
THE REALIZABILITY PROBLEM AS A SPECIAL CASE OF
THE INFINITE-DIMENSIONAL TRUNCATED MOMENT

PROBLEM

Abstract. The realizability problem is a well-known problem in the analysis
of complex systems, which can be modeled as an infinite-dimensional moment
problem. More precisely, as a truncated K−moment problem where K is
the space of all possible configurations of the components of the considered
system. The power of this reformulation has been already exploited in [27],
where necessary and sufficient conditions of Haviland type have been obtained
for several instances of the realizability problem. In this article we exploit
this same reformulation to apply to the realizability problem the recent ad-
vances obtained in [8] for the truncated moment problem for linear functionals
on general unital commutative algebras. This provides alternative proofs and
sometimes extensions of several results in [27], allowing to finally embed them
in the above-mentioned unified framework for the infinite-dimensional trun-
cated moment problem.

1. Introduction

In several applications dealing with the analysis of complex systems, the under-
lying random distribution is often unknown or computationally intractable. Thus,
a common strategy is to extract relevant information about the system from some
selected characteristics rather than from the distribution itself. For example, in
statistical mechanics the most interesting quantities characterizing many-particle
systems can be deduced from the first two correlation functions, which can be ef-
ficiently approximated via different methods such as Percus-Yevick schemes and
hyper-netted chains (see, e.g., [15]). The challenging question is then to establish
whether or not such estimated functions actually are the correlation functions of
some random distribution on all possible configurations of the particles of the sys-
tem. This problem is longstanding in the statistical mechanics literature, where it
is well-known as realizability problem and its first rigorous formulation its due to
Percus (see, e.g., [32]). Since the correlation functions can be defined as factorial
moments of probability measures on the space of all possible configurations of the
system components, which is an infinite-dimensional space, the realizability prob-
lem can be reformulated as an infinite-dimensional version of the classical truncated
moment problem.
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Classically, the moment problem has been indeed investigated in finite dimen-
sional settings. More precisely, given d ∈ N and K ⊆ Rd closed, the d-dimensional
K−moment problem asks whether a given sequence of real numbers is actually the
sequence of power moments of a certain probability measure supported in K, or
equivalently, whether a given linear functional on the real polynomials in d vari-
ables can be represented as an integral w.r.t. a probability measure supported in
K. The moment problem is addressed to as truncated when the starting sequence is
finite, respectively as full when the starting sequence is infinite and so all moments
are prescribed.

The infinite-dimensionality can enter the moment problem in several ways, e.g.,
allowing measures supported in infinite-dimensional vector spaces, considering a
starting sequence of functions rather than scalars, taking linear functionals defined
on not necessarily finitely generated algebras, etc. All such versions belong to
the class of infinite-dimensional moment problems, whose study brings up new
beautiful mathematical challenges as well as fascinating applications which have
been triggering the interest in this problem from the early days of the moment
problem theory until nowadays (see, e.g., [4], [2, Chapter 5, Section 2], [5], [16], [33,
Section 12.5], [13], [17], [1], [14], [34], [12], [18], [19] on the theoretical side, and,
e.g., [11, 25, 10, 35, 36, 29, 37, 30] on the more applied one).

To identify the realizability problem as an infinite-dimensional truncated moment
problem, we use in the following the interpretation given in [26, 27] in which each
configuration of the system components corresponds to a sum of Dirac measures
concentrated at the points where the components lie. Thus, if we denote by X
the space of all the positions of the system components, each compact region of
X must contain only a finite number of components of each configuration and
so each configuration η is the sum of Dirac measures concentrated at the points
of a sequence in X without accumulation points, i.e., η is a Radon measure on
the space X. Hence, the set N (X) of all possible configurations of the system
components is a subset of the vector space M(X) of all signed Radon measures
on X. Prescribing the correlation functions of a probability measure on N (X) up
to some order n means specifying its factorial moments up to order n, which is
equivalent to specifying its power moments up to order n, and so the realizability
problem can be interpreted as a truncated K−moment problem with K ⊆ N (X).

The full moment problem for point processes (i.e., probability measures on
N (X)) has been already considered in the seventies, e.g., in [28] an analogue of
Riesz-Haviland’s theorem was proved for this instance, while in [24] a characteriza-
tion of point processes was given via diagonal restrictions of their moments. Also
solutions via positive semi-definiteness conditions have been formulated under ad-
ditional analyticity bounds or boundedness constraints on the moments, e.g., in [3],
[21], [22], [18]. As for the truncated case, much less is known and the available
results solve specific instances of the problem for K ⊆ N (X) often motivated by
instances of the realizability problem, see, e.g., [38], [6], [23], [26], [27], [31], [7],
[8]. In particular, the power of the reformulation of the realizability problem as an
infinite-dimensional truncated moment problem has been exploited in [26, 27] to
get a class of necessary and sufficient conditions for the existence of a representing
measure on certain K ⊆ N (X) given only the first two correlation functions. Their
results are based on a generalization of the Riesz-Markov theorem to unbounded
continuous functions which exploits Daniell’s theory of integration.
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In this manuscript, we instead exploit this reformulation to apply to the real-
izability problem the recent advances obtained in [8, Theorems 3.7 and 3.8] for
the truncated moment problem for linear functionals on general unital commu-
tative algebras, retrieving and in some cases extending the main results in [27].
The case of compactly supported measures on N (X) has been already considered
in [8, Section 6], where the relative result in [27] has been derived from [8, The-
orem 3.7]. In the following we complete the work started in [8, Section 6], by
retrieving also the results in [27] for the case K = N (X) from the generalized trun-
cated Riesz-Haviland theorem in [8, Theorem 3.8] and so completely embedding
[27] in the unified approach to the infinite-dimensional truncated moment problem
settled in [8].

2. Notation and Preliminaries

Let us start by recalling the above mentioned interpretation of the realizability
problem as infinite-dimensional moment problem. In the following we consider a
Hausdorff locally compact space X whose topology has a countable basis, and hence,
X is σ–compact and Polish (complete, separable, and metrizable). A possible con-
figuration of the system components can be then modeled as a point configuration
η on X, namely, a Radon measure η on X taking as values either a non-negative in-
teger or infinity, i.e., η =

∑
i∈I δxi where δxi denotes the Dirac measure supported

at xi, (xi)i∈I is such that xi ∈ X with I either N or a finite subset of N and if I = N
then the sequence (xi)i∈I has no accumulation points in X. The requirement that
η is a Radon measure ensures that any compact subset of X contains only finitely
many system components. The space N (X) of all point configurations is known as
point configuration space on X (see, e.g., [21]) and is a closed subset of the space
M(X) of all signed Radon measures supported in X endowed with the so-called
vague topology τ , i.e., the weakest topology on M(X) such the map M(X) → R,
ν 7→

∫
X
fdµ is continuous for all f ∈ Cc(X), where Cc(X) denotes the space of all

continuous real-valued functions compactly supported in X (see [20, Lemma 4.4]).
A point process on X is a Radon probability measure on M(X) which is sup-

ported in N (X) and intuitively is a random distribution of points in X such that,
with probability one, any compact subset contains only finitely many of these points
(see, e.g. [9] for an overview).

Given a point process µ on X, its nth correlation function ρ
(n)
µ is defined as the

expected value of the nth factorial power η⊙n of an element η ∈ N (X), that is, the
symmetric ρ

(n)
µ ∈ M(Xn) such that∫

Xn

fdρ(n)µ =

∫
N (X)

(∫
Xn

fdη⊙n

)
dµ, ∀f ∈ Cc(Xn).

The realizability problem exactly asks the converse question: given ρ1 ∈ M(X), ρ2 ∈
M(X2) symmetric and K ⊆ N (X), does there exists a point process µ on X sup-
ported in K such that ρ1 = ρ

(1)
µ and ρ2 = ρ

(2)
µ ? Since the nth correlation function

of µ in one-to-one correspondence with nth moment function of µ, that is the ex-
pected value of the nth tensor power η⊗n of an element η ∈ N (X), the realizability
problem is equivalent to the following K−moment problem where K ⊆ N (X).

Problem 2.1. Given m1 ∈ M(X),m2 ∈ M(X2) symmetric and K ⊆ N (X), does
there exists a point process µ on X supported in K such that for each n ∈ {1, 2}
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we have ∫
Xn

fdmn =

∫
N (X)

(∫
Xn

fdη⊗n

)
dµ, ∀f ∈ Cc(Xn)?

To apply the general results in [8] to Problem 2.1, we need to reformulate it in
terms of linear functionals on a unital commutative algebra. Indeed, we would like
to see it as a special case of the following general truncated moment problem.

Definition 2.2. Let A be a unital commutative R–algebra and assume that its
character space X (A) (i.e., the space of all unital algebra homomorphisms from A
to R) is non-empty. For each a ∈ A, define â(α) := α(a) for all α ∈ X (A) and
endow X (A) with the weakest topology τX (A) making â continuous for all a ∈ A.

Given a closed subset K of X (A), a linear subspace B of A, and a linear functional
L : B −→ R, the B–truncated K−moment problem asks whether there exists a non-
negative Radon measure ν whose support is contained in K such that

L(b) =

∫
b̂ dν, ∀b ∈ B.

When this representation exists, ν is called a K–representing measure for L.

Clearly, if a K−representing measure for L exists then the linear functional L is
K−positive, that is, L(b) ≥ 0 for all b ∈ PosB(K), where

PosB(K) := {b ∈ B : b̂ ≥ 0 on K}.

The choice of A needed to be able to take K ⊆ N (X) in Definition 2.2 has been
already identified in [8, Section 6] and is the space P of all polynomials of the
following form

a(η) :=

N∑
j=0

fjη
⊗j (N ∈ N0, f0 ∈ R, fj ∈ Cc(Xj), η ∈ M(X)),

where for any n ∈ N and ν ∈ M(X) we define:
• the (symmetric) nth power ν⊗n of ν as

ν⊗n(dx1, . . . , dxn) := ν(dx1) · · · ν(dxn)

• fnν
⊗n :=

∫
Xn fn(x1, . . . , xn)ν

⊗n(dx1, . . . , dxn) for any fn ∈ Cc(Xn) and
f0ν

⊗0 := f0 for any f0 ∈ R.
In [8, Proposition 6.1] the following embedding is proved, which ensures that for

A = P in Definition 2.2 we can take K ⊆ N (X) as N (X) ⊆ M(X) ↪→ X (P).

Proposition 2.3. The space (M(X), τ) is topologically embedded in the character
space (X (P), τX (P)), i.e., the following map is a homeomorphism onto its image:

φ : M(X) → X (P)
ν 7→ φ(ν),

where for any a(η) :=
N∑
j=0

fjη
⊗j ∈ P we define φ(ν)(a) :=

N∑
j=0

∫
Xj fjdν

⊗j .
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It is now clear that Problem 2.1 is nothing but a P(2)−truncated K−moment
problem with K ⊆ N (X), where for any N ∈ N we denote by P(N) the linear
subspace of P consisting of all polynomials of degree at most N , i.e.,

P(N) :=

{
a(η) = f0 +

N∑
j=1

fjη
⊗j ∈ P : f0 ∈ R and fj ∈ Cc(X

j) for j = 1, . . . , N

}
.

Remark 2.4. In [27] the authors consider the factorial nth power η⊙n instead of the
nth power η⊗n we considered above. Denote by P̃ the set of polynomials defined
by replacing η⊗n with η⊙n in the above definition of P. Then as sets P = P̃
and there is a bijective correspondence between K–positive linear functionals on
P and K–positive linear functionals on P̃ for any K ⊆ N (X). Hence, solving
the realizability problem is equivalent to solve the P(N)-truncated K−moment
problem.

When K is compact, the P(N)−truncated K−moment problem can be easily
solved thanks to [8, Theorem 3.7] (see [8, Corollary 6.2], here restated for conve-
nience).

Corollary 2.5. Let K ⊆ M(X) be compact, N ∈ N and L : P(N) → R be linear.
There exists a K–representing measure for L if and only if L is K−positive.

In light of Remark 2.4, it becomes clear that [27, Theorem 3.4] follows from
applying Corollary 2.5 for N = 2 and K = ND(X) := {η =

∑
i δxi

∈ N (X) :
d(xi, xj) > D, ∀i 6= j} where D > 0 and d is a metric for the topology on X so
that (X, d) is a complete metric space. In addition, [27, Proposition 3.9] (resp. [27,
Corollary 3.10]) can be obtained from Corollary 2.5 for N = 2 and K any compact
subset of N (X) (resp. for N = 2 and K = NQ(X) := {η ∈ N (X) : η(X) = Q} or
K = N≤Q(X) := {η ∈ N (X) : η(X) ≤ Q} for Q ∈ N).

In [27] the authors also prove solubility criteria for the case K = N (X), namely
[27, Theorem 3.14] for X compact and [27, Theorem 3.17] X non-compact, which
are not covered by Corollary 2.5. In the following we are going to show that both
these results can be derived from [8, Theorem 3.8], which we restate here for the
readers’ convenience.

Theorem A. Let A be a unital commutative R–algebra. Suppose K ⊆ X (A) is
closed and non-compact, B ( A is a linear subspace, and there exists p ∈ A \ B
such that p̂ ≥ 1 on K, Bp := Span(B ∪ {p}) contains 1, Bp generates A and the
following holds:

(2.1) ∀ b ∈ B, sup
α∈K

∣∣∣∣∣ b̂(α)p̂(α)

∣∣∣∣∣ < ∞.

Let L : B −→ R be a K–positive linear functional. If L has a K–positive extension L̄
to Bp, then there exists a K–representing measure ν for L given by ν = p̃µ, where
µ is a Radon measure on the compactification K̃ of K and p̃ is the continuous
extension of 1

p to K̃.

Let us adapt to our setting some terminology introduced in [27]:
• for n ∈ N0, a point process µ on X is said to have finite local nth moments

if for every compact Λ ⊆ X we have
∫
N (X)

(11⊗n
Λ η⊗n)µ(dη) < ∞
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• for n ∈ N0, a point process µ on X is said to have finite nth moment if∫
N (X)

(11⊗n
X η⊗n)µ(dη) < ∞.

• when X is compact, a restricted cubic polynomial is any qf0,f1,f2,f3 ∈ P(3)

of the form
(2.2)
qf0,f1,f2,f3(η) = f0+f1η+f2η

⊗2+f311
⊗3
X η⊗3, f0, f3 ∈ R, f1 ∈ Cc(X), f2 ∈ Cc(X2).

We denote by R the collection of all restricted cubic polynomials defined
in (2.2) above, and by 〈R〉 the real unital algebra generated by R.

• when X is non-compact and 0 < Γ ∈ C0(X), i.e., Γ is a continuous func-
tion on X that vanishes at infinity, a Γ−restricted cubic polynomial is any
polynomial of the form:

(2.3)
qΓf0,f1,f2,f3(η) = f0+f1η+f2η

⊗2+f3Γ
⊗3η⊗3, f0, f3 ∈ R, f1 ∈ Cc(X), f2 ∈ Cc(X2).

We denote by RΓ the collection of all Γ−restricted cubic polynomials de-
fined in (2.3) above, and by 〈RΓ〉 the real unital algebra generated by RΓ.

Lemma 2.6. The space
(
X (〈RΓ〉), τX(⟨RΓ⟩)

)
is topologically isomorphic to X (P)×

R endowed with the product topology.

Proof. Set gΓ(η) := Γ⊗3η⊗3 for all η ∈ M(X) and observe that from the definition
of Γ−restricted polynomials we immediately derive RΓ = {p+ λg

Γ
: p ∈ P(2), λ ∈

R}. Then
〈RΓ〉 = {p+ λg⊗n

Γ
: p ∈ P, λ ∈ R, n ∈ N}

=


N∑
j=0

pjg
⊗j
Γ

: pj ∈ P, N ∈ N

 = P[g
Γ
]

We define the map
Φ : X (〈RΓ〉) −→ (X (P)× R)

α 7→ (α ↾P , α(g
Γ
))

which is injective and continuous, in view of the chosen topologies. Also, for any
(β, λ) ∈ (X (P)× R) let us define

α(β,λ)

 N∑
j=0

pjg
⊗j
Γ

 :=

N∑
j=0

β(pj)λ
j ;

clearly α(β,λ) ∈ X (〈RΓ〉). Then Φ is bijective and Φ−1, given by Φ−1(β, λ) = α(β,λ),
is also continuous. □

3. Main results

In the following we are going to show that both [27, Theorem 3.14] and [27,
Theorem 3.17] can be derived from Theorem A. Note that both of those results
are for linear functionals on P(2) but the reader will observe that the proof holds
equally well for linear functionals on P(N) for any N > 2.

Theorem 3.1. Let X be compact and L : P(2) → R be linear and N (X)−positive.
Then the following are equivalent:
a) there exists a N (X)−representing measure for L with finite third moment;
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b) there exists R > 0 such that

(3.1) ∀ qf0,f1,f2,f3 ∈ PosR(N (X)), L(f0 + f1η + f2η
⊗2) + f3R ≥ 0.

Proof.
(b) ⇒ (a): Let us denote by r(η) := 1 + 11⊗3

X η⊗3 for all η ∈ M(X). Then r(η) ≥ 1

for all η ∈ N (X) and Span(P(2) ∪ {r}) = R. Using Proposition 2.3, we have the
following embeddings N (X) ⊆ M(X) ⊆ X (P) ⊆ X (〈R〉). Also, r ∈ 〈R〉 \ P(2)

and, for all b(η) := f0 + f1η + f2η
⊗2 ∈ P(2), we obtain that:

sup
σ∈N (X)

∣∣∣∣ b(σ)r(σ)

∣∣∣∣ ≤ sup
σ∈N (X)

|f0|+
∫
X
|f1|dσ +

∫
X2 |f2|dσ⊗2

1 + σ⊗3(X)

≤ sup
σ∈N (X)

max

{
|f0|,max

x∈X
|f1(x)|, max

x,y∈X
|f2(x, y)|

}
(1 + σ(X) + σ(X)2)

1 + σ⊗3(X)

≤ max

{
|f0|,max

x∈X
|f1(x)|, max

x,y∈X
|f2(x, y)|

}
· sup
σ∈N (X)

(
1 + σ(X) + σ(X)2

1 + σ(X)3

)
=: λb.

Since X is compact and σ is Radon, we have max
x∈X

|f1(x)| < ∞, max
x,y∈X

|f2(x, y)| < ∞

and σ⊗n(X) = σ(X)n < ∞ for all n ∈ N. Hence, max

{
|f0|,max

x∈X
|f1(x)|, max

x,y∈X
|f2(x, y)|

}
<

∞ and sup
σ∈N (X)

(
1+σ(X)+σ(X)2

1+σ(X)3

)
= sup

t∈R

(
1+t+t2

1+t3

)
< ∞, which together ensure that

λb < ∞.
Since (3.1) holds, the functional LR : R → R defined by

LR(qf0,f1,f2,f3) := L(f0 + f1η + f2η
⊗2) + f3R,

for any qf0,f1,f2,f3(η) = (f0+f1η+f2η
⊗2+f311

⊗3
X η⊗3) ∈ R, is a N (X)−positive lin-

ear extension of L to R. Hence, we can apply Theorem A for A = 〈R〉, K = N (X),
B = P(2), p = r and L̄ = LR (hence Bp = Span(B ∪ {p}) = R). This ensures that
there exists a N (X)−representing measure ν for L. Moreover, in Theorem A, it is
shown that ν = r̃µ where µ is a Radon measure on the compactification Ñ (X) of
N (X) and r̃ is the continuous extension of 1

r to Ñ (X) and ν(Ñ (X) \ N (X)) = 0.
Then ν has finite third moment since∫

N(X)

(11⊗3
X η⊗3)ν(dη) =

∫
Ñ(X)

11⊗3
X η⊗3r̃(η)µ(dη) ≤ µ

(
Ñ (X)

)
< ∞.

Hence, (a) holds.

(a) ⇒ (b): Since by (a) there exists a N (X)−representing measure µ for L with
finite third moment R :=

∫
N (X)

11⊗3
X η⊗3µ(dη), for all qf0,f1,f2,f3 ∈ PosR(N (X)) we
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have that

0 ≤
∫
N (X)

qf0,f1,f2,f3(η)µ(dη)

=

∫
N (X)

(f0 + f1η + f2η
⊗2 + f311

⊗3
X η⊗3)µ(dη)

=

∫
N (X)

(f0 + f1η + f2η
⊗2)µ(dη) + f3

∫
N (X)

11⊗3
X η⊗3µ(dη)

= L(f0 + f1η + f2η
⊗2) + f3R,

i.e., (3.1) is fulfilled. Hence, (b) holds. □

Using the correspondence in Remark 2.4, we immediately see that [27, Theo-
rem 3.14] is nothing but Theorem 3.1, while [27, Theorem 3.17] corresponds to the
following.

Theorem 3.2. Let X be non-compact and L : P(2) → R linear and N (X)−positive.
Then the following are equivalent.
a) there exists a N (X)−representing measure for L with finite third local moments;
b) there exist R > 0 and 0 < Γ ∈ C0(X) such that
(3.2) ∀ qΓf0,f1,f2,f3 ∈ PosRΓ

(N (X)), L(f0 + f1η + f2η
⊗2) + f3R ≥ 0

Proof.
(b) ⇒ (a): Denoting by r(η) := 1 + Γ⊗3η⊗3 for all η ∈ M(X), we have that
r(η) ≥ 1 for all η ∈ N (X) and Span(P(2)∪{r}) = RΓ. Combining Proposition 2.3
and Lemma 2.6, we have that N (X) is closed in X (〈RΓ〉). Also r ∈ 〈RΓ〉 \ P(2)

and for all b(η) := f0 + f1η + f2η
⊗2 ∈ P(2) we obtain that:

sup
σ∈N (X)

∣∣∣∣ b(σ)r(σ)

∣∣∣∣ ≤ sup
σ∈N (X)

|f0|+
∫
X
|f1|dσ +

∫
X2 |f2|dσ⊗2

1 +
∫
X3 Γ⊗3dσ⊗3

≤ sup
σ∈N (X)

|f0|+
∫
X
λ1Γdσ +

∫
X2 λ2Γ

⊗2dσ⊗2

1 +
∫
X3 Γ⊗3dσ⊗3

= sup
σ∈N (X)

|f0|+ λ1

∫
X
Γdσ + λ2

(∫
X
Γdσ

)2
1 +

(∫
X
Γdσ

)3
= sup

σ∈N (X)

|f0|+ λ1(Γσ) + λ2(Γσ)
2

1 + (Γσ)3
=: λb,

where λ1 := supx∈X
|f1(x)|
Γ(x) < ∞, λ2 := sup(x,y)∈X2

|f2(x,y)|
Γ(x)Γ(y) < ∞. Note that

for any σ ∈ N (X) we have (Γσ)n =
(∫

X
Γdσ

)n
< ∞ for all n ∈ N and hence

λb = sup
σ∈N (X)

(
|f0|+λ1(Γσ)+λ2(Γσ)

2

1+(Γσ)3

)
≤ sup

t∈R

(
|f0|+λ1t+λ2t

2

1+t3

)
< ∞.

Then, by the assumption (3.2), the functional LR : RΓ → R defined by
LR(q

Γ
f0,f1,f2,f3) := L(f0 + f1η + f2η

⊗2) + f3R

for any qΓf0,f1,f2,f3(η) = (f0 + f1η + f2η
⊗2 + f3Γ

⊗3η⊗3) ∈ RΓ is a N (X)−positive
linear extension of L to RΓ. Hence, we can apply Theorem A for A = 〈RΓ〉, K =
N (X), B = P(2) and p(η) = r(η) (hence Bp = Span(B∪{p}) = RΓ). This ensures
that there exists a N (X)−representing measure ν for L. Moreover, in Theorem A,
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it is shown that ν = r̃µ where µ is a Radon measure on the compactification Ñ (X)

of N (X) and r̃ is the continuous extension of 1
r to Ñ (X) and ν(Ñ (X)\N (X)) = 0.

Then, for any Λ ⊂ X compact, we have∫
N (X)

(11⊗3
Λ η⊗3)ν(dη) =

∫
Ñ(X)

(11⊗3
Λ η⊗3)r̃(η)µ(dη) ≤ µ(Ñ (X)) < ∞.

(a) ⇒ (b):
Since there exists a N (X)−representing measure ν for L with finite local third
moments, by [27, Lemma 3.16], there exists 0 < Γ ∈ C0(X) such that R :=∫
N (X)

(Γ⊗3η⊗3)ν(dη) < ∞. Then for all qΓf0,f1,f2,f3 ∈ PosRΓ(N (X)) we have that

0 ≤
∫
N (X)

qΓf0,f1,f2,f3(η)ν(dη)

=

∫
N (X)

(f0 + f1η + f2η
⊗2 + f3Γ

⊗3η⊗3)ν(dη)

=

∫
N (X)

(f0 + f1η + f2η
⊗2)µ(dη) + f3

∫
N (X)

Γ⊗3η⊗3ν(dη)

= L(f0 + f1η + f2η
⊗2) + f3R,

Hence, (3.2) is fulfilled. □
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