glycerol (73.36%wt), while the highest % of SFA, monunsaturated fatty 

acids (MUFA) and polyunsaturated fatty acids (PUFA) were obtained in HD with 10 mL of glycerol (46.73%wt), 

in MHD wihout glycerol, and in HD without glycerol, respectively. When C. vulgaris was cultivated in MD and 

HD the UFA/SFA ratio was < 2 and > 2 in MHD. The highest UFA/SFA ratio (2.75) was obtained when C. 

vulgaris was cultivated in HD without the addition of glycerol, compared to CTRL (1.65). UFA/SFA ratio 

describes how SFA and UFA are distributed inside the cells. This ratio is strictly linked to the nutritional 

requirements of microalgae, therefore to the culture medium. Microalgal metabolism can be modulated 

depending on the conditions in which microalgae are grown. In particular, lipid composition in algal membrane 

and cytoplasm can be rearranged in terms of SFA and UFA. For example, a redistribution, which lead to an 

increased SFA portion, can be obtained by increasing the synthesis of neutral triglycerides at the expense of 

polar membrane lipids (rich in UFA) which can be partially degraded (Xin et al., 2018). This rearrangement of 

FAMEs can be enhanced under condition of nutrients starvation, such as those that can be found when C. 

vulgaris is grown in DWW. One of the FAs suitable for making biodiesel is C16:0. The content of this FA 

remained high in HD whit the addition of glycerol while decreased in MD and MHM (Fig 1a) suggesting that 

the accumulation of this specific FA could be influenced by the reduced availability of macronutrients (such as 

N and P) in organic media compared to CTRL. The high degree of unsaturation, % of C16-18 FAs and C16:0 

suggests that a biodiesel obtainable by C. vulgaris cultivated in DWW with the addition of glycerol could be 

suitable for biodiesel production. Experiments are on the way to support this hypothesis by a close analysis of 

physical-chemical properties of lipids. 

 

Figure 1. Fatty acids methyl ester profile (a) and total fatty acids (b) of C. vulgaris when cultivated under three 

different trophic conditions in the presence of glycerol 

4. Conclusions 

DWW, as organic source of waste, has been investigated to improve biomass production and FAME profile by 

C. vulgaris with the addition of glycerol under three different trophic modes. The results demonstrated that 

DWW could represent a costless resource of organic nutrients able to trigger the microalgal growth and 

biomass production is enhanced as the content of glycerol is increased under mixotrophy. As far as the FAME 

profile is concerned, C. vulgaris was able to modify its internal metabolism to achieve an improvement in 

terms of unsaturation based on trophic condition used. In particular, the addition of glycerol under MHD 

condition reduced the saturation of FAs by increasing the unsaturation level, providing also higher MUFA and 

PUFA compared to CTRL. The final microalgae biomass makes DWW a viable option as priceless media for 

the cultivation of C. vulgaris. By considering also the FAME profile mainly in terms of unsaturation level, 

microalgal biomass obtained cultivating this strain mixotrophycally could potentially represent a feedstock for 

biodiesel production. 
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