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Abstract In many realistic scenarios, the use of highly detailed photometric 3D
reconstruction techniques is hindered by several challenges in given imagery. Espe-
cially the light sources are often unknown and need to be estimated, and the light
reflectance is often non-Lambertian. In addition, when approaching the problem to
apply photometric techniques at real-world imagery, several parameters appear that
need to be fixed in order to obtain high quality reconstructions. In this work, we at-
tempt to tackle these issues by combining photometric stereo with non-Lambertian
preprocessing and Hayakawa lighting estimation. At hand of a dedicated study we
discuss the applicability of these techniques for their use in automated 3D geometry
recovery for 3D printing.

1 Introduction

Photometric stereo (PS) is a fundamental inverse problem aiming at reconstructing
the shape of a three dimensional object based on a set of images acquired under
a varying source of light. Under this assumption, the images embed the shape
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and color information of the observed object. Despite its long history in computer
vision [49, 50], PS is still a fundamentally challenging research problem due to
the unknown reflectance and global lighting effects of real-world objects [41]. For
the sake of simplicity, the lighting positions and directions are often assumed to be
known across the PS research community [4, 28, 38, 48]. However, the real world
applications of PS mostly deal with data represented by images acquired under
unknown light conditions; see [5], [11], and [21]. In [21], it was shown that at least
6 differently illuminated images are needed to resolve the light positioning, leading
to a successful PS scenario that will be further discussed in the current work.

In an almost parallel paradigm, shape from shading (SfS) aims at solving the
modeling inverse problem with a set of assumptions similar to PS, except for the fact
that in SfS only a single two dimensional image of the object is at hand [16, 52].
The common assumptions among classic (orthographic) PS and SfS are: (i) the
illumination in the photographed scene, (ii) the light reflectance surface properties,
(iii) the orthographic projection that is performed by the camera need to be known.

Let us first comment on the camera model employed in our setting. In this context,
we note that both SfS and PS allow to employ different camera models. An important
example is the use of a perspective camera projection which yields more complex
equations than in the orthographic setting; see [8] for a comprehensive introduction
to perspective SfS and [28, 33, 44] for examples of works on perspective PS. In
this work we adopt a canonical orthographic camera as it is suitable in applications
with an object located at a relatively far distance from the camera, compared to
the object dimensions. This holds true, in particular, in the dataset we focus on,
representing a highly detailed seashell illuminated by sunlight. We have validated by
undocumented tests that indeed our application scenario is represented well by the
orthographic setting. As another classical choice in the setting employed in this work,
we consider a classical illumination model [24, 25] that idealizes the environmental
light as parallel beams emanating from a light source located at infinity, e.g., the sun.

As indicated, we will follow the Hayakawa lighting estimation method [21] to
compute the lighting directions and to make use of them in PS. As a related but dif-
ferent topic of research, the uncalibrated PS approach [5] aims to resolve lighting and
3D depth information simultaneously, which naturally leads to highly sophisticated
problem formulations; see, e.g., [19] where non-convex optimization problems need
to be resolved. In the context of this line of research we also mention deep learning
approaches like the Lighting Calibration Network and its extensions [12, 14]. How-
ever, as it often happens with deep learning approaches, the mechanisms behind the
estimation are still largely unclear, even if attempts for an analysis give some useful
insights [14]. In this article, we prefer to exploit lighting information directly and to
keep in this way the explainability of results. Furthermore, there is certainly a point
for estimating lighting directly, if it is feasible, and to keep the whole set-up more
simple and tractable compared to uncalibrated PS.

We now make some remarks on the light reflected by the photographed objects.
In classic works such as [25], Lambertian light reflectance is the most common
model in photometric methods. Lambert’s model [31] itself is an idealized model
and corresponds to a very matte surface without specular highlights, limiting its ap-
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plication in real world scenarios. Hence, extending PS to work with non-Lambertian
surfaces has been of interest for its practical use. Concerning the seashell dataset that
we consider as a best practice example, we remark that the surface of the seashell
shows a degree of roughness that can be well understood by a non-Lambertian repre-
sentation [34, 35, 45], namely the Oren–Nayar, Blinn–Phong, or Torrance–Sparrow
model. Among them, the Oren–Nayar model [34] appears to be a pragmatic choice,
as it is a reasonablemodel for matte non-Lambertian surfaces which has been utilized
in computer vision, cf. [27, 46, 47].

With recent advances in deep learning schemes, in contrast to more sophisticated
mathematical models [34, 35, 45], a range of data-driven approaches have been
introduced to model object reflectance properties [13, 26, 40]. Here, we briefly
discuss the applicability of some state-of-the-art reflectancemodelling approaches to
our setup. The deep PS network [40] may not be applicable to our case, because of its
predefined light directions assumption between the training and testing phases, while
we consider the sun as a source of light, whose changing position is unknown and
needs to be estimated. The convolutional neural network based PS introduced in [26]
relaxes the lighting constraint in [40], but it is primarily concerned with modelling
isotropic materials, namely glass and plastic, whose reflections are invariant under
rotation about the surface normal. This clearly does not conform to our rough object
of interest.

Along with [26], the approach [43] proposed a physics based unsupervised learn-
ing framework to inversely render the general reflectance properties by removing the
fixed light constraint. Here, a permutation of the light directions during the training
and testing phases is allowed as it impacts the final reconstructed model. In gen-
eral, all the methods [26, 40, 43] consider a fixed number of input channels to their
learning schemes, that is another major constraint in PS.

In a general PS scenario, one may consider the varying number of input images as
different channels of a spectral image, as in case of the three channels corresponding
to a RGB image. This reformulation in the structure of the input images requires
a flexible deep learning scheme that accepts a varying number of input images,
in contrast to those schemes with a fixed number of input channels. The channel
constraint is of specific importance in case a convolutional layer is chosen as the
input layer of the deep learning scheme.

Themodel based on a deep fully convolutional network [13] resolves the constraint
on the number of input channels by locating a recurrent neural network [51] as the
input layer, though the lighting knowledge about the training data is still assumed to
be known a priori.

One of the challenges that we face in our current study is to derive the positions
and directions of the light source, represented by the sun in an outdoor environment,
based only on a set of images of the object. In [22], PS was investigated during
a single day under a variety of sunlight conditions obtained from a sky probes
dataset [23], but to the best of our knowledge no deep learning scheme addresses an
outdoor PS scenario with unknown light sources.
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In the following we will discuss Hayakawa’s method for estimating light posi-
tions [21], as well as a simplified Oren–Nayar approach [34, 39]. Their combination
is the main line of the current study.

2 Mathematical Setup

A classical orthographic SfS model [29] with a varying source of light illuminating
an approximately Lambertian [34] object are the main elements of our setup. Let us
describe them in detail.

We assume a right handed reference system in R3 along with a camera placed at
infinity, performing an orthographic projection such that the z-axis and the optical
axis of the camera coincide. A varying light source represented by the vectors

`t = (`1t, `2t, `3t)
>
, t = 1, . . . , q,

illuminates the object from an infinite distance and from q different directions. Note
that ‖`t‖ is proportional to the light intensity, leading to the introduction of an
undetermined proportionality constant to the problem. Here and in the following,
‖ · ‖ represents the Euclidean norm.

We assume each vector `t emanates from the object to the light source, and that
both the normal vectors to the object surface and the light vectors themselves point
to the same half-space, determined by the positive direction of the z-axis. Since we
will employ the Oren–Nayar model [34] to approximate the observed object by a
Lambertian one, the incident angle between the light and the normal vectors will be
of our specific interest, as it will be further explained in Section 5.

In this setting, we capture q images, each with horizontal and vertical sides of
size A and B, respectively. Each image is considered as the sampling of a function
u(x, y), defined on the domain Ω = [−A/2,A/2]× [−B/2,B/2], at the points

(xi, yj) := (−A/2 + ih,−B/2 + jh) ,

letting i ∈ {0, . . . , r + 1}, j ∈ {0, . . . , s+ 1}, s, r ∈ N, h = A/(r + 1) and B =
(s+ 1)h. The size of the corresponding discretized images is (r + 2)× (s+ 2).

To each point (x, y) ∈ Ω, a depth value u(x, y) ∈ R+ is associated, with a
gradient vector

∇u (x, y) =
(
∂u (x, y)

∂x
,
∂u (x, y)

∂y

)>
= (ux, uy)

>
, (1)

and a normal vector

n(x, y) =
(−ux,−uy, 1)>√

1 + ‖∇u‖2
. (2)
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One of the main object of interest in this study is the approximation to a Lamber-
tian surface based on the Oren–Nayar model [34]. This allows one to assume that
Lambert’s cosine law

ρ(x, y) 〈n(x, y), `t〉 = It(x, y), t = 1, . . . , q, (3)

holds true, where 〈·, ·〉 is the usual inner product inR3, the light intensity at each point
of the tth image is denoted by It(x, y), and the scalar function ρ(x, y) represents the
albedo at each surface point and keeps into account the partial light absorption of
that portion of the surface,

For what follows, it is convenient that the captured images are stored in vector
form, so we order their pixels lexicographically. Here, the coordinate pixel (xi, yj) ∈
Ω is mapped to the index k = (i− 1) s + j, where k ∈ {1, . . . , p} and p =
(r + 2) (s+ 2) is the number of image pixels. In the following we will assume
p � q, since the number of pixels in an image is usually very large, while we aim
at obtaining a reconstruction using a small set of images. The corresponding vector
images are denoted by m1,m2, . . . ,mq ∈ Rp, and we rewrite the discretization in
any of the following forms

u(xi, yj) = ui,j = uk,

ux(xi, yj) = (ux)i,j = (ux)k,

uy(xi, yj) = (uy)i,j = (uy)k,

n(xi, yj) = ni,j = nk,

It(xi, yj) = (mt)k = mk,t,

depending on the context.
Here is a brief review of our classical assumptions:

• the surface is approximated by a Lambertian one, based on [34, 39];
• the sources of light are placed at infinite distance from the object;
• no shadow is cast on the surface;
• the camera is sufficiently far from the object. resulting in the absence of any

perspective deformation.

Under these assumptions, rewriting Lambert’s law (3), we obtain

ρ (x, y)

〈
(−ux,−uy, 1)>√
1 + ‖∇u (x, y)‖2

, (`1t, `2t, `3t)
>
〉

= It(x, y),

from which, multiplying both sides by
√
1 + ‖∇u (x, y)‖2 ≥ 1,

I (x, y)
√

1 + ‖∇u (x, y)‖2 − ρ (x, y)
〈
(−ux,−uy, 1)> , (`1t, `2t, `3t)>

〉
= 0.

Next,
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0 = I (x, y)
√

1 + ‖∇u (x, y)‖2 + ρ (x, y)
(〈
∇u (x, y) , (`1t, `2t)>

〉
− `3t

)
:= Ht (x, y,∇u (x, y)) (4)

is deduced after performing the scalar product and considering (1).
At any surface point (x, y, u (x, y)) ∈ R3, a normal vector (−∇u (x, y) , 1)> is

approximated using (4), provided Dirichlet boundary conditions

u (x, y) = g (x, y) , ∀ (x, y) ∈ ∂Ω,

are addressed, where ∂Ω denotes the boundary of the domainΩ. In conclusion, one
obtains the following Hamilton–Jacobi differential model:{

Ht(x, y,∇u(x, y)) = 0, t = 1, . . . , q,

u(x, y) = g(x, y), (x, y) ∈ ∂Ω. (5)

3 Photometric Stereo with Known Lighting

We recall that, by enforcing the Dirichlet boundary condition on (5), we aim at
solving a nonlinear system of q first order partial differential equations of Hamilton–
Jacobi type. Assuming that the light directions `t, t = 1, . . . , q, are known and
following [32], we let t = 1 in (3) to obtain

√
1 + ‖∇u(x, y)‖2 = ρ(x, y)

〈−∇u(x, y), ˜̀1〉+ `31
I1(x, y)

, (6)

with ˜̀
t := (`1t, `2t)

> ∈ R2. Next, we substitute (6) in the equations corresponding
to t = 2, . . . , q, obtaining(

〈−∇u(x, y), ˜̀1〉 − `31
)
It(x, y) =

(
〈−∇u(x, y), ˜̀t〉 − `3t

)
I1(x, y). (7)

The well-posedness of (7) is assured in the case q ≥ 2, that is, if at least two images
are available; see also [36]. In practice, the bigger is q, the more likely we are able to
construct a meaningful solution. Indeed, when q = 2 the solutionmay not be inferred
if the assumptions on the method are not perfectly verified. On the contrary, a data
set with three or more images illuminated from accurately known light sources leads
to a least-square problem that effectively reduces the noise influence and results in a
better approximation of the depth function u(x, y).

Finally, the albedo is found by the equation

ρ(x, y) =
It(x, y)
〈n(x, y), `t〉

, for any t = 1, . . . , q.
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The conditions for the existence and uniqueness of the solution of (5) have been
studied in [30]. The reader is further referred to [32] for a study of the problem at hand
with a set of more realistic assumptions. In addition, [42] provides a fundamental
treatment of (5) in the PS context.

We stress once again the importance of the lights position, since in certain illu-
minating conditions the coefficient matrix of the linear system resulting from the
discretization of (5)might be singular or severely ill-conditioned. However, a suitable
positioning of light sources can resolve the issue.

The above approach is a global one. Alternatively, the classical approach [50]
for solving PS is to replace the product of albedo and normal vector with a single
vector ñ := ρn. In the following we confine our attention to the subset Ω̃ ⊂ Ω,
which corresponds to those locations belonging to the actual object that we want to
reconstruct, and not to the background. Then, the solution for each (x, y) ∈ Ω̃ is
found locally via

n̂ = argmin
ñ∈R3

q∑
t=1

(〈ñ, `t〉 − It(x, y))2 , ρ(x, y) = ‖n̂‖, n(x, y) =
n̂

‖n̂‖ . (8)

Contrary to the previous approach, the minimization in (8) yields a unique solution
if q ≥ 3 and three light sources must be non coplanar, cf. [50].

The normal vectors obtained through (8) are the best local explanation of the
sampled images with known lighting, according to Lambert’s reflectance model and
without considering robustness to noise. However, in general they are not integrable,
i.e., they do not correspond to an actual surface. Then, the second step consists of
obtaining the depth u through numerical normal integration. Following [37], one
approach is to compute u as

u = argmin
u

∫∫
Ω̃

‖∇u(x, y)− g⊥(x, y)‖2 dxdy ⇐⇒ ∆u = divg⊥. (9)

We first discuss the construction of g⊥ : Ω̃ → R2 for the orthographic perspective
setting. With ni, i = 1, 2, 3, we refer to the components of a field of normal vectors,
i.e. n = [n1, n2, n3]

>. In the case of orthographic projection, the vector g⊥ is
constructed as

g⊥ =

[
−n1
n3
, − n2

n3

]>
. (10)

Solving the Poisson equation in (9) requires an adequately chosen boundary
condition. Here, we utilize the so-called natural boundary condition 〈∇u− g, η〉 =
0, with η being the normal vector to ∂Ω̃ in the image plane Ω. The implementation
of this boundary condition is not trivial, since Ω̃ is in general not rectangular. For
the technical details we refer the interested reader to [10].

We note that (9) does not yield a unique solution, even with the natural boundary
condition. This because to any solution u∗ we can add any constant c ∈ R such that
u∗ + c is still a solution. This can be prevented by simply adding the term
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λ

∫∫
Ω̃

‖u(x, y)‖2 dxdy (11)

to the minimized function in (9), with a small weight λ > 0, e.g., 10−9. Thus, the
resulting solution u∗ will be around 0, which does not change its shape drastically.

In contrast to (2), in the perspective projection setting the normal vector depends
not only on the spatial derivatives of u, but also on the (positive) depth u itself. A
method to circumvent this issue is to deploy an auxiliary variable ν := lnu. Thus,
with focal length f and a carefully chosen normalization factor 1/u, we obtain

n =
ñ

‖ñ‖ , ñ =
1

u

 −fux
−fuy

u+ xux + yuy

 =

 −fνx
−fνy

1 + xνx + yνy

 .
Analogously to (9) and(10), the perspective case leads to

ν = argmin
ν

∫∫
Ω̃

‖∇ν(x, y)− g∠(x, y)‖2 dx dy ⇐⇒ ∆ν = divg∠,

with
g∠(x, y) =

[
−n1/(xn1 + yn2 + fn3)
−n2/(xn1 + yn2 + fn3)

]
.

Again, a more detailed account can be found in [37].
Also in this case, natural boundary conditions and a regularizing term similar

to (11) are employed. However, an additive constant for ν translates into a multiplier
for u = exp(ν), which will usually lead to an incorrectly scaled reconstruction. To
mitigate this, we employ the following heuristic. We compute two reconstructions
u⊥ and u∠ = exp(ν∠) while assuming orthographic and perspective projection,
respectively. Then we simply compute the final reconstruction as u∗ = c1u∠, where
c1 is the variable obtained through

(c1, c2)
> = argmin

(c1,c2)∈R2

∫∫
Ω̃

‖u⊥(x, y)− c1u∠(x, y) + c2‖2 dxdy.

The result is a perspective reconstruction with the multiplier chosen such that its
shape is as close as possible to the orthographic reconstruction.

4 Hayakawa’s Lighting Estimation Setup

As already pointed out in Section 2 we restructure the gray input image values as the
p× q data matrix
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M =
[
m1 m2 · · · mq

]
=


m11 m12 · · · m1q

m21 m22 · · · m2q

...
...

...
mp1 mp2 · · · mpq

 ,
where the matrix entry mkt corresponds to the gray value of the kth pixel of the tth
input image.

Let

R =

ρ1 0
. . .

0 ρp

 ,
be the surface reflectance diagonal matrix,

N =
[
n1 n2 · · · nq

]
=

n11 n12 · · · n1pn21 n22 · · · n2p
n31 n32 · · · n3p

 ,
represent the 3× p surface normal matrix, and

L =
[
`1 `2 · · · `q

]
=

`11 `12 · · · `1q`21 `22 · · · `2q
`31 `32 · · · `3q

 ,
the 3× q light source directions matrix. Then, we can write a discrete statement of
Lambert’s law (3) as the matrix equation

M = RN>L. (12)

The photometric stereo technique under unknown lighting consists of computing
the rank-3 factorization

M = Ñ>L (13)

where Ñ = NR (cf. (12)), without knowing in advance the lights location, i.e.,
the matrix L. Here, we briefly recall the method proposed by Hayakawa [21]; see
also [15].

Let the compact singular value composition (SVD) [18] of the image data matrix
be

M = UΣV >, (14)

where the diagonal matrix

Σ = diag(σ1, . . . , σq) =

σ1 0
. . .

0 σq
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contains the singular values σ1 ≥ · · · ≥ σq ≥ 0, and U ∈ Rp×q and V ∈ Rq×q are
matrices with orthonormal columns ui and vi. These are called the left and right
singular vectors, respectively. As already remarked, in real PS applications q � p.

When q is small, the SVD factorization can be computed efficiently by standard
numerical libraries, even for a quite large value of p. In the case of a very large data
set, with the aim of reducing the computational complexity, a partial SVD may be
constructed at a reduced cost [2, 3].

In (12), we assumed the data matrixM to have rank 3. In this situation

σ1 ≥ σ2 ≥ σ3 > σ4 = · · · = σq = 0.

Anyway, since images may be acquired in non-ideal conditions and may be affected
by noise, factorization (14) usually has numerical rank r > 3. Then, a truncated
SVD must be performed. This is achieved by adopting the partitioning

U =
[
U1 U2

]
, V =

[
V1 V2

]
,

whereU1 and V1 contain the first three columns ofU and V , respectively, and letting
Σ1 = diag(σ1, σ2, σ3). Then, we consider the approximation

M'M1 =W>Z,

with W = Σ1U
>
1 = [w1, . . . ,wp] and Z = V >1 = [z1, . . . , zq], which produces

the best rank-3 approximation to the data matrixM in both the Euclidean and the
Frobenius norm sense [7].

This initial rank-3 factorization is followed by the solution of the q × 6 least
squares problem

min
g∈R6

‖Hg − e‖, (15)

where e = (1, . . . , 1)> ∈ Rq and H ∈ Rq×6 is the matrix whose tth row is defined
by [

z21t z
2
2t z

2
3t 2z1tz2t 2z1tz3t 2z2tz3t

]
,

in terms of the elements of the columns zt of Z.
The solution of the optimization problem (15) produces a vector g containing

the entries in the upper triangle of a 3 × 3 symmetric positive definite matrix G,
whose Cholesky factorR normalizes the columns ofZ, in the sense that ‖Rzt‖ = 1,
t = 1, . . . , q. The factors in the sought factorization (13) are given by

Ñ = (R−1)>W, L = RZ;

see [21] and [15]. Finally, the matrix N of the normal vectors is obtained by nor-
malizing the columns of Ñ , and the normalizing constants are the diagonal entries
of the albedo matrixR.

Hayakawa’s procedure shows that the light positions can be detected only for q ≥
6, i.e., if at least 6 images with different lighting are available. Anyway, factorization
(12) is unique up to a unitary transformation, and such a transformation has to be
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suitably chosen before proceeding with the normal integration, to ensure that the
surface can be represented as an explicit function z = u(x, y). A procedure for
determining an acceptable surface orientation and to solve at the same time the
so-called bas-relief ambiguity was proposed in [15, Section V].

5 The Oren–Nayar Model

TheOren–Nayarmodel [34] is designed to handle rough objects bymodeling surfaces
as an aggregation of many infinitesimally small Lambertian patches, called facets.
A schematic view of a small portion dε of a rough surface, made from a small set of
facets, is displayed in Fig. 1.

The slope values of all such facets follow a Gaussian probability distribution
with standard deviation σ ∈ [0,+∞), also called the roughness parameter of the
surface. The main idea proposed in [34] is that each facet contributes to the modeled
irradiance value IO-N according to the Oren–Nayar model, as follows

IO-N =
ρ

π
Li cos (θi) (ν1 + ν2 sin (α) tan (β)max (0, cos (Φr − Φi))) , (16)

where (see also Fig. 2) ρ represents the facet albedo,Li the intensity of the point-like
light source, θi the angle between the surface normal and the light source, and θr
the angle between the surface normal and the camera direction. In addition, two
parameters α = max (θi, θr) and β = min (θi, θr) represent the maximum and the
minimum values of θi and θr, respectively, and the terms ν1 and ν2 depend on the
roughness parameter σ

ν1 = 1− 0.5
σ2

σ2 + 0.33
and ν2 = 0.45

σ2

σ2 + 0.09
.

dε

Facets

Fig. 1 A schematic side view of a small rough surface dε formed by a few facets. The surface
roughness is characterized by a Gaussian probability distribution of facet slopes with standard
deviationσ ∈ [0,+∞). According to theOren–Nayarmodel, each facet contributes to the irradiance
value of the surface as shown in (16). Note that, in case of σ = 0, the surface follows the Lambertian
model.
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CameraPoint light Surface normal

Reference direction on the surface

dε

θr
θi

−Φi

Φr

Fig. 2 Illustration of the Oren–Nayar model for the reflectance of a facet being illuminated by a
point-like light source and captured by a camera. The directions from which the facet is observed
and illuminated determine two angles θr and θi, respectively, with respect to the normal to the
facet. In addition, the reference direction on the surface establishes two azimuth angles Φr and
Φi for the camera and the illumination directions. Note that we do not visualize a particular facet
because of its small size dε compared to the surface area.

Finally, Φi and Φr denote the azimuth angles for the light source and the camera
direction, respectively, with respect to the reference direction on the surface, as
shown in Fig. 2.

Next, we assume the point-like light source be located at the optical center of
the camera and assume the constant coefficient ρ

πLi in (16) to be normalized to
one. The second assumption is not restrictive, as it only depends on the light source
intensity, the surface albedo, and the parameters of the imaging system, such as the
lens diameter and the focal length; see [1]. This allows us to simplify (16) to

IO-N = ν1 cos (θ) + ν2 sin
2 (θ), (17)

while the light source and viewing directions are considered to be coincident, result-
ing in θi = θr = α = β = θ and Φi = Φr, with cos (Φr − Φi) = 1. In the case of
σ = 0, we have ν1 = 1 and ν2 = 0 in (17), and the Oren–Nayar model reduces to
the Lambertian one.

A closer look at (17) reveals that the irradiance value IO-N based on the Oren–
Nayar model consists of two components, namely, ν1 cos (θ), the Lambertian one,
and ν2 sin2 (θ), which is the non-Lambertian component that attains its maximum
when θ = π

2 .
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Following the work by [39], we conclude the preprocessing phase by solving (17)
for cos (θ)

cos (θ) =
ν1 ±

√
ν21 − 4ν2 (IO-N − ν2)

2ν2
, (18)

and considering the solution associated to the minus sign, as motivated in [39]. Note
that the obtained Lambertian component ν1 cos (θ) based on (18) depends on the
roughness parameter σ. This fact will be illustrated in our numerical results.

6 Numerical Results

Our data set includes 20 images of a seashell illuminated from different directions by
direct sunlight, three of which are shown in Fig. 3. To collect the images, a seashell
with a width approximately equal to 10 (cm) was placed face up on a horizontal
desk, with a tripod holding a camera about 100(cm) above the seashell. The camera
has a focal length of 85(mm), and a black background was placed below the seashell
to reproduce homogeneous Dirichlet boundary conditions for the observed surface.
The desk was placed in the open air, under direct sunlight, and rotated in order
to obtain 20 different lighting conditions; see Fig. 4. The sun elevation angle was
measured at the end of the shooting process; see [15] for a detailed explanation of
the shooting procedure and also Fig. 5 for an overview on the modelling pipeline
adopted in this work.

In addition, the maximum gray value corresponding to each pixel across all
seashell images was determined, to apply a threshold to all of them. This establishes
a mask based on a common contribution across all images. Finally, a morphological
erosion [20] with a Euclidean disk of radius 3 pixels was used, providing the filtered
seashell images for the next step. In this way, we may lose a few shell details on
the boundary, but we ensure that there are no parts left in the interface actually
belonging to the background. As an additional benefit, sharp peaks in the interface
are smoothed.

By considering each seashell to represent a rough surface, we adopt the Oren–
Nayarmodel [34] and approximate theLambertian component of the seashell surface,
namely cos θ, by formula (18). After performing the computation, all values of x =

Fig. 3 Three out of 20 seashell images captured illuminated by sun from different directions, as
elaborated in [15].
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Fig. 4 Shooting setting for the seashell dataset. Thewhole system is placed upon a rotating platform.

cos θ less than zero and greater than one, namely−κ ≤ x < 0 and 1 < x ≤ 1+κ for a
fixed κ, are mapped back to zero and one, respectively, to let the approximated values
stay consistently in [0, 1]. These inaccuracies are introduced by the simplification
assumed to derive (17) from (16), making the Oren–Nayar model adoptable in real
world applications [34]. In our data set, the Lambertian approximation resulted in
values between [−κ, 1]withκ = 0.3758. Out of all approximated Lambertian values,
5.3% were smaller than zero, and none were larger than one.

In Figure 6 we display a selection of the filtered images resulting from our
preprocessing pipeline.

In the context of PS under unknown lighting conditions, we applied the procedure
proposed in [21] to our masked seashell images to identify the lighting directions by
the implementation from [15]. Such a procedure requires at least 6 images to esti-
mate the light positions. As mathematically justified in [15], the resulting algorithm
provides the possibility of inferring the lighting directions, leading to a PS problem
with known light positions. In [15], a shooting technique was also introduced to
solve the so called bas-relief ambiguity [6].

We illustrate in Fig. 7 some results concerning the light positions identified by
the software developed in [15] and the corresponding approximated Lambertian
models of the seashells, obtained using (18) via orthographic projection for different
values of σ. The impact of the roughness parameter σ can be clearly observed in
the reconstructed seashells shown in the right column of Fig. 7. Here, each row
contains the obtained light directions and a side view of the reconstructed seashell
based on the approach proposed in [15]. The roughness parameter σ takes the values
{1, 8, 25} in degrees, from top to bottom. As it can be observed, larger values of σ
cause the light direction to become less steep, and the seashell reconstructions to be
more swollen.
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Depth/Light
estimation

Lambertian
approximation

Morphological
erosion

Masking
Image

acquisition

Fig. 5 Workflow adopted in the current work. We start by image acquisition, as explained in [21].
Next, masking and morphological erosion are used as preprocessing phases, so that the Lambertian
components of the images can be approximated using the roughness value σ as a free parameter;
see [34]. Finally, the optimal σ is found by using an optimization approach [9] that iteratively
obtains the light directions and the best seashell model [15]. The optimization performed by [9] is
represented by the loop between the last two steps, where σ is varied to produce a new Lambertian
approximation, with the aim of producing the values nearest to the ground truth light directions
acquired in the image acquisition step.

On the basis of these results, we are motivated to determine a realistic range of
variation for σ which results in a set of meaningful 3D reconstructions. In Fig. 8, we
plot the residual sum of squares (RSS) between each Lambertian approximation and
the corresponding original gray scale image of the seashell, for σ varying in [ε, 60], in
degrees. Values larger than 60°may not be meaningful in practice; see [34]. The zero
value is excluded since in this case the model directly downgrades to a Lambertian
one based on (17) and (18) is not applicable any more. The curve shown in Fig. 8 is
the mean of the curves corresponding to each of the 20 seashell images, constructed
by varying σ ∈ [ε, 60] in steps of one degree. A close observation reveals that a

Fig. 6 The filtered versions of the three images shown in Fig. 3.
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Fig. 7 The impact of the roughness parameter σ in estimating the light directions and in recon-
structing the seashell by the method proposed in [15] can be clearly observed. Here, each row
contains the results obtained for the roughness parameter σ = 1°, 8°, 25°, from top to bottom. A
larger value of σ leads to a less steep estimate of the light direction. We observe in the right column
a swelling effect on the reconstructed shapes, as a direct consequence of the increase in σ.

value of σ close to 0° leads to a relatively high RSS value, revealing the dissimilarity
between a grayscale image and its corresponding Lambertian approximation. This
is expected, as for σ = 0 the Oren–Nayar model reduces to the Lambertian one.
For σ > 30°, the curve starts fluctuating and clearly splits into two sub-curves. This
motivates us to look for an optimal value of sigma in the range [1°, 30°].
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Fig. 8 Variation of the RSS between the Lambertian approximations and the corresponding original
gray images of the seashell with values in [0, 1], for σ in [ε, 60°]. Here, the RSS is used as a similarity
measure. For σ > 30° a fluctuation in the RSS is clearly observed, leading to two distinct branches
of the curve. When σ is small, a large RSS reveals that the Lambertian modelling of gray images
is meaningless. We conclude that a smooth variation of σ in [1°, 30°] justifies the adoption of
Oren–Nayar model, motivating us to consider this range as an educated initial guess to look for the
optimal σ.
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Fig. 9 Azimuth and elevation angles of the light directions estimated according to [15], when the
Lambertian approximation corresponds to σ = 21.3795°. The azimuth angles, in the θ-direction,
shed further light on the shooting procedure explained in [15]. Though we expect all the elevation
angles, shown in the r-direction, to stay close to the measured ground truth angle 44.4°, in practice
we obtain a range of values in [40.21°, 49.34°].

The 44.4° ground truth angle of the sun above the horizon, which can be assumed
to be constant for all images since the acquisition time was sufficiently small, is
next used to determine σ. In practice, the optimal value proves to be 21.3795°, after
letting σ vary in [1°, 30°] with the aim of obtaining the smallest residual sum of
squares (RSS) [17] between the elevation angles of the light directions estimated
according to [15] and the ground truth value. This leads us to the inferred model (see
Fig. 10) after 16 iterations, with a final RSS value of 171.6720.

The polar graph in Fig. 9 displays the optimal azimuth and elevation angles, esti-
mated by the procedure in [15], for the optimal roughness parameter σ = 21.3795°.
The θ- and r-directions correspond to the azimuth and elevation angles, respectively.
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Finally, we report in Fig. 10 the 3D reconstruction based on the light directions
represented in Fig. 9, assuming the seashell to be Lambertian with σ equal to
21.3795°. In particular, we display two views of the reconstructed object, a real
picture of the shell, and a depth map of the 3D model.

Fig. 10 The top rows displays a side view of the reconstructed surface and a photo of the real shell
from the same point of view. In the bottom row we report another view of the reconstructed surface
and the depth map of the 3D model of the seashell, by approximating it as a Lambertian surface
based on the Oren–Nayar model [34]. The reconstruction is obtained using the light directions
shown in Fig. 9.

7 Summary and Conclusion

We developed a novel practical PS pipeline, and we rigorously motivated its con-
stituent components. Our proposed model automatically estimates two fundamental
parameters of the model, namely the unknown lighting environment and the re-
flectance properties of the observed object, whose unavailability often prevent PS
to be robustly applied in real-world scenarios. Hayakawa’s procedure detects the
light positions, provided that at least 6 images of the sample object with different
lighting directions are available. In addition, the reflectance properties of a rough
object are approximated by the Oren–Nayar model to resemble a Lambertian sur-
face. In practice, the Oren–Nayar model setting is used to tune the Hayakawa’s
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detected light directions, leading us to achieving the final optimally modelled object,
as documented by our numerical results.
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