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Abstract 

In this work, combined experimental and fractal nature analysis procedures are proposed in order to 

both model and design mechanical properties of porous ceramics. Several porous ceramics samples 

have been considered both from an in-situ experimental campaign and from the literature. 

Microstructural information concerning pore size distribution has been approximated by the 

Intermingled Fractal units (IFU) approach and effective mechanical properties are derived by a simple 

discrete model. The capability of the proposed methodology to reproduce high-scattered mechanical 

properties is fully shown and a comparison with classical bounds and estimates is also reported. 

Finally, the combined experimental, fractal nature analysis and homogenisation scheme is 

implemented as a design procedure for the technological production of advanced porous ceramics.  

 

Keywords: Intermingled fractal units' model, mechanical properties, porous ceramics, sintering, 

fractal nature analysis, homogenisation 
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1. Introduction 

Porous ceramics (PCs) represent a fundamental class of materials with diverse applications in 

numerous industrial, mechanical, chemical, environmental and civil engineering and architecture 

fields as filters, absorbers, fuel cell electrodes, hot gas collectors, engine components, biomaterials 

applications, piezo-electric materials and thermal and acoustical insulators. Their extensive 

employment is owing to low weight [1,2], fractional density [3] and heat conduction [4] coupled with 

an excellent surface abrasion and strain resistance, considerable hardness mechanical strength and 

chemical inertness [5–8]. 

Many different fabrication methods can be applied to produce these materials [9,10]: gelcasting 

process [11,12], organic foam technique [13], freeze casting method [14–16] and pore-forming agent 

(PFA) method [4,17]. The PFA method consists of: (i) preparing samples of clay powders and PFA 

by using compaction or extrusion techniques; (ii) sintering specimens, where the PFA is burnt out 

forming a porous microstructure during this thermal treatment. The formation of porosity into 

ceramics microstructure is a complicate process conditioned by several variables such as 

granulometry and composition of powders which comprise of raw materials, ball milling process for 

decreasing powders dimension and mixing them creating relative heterogeneity, different methods 

for shaping objects, variation of environmental condition for moisture and drying speed (temperature, 

thermal gradient) [18,19]. The variation of these aspects can generate microstructure modifications 

in pore morphology as shape, tortuous length, dimension and size distribution. Consequently, PCs 

microstructures change remarkably. Indeed, thermal conduction, liquid or vapour-gas transfer and 

mechanical response are a result of the existence and relative characteristics of voids in the 

microstructures.  

The possibility to pre-determine the performances by a material design is the real target of Materials 

Science. It is really challenging to have an excellent balance between different performances. An 

example is the relationship between heat transfer and mechanical behaviour. Indeed, heat conduction 

and mechanical stiffness tend to decrease when porosity increases. This effect must be evaluated 

especially for the fabrication of structural-insulating materials. Moreover, when porosity increases, 

transport phenomena are remarkable and decay processes related to water presence in pore structure 

can be strongly accelerated. On the contrary, building materials characterised by low porosity prevent 

the water vapour permeability, which may be negative for indoor comfort [20,21]. 

In this sense, a sensible improvement is gained from the control of microstructural variables and final 

characteristics of materials in terms of efficiency, reliability and an appropriate longer service life. 

The capability of determining structural morphology a priori is an aspiration issue for improving 

mechanical performances. They depend on several aspects such as elastic and plastic behaviour, the 
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existence of pores and the morphology of microstructure [22–24]. Different equations help in 

describing mechanical response by using density or porosity values and empirical parameters, but 

they cannot give precise bounds in the case of porous media (see the lower Reuss[25] and the upper 

Voigt[26] bounds). The Hashin-Shtrikman bounds[27,28] are known to give the closest possible 

bounds depending only on the porosity and explicit expressions are given for particulate composites. 

Anyway, it is well-known that the lower bounds in porous composites reduce to zero.  

Higher-order microstructural information, such as microstructural disorder and pore size distribution 

(psd) influence the effective behaviour [29–31]. Recently, the attempts inspired by fractal geometry, 

have displayed to be promising for describing porous microstructures. Fractal geometry was first 

formalised by Mandelbrot in 1970s. Starting from empirical observations it is possible to observe that 

“mountains are not cones, clouds are not spheres, and surfaces are not smooth” [32]. Consequently, 

Euclidean geometry is insufficient for describing natural shapes, while fractal geometry is capable to 

represent their complexity. For this, fractal geometry has been used in different areas ranging from 

social science to computer technology, economics and materials science [32]. Fractal figures can be 

elaborated easily by an iterative procedure, which consists of the proposition of the same mapping 

rules reproduced at different scales and they are suitable to represent complex schemes comparable 

to multidisperse natural or artificial shapes. The recurring pattern, usually defined as self-similarity, 

leads to simplified analytical algorithms thanks to the implementation of repetitive equations. 

Therefore, fractal geometries can be implemented to describe morphological information such as psd 

by means of an analytical recursive algorithm and they are appropriate to model multidisperse 

complex microstructures.  

Relevant applications of fractal geometry have been shown. Cai et al. [33–36] considered porous 

characteristics (sizes, shape and tortuosity) to study liquid and gas circulation in different materials, 

Yu et al. [37] proposed an equation with fractal parameters to compute permeability, diffusivity and 

thermal conductivity of porous cement pastes, Qin et al. [38] formalised a theoretical fractal nature 

analysis to explain thermal and fluid transfer in unsaturated and saturated porous media and Liang et 

al. [39] estimated the effective diffusivity of electrolyte in porous media. In these works, calculations 

based on fractal geometry showed a remarkable agreement with experimental data.  

In the last years, a systematic study on the effect of porous microstructure on macroscopic properties 

and consequent performances has been conducted by adopting the Intermingled Fractal units’ model 

(IFU). Its capability of reproducing psd and pore fraction p is important for the prediction of physical 

quantities such as thermal and energy transport behaviour [40–47].  

Here, the IFU procedure is first applied in order to determine macroscopic mechanical properties of 

different classes of PCs. Several comparisons are performed from experimental data obtained both 
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from the literature and from an experimental campaign developed in the present work. The approach 

is briefly described and a comparison with classical bounds is also included. The capability of the 

IFU approach to fit experimental macroscopic stiffness values, including the effect of polydispersity, 

is fully shown. Moreover, a final simulation paves the way of a combined procedure for fabricating 

PCs with specific mechanical properties; in this procedure pre-design predictions from IFU and 

simple experimental data can be used in order to develop a technology for the large scale production 

of PCs with targeted macroscopic mechanical properties.  

 

2. Materials and methods  

Five sets of PCs are considered, fabricated with different procedures. The first series (A), fabricated 

by Novais et al.[4], has been manufactured by mixing and sintering clay powders: (a) with particles 

size smaller than 250 μm, (samples A1-4); (b) with powder particle size in the range of 250-425 μm 

(samples A5-8), plus polypropylene ICORENE PP CO14RM as PFA; (c) with particles size smaller 

than 250 μm (samples A9-12) and (d) with powder particle size in the range of 250-425 μm (samples 

A13-16), plus polymethyl methacrylate VSE UVT PMMA as PFAs.  

Porosity estimation has been performed by using the Mercury Intrusion Porosimetry (MIP) technique 

[4]. Elastic behaviour has been estimated by three-point bending strength measurements performed 

by Shimadzu Auto-graph AG 25TA. The experimental set up for displacement speed is 0.5 mm min-

1. 

The second series (B) has been realised by De Bonis et al. [48]. A first system (B-IS) has been 

produced with clays from the Island of Ischia (B-IS). Clays are initially kept in water for some hours 

in order to achieve a semi-liquid consistency. Successively, 10% of volcanic beach sand, extracted 

from Campi Flegrei, is added in the mixture B-IS.  

A second system (B-SO) has been fabricated by using clays from Sorrento, Italy. Eight specimens 

with dimensions 120 mm × 80 mm × 40 mm were produced. Raw bricks were dried for 10 days under 

controlled environmental conditions (T=25°C, HR=50%) and put under a fire in an electric muffle 

furnace. Two heating rates were used; from environment temperature to 200°C, 1.5°C/min, and from 

200 °C to the maximum T, 3°C/min. The soaking time was 90 min, while the cooling was carried out 

in accordance with the free drift of the switched off kiln. 

Seven samples, fired at 700, 800, 850, 900, 950, 1000 and 1100°C, are tested for each system of 

ceramics (B-IS and B-SO); they are labelled as B-ISi and B-SOi (i=1,…,7). Psd was obtained 

experimentally from MIP and elastic moduli from ultrasound tests. 

The third series (C) of ceramics was produced by Màrquez et al. [49] from kaolinitic clay, feldspar 

and quartz sand. Powders preparation is performed by planetary ball-milling technique. The final 
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mixture was dried in an oven at 110°C, sieved to pass at 150 μm and then pressed at 40 MPa in order 

to realise two types of samples: (a) cylindrical samples with a diameter () of 20 mm and a height of 

5 mm and (b) tiles of dimension 50 mm × 50 mm × 8 mm. Seven samples were produced, sintered at 

1200, 1230, 1250, 1260, 1270, 1280 and 1300°C. The samples are labelled as Ci (i=1,…,7). The 

measurement of open porosity and bulk density has been done following ASTM C373-88 and ASTM 

C329-88. Elastic moduli where determined from the resonance frequency method (Grindosonic 

analyser). 

The fourth series (Di, i=1,…,9) has been taken by Gültekin [50]. They prepared nine samples of 

porcelain tile granules with the uniaxial pressing procedure at 450 kgf/cm2 in a rectangular formwork 

(50 mm × 100 mm). D1-3 were sintered at 1210°C, D4-6 at 1220 °C and D7-9 at 1230°C. Sintering 

rates were 40, 50, 60 °C/min, respectively, while cooling rate was 60°C/min, common for all the 

samples. The open porosity was measured using the Archimedes method. Indirect method based on 

ultrasonic propagation was used to obtain elastic moduli. 

The fifth series of samples (E), were produced at the Advanced Materials Lab of the Department of 

Mechanical, Chemical and Material Engineering of the University of Cagliari. They were fabricated 

starting from commercial green clays (20 g per sample), ball milled with sodium chloride (NaCl) in 

different volume concentrations (from 0 up to 55 vol.%) for 20 minutes. Ball milling has been 

performed inside a polyethylene jar by using zirconia balls with a diameter equal to 5 mm and total 

mass of 4 g. Firing procedure and consolidation were obtained by Spark Plasma Sintering (SPS) 

apparatus (515S model, Fuji Electronic Industrial Co., Ltd., Kanagawa, Japan)[46]. Briefly, this 

equipment is based on the combination of a uniaxial press (max 50 kN) with a DC pulsed current 

generator (10 V, 1500 A, 300 Hz), to simultaneously provide an electric current through the sample 

and the graphite die containing it, together with a mechanical load through the die punches. 

Specifically, NaCl-clay mixtures were first cold compacted inside a graphite die (30 mm outside 

diameter; 15 mm inside diameter; 30 mm height) and then sintered at 780°C (heating rate of 

100°C/min) for about 10 min, under a mechanical pressure of 20 MPa and vacuum conditions. 

Cylindrical samples of about 14.7 mm diameter and 4 mm height are obtained. NaCl has been 

subsequently removed by dissolution in hot distilled water. Sample density, measured after NaCl 

removal, is between 1.26 g/cm3 and 2.09 g/cm3. More details on SPS procedure is reported Licheri et 

al.[51] In Table 1 we report the bulk density , the porosity p, the sintering temperature T and the 

experimental elastic modulus (Eexp) for different A, B, C, D systems [4,48–50]. Bulk density varies 

between 1.76 and 3.69 g/cm3. Comparing PCs series, elastic stiffnesses are very different. Indeed, 

Eexp is between 0.91 and 65 GPa.  
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Elastic modulus of the solid phase is Es = 6.8 GPa for Novais samples A, Es = 20 GPa for De Bonis 

samples B and Es = 76 GPa for Màrquez and Gültekin samples C [52,53]. 

 

3. Intermingled Fractal Units' (IFU) model 

IFU model has been designed for simulating porous microstructure characteristics and, in particular, 

psd of materials. The phenomenological method for building this fractal nature analysis is grounded 

in using Sierpinski carpet as a tale unit. Every fractal, the Sierpinski carpet, has been obtained by an 

iterative process in which a defined construction mapping rule is repeated at different scales. 

Specifically, in this case, the procedure starts from dividing the sides of a square by factor (F), which 

is here equal to 3. Consequently, 9 sub-squares are generated (Fig. 1). At each iteration i, some of the 

9 sub-squares are removed. The resulting figure comprises of voids and solid squares (s). The scheme 

is repeated generating a recursive image with fractal dimension 

𝐷𝑓 =
log(𝑠)

log(𝐹)
 .                                                                                                                                        (1) 

Iteration by iteration, a void microstructure and consequent psd are generated. For real porous 

structures, the iterations are calibrated on the pore size range (psr), measured by MIP. However, a 

single Sierpinski carpet cannot model every psd, since the associated pore size R vs cumulative 

porosity curves have constant curvature (as a consequence of the fact that the cumulative porosity is 

a geometric series normalised to one). This fact limits the possibility to model the psd of several PCs. 

To overcome this restriction the IFU model has been proposed in [52,54]; it is based on the 

combination of two different Sierpinski carpets, labelled  and . This set of intermingled fractal 

figures gives rise to a new porous system, which could have a non-fractal configuration and allows 

reproducing experimental data acquired by MIP tests. The number n of  base units is combined per 

single  tale is 

𝑛𝛽 =
(𝐴𝛼𝑝−𝑝∙𝐴𝛼)

(𝑝∙𝐴𝛽−𝐴𝛽𝑝)
 ,                                                                                                                               (2) 

where A, A and Ap, Ap represent total surfaces and total pore surfaces of units  and , 

respectively [42]. 

In order to fit the total porosity of the PCs samples (obtained by SPS, Fig. 2a), at each iteration solid 

forever tiles (solid sub-squares) are used and a solid phase, namely filled surface, is also added at the 

larger scale into the model [43], see Fig. 2b. This expedient increases the versatility of reproducing 

pore volume distribution, Fig. 2c. In this way, IFU represents a cross sectional area of the minimum 

representative part of material. The input data of the model, experimentally acquired by MIP tests, 

are the maximum ray of the psr (the ray corresponding to a variation in Hg absorption) and the porous 
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volume fraction as a function of the pore size. This has a notable importance for the generalisation of 

the model which, indeed, can be used for different porous materials [44,54]. By changing Sierpinski 

characteristics, it is possible to determine the porosity and, subsequently, the psd, which fits the 

experimental MIP data. Therefore, these steps are useful for replicating experimental microstructures 

(Fig. 2c), predicting their elastic behaviour (Fig. 2d) and design new porous microstructures (Fig. 2e) 

with specific mechanical properties (Fig. 2f). 

 

 These fractal patterns are constructed and the IFU parameters are reported in Tables 2, 3 and 4 for 

different samples’ data. They contains fractal dimension, Df of Sierpinski carpets  and , which 

defines the geometric configuration of the fractal unit; the size of larger pore ray, Rmax; the size of 

smaller pore ray, Rmin; the iterations that determine the psr; number of solid forever squares contained 

in Sierpinski carpet and filled surface.  

The application of IFU procedure allows reproducing pore cumulative curves for different PCs. In 

Fig. 3 we show the results for PCs by De Bonis [48]. The excellent agreement between experimental 

and numerical curves demonstrates the capability and the versatility of the advanced fractal nature 

analysis to reproduce pore cumulative distribution. Indeed, it gives the possibility to include effects 

of polydispersion, obtained from experimental data, into the homogenisation scheme. 

From the defined microstructure an analytical multiscale homogenisation scheme is implemented. 

Every unit is converted into a spring pattern (Fig. 2d) and, at each iteration i, the effective Young’s 

modulus 𝐸(𝑖) is computed by means of a simple scheme made of springs in series and parallel. A 

recursive bottom-up algorithm is implemented from the smaller to the larger cells. At last iteration n 

(the smallest cell for a Sierpinski carpet), the stiffness of each spring associated to a single sub-square 

is estimated as  

𝑘𝑞𝑟
(𝑛)

= 𝜒𝑞𝑟 𝐸𝑠
𝐴𝑒
(𝑛)

𝐿𝑒
(𝑛)  ,             𝑞 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼,               𝑟 = 1, 2, 3,                                                          (3) 

where Es is the Young’s modulus of the solid phase, 𝐴𝑒
(𝑛)

 the cross-sectional area (per unit out-of-

plane thickness) and 𝐿𝑒
(𝑛)

 the length of the corresponding sub-square. The characteristic function 𝜒𝑞𝑟 

is equal to 1 for solid sub-squares and 0 for void ones. Following the simple spring pattern connected 

in parallel and series indicated in Fig. 2d, the effective spring stiffness for the 3 × 3 unit cell is 

𝑘(𝑛) = [∑ (
1

∑ 𝑘𝑞𝑟
(𝑛)

𝑟=1,2,3

)𝑞=𝐼,𝐼𝐼,𝐼𝐼𝐼 ]

−1

.                                                                                                   (4) 

The derivation of equation (4) is reported in the Supplementary material. 

Since 𝐴𝑒
(𝑛)

 and 𝐿𝑒
(𝑛)

 are the same in all sub-squares the effective Young’s modulus is given by 
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𝐸(𝑛) = [∑ (
1

∑ 𝐸𝑞𝑟
(𝑛)

𝑟=1,2,3

)𝑞=𝐼,𝐼𝐼,𝐼𝐼𝐼 ]

−1

,                                                                                                   (5) 

where 𝐸𝑞𝑟
(𝑛)

= 𝜒𝑞𝑟 𝐸𝑠.  

As an example, for the cell of Fig. 1  

𝐸(𝑛) =
3

4
 𝐸𝑠 .                                                                                                                                      (6) 

At the next iterations  

𝐸(𝑖) = [∑ (
1

∑ 𝐸𝑞𝑟
(𝑖)

𝑟=1,2,3

)𝑞=𝐼,𝐼𝐼,𝐼𝐼𝐼 ]

−1

,                      𝑖 = 𝑛 − 1, 𝑛 − 2,… , 1,                                      (7) 

where 𝐸𝑞𝑟
(𝑖)

 is equal to 0 for a void sub-square, 𝐸(𝑖+1) for a carpet sub-square and 𝐸𝑠 for a solid forever 

sub-square. 

At larger scale, the Sierpinski carpets  and  are complemented by the solid filled surface.  

The harmonic average of Young’s modulus of each base units (Sierpinski carpets  and ) and filled 

surface (having modulus 𝐸𝑠) corresponds to the final EIFU.  

 

4. Analytical estimates 

Several analytical models have been proposed to estimate or bound the Young’s modulus as a 

function of microstructural information. In the following, we report bounds and estimates, which 

depends on the porosity 𝑝, namely the one-point correlation function of the microstructure. 

The upper Hashin-Shtrikman (EHS) bound [27,28] for particulate composites reads as 

𝐸𝐻𝑆 ≤ 𝐸𝑠
1−𝑝

1+𝑝
                                               (8) 

and the derivation of the simplified formula is reported in the Supplementary material. The 

corresponding lower bound reduces to zero. 

The Voigt expression (EV) [26,55,56] is the arithmetic average 

𝐸𝑉 ≤ 𝐸𝑠(1 − 𝑝),                                                                                                                                (9) 

which is an upper bounds; the corresponding lower bound is the Reuss harmonic average, which 

reduces again to zero. 

The exponential relation (Eexp) [57] has the form 

𝐸𝑒𝑥𝑝 = 𝐸𝑠𝑒𝑥𝑝 (
−2𝑝

1−𝑝
)                                                                                                                        (10) 

and the simplified expression of Gibson and Ashby (EGA) is[58]  

𝐸𝐺𝐴 = 𝐸𝑠{[𝜙
2(1 − 𝑝)2] + [(1 − 𝜙)(1 − 𝑝)]} .                                                                             (11) 
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The Gibson and Ashby estimate (11) considers open and closed cells in foams (see Chapter 1.2 [58]), 

in addition to the porosity, ϕ is the solid fraction of the structural elements which defines the open 

cells. For foams, characterised by open cells, ϕ = 1. 

Finally, an empirical model is also reported [59] 

𝐸𝑅 = 𝐸𝑠 (1 −
𝑝

𝑝0
)
𝑛

 ,                                                                                                                         (12) 

where, in the case of spherical pores (ER1), n = 1.65 and p0 = 0.818, for ellipsoidal pores (ER2), n = 

2.25 and p0 = 0.798 and for solid spheres (ER3), n = 2.23 and p0 = 0.652. 

Equations (8-12) give estimations and bounds of the Young’s modulus based on the porosity, the first 

order statistical information regarding the microstructure. Some additional information are given by 

the open cell parameter ϕ in the Gibson and Ashby expression (11) and by the parameters n and p0 

associated to the pore shape.  

 

5. Results 

A comparison between experimental data and analytical estimates from the literature is reported in 

Fig. 4, where the normalised effective elastic modulus Eeff =E/Es is shown as a function of the porosity 

p. Estimates and bounds (8-12) are shown by dotted lines, while experimental moduli are indicated 

by points as follows: ▲ systems A (Novais [4]), ■ systems B-IS (De Bonis [48]), ● systems B-SO 

(De Bonis [48]), ▬ systems C (Màrquez [49]) and  systems D (Gültekin [50]). Despite of the 

general trend of a decrease of the Young’s modulus with the porosity p, indicated by the coloured 

region, it is evident that the experimental values display large oscillation. Although porosity certainly 

influences mechanical properties, it does not simply correlate to elastic behaviour in unequivocal 

way. The analytical models in equations (8-12), which depend only on the porosity, cannot track such 

high scattering. By observing experimental results reported in Fig. 4, we note that there is no 

monotonic dependence on the porosity p, as shown, in particular, by systems B-IS and C. Indeed, a 

deeper inspection of experimental results reveals that B-IS6 and B-SO3 have porosity 𝑝 ≈ 0.38, but 

their effective Young’s modulus is equal to 0.49 and 0.06, respectively. This large variation takes 

place also for systems which are fabricated with the same methods: B-IS1 and B-IS7, with 𝑝 ≈ 0.31, 

have effective Young’s modulus equal to 0.56 and 0.24, respectively, while A4, A7 and A12, with 

𝑝 ≈ 0.22, have very scattered Eeff; equal to 0.29, 0.59 and 0.37, respectively. This data evidence, at 

least qualitatively, the role of the microstructure, its morphology, topology and solid phase disorder 

in determining the effective behaviour of PCs. 

Equations (8-12) are representative for specific materials for which they are formalised, but, at the 

same time, they cannot be considered for making a generalised procedure for PCs. In order to achieve 
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a better approximation in predicting the elastic behaviour, different models that can incorporate the 

available experimental data, in particular psd from MIP tests, must be employed. Here, we show that 

approaches based on fractal geometry, named the Intermingled Fractal units’ model (IFU) has the 

capability to predict with high precision the macroscopic behaviour of PCs.  

Estimates of the Young’s modulus provided by the IFU model are reported in Fig. 5. Experimental 

values are given in coloured points and estimates by white ones. Novais (triangles) [4] and De Bonis 

(squares and circles) [48] samples are considered. In part (a) of the figure the effective Young’s 

modulus Eeff is given as a function of porosity, while a direct comparison between experimental values 

and IFU estimates is shown in part (b), where the 45% straight line indicates perfect agreement. It is 

fully evident the capability of the IFU model to fit experimental data. Despite of the coarse 

homogenization scheme based on the spring pattern model, the fractal geometry embeds the effect of 

polydispersion by reproducing, to a high level of precision, the psd in the experimental size interval. 

It turns out that this is a key microstructural parameter that influences, to a large extent, the 

macroscopic properties of the porous system.  

The predictions calculated for these PCs demonstrate the highest versatility of IFU and they push to 

apply this procedure as a design tool for the production of materials realised with a specific porous 

microstructure and targeted elastic properties. In Fig. 6 we show the pore cumulative curves for 

different PCs. E1 and E2 systems (blue lines), fabricated at the Advanced Materials Lab by SPS 

techniques, have porosity p equal to 0.22 and 0.53, respectively and a psd characterised by two picks 

corresponding to pores with ray-size equal to 0.011 µm and 0.027 µm and 0.018 µm and 0.11 µm, 

respectively. The different microstructures depend on the amount of pore-forming agent (PFA) during 

the PCs production. Pore cumulative curves of systems E1 and E2 are compared with IFU modelling 

reconstruction M1 and M2 (red dotted lines), and, as before, they are in excellent agreement with 

experimental values. Moreover, in the same figure we report the pore cumulative curves predicted by 

the fractal natureanalyses of designed pore microstructures (F1-F8) computed by modulating the total 

porosity p. The IFU curves M1-2, F1-8 are obtained by setting up the IFU model with the parameters 

specified in Tables 3 and 4. The resulting combinations represent microstructures definition for PCs 

with specific elastic properties, which have to be calculated by fractal natural analysis. 

Consequently, as seen before, Young’s modulus is calculated by resolving series and parallel springs’ 

patterns. These IFU calculation data are presented in Fig. 7 as a function of porosity. They fall down 

within the coloured area which represents the experimental trends by Novais, De Bonis, Màrquez and 

Gültekin [4,48–50] from Fig. 4, but they clearly incorporated statistical information of the 

microstructure beyond the porosity p.  
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Conclusion  

The possibility to design porous ceramics represents a desired target for Materials Science 

researchers. It would provide the opportunity to predict materials behaviour in different conditions. 

In particular, it is very useful for the effective mechanical properties. Different analytical models have 

been published in literature, but they do not give precise estimates for the classes of porous ceramics 

considered in this work. The fractal nature analysis has the capability to represents the internal 

microstructure, which develops at different scales and naturally fits with the available microstructural 

experimental data, in particular the pore size distribution. Since it is associated with the internal 

geometry, it can be applied to the analysis of different physical fields and here it is implemented to 

the case of mechanical behaviour of PC. The IFU approach combines different fractal units and can 

reproduce the pore size distribution of the sample to a high level of precision. It is applied here for 

the first time to compute the macroscopic mechanical properties. In particular, Young’s modulus has 

been calculated by considering the available microstructural data of the porous structure. The 

phenomenological reproduction is then converted into series and parallel patterns, analytically solved 

for calculating elastic modulus. IFU modelling has been estimated by comparing calculations with 

experimental data of Novais, De Bonis, Màrquez and Gültekin systems. The capability of the fractal 

nature analysis to reproduce the polydispersive nature of the microstructure is a key point that enables 

to retrieve high-scattered effective properties. For designed materials, the elaborations obtained by 

the application of IFU analytical equations predict effective Young’s Modulus in very good 

agreement with data acquired experimentally.  
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Appendix 1. Determination of effective spring stiffness 

The 3 × 3 cell is modelled as a system of springs where, in each row I, II, III the springs at columns 

1, 2, 3 are connected in parallel and the three rows are then connected in series.  

Then, the spring stiffness of each row 𝑘𝑞
𝑛 is obtained coupling in parallel the spring in each row, 

namely 

𝑘𝑞
(𝑛)

= ∑ 𝑘𝑞𝑟
(𝑛)

𝑟=1,2,3  ,             𝑞 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼.                                                                               (A. 1.1) 

The effective stiffness 𝑘𝑛 of the cell is obtained coupling in series the row stiffnesses of equation (A. 

1.1) as follows 
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1

𝑘(𝑛)
= ∑

1

𝑘𝑞
(𝑛)𝑞=𝐼,𝐼𝐼,𝐼𝐼𝐼                                                                                                                    (A. 1.2) 

leading to expression (4). 

 

 

 

Appendix 2. Hashin-Shtrikman bounds 

The Hashin-Shtrikman variational principle provide rigorous lower and upper bounds for the 

macroscopic constitutive properties of composites [27]. In the case of a well-ordered particulate two 

phase composite, which is linear elastic and macroscopically isotropic, explicit expressions are given 

for the effective shear 𝜇 and the compressibility 𝐾 moduli. 

Considering a two-phase heterogeneous material with volume fractions 𝑝1 and 𝑝2 = 1 − 𝑝1 and 

elastic moduli 𝜇1 < 𝜇2 and 𝐾1 < 𝐾2, the bounds are as follows  

𝐾− ≤ 𝐾 ≤ 𝐾+ ,                                                                                                                          (A. 2.1) 

𝜇− ≤ 𝜇 ≤ 𝜇+ ,                                                                                                                           (A. 2.2) 

where 

{
 
 

 
 𝐾− = 𝐾1 +

𝑝2
1

𝐾2−𝐾1
+

𝑝1

𝐾1+
4
3
𝜇1

 ,

𝐾+ = 𝐾2 +
𝑝1

1

𝐾1−𝐾2
+

𝑝2

𝐾2+
4
3
𝜇2

 ,
                                                                                                 (A. 2.3) and  

{

𝜇− = 𝜇1 +
𝑝2

1

𝜇2−𝜇1
+
6(𝐾1+2𝜇1)𝑝1
5(3𝐾1+4𝜇1)𝜇1

 ,

𝜇+ = 𝜇2 +
𝑝1

1

𝜇1−𝜇2
+
6(𝐾2+2𝜇2)𝑝2
5(3𝐾2+4𝜇2)𝜇2

 .
                                                                                                (A. 2.4)                    

For a porous composites 𝑝1 = 𝑝, 𝑝2 = 1 − 𝑝 (𝑝 is the porosity), 𝜇1 = 𝐾1 = 0 and 𝜇2 = 𝜇𝑠, 𝐾2 = 𝐾𝑠. 

In such a case, it is easy to check from (A. 2.3) and (A. 2.4) that the lower bounds 𝜇− and 𝐾− reduce 

to zero.  

Then, remembering that  

𝐸 =
9𝐾𝜇

3𝐾+𝜇
=

1
1

3𝜇
+
1

9𝐾

 ,                                                                                                                    (A. 2.5)                   

it is possible to construct bounds for the Young’s modulus 𝐸 from the bounds (A. 2.3) and (A. 2.4) 

as follows 

𝐸− ≤ 𝐸 ≤ 𝐸+ ,                                                                                                                           (A. 2.6) 

where 𝐸− = (
1

3𝜇−
+

1

9𝐾−
)
−1

 reduces to zero in the porous case, while 

𝐸+ =
1

1

3𝜇+
+

1

9𝐾+

=
2 𝐸𝑠(1−𝑝)(7−5𝜈𝑠)

2(7−5𝜈𝑠)+(13−2𝜈𝑠−15𝜈𝑠
2)𝑝

  ,                                                                                (A. 2.7)             
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with 𝜈𝑠 the Poisson’s coefficient of the solid phase.  

Expression (A. 2.7) has a minimum at 𝜈𝑠 =
7−4√2

5
= 0.269 and the difference between the minimum 

and the maximum value of 𝐸+/𝐸𝑠 in the wide interval 0 ≤ 𝜈𝑠 ≤ 0.5 increases with 𝑝, being 0.43% 

for 𝑝 = 0.05 and 4.12% for 𝑝 = 0.8. It is therefore justified to consider 𝜈𝑠 = 0.2 leading to the 

simplified expression 

𝐸+ = 𝐸𝑠
1−𝑝

1+𝑝
 ,                                                                                                                             (A. 2.8) 

corresponding to the upper limit in equation (8). 
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Captions 

 

Figure 1. Sierpinski carpet. The geometrical construction starts from a square divided in 9 sub-

squares. At each iteration i, 2 squares are removed generating the void microstructure. For i=1 voids 

have ray Rmax (the characteristic size). Iteration by iteration, pore structure grows until the last 

iteration in which pores have ray Rmin. In the figure the fractal dimension is 𝐷𝑓 =

log(7) / log(3) = 1.771. 

 

Figure 2. Experimental activity and modelling design by using IFU. (a) Sintering obtained by SPS; 

(b) Filled surface and solid surface for Sierpinski carpet with three pores at first iteration; (c) Hg 

intrusion tests and phenomenological IFU modelling; (d) elastic modulus calculations performed by 

using IFU equations; (e) porous microstructural design and elastic modulus estimations, (f) IFU 

calculations for designed microstructures are compared with experimental data.  

 

Figure 3. Pore cumulative curves. Comparison between MIP data (continuous lines) and IFU 

modelling (dotted lines). Curves are given for B-IS6 (a), B-IS7 (b), B-SO6 (c) and B-SO7 (d) samples. 

IFU parameters are reported in Table 2. 

 

Figure 4. Effective Young’s modulus as a function of porosity p. Experimental data are indicated 

with points and analytical estimates by dotted-lines. ▲ Samples A (Novais [4], Es = 6.8 GPa), ■ 

samples B-IS (De Bonis [48], Es = 20 GPa), ● samples B-SO (De Bonis [48], Es = 20 GPa), ▬ 

samples C (Márquez [49], Es = 76 GPa) and  samples D (Gültekin [50], Es = 76 GPa). Calculations 

are performed by using: Hashin-Shtrikman (HS), equation (8); Voigt (V), equation (9); exponential 

relation, (exp) equation (10); simplified expression of Gibson and Ashby, (GA) equation (11) and 

Roberts relations (R1-R3), equation (12). The coloured area shows the experimental trend of Young’s 

modulus as a function of porosity.  

 

Figure 5. Experimental data vs IFU estimations. Young’s modulus is given for PCs by Novais 

(triangles) [4] and De Bonis (squares and circles) [48]. (a) Young’s modulus as a function of porosity; 

coloured points correspond to experimental values, white points to IFU estimates. (b) Comparison 

between experimental data and IFU estimation. 
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Figure 6. Pore cumulative curves. E1 and E2 (blue lines): experimental value from MIP test. M1 

and M2 (red dotted lines): reconstruction by fractal nature analysis. F1-F8 (green dotted lines): 

prediction by fractal nature analysis.  

 

Figure 7. Comparison between IFU data and experimental trends. Young’s modulus calculations 

(●) are compared with experimental trends acquired by [4,48–50].  
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Table 1. Bulk density (), porosity (p), sintering temperature (T) and experimental elastic modulus 

(Eexp) for A, B, C and D systems. 

Sample ρ (g/cm3) p (%) T (°C) Eexp (GPa) 

A1 2.11 12.71 1200 4.5 

A2 2.04 15.14 1200 4.0 

A3 1.94 19.24 1200 2.8 

A4 1.85 22.35 1200 2.0 

A5 2.12 12.67 1200 4.8 

A6 2.01 16.28 1200 4.1 

A7 1.86 22.16 1200 4.0 

A8 1.76 25.75 1200 2.8 

A9 2.07 13.13 1200 6.2 

A10 2.07 14.07 1200 5.6 

A11 2.00 17.49 1200 3.0 

A12 1.88 22.20 1200 2.5 

A13 2.10 11.51 1200 5.2 

A14 2.07 13.75 1200 5.0 

A15 1.97 17.34 1200 4.9 

A16 1.88 20.68 1200 3.4 

B-IS1 2.45 31.09 700 4.84 

B-IS2 2.01 28.24 800 6.88 

B-IS3 2.39 34.26 850 10.29 

B-IS4 2.49 33.98 900 10.75 

B-IS5 2.52 35.77 950 11.01 

B-IS6 2.52 37.94 1000 9.77 

B-IS7 2.50 31.89 1100 11.23 

B-SO1 2.29 41.71 700 0.91 

B-SO2 2.51 45.01 800 1.05 

B-SO3 2.27 38.48 850 1.23 

B-SO4 2.51 44.22 900 1.19 

B-SO5 3.69 41.19 950 1.94 

B-SO6 2.57 40.89 1000 3.03 

B-SO7 2.56 27.74 1100 7.52 

C1 2.27 9.90 1200 48.0 

C2 2.33 6.50 1230 49.0 

C3 2.34 7.50 1250 61.0 
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C4 2.33 4.70 1260 61.0 

C5 2.34 4.80 1270 61.0 

C6 2.33 4.00 1280 57.0 

C7 2.28 8.50 1300 65.0 

D1 2.24 11.64 1210 59.23 

D2 2.25 10.51 1210 61.81 

D3 2.26 9.67 1210 62.46 

D4 2.26 9.57 1220 63.32 

D5 2.26 9.37 1220 63.49 

D6 2.25 8.97 1220 63.51 

D7 2.20 11.58 1230 60.89 

D8 2.19 11.94 1230 58.45 

D9 2.16 13.86 1230 55.70 
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Table 2. Geometrical characteristics of the IFU model for the systems B-IS6, B-IS7, B-SO6 and B-

SO7. Fractal dimension Df, maximum ray Rmax, minimum ray Rmin, iteration number, number of solid 

forever squares, filled surface and porosity p. 

  B-IS6 B-IS7 B-SO6 B-SO7 

1 Unit α 

 

Df 1.89 1.89 1.77 1.89 

nα 1 1 1 1 

Rmax (μm) 129.6 162 105 124 

Iteration 9 8 9 9 

Rmin (μm) 0.006 0.025 0.005 0.006 

Solid forever 2 2 0 1 

n Unit β Df 1.77 1.63 1.89 1.89 

nβ 59233 30530 3911 1622 

Rmax (μm) 0.6 2 3.89 4.59 

Iteration 5 4 6 6 

Rmin (μm) 0.006 0.025 0.005 0.006 

Solid forever 3 4 2 4 

 Filled Surface (μm2) 1.69·105 1.53·106 0 1.67·104 

 pexp / pIFU (%) 38 32 41 28 
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Table 3. Geometrical characteristics of the IFU model for the systems M1, M2, F1, F2 and F3. Fractal 

dimension Df, maximum ray Rmax, minimum ray Rmin, iteration number, number of solid forever 

squares, filled surface and porosity p. 

  M1 M2 F1 F2 F3 

1 Unit α 

 

Df 1.77 1.89 1.77 1.77 1.77 

nα 1 1 1 1 1 

Rmax (μm) 92 270 35 48 69 

Iteration 10 10 9 9 9 

Rmin (μm) 0.002 0.005 0.002 0.002 0.004 

Solid forever 0 2 0 0 0 

n Unit β Df 1.77 1.626 1.77 1.77 1.77 

nβ 2.72·107 5.54·106 2.07·107 1.74·108 2.41·107 

Rmax (μm) 0.042 0.123 0.016 0.022 0.003 

Iteration 3 3 2 1 2 

Rmin (μm) 0.002 0.005 0.002 0.002 0.004 

Solid forever 4 2 4 4 4 

 Filled Surface (μm2) 1.78·106 1.50·104 1.17·106 1.20·107 1.78·106 

 pexp / pIFU (%) 22 53 7 10 15 
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Table 4. Geometrical characteristics of the IFU model for the systems F4, F5, F6, F7 and F8. Fractal 

dimension Df, maximum ray Rmax, minimum ray Rmin, iteration number, number of solid forever 

squares, filled surface and porosity p. 

  F4 F5 F6 F7 F8 

1 Unit α 

 

Df 1.63 1.63 1.63 1.89 1.89 

nα 1 1 1 1 1 

Rmax (μm) 124 147 170 196 270 

Iteration 10 10 10 10 10 

Rmin (μm) 0.002 0.002 0.003 0.003 0.005 

Solid forever 0 3 3 3 2 

n Unit β Df 1.89 1.77 1.77 1.46 1.26 

nβ 4.42·107 1.80·107 1.52·107 5.57·106 5.54·106 

Rmax (μm) 0.057 0.067 0.078 0.090 0.123 

Iteration 3 3 3 3 3 

Rmin (μm) 0.002 0.002 0.003 0.003 0.005 

Solid forever 4 4 4 3 2 

 Filled Surface (μm2) 0 1.56·106 0 6.39·103 3.33·104 

 pexp / pIFU (%) 27 32 37 42 52 
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