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In this paper we propose a geometric approach to the selection of the equilibrium price. After a
perturbation of the parameters, the new price is selected thorough the composition of two maps:
the projection on the linearization of the equilibrium manifold, a method that underlies econometric
modeling, and the exponential map, that associates a tangent vector with a geodesic on the manifold.
As a corollary of our main result, we prove the equivalence between zero curvature and uniqueness
of equilibrium in the case of an arbitrary number of goods and two consumers, thus extending the
previous result by Loi and Matta (2018).
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1. Introduction

In a pure exchange economy with two consumers, an arbi-
rary number l of goods and fixed total resources r distributed
cross agents, suppose that at the initial endowment alloca-
ion the set of corresponding equilibrium prices is not singleton,
hat is, there are multiple equilibria. As endowments vary, price
djusts towards a new equilibrium. One could explore the out-
f-equilibrium dynamics of this adjustment or, less ambitiously,
ocus on a continuous approximation represented by a sequence
f equilibrium changes. Yet this simpler approach, if there is price
ultiplicity, raises the crucial issue of price selection, that is, of
hich price will occur after a change in parameters.
In this setting the equilibrium price is often assumed to vary

ontinuously (smoothly) as a result of a continuous (smooth)
ariation of parameters and discontinuities in prices are usually
ttributed to singularities, a property called smooth selection, de-
pite the lack of a theory behind it and the presence of other
otential prices that could occur.
In the present paper we tackle this issue following the equilib-

ium manifold approach which, from the seminal work of Debreu
1970), found an elegant geometric formulation in Balasko (1988).
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We recall that the equilibrium manifold is defined as the pairs
of prices and endowments such that aggregate excess demand is
zero.

1.1. A stylized representation of the smooth selection

Fig. 1 is a stylized representation of the equilibrium manifold
E(r) and the smooth selection (see Balasko (1988), or Balasko
1975) for the original contribution). It depicts a pure exchange
conomy with multiple prices, where Ω(r) and S denote the
pace of endowments and normalized prices, respectively.
Starting from x = (p, ω), we assume that the endowments are

ontinuously changed to ω′. We observe that ω and ω′ belong to a
egion of the parameters with three equilibria. The curve joining
and x′ represents the equilibrium path, i.e., prices and endow-
ents consistent with the equilibrium during the transition of

he economy from ω to ω′. Such a path is an approximation of the
ynamics of price adjustment that ignores the out-of-equilibrium
rocess. In fact, this curve is a subset of the equilibrium mani-
old. The curve joining ω to ω′, an approximation of a discrete
equence of changes of the endowments, is the projection of the
quilibrium path onto the space of endowments and it is the
ause of the price adjustment.
Following the smooth selection, it is generally accepted that

his continuous (smooth) variation of endowments entails a con-
inuous (smooth) change in the supporting equilibrium price
ector. In other terms, discontinuities of prices are only attributed

o catastrophes, that is, when the endowments change crosses
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Fig. 1. A redistribution of endowments with smooth selection.

a singular economy, as, e.g., ωc . Otherwise, prices ‘‘should not
jump’’ to different ‘‘records’’, as would occur in y = (p̃, ω′).

This view of the smooth selection can be seen mathematically
equivalent to finding a smooth function f : S × Ω(r) → E(r),
such that f (E(r)) = E(r), or to project homotopically (smoothly)
S×Ω(r) onto E(r) through a deformation retract. If we denote by
π : S ×Ω(r) → Ω(r) the natural projection, the above construc-
tion would imply that, given (p, ω) ∈ E(r), a neighborhood Uω
containing ω = π (p, ω), and chosen a point (p′, ω′) sufficiently
close to E(r), we would have f (p′, ω′) ∈ π−1(Uω).

The knowledgeable reader in the equilibrium manifold could
think of an alternative, natural way, to tackle this problem using
the unknottedness property of E(r) (DeMichelis and Germano,
2000), that is, by using a diffeomorphism D : S×Ω(r) → S×Ω(r)
such that D(E(r)) = {p0} ×Ω(r), where the equilibrium manifold
is mapped into an hyperplane. By denoting the projection proj :

S × Ω(r) → {p0} × Ω(r), (p, ω) ↦→ (p0, ω), one could define
f := D−1

◦ proj ◦ D : S × Ω(r) → S × Ω(r), but unfortunately,
this topological approach would not offer any insight on how to
explicitly find the function f .

1.2. The geometric approach

The purpose of the present paper instead is to provide a geo-
metric construction to find the function f to explain the smooth
selection phenomenon avoiding ‘‘jumping’’ onto other records.

To provide an insight, let us denote by πT the projection πT :

S × Ω(r) → TE(r), where TE(r) denotes the tangent bundle of
E(r), that is, {(p, v)|p ∈ E(r), v ∈ Tp(E(r))}.

Denote the initial equilibrium by x = (p, ω) and change the
endowments to ω′. After this change takes place, the pair z =

(p, ω′) is out of the equilibrium manifold. Our approach consists
of (1) locally approximating the manifold with its tangent plane at
x, TxE(r), (2) projecting z onto TxE(r), πT (z), and then (3) mapping
the vector v = πT (z) − x into the (unique) geodesic connecting
x to y via the exponential map1 expx : TE(r) → E(r), where y =

1 Note that there exists a unique geodesic γ : (−a, a) → E(r), such that
(0) = x and γ ′(0) = v, for small a > 0 and ∥v∥. Moreover, because by
ecreasing its velocity, the interval of definition (−a, a) of the geodesic can be
niformly increased, the exponential map can be defined as expx(v) := γ (1). This
ap can be shown to be a (local) diffeomorphism near x. But, in our geometric
onstruction, being ∥v∥ arbitrary, expx must be defined for all TxE(r), that is, it
ust be a global diffeomorphism.
2

Fig. 2. A geometric approach to the equilibrium selection.

(p′, ω′) represents the new equilibrium that is consistent with the
adjustment process. This way, the supporting equilibrium price
is unambiguously selected and belongs to the same record. This
construction enables us to explicitly define the map f , that is,

f := expx ◦ πT : S ×Ω(r) → E(r).

Fig. 2 illustrates this approach.

.3. A numerical example

The metric used to calculate the geodesic is induced by the
mbient space S ×Ω: it privileges the perspective of us external
bservers, who are also the builders of the model. Therefore,
his can lead to a difference between ω′ and the coordinates of
he geodesic related to the final endowments allocation. Such
difference depends on the shape of the manifold. This may

esult in Fig. 2 presenting inaccuracies and imprecisions due to
pproximations and excessive simplifications. This should not
e interpreted negatively: the purpose of the construction is to
nsure that selection occurs in the same record. Furthermore, the
nalysis is independent of the criticality of equilibria, as selection
ccurs even at critical equilibria because the exponential map is
global diffeomorphism.
To better clarify these points, we introduce the numerical

xample of a smooth exchange economy with three equilibria
roposed by Shapley and Shubik (1977), with two goods, l1 and
2, and two consumers, a and b. The vector of total resources is

= (40, 50). Preferences are represented by the utility func-
ions ua(l1, l2) = l1 + 100

(
1 − e−l2/10

)
and ub(l1, l2) = l2 +

10
(
1 − e−l1/10

)
.

Under the standard maximization, the individual demand func-
ions for the first good are F a

1 =
pω1+ω2−10log(10p)

p and F b
1 =

10log
(

11
p

)
, where (ω1, ω2) denotes the endowments held by

consumer a. Let (ω1, ω2) be (38, 0.9). Then the aggregate excess
demand F1(p) for good x has three equilibria, (0.31, 1.07, 2.94).

Let the point (p, ω1, ω2) = (1.07, 38, 0.9) represent the initial
equilibrium point x on the equilibriummanifold. After a perturba-
tion of endowments, let (38, 1) be consumer a’s new endowments
allocation. The point z = (1.07, 38, 1) does not belong to the
equilibrium manifold.

We apply the geometric approach to select the new price.
Given the implicit form F a

+ F b
− 40 = 0, we can parametrize
1 1
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(u, v) =

(
u, v, 40 −

u
v

− 10log
(
11
v

)
+

10log(10v)
v

)
,

here u and v denote ω2 and p, respectively. In order to deter-
mine the vector v belonging to TxE(r), we subtract from the vector
z − x its orthogonal component, i.e.,

v = (z − x) − πnx (z − x) = (z − x) − ((z − x) · nx)nx

= (0.08,−0.03,−0.02),

where (z − x) · nx denotes the scalar product and nx = (0.41, 0.8,
0.44) represents the unit normal vector at x. By denoting with Dτ
the differential of the parametrization τ , we set

αDτ (0.9, 1.07)
∂

∂u
+ βDτ (0.9, 1.07)

∂

∂v
= v

to determine the intrinsic coordinates (α, β) of the tangent vector
. Given the point x and the vector (α, β) = (0.08,−0.03), we

can numerically2 compute the unique geodesic γ (t), such that
γ (0) = x and γ ′(0) = (α, β) = (0.08,−0.03). The coordi-
nates of γ (1) are (0.98, 1.04, 37.99). Taking care of the change
of coordinates of the parametrization, this triple corresponds to
(p, ω1, ω2) = (1.04, 37.99, 0.98) which indeed belongs to the
equilibrium manifold. For (ω1, ω2) = (37.99, 0.98), F1(p) has
oots (0.32, 1.04, 2.96), that is, the algorithm has selected the
iddle price, as we had set in the starting situation: the new price
elongs to the same record as the previous one. Referring to the
pproximation we were discussing earlier, we note the difference
etween the point suggested by the geodesic (1.04, 37.99, 0.98)

and the one that would correspond to the post-perturbation
allocation, (1.02, 38, 1), a part of which is attributable to numer-
ical approximation and a part to the shape of the manifold. To
overcome this second aspect opens an interesting and yet largely
unexplored research area, that of studying families of metrics
with economic meaning, which is beyond the scope of this work
(see, e.g., Loi and Matta (2011)).

1.4. A discussion

Despite its seemingly geometric flavor, this construction deeply
relies on the economic properties that affect the geometry of the
equilibrium manifold. Moreover, it is based on the composition of
two natural maps, the projection on the linearization of the equi-
librium manifold, a method that underlies regression techniques,
and the exponential map that associates a tangent vector with a
geodesic on the manifold. Furthermore, our approach differs from
the contributions in the literature, which focused on introducing
uncertainty through randomization over the equilibra. We refer
the reader to Allen et al. (2002) and the references therein.

Generally speaking, the exponential map can be used to define
a local chart around any point on a manifold, which allows,
using calculus techniques, to study the geometry of the manifold
locally, by mapping tangent vectors at one point to points on the
manifold near that point.

We recall that a diffeomorphism between manifolds is a smooth
and bijective map that preserves smoothness and differentiabil-
ity. In simpler terms, it is a function that can smoothly stretch,
shrink, or bend a manifold into another.

In terms of intuition, a local diffeomorphism can be thought
of as a ‘‘zoomed-in’’ view of a manifold, where the local geom-
etry around each point is preserved. It means that the function

2 Geodesics are often computed numerically because finding closed-form so-
utions is generally very difficult or impossible. In this case we have used (Anon,
023) and its built-in function geodesics_numerical(x, (α, β), interval), whose
utput returns, among other things, coordinates of the geodesic point in the
hree-dimensional space.
3

preserves the smooth structure locally, in a small neighborhood
around each point of the open sets. A global diffeomorphism,
on the other hand, can be thought of as a ‘‘zoomed-out’’ view
of a manifold, where the global geometry and topology are pre-
served. It means that the function preserves the smooth structure
globally, throughout the entire manifold.

If the exponential map is a global diffeomorphism property,
then it allows us to extend these local calculations to the entire
manifold, giving us a powerful tool for studying the geometry of
the manifold, by mapping tangent vectors to points on the entire
manifold.

By Hadamard’s theorem (see Theorem 2 for details), the ex-
ponential map is a global diffeomorphism if the manifold is com-
plete, simply connected with non-positive sectional curvature. It
means that the curvature of the manifold in any two-dimensional
plane (i.e., a section) is either zero or negative.

This last property is crucial because it implies geodesic com-
pleteness, that is, geodesics, which are the shortest paths between
two points, can be extended indefinitely in all directions. This
ensures that there are no ‘‘obstacles’’ in the space that would
prevent us from extending a local result to a global one, because
the manifold is complete and simply connected, meaning it has
no holes or cavities and no spikes or folds.

This property is precisely what is required to apply Hadamard’s
theorem: if a space is geodesically complete, then the exponential
map is a global diffeomorphism.

And this global property is also crucial for our construction
because a local map may not cover the entire record necessary
for the selection. It also allows to select a price without ambiguity
even in different connected components, that is when crossing
catastrophes, which can generally cause price discontinuities.

Since the manifold is complete and simply connected, be-
cause it is globally diffeomorphic to a Euclidean space (see Bal-
asko (1988)), all our efforts are aimed at proving that it has
non-positive sectional curvature K , with the induced metric. A
substantial part of the present paper is devoted to its proof.

There is an interesting connection between curvature of the
equilibrium manifold and uniqueness in the literature. Balasko
(1988, Theorem 7.3.9) showed that if there is uniqueness of
equilibrium for every endowment profile of the commodity space,
then the curvature of the equilibrium manifold is zero. It has been
shown (Loi and Matta, 2018) that, in the case of two commodities,
if the curvature is zero then there is uniqueness of equilibrium.
Furthermore, following an information-theoretic approach, Loi
and Matta (2021) established a connection between entropy min-
imization and uniqueness when the equilibrium manifold is a
minimal stable submanifold of its ambient space, a property that
can be expressed through a minimality condition in terms of
the vanishing of the mean curvature. Moreover, Loi and Matta
(2018) conjectured that the equivalence between zero curvature
property and uniqueness holds for an arbitrary number of goods.
As a by-product of our main result, in the present paper we
prove (see Corollary 1) this equivalence in the case of an arbitrary
number of goods and two consumers, thus extending the previous
result in the direction of the conjecture.

We would like to add one final remark. It is beyond the scope
of this work to analyze out-of-equilibrium dynamics. A change
in endowments necessarily implies an initial state outside of the
equilibrium manifold, and the algorithm presented in this work
intercepts such a point by projecting it onto the tangent space and
then bringing it back onto the manifold via the exponential map.
However, this does not represent a model that aims to explain
the endogenous forces at play that bring a point back onto the
manifold. The topic is certainly interesting, but any connection to
the present work would be misleading and purely speculative.

We could conclude, perhaps in a suggestive way and in the
hope of not being misunderstood, that the boundary and point
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f contact between the known and the unexplored world outside
he manifold is represented in our construction by the tangent
pace. This is not surprising, after all, as linearization generally
epresents the first step in modeling the unknown.

The rest of this paper is organized as follows. In Section 2
e recall the properties of the equilibrium manifold relevant for
ur purposes. In Section 3 we introduce the main concepts of
ifferential geometry used in this paper. In Section 4 we prove
see Theorem 3) that the equilibrium manifold has non-positive
ectional curvature, a property that legitimates our geometric ap-
roach to the equilibrium selection. Moreover, Corollary 1 estab-
ishes the equivalence between zero-curvature and uniqueness
f equilibrium. Finally, a mathematical appendix contains all the
edious computations and the proof of Theorem 3.

. The economic setting

We consider a smooth pure exchange economy with L goods
nd M consumers. The equilibrium manifold E is defined as the
et of pairs (p, ω) such that the excess demand function is zero,
here p belongs to the set of normalized prices S = {p =

p1, . . . , pL) ∈ RL
|pl > 0, l = 1, . . . , L, pL = 1} ∼= RL−1 and ω

belongs to the space of endowments Ω = RLM . The equilibrium
manifold enjoys very nice geometric properties, being a smooth
submanifold of S × Ω globally diffeomorphic to RLM (Balasko,
1988, Lemma 3.2.1).

If total resources r ∈ RL are fixed, the equilibrium manifold,
denoted by E(r), is a submanifold of S ×Ω(r) globally diffeomor-
phic to RL(M−1) (Balasko, 1988, Corollary 5.2.5), that is, E(r) ∼=

(r) × R(L−1)(M−1), where B(r) denotes the price-income equilibria,
a submanifold of S × RM diffeomorphic to RM−1 (Balasko, 1988,
Corollary 5.2.4). If we define this diffeomorphism as

φ : RM−1
→ B(r), (1)

t = (t1, . . . , tM−1) ↦→ (p(t), w1(t), . . . , wM−1(t)),
where wi denotes consumer i’s income, a parametrization of E(r)
(see formulas (6), (7) and (10) in Loi and Matta (2018)) is given
by

Φ : RL(M−1)
→ E(r), (2)

(t, ω̄1, . . . , ω̄M−1) ↦→ (p(t), ω̄1, w1(t) − p(t)ω̄1, . . . ω̄M−1, wM−1(t)
− p(t)ω̄M−1),

where ω̄i denotes the first L − 1 components of ωi, consumer i’s
endowments vector.

3. Geometric tools

We refer the reader to Carmo (1992) for a deeper understand-
ing of the concepts of differential geometry used in this paper. In
this section we introduce the main tools.

Let V be a submanifold of dimension d in its ambient space
(Rn, geuclid). This induces on V a metric in a natural way. In
particular, if

ψ : Rd
−→ V ⊂ Rn

(x1, . . . , xd) ↦→ (ψ1, . . . ψn)

is a parametrization of V , the vector fields X1 = ( ∂ψ1
∂x1
, . . . ,

∂ψ1
∂xd

),

2 = ( ∂ψ2
∂x1
, . . . ,

∂ψ2
∂xd

) and Xn = ( ∂ψn
∂x1
, . . . ,

∂ψn
∂xd

) form a basis
X1, . . . , Xn} of vector fields of TqV for q ∈ V . The induced metric
s given by

s2 =

d∑
gijdxidxj
i,j=1 i

4

where gij = ⟨Xi, Xj⟩geuclid . The quantity gij represents the metric
tensor of a Riemannian manifold, which gives a notion of distance
or length between two points on the manifold. Intuitively, we can
think of gij as describing how much ‘‘stretching’’ or ‘‘squishing’’
occurs in each direction when we move a small distance on the
manifold. In other words, it tells us how the geometry of the
manifold changes as we move around on it.

Let us denote by X(V ) the set of all vector fields of class C∞

on V . Then there exists an affine connection
∇ : X(V )×X(V ) → X(V )

(X, Y ) ↦→ ∇XY

that satisfies the following properties:

• ∇fX+gY = f∇XZ + g∇YZ
• ∇X (Y + Z) = ∇XY + ∇XZ
• ∇X (fY ) = f∇XY + X(f )Y ,

with f , g real-valued functions of class C∞ on V .

Theorem 1 (Levi-Civita (Carmo, 1992, p.55)). Given a Riemannian
manifold V , there exists a unique affine connection ∇ on V satisfying
the conditions:

• ∇ is symmetric
• ∇ is compatible3 with the Riemannian metric.

In particular, the Levi-Civita connection can be written, in a
coordinate system (U, x), as

∇ ∂
∂xi

∂

∂xj
=

d∑
k=1

Γ k
ij
∂

∂xk
.

where the coefficients Γ k
ij are called the Christoffel symbols and

can be computed with the following formula

Γ k
ij =

1
2

d∑
h=1

ghk
(
∂gjh
∂xi

+
∂ghi
∂xj

−
∂gij
∂xh

)
,

where g ij is the inverse matrix of gij = ⟨Xi, Xj⟩.
The curvature tensor intuitively measures the deviation of a

manifold from being locally Euclidean.

Definition 1. The curvature tensor R of a Riemannian manifold
V is a correspondence that associates to every pair X, Y ∈ X(V ) a
mapping

R(X, Y ) : X(V ) → X(V )
Z ↦→ R(X, Y )Z,

where

R(X, Y )Z = ∇Y∇XZ − ∇X∇YZ + ∇[X,Y ]Z .

If V = Rn, then R(X, Y )Z = 0 for all X, Y , Z ∈ X(Rn). It is
convenient to express this curvature in a coordinate system (U, x)
based at the point q ∈ V . We have

R(Xi, Xj)Xk =

∑
l

Rl
ijkXl,

where the coefficients Rl
ijk can be expressed in terms of Γ k

ij

Rs
ijk =

d∑
l=1

Γ l
ikΓ

s
jl −

d∑
l=1

Γ l
jkΓ

s
il +

∂Γ s
ik

∂xj
−
∂Γ s

jk

∂xi
.

3 A connection ∇ on a Riemannian manifold V is compatible with the metric
f and only if X⟨Y , Z⟩ = ⟨∇ Y , Z⟩ + ⟨Y ,∇ Z⟩ for X, Y , Z ∈ X(V ).
X X
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oreover, we have

R(Xi, Xj)Xk, Xs⟩ =

∑
l

Rl
ijkgls.

We introduce the sectional curvature of V , which generalizes the
aussian curvature of surfaces. Let V be a Riemannian n−manifold
nd let q ∈ V . If Π is any 2-dimensional subspace of TqV , and U

is a neighborhood of zero on which expq is a diffeomorphism,
then SΠ := expq(Π ∩ U) is a 2-dimensional submanifold of V
containing q. Then the sectional curvature of V associated with
Π is the Gaussian Curvature of SΠ . If {X, Y } is any basis for Π ,
e indicate the sectional curvature as K (X, Y ) and we have

efinition 2. If {X, Y } is any basis for a 2-plane Π ∈ TqV , then

(X, Y ) =
⟨R(X, Y )X, Y ⟩

|X |
2
|Y |

2
− ⟨X, Y ⟩2

.

A well-known theorem by Hadamard establishes an important
connection between local and global properties of a differential
manifold.

Theorem 2 (Hadamard (Carmo, 1992, p. 149)). Let V be a complete
Riemannian manifold, simply connected with sectional curvature
K (q, σ ) ≤ 0, for all q ∈ V and for all σ ∈ Tq(V ). Then V is
diffeomorphic to Rn, n = dimV; more precisely, expq : TqV → V
is a diffeomorphism.

4. Main results

Theorem 2 represents a key result for our construction, be-
cause we need to associate, through the exponential map, a vector
belonging to the tangent space of E(r) to a geodesic. Hence, it is
crucial for our purposes that the exponential map is a global dif-
feomorphism. Since E(r) is diffeomorphic to an Euclidean space,
and hence complete and simply connected, all we need to prove
is that its sectional curvature is non-positive. In the following
theorem, we prove this property for the case M = 2.

Theorem 3. Let M = 2. Then the equilibrium manifold E(r) has
on-positive sectional curvature.

roof. See Appendix C. □

As a by-product, the following corollary complements (Loi
nd Matta, 2018, Theorem 5.1), where they show that for L =

the zero-curvature condition on the equilibrium manifold is
quivalent to the global uniqueness of the equilibrium price.

orollary 1. Let M = 2. A necessary and sufficient condition for a
nique equilibrium price is that the curvature of E(r) is zero.

roof. By Balasko (1988, Theorem 7.3.9), if for every ω ∈ Ω(r)
here is an unique equilibrium, then the price p associated to ω
oes not depend on ω, that is, E(r) is an hyperplane and hence
ts curvature is zero. Conversely, by Theorem 3, if its sectional
urvature is zero, then p′

i = 0 for all i, that is, the price is constant
nd hence unique. □
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ppendix A. Christoffel symbols

Type: Γ k
ii where i, k ̸= 0.

k
ii =

1
2

L−1∑
h=0

ghk
(
∂gih
∂xi

+
∂ghi
∂xi

−
∂gii
∂xh

)
=

=
1
2

[
g0k

(
∂gi0
∂xi

+
∂g0i
∂xi

−
∂gii
∂x0

)
+ . . .

+ g (L−1)k
(
∂gi(L−1)

∂xi
+
∂g(L−1)i

∂xi
−

∂gii
∂xL−1

)]

Γ k
ii =

1
2

[
g0k

(
∂gi0
∂xi

+
∂g0i
∂xi

−
∂gii
∂x0

)
+ g1k

(
�
��
∂gi1
∂xi

+

�
��
∂g1i
∂xi

−

�
��
∂gii
∂x1

)
+ g2k

(
�
��
∂gi2
∂xi

+

�
��
∂g2i
∂xi

−

�
��
∂gii
∂x2

)
+ · · ·

]
=

=
1
2

[
g0k

(
2
∂gi0
∂xi

−
∂gii
∂x0

)]
=

1
2

[
g0k (

2pip′

i − 2pip′

i

)]
= 0

Type: Γ k
ij where i, j, k ̸= 0.

Using ∂
∂xi

g0j = pjp′

i and
∂
∂x0

gij =
∂
∂x0

(pipj) = p′

ipj + pip′

j .

Γ k
ij =

1
2

L−1∑
h=0

ghk
(
∂gjh
∂xi

+
∂ghi
∂xj

−
∂gij
∂xh

)
=

=
1
2

[
g0k

(
∂gj0
∂xi

+
∂g0i
∂xj

−
∂gij
∂x0

)
+ g1k

(
∂gj1
∂xi

+
∂g1i
∂xj

−
∂gij
∂x1

)
+ g2k

(
∂gj2
∂xi

+
∂g2i
∂xj

−
∂gij
∂x2

)
+ · · ·

]

k
ij =

1
2

[
g0k

(
∂gj0
∂xi

+
∂g0i
∂xj

−
∂gij
∂x0

)
+ g1k

(
�
��
∂gj1
∂xi

+

�
��
∂g1i
∂xj

−

�
��
∂gij
∂x1

)
+ g2k

(
�
��
∂gj2
∂xi

+

�
��
∂g2i
∂xj

−

�
��
∂gij
∂x2

)
+ · · ·

]
=

=
1
2

[
g0k

(
∂gj0
∂xi

+
∂g0i
∂xj

−
∂gij
∂x0

)]
=

1
2

[
g0k (

pjp′

i + pip′

j − (p′

ipj + pip′

j)
)]

= 0

Type: Γ 0
0j where j ̸= 0.

Using ∂
∂xj

g00 = −2Ap′

j .

Γ 0
0j =

1
2

L−1∑
h=0

gh0
(
∂gjh
∂x0

+
∂gh0
∂xj

−
∂g0j
∂xh

)
=

=
1
2

[
g00

(
∂gj0
∂x0

+
∂g00
∂xj

−
∂g0j
∂x0

)
+ g10

(
∂gj1
∂x0

+
∂g10
∂xj

−
∂g0j
∂x1

)
+ g20

(
∂gj2

+
∂g20

−
∂g0j

)
+ · · ·

]

∂x0 ∂xj ∂x2
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Γ

T

Γ

Γ

Γ

Γ

Γ

0
0j =

1
2

[
g00

(
�
��
∂gj0
∂x0

+
∂g00
∂xj

−

�
��
∂g0j
∂x0

)
+ g10

(
∂gj1
∂x0

+
∂g10
∂xj

−
∂g0j
∂x1

)
+ g20

(
∂gj2
∂x0

+
∂g20
∂xj

−
∂g0j
∂x2

)
+ · · ·

]
=

=
1
2

[
g00

(
∂g00
∂xj

)
+ g10

(
∂gj1
∂x0

+
∂g10
∂xj

−
∂g0j
∂x1

)
+ g20

(
∂gj2
∂x0

+
∂g20
∂xj

−
∂g0j
∂x2

)
+ · · ·

]
=

=
1
2

[
g00 (

−2Ap′

j

)
+ g10 (

p′

1pj + p1p′

j + p1p′

j − pjp′

1

)
+ g20 (

p′

2pj + p2p′

j + p2p′

j − pjp′

2

)
+ · · ·

]
=

=
1
2

[
g00 (

−2Ap′

j

)
+ g10 (

2p1p′

j

)
+ g20 (

2p2p′

j

)
+ · · ·

+ g (L−1)0 (
2pn−1p′

j

)]
=

=
p′

j

det g

[
(1 + p21 + · · · + p2L−1) (−A)+ p1A (p1)+ p2A (p2)

+ · · · + pL−1A (pL−1)] =
−p′

jA

det g

ype: Γ k
0j where j, k ̸= 0.

k
0j =

1
2

L−1∑
h=0

ghk
(
∂gjh
∂x0

+
∂gh0
∂xj

−
∂g0j
∂xh

)
=

=
1
2

[
g0k

(
∂gj0
∂x0

+
∂g00
∂xj

−
∂g0j
∂x0

)
+ g1k

(
∂gj1
∂x0

+
∂g10
∂xj

−
∂g0j
∂x1

)
+ g2k

(
∂gj2
∂x0

+
∂g20
∂xj

−
∂g0j
∂x2

)
+ · · ·

]

k
0j =

1
2

[
g0k

(
�
��
∂gj0
∂x0

+
∂g00
∂xj

−

�
��
∂g0j
∂x0

)
+ g1k

(
∂gj1
∂x0

+
∂g10
∂xj

−
∂g0j
∂x1

)
+ g2k

(
∂gj2
∂x0

+
∂g20
∂xj

−
∂g0j
∂x2

)
+ · · ·

]
=

=
1
2

[
g0k

(
∂g00
∂xj

)
+ g1k

(
∂gj1
∂x0

+
∂g10
∂xj

−
∂g0j
∂x1

)
+ g2k

(
∂gj2
∂x0

+
∂g20
∂xj

−
∂g0j
∂x2

)
+ · · ·

]
=

=
1
2

[
g0k (

−2Ap′

j

)
+ g1k (

p′

1pj + p1p′

j + p1p′

j − pjp′

1

)
+ g2k (

p′

2pj + p2p′

j + p2p′

j − pjp′

2

)
+ · · ·

]
=

=
1
2

[
g0k (

−2Ap′

j

)
+ g1k (

2p1p′

j

)
+ g2k (

2p2p′

j

)
+ · · ·

+ g (L−1)k (
2pL−1p′

j

)]
=

=
p′

j

det g
[(pkA (−A)− p1pkB (p1)− p2pkB (p2)+ · · ·

+
[
(1 + p21 + · · · + p2k−1 + p2k+1 + · · · + p2L−1)B + A2] (pk)−

− · · · − pkpL−1B (pL−1)]

=
p′

jpk
det g

[
−A2

− p21B − p22B + · · ·+
[
(1 + p21 + · · · + p2k−1

+ p2k+1 + · · · + p2L−1)B + A2
+ · · · − p2L−1B

)]
=

p′

jpk
det g

B

Type: Γ 0
00.

Using ∂ g = −p′A − p A′ and ∂ g = −2C + 2AA′
∂x0 0i i i ∂x0 00

6

0
00 =

1
2

L−1∑
h=0

gh0
(
∂g0h
∂x0

+
∂gh0
∂x0

−
∂g00
∂xh

)
=

=
1
2

[
g00

(
∂g00
∂x0

+
∂g00
∂x0

−
∂g00
∂x0

)
+ g10

(
∂g01
∂x0

+
∂g10
∂x0

−
∂g00
∂x1

)
+ g20

(
∂g02
∂x0

+
∂g20
∂x0

−
∂g00
∂x2

)
+ · · ·

]
0
00 =

1
2

[
g00

(
�

��∂g00
∂x0

+
∂g00
∂x0

−

�
��∂g00
∂x0

)
+ g10

(
∂g01
∂x0

+
∂g10
∂x0

−
∂g00
∂x1

)
+ g20

(
∂g02
∂x0

+
∂g20
∂x0

−
∂g00
∂x2

)
+ · · ·

]
=

=
1
2

[
g00

(
∂g00
∂x0

)
+ g10

(
2
∂g01
∂x0

−
∂g00
∂x1

)
+ g20

(
2
∂g02
∂x0

−
∂g00
∂x2

)
+ · · ·

]
=

=
1
2

[
g00 (

2C + 2AA′
)
+ g10 (

−2p′

1A − 2p1A′
+ 2Ap′

1

)
+ g20 (

−2p′

2A − 2p2A′
+ 2Ap′

2

)
+ · · ·

]
=

=
1
2

[
g00 (

2C + 2AA′
)
+ g10 (

���−2p′

1A − 2p1A′
+��2Ap′

1

)
+ g20 (

���−2p′

2A − 2p2A′
+��2Ap′

2

)
+ · · ·

]
=

=
1

det g

[
(1 + p21 + · · · + p2L−1)

(
C + AA′

)
+ p1A

(
−A′p1

)
+ p2A

(
−p2A′

)
+ · · · + pL−1A

(
−pL−1A′

)]
=

=
1

det g

[
(1 + p21 + · · · + p2L−1)C + AA′

]
=

1
det g

[
∥p∥2C + AA′

]
Type: Γ k

00 where k ̸= 0.

Γ k
00 =

1
2

L−1∑
h=0

ghk
(
∂g0h
∂x0

+
∂gh0
∂x0

−
∂g00
∂xh

)
=

=
1
2

[
g0k

(
∂g00
∂x0

+
∂g00
∂x0

−
∂g00
∂x0

)
+ g1k

(
∂g01
∂x0

+
∂g10
∂x0

−
∂g00
∂x1

)
+ g2k

(
∂g02
∂x0

+
∂g20
∂x0

−
∂g00
∂x2

)
+ · · ·

]
k
00 =

1
2

[
g0k

(
�

��∂g00
∂x0

+
∂g00
∂x0

−

�
��∂g00
∂x0

)
+ g1k

(
∂g01
∂x0

+
∂g10
∂x0

−
∂g00
∂x1

)
+ g2k

(
∂g02
∂x0

+
∂g20
∂x0

−
∂g00
∂x2

)
+ · · ·

]
=

=
1
2

[
g0k

(
∂g00
∂x0

)
+ g1k

(
2
∂g01
∂x0

−
∂g00
∂x1

)
+ g2k

(
2
∂g02
∂x0

−
∂g00
∂x2

)
+ · · ·

]
=

=
1
2

[
g0k (

2C + 2AA′
)
+ g1k (

−2p′

1A − 2p1A′
+ 2Ap′

1

)
+ g2k (

−2p′

2A − 2p2A′
+ 2Ap′

2

)
+ · · ·

]
=

=
1
2

[
g0k (

2C + 2AA′
)
+ g1k (

���−2p′

1A − 2p1A′
+��2Ap′

1

)
+ g2k (

���−2p′

2A − 2p2A′
+��2Ap′

2

)
+ · · ·

]
=

=
1

det g

[
(pkA

(
C + AA′

)
− p1pkB

(
−p1A′

)
− p2pkB

(
−p2A′

)
+ . . .

+
[
(1 + p21 + · · · + p2k−1 + p2k+1 + · · · + p2L−1)B + A2]

(−pkA′) + · · · − pkpL−1B
(
−pL−1A′

)]
=

pk
det g

[
AC − BA′

]
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A

⟨

w

R

a

T

R

t

R

W

R

∂Γ 0
00

∂xi
=
∂

∂xi

[
(∥p∥2)C + AA′

]
(∥p∥2)B + A2 =

=
(−p′

iA
′
− p′′

i A)
[
(∥p∥2)B + A2

]
+ 2p′

iA
[
(∥p∥2)C + AA′

]
(det g)2

∂Γ 0
i0

∂x0
=
∂

∂x0

−p′

iA
(∥p∥2)B + A2 =

=
(−p′′

i A − p′

iA
′)[(∥p∥2)B + A2

] + 2p′

iA
[
(p1p′

1 + p2p′

2 + · · · + pL−1p′

L−1)B + (∥p∥2)C + AA′
]

(det g)2

Box I.
Φ

ppendix B. Coefficients of the curvature tensor R

We haveR(X0, Xi)X0, Xi⟩ =

∑
s

Rs
0i0gsi = R0

0i0g0i +R1
0i0g1i +· · ·+RL−1

0i0 g(L−1)i,

here

s
0i0 =

L−1∑
m=0

Γ m
00Γ

s
im −

L−1∑
m=0

Γ m
i0 Γ

s
0m +

∂Γ s
00

∂xi
−
∂Γ s

i0

∂x0
.

Recall that det g = (1 + p21 + · · · + p2L−1)B + A2
= ∥p∥2B + A2

nd
∂ det g
∂x0

=2
[
(p1p′

1 + p2p′

2 + · · · + pL−1p′

L−1)B + ∥p∥2C + AA′
]

∂ det g
∂xi

= − 2p′

iA

he first addend is

0
0i0 =

L−1∑
m=0

Γ m
00Γ

0
im −

L−1∑
m=0

Γ m
i0 Γ

0
0m +

∂Γ 0
00

∂xi
−
∂Γ 0

i0

∂x0
,

hat we can expand as
0
0i0 =���Γ 0

00Γ
0
i0 +���Γ 1

00Γ
0
i1 +���Γ 2

00Γ
0
i2 + · · · −���Γ 0

i0Γ
0
00 − Γ 1

i0Γ
0
01

− Γ 2
i0Γ

0
02 + · · · +

∂Γ 0
00

∂xi
−
∂Γ 0

i0

∂x0
.

We determine the derivative of Christoffel’ symbols (see Box I).
By subtracting and simplifying,

∂Γ 0
00

∂xi
−
∂Γ 0

i0

∂x0
=

−2p′

iAB(p1p
′

1 + · · · + pL−1p′

L−1)
(det g)2

.

hence

R0
0i0 = − Γ 1

i0Γ
0
01 − Γ 2

i0Γ
0
02 + · · · +

∂Γ 0
00

∂xi
−
∂Γ 0

i0

∂x0
=

= −
p′

ip1B
det g

·
−p′

1A
det g

−
p′

ip2B
det g

·
−p′

2A
det g

+ . . .

+
−2p′

iAB(p1p
′

1 + · · · + pL−1p′

L−1)
(det g)2

=

=
p′

iAB(p1p
′

1 + · · · + pL−1p′

L−1)
(det g)2

−
2p′

iAB(p1p
′

1 + · · · + pL−1p′

L−1)
(det g)2

=

= −
p′

iAB(p1p
′

1 + · · · + pL−1p′

L−1)
(det g)2

.

e calculate the coefficients for k, i ̸= 0
k

= Γ 0 Γ k
+ Γ 1 Γ k

+ Γ 2 Γ k
+ · · · − Γ 0Γ k

− Γ 1Γ k

0i0 00 i0 00��i1 00��i2 i0 00 i0 01

7

− Γ 2
i0Γ

k
02 · · · +

∂Γ k
00

∂xi
−
∂Γ k

i0

∂x0
.

∂Γ k
00

∂xi
=

∂

∂xi

pk
[
AC − BA′

]
(∥p∥2)B + A2 =

=
pk(−p′

iC + p′′

i B)
[
(∥p∥2)B + A2

]
+ 2pkp′

i

[
AC − BA′

]
A

(det g)2
=

=
−pkp′

iC(∥p∥
2)B + pkp′′

i B(∥p∥
2)B − pkp′

iCA
2
+ pkp′′

i BA
2
+ 2pkp′

iA
2C − 2pkp′

iBAA
′

(det g)2

See the equations ∂Γ k
i0

∂x0
and −

∂Γ k
i0

∂x0
given in Box II.

Hence the difference is given in Box III, and finally we obtain

Rk
0i0 = Γ 0

00Γ
k
i0 − Γ 0

i0Γ
k
00 − Γ 1

i0Γ
k
01 − Γ 2

i0Γ
k
02 + · · · +

∂Γ k
00

∂xi
−
∂Γ k

i0

∂x0

=
[∥p∥2C + AA′

]

det g
p′

ipkB
det g

+
p′

iA
det g

pk
[
AC − A′B

]
det g

−
p′

ip1B
det g

p′

1pkB
det g

−
p′

ip2B
det g

p′

2pkB
det g

+ · · · +
∂Γ k

00

∂xi
−
∂Γ k

i0

∂x0
=

=
p′

ipkB[∥p∥
2C + AA′

]

(det g)2
+

p′

ipkA
[
AC − A′B

]
(det g)2

−
p′

ipkB
2(p1p′

1 + · · · + pL−1p′

L−1)
(det g)2

+
∂Γ k

00

∂xi
−
∂Γ k

i0

∂x0
=

=
p′

ipkB
2(p1p′

1 + p2p′

2 + · · · + pL−1p′

L−1) − p′

ip
′

kB[(∥p∥
2)B + A2

]

(det g)2

Combining all the terms, we get the equation given in Box IV.

Appendix C. Proof of Theorem 3

Proof. If M = 2, the manifold B(r) is diffeomorphic to R through
the map (see (1) above)

φ : R−→B(r) ⊂ S × RM−1
= S × R

t ↦−→ (p(t), w(t)),

and E(r) is a submanifold of dimension L in a space of dimension
2L − 1. By setting αi := ωi, a parametrization of E(r) is given by
(see (2) above)

Φ : RL
−→ E(r),

(t, α1, . . . , αL−1) ↦−→ (p1(t), . . . , pL−1(t), α1, . . . , αL−1,

w(t) − p1(t)α1 − · · · − pL−1(t)αL−1).

Consider a basis of a vector field of TxE(r) given by

0 =

(
∂p1

, . . . ,
∂pL−1

, 0, . . . , 0,
∂w

−
∂p1

α1

∂t ∂t ∂t ∂t
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·

A

∂Γ k
i0

∂x0
=

∂

∂x0

p′

ipkB
(∥p∥2)B + A2 =

=
(pkp′′

i B + p′

ip
′

kB + 2p′

ipkC)[(∥p∥
2)B + A2

] − 2p′

ipkB
[
(p1p′

1 + p2p′

2 + · · · + pL−1p′

L−1)B + (∥p∥2)C + AA′
]

(det g)2

−
∂Γ k

i0

∂x0
=

=
−pkp′′

i B
2(∥p∥2) − p′

ip
′

k(∥p∥
2)B2

− 2p′

ipkC(∥p∥
2)B − pkp′′

i BA
2
− p′

ip
′

kBA
2
− 2p′

ipkCA
2

(det g)2

+
+2p′

ipkB
2(p1p′

1 + p2p′

2 + · · · + pL−1p′

L−1) + 2p′

ipkB(∥p∥
2)C + 2p′

ipkBAA
′

(det g)2
.

Box II.
∂Γ k
00

∂xi
−
∂Γ k

i0

∂x0
=

p′

ipk
[
−BC∥p∥2

− CA2
+ 2B2(p1p′

1 + p2p′

2 + · · · + pL−1p′

L−1)
]
− p′

ip
′

kB[(∥p∥
2)B + A2

]

(det g)2

Box III.
⟨R(X0, Xi)X0, Xi⟩ =

∑
s

Rs
0i0gsi = R0

0i0g0i + R1
0i0g1i + · · · + Rl−1

0i0 g(L−1)i =

=
p′

iAB(p1p
′

1 + · · · + p′

L−1pL−1)
(det g)2

· piA +
p′

ip1B
2(p1p′

1 + · · · + pL−1p′

L−1) − p′

ip
′

1B[(∥p∥
2)B + A2

]

(det g)2
· p1pi + · · ·+

+
p′

ipiB
2(p1p′

1 + · · · + pL−1p′

L−1) − p′

ip
′

iB[(∥p∥
2)B + A2

]

(det g)2
· (1 + p2i ) + · · ·+

+
p′

ipL−1B2(p1p′

1 + · · · + pL−1p′

L−1) − p′

ip
′

L−1B[(∥p∥
2)B + A2

]

(det g)2
· pL−1pi =

=
p′

ipiB(p1p
′

1 + · · · + pL−1p′

L−1)
[
A2

+ (∥p∥)2B
]
− p′

ip
′

1B[(∥p∥
2)B + A2

](p1p′

1 + · · · + pL−1p′

L−1) − (p′

i)
2B[(∥p∥2)B + A2

]

(det g)2
=

=
−(p′

i)
2B[(∥p∥2)B + A2

]

(det g)2
=

=
−(p′

i)
2B

(det g)
.

Box IV.
A

⟨

⟨

⟨

− · · · −
∂pL−1

∂t
αL−1

)
= (p′

1, . . . , p
′

L−1, 0, . . . , 0, A)

Φ1 = (0, . . . , 0, 1, 0, 0,−p1(t))

Φi = (0, . . . , 0, 0, 1, 0,−pi(t))

where 1 is in the L− 1+ i position and where A =
∂w
∂t −

∂p1
∂t α1 −

· · −
∂pL−1
∂t αL−1 or, more compactly,4

= w′
− p′

1x1 − · · · − p′

L−1xL−1.

Clearly, we have A(x0, x1, . . . , xL−1) and ∂
∂xi

A = −p′

i , for all i ̸= 0.
We set x0 = t, x1 = α1, x2 = α2, xL−1 = αL−1 and Xi = Φi.

4 A = w′
− ⟨p′, α⟩ with p′

= (p′ , . . . , p′ ) and α = (α , . . . , α ).
1 L−1 1 L−1 ⟨

8

The induced metric on E(r) is given by

ds2 =

L−1∑
i,j=0

gijdxidxj.

Set B(x0) =

(
∂p1
∂x0

)2
+ · · · +

(
∂pL−1
∂x0

)2
or, more compactly,

B(x0) = (p′

1)
2
+ · · · + (p′

L−1)
2.

n easy calculation gives

Φ0,Φ0⟩ = B + A2

Φ0,Φi⟩ = −piA

Φi,Φi⟩ = 1 + p2i

Φi,Φj⟩ = pipj
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g

S

g

w

o
n
k

H
v
s
2

C

a

A

Γ

1
g

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + p21 + · · · + p2L−1 p1A . . . piA . . . pL−1A

p1A (1 + p22 + · · · + p2L−1)B + A2 . . . −p1piB . . . −p1pL−1B

. . . . . . . . . . . . . . . . . .

piA −p1piB . . . (1 + p21 + · · · + p2i−1 + p2i+1 + · · · + p2L−1)B + A2 . . . −pipL−1B

. . . . . . . . . . . . . . . . . .

pL−1A −p1pL−1B . . . −pipL−1B . . . (1 + p21 + · · · + p2L−2)B + A2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Box V.
T

K

w

ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B + A2
−p1A . . . −piA . . . −pL−1A

−p1A 1 + p21 . . . p1pi . . . p1pL−1

. . . . . . . . . . . . . . . . . .

−piA p1pi . . . 1 + p2i . . . pipL−1

. . . . . . . . . . . . . . . . . .

−pL−1A p1pL−1 . . . pipL−1 . . . 1 + p2L−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

etting

:= (1 + p21 + · · · + p2L−1)B + A2
= ∥p∥2B + A2,

here

∥p∥2
= (1 + p21 + · · · + p2L−1) ,

the inverse matrix g ij can be written as given in Box V.
To compute the Christoffel symbols

Γ k
ij =

1
2

L−1∑
h=1

ghk
(
∂gjh
∂xi

+
∂ghi
∂xj

−
∂gij
∂xh

)
,

bserve that the entries gij with i and j both different from 0 do
ot depend on the xi, so their derivatives with respect to xk, with
̸= 0, are zero.
Moreover, ∂

∂xi
g0i = −pi(−p′

i) = pip′

i , while ∂
∂x0

gii = 2pip′

i .
ence all Christoffel symbols with subscript different from 0
anish. The others symbols can be obtained through a long but
traightforward calculation (see Appendix A). Observe that ∂B

∂x0
=

(p′

1p
′′

1 + p′

2p
′′

2 + · · · + p′

L−1p
′′

L−1), so for convenience we set

:= p′

1p
′′

1 + p′

2p
′′

2 + · · · + p′

L−1p
′′

L−1

nd
′
:= w′′

− p′′

1x1 − · · · − p′′

L−1xL−1

The Christoffel symbols are

Γ 0
00 =

[∥p∥2C + AA′
]

∥p∥2B + A2 ,

k
00 =

pk
[
AC − A′B

]
∥p∥2B + A2 ,

Γ 0
0j =

−p′

jA

∥p∥2B + A2 ,

Γ k
0j =

p′

jpkB

∥p∥2B + A2 ,
9

Γ 0
ij = Γ 0

ii = 0,

Γ k
ij = Γ k

ii = 0.

o determine the sectional curvature

(X, Y ) =
⟨R(X, Y )X, Y ⟩

|X ∧ Y |
,

we need to calculate the coefficients of the tensor R using

Rs
ijk =

l−1∑
m=0

Γ m
ik Γ

s
jm −

l−1∑
m=0

Γ m
jk Γ

s
im +

∂Γ s
ik

∂xj
−
∂Γ s

jk

∂xi
. (3)

In particular, we have that K (Xi, Xj) = 0 for all i, j ̸= 0.
Since

K (X0, Xi) =
⟨R(X0, Xi)X0, Xi⟩

|X0 ∧ Xi|

e use (3) to compute ⟨R(X0, Xi)X0, Xi⟩ =
∑

s R
s
0i0gsi.

After a long but straightforward calculation (see Appendix B),
we obtain

⟨R(X0, Xi)X0, Xi⟩ =

∑
s

Rs
0i0gsi = R0

0i0g0i + R1
0i1g1i + · · · + Rl−1

0i0 g(l−1)i =

= −
(p′

i)
2B

(det g)
≤ 0.

□
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