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Abstract: A relativistic version of the rational extended thermodynamics of polyatomic gases based

on a new hierarchy of moments that takes into account the total energy composed by the rest energy

and the energy of the molecular internal mode is proposed. The moment equations associated with

the Boltzmann–Chernikov equation are derived, and the system for the first 15 equations is closed by

the procedure of the maximum entropy principle and by using an appropriate BGK model for the

collisional term. The entropy principle with a convex entropy density is proved in a neighborhood of

equilibrium state, and, as a consequence, the system is symmetric hyperbolic and the Cauchy problem

is well-posed. The ultra-relativistic and classical limits are also studied. The theories with 14 and 6

moments are deduced as principal subsystems. Particularly interesting is the subsystem with 6 fields

in which the dissipation is only due to the dynamical pressure. This simplified model can be very

useful when bulk viscosity is dominant and might be important in cosmological problems. Using the

Maxwellian iteration, we obtain the parabolic limit, and the heat conductivity, shear viscosity, and

bulk viscosity are deduced and plotted.

Keywords: relativistic extended thermodynamics; rarefied polyatomic gas; causal theory of

relativistic fluids

1. Introduction

Rational extended thermodynamics (RET) is a theory applicable to nonequilibrium
phenomena out of local equilibrium. It is expressed by a hyperbolic system of field equa-
tions with local constitutive equations and is strictly related to the kinetic theory with the
closure method of the hierarchies of moment equations in both classical and relativistic
frameworks [1,2].

The first relativistic version of the modern RET was given by Liu, Müller, and Ruggeri
(LMR) [3] considering the Boltzmann–Chernikov relativistic equation [4–6]:

pα∂α f = Q, (1)

in which the distribution function f depends on (xα, pβ), where xα are the space-time coor-
dinates, pα is the four-momentum, ∂α = ∂/∂xα, Q is the collisional term, and α, β = 0, 1, 2, 3.
For monatomic gases, the relativistic moment equations associated with (1), truncated at
tensorial index N + 1 are:

∂α Aαα1···αn = Iα1···αn with n = 0 , · · · , N, (2)
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with

Aαα1···αn =
c

mn−1

∫

R3
f pα pα1 · · · pαn dP, Iα1···αn =

c

mn−1

∫

R3
Q pα1 · · · pαn dP, (3)

where c denotes the light velocity, m is the particle mass in the rest frame, and

dP =
dp1 dp2 dp3

p0
.

If n = 0, the tensor reduces to Aα; moreover, the production tensor in the right-side of (2)
is zero for n = 0, 1, because the first 5 equations represent the conservation laws of the
particle number and of the energy-momentum, respectively.

When N = 1, we have the relativistic Euler system

∂α Aα = 0, ∂α Aαβ = 0, (4)

where, also in the following, Aα ≡ Vα and Aαβ ≡ Tαβ have the physical meaning, respec-
tively, of the particle number vector and the energy-momentum tensor. Instead, when
N = 2, we have the LMR theory of a relativistic gas with 14 fields:

∂α Aα = 0, ∂α Aαβ = 0, ∂α Aαβγ = Iβγ,
(

γ = 0, 1, 2, 3; Iα
α = 0

)

. (5)

Recently, Pennisi and Ruggeri first constructed a relativistic RET theory for polyatomic
gases with (2) in the case of N = 2 [7] (see also [8,9]) whose moments are given by

Aα = mc
∫

R3

∫ ∞

0
f pαφ(I) dI dP ,

Aαβ =
1

mc

∫

R3

∫ ∞

0
f pα pβ(mc2 + I) φ(I) dI dP ,

Aαβγ =
1

m2c

∫

R3

∫ +∞

0
f pα pβ pγ

(

mc2 + 2I
)

φ(I) dI dP ,

(6)

where the distribution function f (xα, pβ, I) depends on the extra variable I , similar to the
classical one (see [2] and references therein), that has the physical meaning of the molecular
internal energy of internal modes in order to take into account the exchange of energy due to
the rotation and vibration of a molecule, and φ(I) is the state density of the internal mode.

In [7], by taking the traceless part of the third order tensor (i.e., Aα〈βγ〉) as a field
instead of Aαβγ in (5)3, the relativistic theory with 14 fields (RET14) was proposed. It was
also shown that its classical limit coincides with the classical RET14 based on the binary
hierarchy [2,10,11]. The beauty of the relativistic counterpart is that there exists a single
hierarchy of moments, but, as was noticed by the authors, to obtain the classical theory of
RET14, it was necessary to put the factor 2 in front of I in the last equation of (6)! This was
also more evident in the theory with any number of moments, where Pennisi and Ruggeri
generalized (6) considering the following moments [12]:

Aαα1···αn =
1

mnc

∫

R3

∫ +∞

0
f pα pα1 · · · pαn

(

mc2 + nI
)

φ(I) dI dP ,

Iα1···αn =
1

mnc

∫

R3

∫ +∞

0
Q pα1 · · · pαn

(

mc2 + nI
)

φ(I) dI dP.

(7)

In this case, we need a factor nI in (7) to obtain, in the classical limit, the binary hierarchy.
To avoid this unphysical situation, Pennisi first noticed that (mc2 + nI) appearing in (7)

are the first two terms of the Newton binomial formula for (mc2 + I)n/(mc2)n−1. Therefore
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he proposed in [13] to modify, in the relativistic case, the definition of the moments by
using the substitution:

(mc2)n−1
(

mc2 + nI
)

with
(

mc2 + I
)n

,

that is, instead of (7), the following moments are proposed:

Aαα1···αn =
( 1

mc

)2n−1 ∫

R3

∫ +∞

0
f pα pα1 · · · pαn

(

mc2 + I
)n

φ(I) dI dP ,

Iα1···αn =
( 1

mc

)2n−1 ∫

R3

∫ +∞

0
Q pα1 · · · pαn

(

mc2 + I
)n

φ(I) dI dP.

(8)

Such definitions are more physical because now the full energy (the sum of the rest frame
energy and the energy of internal modes) mc2 + I appears in the moments.

The aim of this paper is to consider the system (5) with moments given by (8). In
this way, for the case with N = 2 also, by taking the trace part of Aαβγ as a field, we have
15 field equations, and to close the system, we adopt the molecular procedure of RET based
on the maximum entropy principle.

The paper is organized as follows. In Section 2, the values of generic moments in an
equilibrium state are estimated in the general case. In Section 3, the RET theory for 15 fields
(RET15) is proposed, and the constitutive quantities are closed near the equilibrium state. By
adopting a variant of the BGK model appropriate for polyatomic gases proposed by Pennisi
and Ruggeri [14], the production tensor is derived. In Section 4, the four-dimensional
entropy flux and the entropy production are deduced within the second order with respect
to the nonequilibrium variables. Then, we show the condition of convexity of the entropy
density and the positivity of the entropy production, which ensure the well-posedness of
the Cauchy problem and the entropy principle as a result. We also discuss in Section 5 the
case of the diatomic gases for which all coefficients are expressed in closed form in terms of
the ratio of two Bessel functions, similar to the case of monatomic gases. In Section 6, we
study the ultra-relativistic limit. In Section 7, the principal subsystems of RET15 are studied.
First, we obtain RET14 in which all field variables have physical meaning. Then, at the
same level as RET14 in the sense of the principal subsystem, there also exists the subsystem
with 6 fields in which the dissipation is only due to the dynamical pressure. This system is
important in the case that the bulk viscosity is dominant compared to the shear viscosity
and heat conductivity, and it must be particularly interesting in cosmological problems.
The simplest subsystem is the Euler non-dissipative case with 5 fields. In Section 8, we use
the Maxwellian iteration and, as a result, the phenomenological coefficients of the Eckart
theory, that is, the heat conductivity, shear viscosity, and bulk viscosity are determined
with the present model. Finally, in Section 9, we show that the classic limit of the present
model coincides with the classical RET15 studied in [15].

2. Distribution Function and Moments at Equilibrium

The equilibrium distribution function fE of polyatomic gas that generalizes the Jüttner
one of monatomic gas was evaluated in [7] with the variational procedure of the maximum
entropy principle (MEP) [1,16–18]. Considering the first 5 balance equations of (5) in
equilibrium state:

Aα
E ≡ Vα

E = m nUα, A
αβ
E ≡ T

αβ
E = phαβ +

e

c2
UαUβ.

MEP requires that the appropriate distribution function f ≡ f (xα, pα, I) is the one which
maximizes the entropy density

ρS = hE = hα
EUα = −kB c Uα

∫

R3

∫ +∞

0
f ln f pαφ(I) dI dP ,
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under the constraints that the temporal parts VαUα and TαβUβ are prescribed. Here,

kB, n, ρ(= nm), Uα, hαβ, p, e, S are, respectively, the Boltzmann constant, the particle number,
the mass density, the four-velocity (UαUα = c2), the projector tensor (hαβ = UαUβ/c2 −
gαβ), the pressure, the energy, and the entropy density, and gαβ = diag(1 , −1 , −1 , −1) is
the metric tensor.

The equilibrium distribution function for a rarefied polyatomic gas that maximizes
the entropy has the following expression [7]:

fE =
n

Ā(γ)

1

4πm3c3
e
− 1

kBT

[
(

1+ I
mc2

)

Uβ pβ

]

, Ā(γ) =
∫ +∞

0
J∗2,1 φ(I) d I (9)

with T being the absolute temperature,

J∗m,n = Jm,n(γ
∗), γ∗ = γ

(

1 +
I

m c2

)

, γ =
m c2

kBT
,

and

Jm,n(γ) =
∫ +∞

0
e−γ cosh s sinhm s coshn s d s ,

subjected to the following recurrence relations [3,7]:

Jm+2,n(γ) = Jm,n+2(γ)− Jm,n(γ) , (10)

−γJm+2,n(γ) = nJm,n−1(γ)− (n + m + 1)Jm,n+1(γ) . (11)

The pressure and the energy compatible with the equilibrium distribution function (9)
are [7]:

p =
kB

m
ρT , e = ρc2ω(γ),

with ω(γ) =

∫ +∞

0 J∗2,2

(

1 + I
mc2

)

φ(I) d I
∫ +∞

0 J∗2,1 φ(I) d I
.

(12)

Taking into account that e = ρc2 + ρε, where ε is the internal energy, we deduce from (12):

ε = c2(ω − 1). (13)

Therefore, the internal energy is a function only of γ or, it is the same, of T as in the classical
case for rarefied gases.

The moments in equilibrium state A
αα1···αj

E for j ≥ 2 were deduced in [13]:

A
α1···αj+1

E =

[

j+1
2

]

∑
k=0

ρc2kθk,j h(α1α2 · · · hα2k−1α2k Uα2k+1 · · ·Uαj+1) , (14)

where

θk,j =
1

2k + 1

(

j + 1
2k

)

∫ +∞

0 J∗2k+2,j+1−2k

(

1 + I
mc2

)j
φ(I) d I

∫ +∞

0 J∗2,1 φ(I) d I
(15)
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are dimensionless functions depending only on γ. Taking into account (12) and (15), we
obtain θ0,0 = 1, θ0,1 = ω(γ), and using the recurrence Formula (10) and (11), in [13], the
following recurrence relations hold:

θ0,0 = 1 ,

θ0,j+1 = ω(γ) θ0,j − θ ′
0,j with ′ =

d

dγ
,

θh,j+1 =
j + 2

γ

(

θh,j +
j + 3 − 2h

2h
θh−1,j

)

for h = 1, · · · ,

[

j + 1

2

]

,

θ j+2
2 ,j+1

=
1

γ
θ j

2 , j
for j even .

(16)

It is interesting to see that all the scalar coefficients can be expressed in terms of the function
ω(γ) and of its derivatives with respect to γ (or with respect to the temperature T), and
ω is strictly related to the internal energy ε by (13). A similar situation is studied in the
article [15] for the non-relativistic case.

The values of θh,j can be determined, by using the recurrence Formula (16), according
to the following diagram:

θ0,0 ⇒ θ0,1 ⇒ θ0,2 ⇒ θ0,3 · · ·
ց

θ1,1 → θ1,2 → θ1,3 · · ·
ց

θ2,3 → θ2,4 · · ·

We see that all the θ0,j can be obtained from θ0,0 by using Equation (16)2, and the other
θh,j with j ≥ h can be obtained from Equations (16)3,4. In particular, we can evaluate
the following ones that need to be known for the model with 15 fields in the subsequent
sections:

θ0,0 = 1, θ0,1 = ω, θ0,2 = ω2 − ω′,

θ0,3 = ω3 + ω′′ − 3ωω′, θ0,4 = ω4 − ω′′′ + 4ωω′′ + 3ω′2 − 6ω2ω′,

θ1,1 =
1

γ
, θ1,2 =

3

γ2
(γω + 1), θ1,3 =

6

γ3

[

γ2(ω2 − ω′) + 2(γω + 1)
]

,

θ1,4 =
10

γ4

{

3γ
[

ω(γω + 2)− γω′
]

+ 6 + γ3(ω3 + ω′′ − 3ωω′)
}

,

θ2,3 =
3

γ3
(γω + 1), θ2,4 =

15

γ4

[

γ2(ω2 − ω′) + 3(γω + 1)
]

.

(17)

3. The Closure for the 15 Moments Model

In this section, we consider the simplest and physical case, that is, the system (2) for
n = 0, 1, 2 with the moments given by (8):

∂αVα = 0, ∂αTαβ = 0, ∂α Aαβγ = Iβγ, (β, γ = 0, 1, 2, 3). (18)
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with

Vα = mc
∫

R3

∫ +∞

0
f pα φ(I) dI dP , Tαβ = c

∫

R3

∫ +∞

0
f pα pβ

(

1 +
I

mc2

)

φ(I) dI dP ,

Aαβγ =
c

m

∫

R3

∫ +∞

0
f pα pβ pγ

(

1 +
I

mc2

)2
φ(I) dI dP ,

Iβγ =
c

m

∫

R3

∫ +∞

0
Q pβ pγ

(

1 +
I

mc2

)2

φ(I) dI dP.

(19)

To close the system (19), we adopt the MEP, which requires finding the distribution function
that maximizes the non-equilibrium entropy density:

h = hαUα = −kB c Uα

∫

R3

∫ +∞

0
f ln f pαφ(I) dI dP → max (20)

under the constraints that the temporal part VαUα, TαβUα and AαβγUα are prescribed.
Proceeding in the usual way as indicated in previous papers of RET (see [2,7]), we obtain:

f15 = e
−1− χ

kB , with χ = m λ + λµ pµ

(

1 +
I

m c2

)

+
1

m
λµν pµ pν

(

1 +
I

m c2

)2

, (21)

where λ, λµ, λµν are the Lagrange multipliers.
Hereafter, recalling the following decomposition of the particle number vector and the

energy-momentum tensor

Vα = ρUα , Tαβ =
e

c2
UαUβ + (p + Π)hαβ +

1

c2
(Uαqβ + Uβqα) + t<αβ>3 , (22)

we can choose as fields, as usual, 14 physical variables; ρ, T, Uα, Π, qα, t<αβ>3 , where Π is

the dynamic pressure, qα = −hα
µUνTµν is the heat flux, and t<αβ>3 = Tµν

(

hα
µh

β
ν −

1
3 hαβhµν

)

is the deviatoric shear viscous stress tensor. We also recall the constraints:

UαUα = c2, qαUα = 0, t<αβ>3Uα = 0, t<α
α>3

= 0,

and we choose as the 15th variable:

∆ =
4

c2
UαUβUγ

(

Aαβγ − A
αβγ
E

)

. (23)

The pressure p and the energy e as function of (ρ, T) are given in (12).

Remark 1. For any symmetric tensor Mαβ, we can define its traceless part M<αβ> and its 3-
dimensional traceless part M<αβ>3 , which is the traceless part of its projection in the 3-dimensional
space orthogonal to Uα, as follows

M<αβ> =

(

gα
µ g

β
ν −

1

4
gαβgµν

)

Mµν = Mαβ −
1

4
gµν Mµνgαβ ,

M<αβ>3 =

(

hα
µ h

β
ν −

1

3
hαβhµν

)

Mµν ,

which are different except for the case in which MµνUµ = 0 and Mµνgµν = 0. In fact, these
conditions indicate that

M<αβ> = M<αβ>3 .

Moreover, in the following, a parenthesis between two indexes indicates the symmetric part.
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3.1. The Linear Deviation from Equilibrium

The thermodynamical definition of the equilibrium according to Müller and Rug-
geri [1] is the state in which the entropy production vanishes and hence attains its minimum
value. Using this definition, the theorem was proved [19,20] that the components of the
Lagrange multipliers of the balance laws of nonequilibrium variables vanish, and only
the five Lagrange multipliers corresponding to the equilibrium conservation laws (Euler
system) remain. In the present case, we have:

λE = −
1

T

(

g + c2
)

, λµE
=

Uµ

T
, λµνE

= 0, (24)

where g = ε + p/ρ − TS is the equilibrium chemical potential. We remark that λE, λµE
are

the components of the main field that symmetrize the relativistic Euler system, as was first
proved by Ruggeri and Strumia (see [21]).

In the molecular RET approach, we consider, as usual, the processes near equilibrium.
For this reason, we expand (21) around an equilibrium state as follows:

f15 ≃ fE

(

1 −
1

kB
χ̃
)

,

χ̃ = m (λ − λE) + (λµ − λµE
) pµ

(

1 +
I

m c2

)

+
1

m
λµν pµ pν

(

1 +
I

m c2

)2
.

(25)

Inserting the distribution function (25) into the moments (19), we obtain the following
system:

0 = Vα − Vα
E = −

m

kB

[

Vα
E (λ − λE) + T

αµ
E

(

λµ − λµE

)

+ A
αµν
E λµν

]

,

t<αβ>3 + Πhαβ +
2

c2
U(αqβ) = −

m

kB

[

T
αβ
E (λ − λE) + A

αβµ
E

(

λµ − λµE

)

+ A
αβµν
E λµν

]

,

Aαβγ − A
αβγ
E = −

m

kB

[

A
αβγ
E (λ − λE) + A

αβγµ
E

(

λµ − λµE

)

+ A
αβγµν
E λµν

]

,

(26)

where the equilibrium values of the tensors A
αβµ
E , A

αβµν
E , and A

αβµνγ
E can be obtained by (14),

taking j = 2, 3, 4:

A
αβγ
E = ρ θ0,2 UαUβUγ + ρc2 θ1,2 h(αβUγ),

A
αβµν
E = ρ θ0,3 UαUβUµUν + ρ c2 θ1,3 h(αβUµUν) + ρ c4 θ2,3 h(αβhµν),

A
αβγµν
E = ρ θ0,4 UαUβUγUµUν + ρ c2θ1,4 h(αβUγUµUν) + ρ c4θ2,4 h(αβhγµUν) ,

(27)

with the θ’s given in (17).
The system (26) permits one to deduce the 15 Lagrange multipliers in terms of the

15 field variables, including ∆ given in (23), and then we can obtain the remaining part of
the tensor Aαβγ.

To solve this system, we consider first Equation (26)1 contracted with Uα,
Equation (26)2 contracted with Uα Uβ, Equation (26)3 contracted with UαUβUγ/c3,

Equation (26)2 contracted with hαβ/3, and (26)3 contracted with Uαhβγ/(3 c2), obtaining
the system
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θ0,0 (λ − λE) + θ0,1 Uµ
(

λµ −
Uµ

T

)

+ θ0,2 UµUνλµν +
c2

3
θ1,2 hµνλµν = 0 ,

θ0,1 (λ − λE) + θ0,2 Uµ
(

λµ −
Uµ

T

)

+ θ0,3 UµUνλµν +
c2

6
θ1,3 hµνλµν = 0 ,

θ0,2 (λ − λE) + θ0,3 Uµ
(

λµ −
Uµ

T

)

+ θ0,4 UµUνλµν +
c2

10
θ1,4 hµνλµν = −

kB

4 m2 n c4
∆ ,

θ1,1 (λ − λE) +
1

3
θ1,2 Uµ

(

λµ −
Uµ

T

)

+
1

6
θ1,3 UµUνλµν +

5

9
c2θ2,3 hµνλµν = −

kB

m2nc2
Π ,

1

3
θ1,2 (λ − λE) +

1

6
θ1,3 Uµ

(

λµ −
Uµ

T

)

+
1

10
θ1,4 UµUνλµν +

c2

9
θ2,4 hµνλµν =

= −
kB

3m2c4n

(

Aαβγ − A
αβγ
E

)

Uαhβγ .

(28)

This is a system of 5 equations in the 4 unknowns λ − λE, Uµ
(

λµ −
Uµ

T

)

, UµUνλµν, hµνλµν;

in order to have solutions, the determinant of the complete matrix must be zero, that is,

0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ0,0 θ0,1 θ0,2
1
3 θ1,2 0

θ0,1 θ0,2 θ0,3
1
6 θ1,3 0

θ0,2 θ0,3 θ0,4
1

10 θ1,4 − kB

4mc4 ∆

θ1,1
1
3 θ1,2

1
6 θ1,3

5
9 θ2,3 − kB

mc2 Π

1
3 θ1,2

1
6 θ1,3

1
10 θ1,4

1
9 θ2,4 − kB

3m c4

(

Aαβγ − A
αβγ
E

)

Uαhβγ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (29)

By defining

D4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ0,0 θ0,1 θ0,2
1
3 θ1,2

θ0,1 θ0,2 θ0,3
1
6 θ1,3

θ0,2 θ0,3 θ0,4
1

10 θ1,4

θ1,1
1
3 θ1,2

1
6 θ1,3

5
9 θ2,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

NΠ = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ0,0 θ0,1 θ0,2
1
3 θ1,2

θ0,1 θ0,2 θ0,3
1
6 θ1,3

θ0,2 θ0,3 θ0,4
1

10 θ1,4

1
3 θ1,2

1
6 θ1,3

1
10 θ1,4

1
9 θ2,4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, N∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ0,0 θ0,1 θ0,2
1
3 θ1,2

θ0,1 θ0,2 θ0,3
1
6 θ1,3

θ1,1
1
3 θ1,2

1
6 θ1,3

5
9 θ2,3

1
3 θ1,2

1
6 θ1,3

1
10 θ1,4

1
9 θ2,4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

Equation (29) gives:

1

3 c2

(

Aαβγ − A
αβγ
E

)

Uαhβγ = −
NΠ

D4
Π −

N∆

D4

1

4c2
∆ . (30)
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We contract now Equation (26)1 with hδ
α, Equation (26)2 with Uα hδ

β, Equation (26)3

with UαUβhδ
γ/c3 and (26)3 with hδ

αhβγ/(3 c2), obtaining the system

c2θ1,1 hδµ(λµ − λµE
) +

2

3
c2θ1,2 Uµhδνλµν = 0 ,

c2θ1,2 hδµ(λµ − λµE
) + c2θ1,3 Uµhδνλµν = −

3 kB

m2c2n
qδ ,

c2θ1,3 hδµ(λµ − λµE
) +

18

15
c2θ1,4 Uµhδνλµν =

6 kB

m2c4n

(

Aαβγ − A
αβγ
E

)

UαUβhδ
γ ,

5

3
c4θ2,3 hδµ(λµ − λµE

) +
2

3
c4θ2,4 Uµhδνλµν =

kB

m2n

(

Aαβγ − A
αβγ
E

)

hαβhδ
γ .

(31)

By eliminating the parameters hδµ(λµ −λµE
) and Uµhδνλµν from these equations, we obtain

(

Aαβγ − A
αβγ
E

)

UαUβhδ
γ = − c2 N3

D3
qδ ,

(

Aαβγ − A
αβγ
E

)

hαβhδ
γ = −

N31

D3
qδ ,

(32)

with

D3 =

∣

∣

∣

∣

∣

∣

θ1,1 θ1,2

θ1,2
3
2 θ1,3

∣

∣

∣

∣

∣

∣

, N3 =
1

2

∣

∣

∣

∣

∣

∣

θ1,1 θ1,2

θ1,3
9
5 θ1,4

∣

∣

∣

∣

∣

∣

, N31 =

∣

∣

∣

∣

∣

∣

θ1,1 θ1,2

5 θ2,3 3 θ2,4

∣

∣

∣

∣

∣

∣

.

We contract now Equation (26)2 with h<δ
α hθ>3

β and (26)3 with h<δ
α hθ>3

β Uγ, obtaining

−
kB

m
t<δθ>3 =

2

3
mnc4θ2,3 hµ<δhθ>3νλµν ,

(

Aαβγ − A
αβγ
E

)

h<δ
α hθ>3

β Uγ = −
2

15

m

kB
mn c6 θ2,4 hµ<δhθ>3νλµν ,

(33)

from which it follows

(

Aαβγ − A
αβγ
E

)

h<δ
α hθ>3

β Uγ = C5 c2 t<δθ>3 with C5 =
1

5

θ2,4

θ2,3
. (34)

Finally, (26)3 contracted with h<δ
α hθ

β h
ψ>3
γ gives

(

Aαβγ − A
αβγ
E

)

h<δ
α hθ

β h
ψ>3
γ = 0 .

This result, jointly with (30), (32), and (34), gives the decomposition of the triple tensor
Aαβγ:

Aαβγ − A
αβγ
E =

1

4c4
∆ UαUβUγ −

3

4c2

N∆

D4
∆ h(αβUγ) − 3

NΠ

D4
Πh(αβUγ)

+
3

c2

N3

D3
q(αUβUγ) +

3

5

N31

D3
h(αβqγ) + 3C5t(<αβ>3Uγ) .

Thanks to Equation (27)1, we have the closure of the triple tensor in terms of the physical
variables:

Aαβγ =

(

ρ θ0,2 +
1

4c4
∆

)

UαUβUγ +

(

ρ c2 θ1,2 −
3

4c2

N∆

D4
∆ − 3

NΠ

D4
Π

)

h(αβUγ)

+
3

c2

N3

D3
q(αUβUγ) +

3

5

N31

D3
h(αβqγ) + 3C5t(<αβ>3Uγ) .

(35)



Entropy 2022, 24, 43 10 of 30

3.2. Inversion of the Lagrange Multipliers

In this section, we present the explicit expression of the Lagrange multipliers in terms
of the 15 physical independent variables. From the representation theorems, they are
expressed as follows:

λ − λE = a1Π + a2∆,

λµ − λµE
= (b1Π + b2∆)Uµ + b3qµ,

λµν = (α1Π + β1∆)UµUν + (α2Π + β2∆)hµν + α3

(

qµUν + qνUµ

)

+ α4t<µν>3 ,

(36)

where λE and λµE
can be found in Equation (24), and the coefficients a1,2, b1,2,3, α1,2,3,4 and

β1,2 are functions of ρ and γ. By using Equations (28), (31) and (33), it is possible to obtain
the explicit expressions of these coefficients.

For convenience, let us denote by D
ij
4 the minor determinant obtained from D4 by

deleting its ith row and jth column. From system (28), we obtain

λ − λE = −
kB

mc4ρ D4

(

−Π c2D41
4 +

∆

4
D31

4

)

,

Uµ(λµ − λµE
) = −

kB

mc4ρ D4

(

Π c2D42
4 −

∆

4
D32

4

)

,

UβUγλβγ = −
kB

mc4ρ D4

(

−Π c2D43
4 +

∆

4
D33

4

)

,

hβγλβγ = −
kB

mc4ρ D4

(

ΠD44
4 −

∆

4c2
D34

4

)

.

(37)

From system (31) we obtain

hδµ
(

λµ − λµE

)

=
3 kBθ1,2

mc4ρ D3
qδ and Uβhγδλβγ = −

9kBθ1,1

2mc4ρ D3
qδ. (38)

Finally, from Equation (33) we have

hβ<δhθ>3γλβγ = −
3kB

2mc4ρθ2,3
t<δθ>3 ,

that, multiplied by t<δθ>3
, gives

t<βγ>3 λβγ = −
3kB

2mc4ρθ2,3
t<βγ>3 t<βγ>3

. (39)

By comparing Equations (36)1 with (37)1, we have

a1 =
kB

mc2ρ D4
D41

4 , a2 = −
kB

4 mc4ρ D4
D31

4 . (40)

By multiplying Equation (36)2 times Uµ and hµδ, respectively, and using Equations (37)2

and (38)1, we have

b1 = −
kB

mc4ρ D4
D42

4 , b2 =
kB

4 mc6ρ D4
D32

4 , b3 = −
3 kBθ1,2

mc4ρD3
. (41)
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Finally, by multiplying Equation (36)3 times Uµ Uν, hµν, Uνhµδ, hµ<δhθ>ν, respectively, and
using Equations (37)–(39), we obtain that

α1 =
kB

mc6ρ D4
D43

4 , α2 = −
kB

3mc4ρ D4
D44

4 ,

α3 =
9kBθ1,1

2mc6ρ D3
, α4 = −

3kB

2mc4ρθ2,3
,

β1 = −
kB

4mc8ρ D4
D33

4 , β2 =
kB

12mc6ρ D4
D34

4 .

(42)

3.3. Production Term with a Variant BGK Model

To complete the closure of the system (18), we need to have the expression of the
production tensor Iβγ. It depends on the collisional term Q (see (19)2), and obtaining the
expression of Q is a hard task in relativity. Usually, for monatomic gas, the relativistic
generalization of the BGK approximation first made by Marle [22,23] and successively by
Anderson and Witting [24] is adopted. The Marle model is an extension of the classical BGK
model in the Eckart frame [6,25], and the Anderson–Witting model obtains such extension
using the Landau–Lifshitz frame [6,26]. There are some weak points for the Marle model,
and the Anderson–Witting model uses the Landau–Lifshitz four velocity. Starting from
these considerations, Pennisi and Ruggeri proposed a variant of the Anderson–Witting
model in the Eckart frame both for monatomic and polyatomic gases, and proved that
the conservation laws of particle number and energy-momentum are satisfied and the
H-theorem holds [14] (see also [2]). In the polyatomic case, the following collision term has
been proposed:

Q =
Uα pα

c2τ

(

fE − f − fE pµqµ

1 + I
mc2

bmc2

)

, (43)

where 3b is the coefficient of h(αβUγ) in Equation (27)1, that is, 3b = ρc2θ1,2, and τ > 0
denotes the relaxation time.

Recently, the existence and asymptotic behavior of classical solutions for the Boltzmann–
Chernikov Equation (1) with Q given by (43) when the initial data is sufficiently close to a
global equilibrium was proved [27].

The most general expression of a nonequilibrium double tensor as a linear function of
∆, Π, t<µν>3 and qµ is the following:

Iβγ = (B∆
1 ∆ + BΠ

1 Π)UβUγ + (B∆
2 ∆ + BΠ

2 Π)hβγ + Bq U(β qγ) + Bt t<βγ>3 .

In order to determine the coefficients in Iαβ, we have to substitute Equation (43) into
Equation (19)4, obtaining

Iβγ =
c

m

∫

R3

∫ +∞

0

Uα pα

c2τ

(

fE − f − fE pµqµ

1 + I
mc2

bmc2

)

pβ pγ
(

1 +
I

m c2

)2
φ(I) d IdP =

=
Uα

c2τ
(A

αβγ
E − Aαβγ)− 3

Uαqµ

θ1,2m2nc6τ
A

αβγµ
E ,

then we have

B∆
1 = −

1

4c4τ
, BΠ

1 = 0, B∆
2 =

1

4c2τ

N∆

D4
, BΠ

2 =
1

τ

NΠ

D4

Bq =
1

c2τ

( θ1,3

θ1,2
− 2

N3

D3

)

, Bt = −
1

τ
C5 .

(44)

Therefore, the final expression of the production term Iβγ is
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Iβγ =
1

τ

{

−
1

4c4
∆ UβUγ +

( 1

4c2

N∆

D4
∆ +

NΠ

D4
Π
)

hβγ +
(

−
2

c2

N3

D3
+

θ1,3

θ1,2

1

c2

)

q(βUγ) − C5t<βγ>3

}

(45)

We summarize the results of this section as:

Statement 1. The closed system (18) obtained via MEP is the one for which Vα, Tαβ, Aαβγ, Iβγ

are given explicitly in terms of the 15 fields (ρ, γ, Π, ∆, Uα, qα, t<αβ>3 ) using the expressions (22),
(35), and (45). All coefficients are completely determined in terms of a single function ω(γ) given
by Equation (12)3 and its derivatives up to the order 3. Observe, by taking into account (13), that
the coefficients θ’s given in (17) can be formally written in terms of the internal energy ε and its
derivatives.

3.4. Closed System of the Field Equations and Material Derivative

It is now possible to explicitly write the differential system for the field variables using
the material derivative. The relativistic material derivative of a function f is defined as the
derivative with respect to the proper time τ̄ along the path of the particle:

ḟ =
d f

dτ̄
=

d f

dt

dt

dτ̄
= Γ(∂t f + vj∂j f ) = Uα∂α f , (46)

where Γ is the Lorentz factor, and we take into account that

Uα =
dxα

dτ̄
≡ (Γc, Γvj),

where vj is the velocity. Now, we observe that for any balance laws, we can have the
following identity:

Iα1···αn = ∂α Aαα1···αn = g
β
α ∂β Aαα1···αn =

(

− h
β
α +

UβUα

c2

)

∂β Aαα1···αn =

=
Uα

c2
Ȧαα1···αn − h

β
α ∂β Aαα1···αn .

In our case with n = 0, 1, 2, these equations are written as follows:

∂α(ρUα) = 0, hδβ

(

Uα

c2
Ṫαβ − h

µ
α ∂µ Tαβ

)

= 0, Uβ

(

Uα

c2
Ṫαβ − h

µ
α ∂µ Tαβ

)

= 0,

hδβ hθγ

(

Uα

c2
Ȧαβγ − h

µ
α ∂µ Aαβγ − Iβγ

)

= 0 ,

hδβ Uγ

(

Uα

c2
Ȧαβγ − h

µ
α ∂µ Aαβγ − Iβγ

)

= 0, Uβ Uγ

(

Uα

c2
Ȧαβγ − h

µ
α ∂µ Aαβγ − Iβγ

)

= 0 .

By using the expressions (22), (35) and (45), respectively, for Vα, Tαβ, Aαβγ and Iβγ, we see
that these become
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ρ̇ + ρ ∂α Uα = 0 ,

−
e + p + Π

c2
U̇δ +

1

c2
hδ

β q̇β +
1

c2
t<αδ>3 U̇α − hδµ ∂µ(p + Π) −

1

c2
qµ ∂µUδ −

1

c2
qδ ∂αUα − hδ

β h
µ
α ∂µ t<αβ>3 = 0 ,

ė + 2
Uα

c2
q̇α + (e + p + Π) ∂αUα − h

µ
α ∂µqα − t<αβ>3 ∂αUβ = 0 ,

hδβ

(1

3
ρc2θ1,2 −

1

4 c2

N∆

D4
∆ −

NΠ

D4
Π
)•

+ C5 hδγ hθβ ṫ <θγ>3 + t<δβ>3
Ċ5 −

2

c2

(N3

D3
+

1

5

N31

D3

)

q(δ hβ)γ U̇γ −

1

5 c2

N31

D3
hβδ qα U̇α +

(

−
1

3
ρc2θ1,2 +

1

4 c2

N∆

D4
∆ +

NΠ

D4
Π
) [

−hδβ∂α Uα + 2 hθ(δ h
µ

β)
∂µ Uθ

]

+

1

5

(

qµhδβ + 2 q(δh
µ

β)

)

∂µ

(N31

D3

)

−
1

5

N31

D3

[

hδβ h
µ
α ∂µ qα + 2 hθ(δh

µ

β)
∂µ qθ

]

+

C5

[

t<δβ>3
∂α Uα + 2 t<µγ>3 hγ(β hδ)θ ∂µ Uθ

]

=

1

τ

( 1

4c2

N∆

D4
∆ +

NΠ

D4
Π
)

hδβ −
1

τ
C5 t<δβ>3

, (47)

hβδ U̇β
(

ρθ0,2c2 +
2

3
ρc2θ1,2 +

1

4 c2
∆ −

1

2 c2

N∆

D4
∆ − 2

NΠ

D4
Π
)

+ hβδ
N3

D3
q̇β − qδ

(

N3

D3

)•

+ (2 C5 − 1) t<δγ>3
U̇γ −

h
µ
δ ∂µ

(1

3
ρc4θ1,2 −

1

4

N∆

D4
∆ −

NΠ

D4
c2 Π

)

−
(N3

D3
+

1

5

N31

D3

) (

qµ ∂µ Uδ + qδ ∂α Uα
)

+

1

5

N31

D3
h

µ
δ qγ ∂µ Uγ + hαµ ∂µ

(

C5 c2 t<αδ>3

)

=
1

τ

(N3

D3
−

θ1,3

2 θ1,2

)

qδ ,

(

ρθ0,2c4 +
1

4
∆

)•

− 3
N3

D3
qα U̇α + ∂α Uα ·

(

ρθ0,2c4 +
2

3
ρc4θ1,2 +

1

4
∆ −

1

2

N∆

D4
∆ − 2

NΠ

D4
Π c2

)

−

h
µ
α ∂µ

(

N3

D3
c2 qα

)

− 2 C5c2 t<µγ>3 ∂µUγ = −
1

4 τ
∆ .

It may be useful to decompose (47)4 into the trace and spatial traceless parts. The trace part
is given by

(

ρc2θ1,2 −
3

4 c2

N∆

D4
∆ − 3

NΠ

D4
Π

)•

+ C5hθγ ṫ <θγ>3 +
1

c2

(

2
N3

D3
−

1

5

N31

D3

)

qγ U̇γ −

(

−
1

3
ρc2θ1,2 +

1

4 c2

N∆

D4
∆ +

NΠ

D4
Π
)

∂α Uα + qµ∂µ

(N31

D3

)

−

N31

D3
h

µ
α ∂µ qα − 2C5 t

<µ
γ>3

∂µ Uγ =
3

τ

( 1

4c2

N∆

D4
∆ +

NΠ

D4
Π
)

,

(48)

and the spatial traceless part is:

C5 hγ<δ hβ>3θ ṫ<γθ>3 + t<δβ>3
Ċ5 +

2

c2

(

N3

D3
+

1

5

N31

D3

)

q<δ U̇β>3
+

+ 2

(

−
1

3
ρ c2θ1,2 +

1

4 c2

N∆

D4
∆ +

Nπ

D4
π

)

hγ<δ h
µ
β>3

∂µ Uγ +

+
2

5

(

q<δh
µ
β>3

)

∂µ

(

N31

D3

)

−
2

5

N31

D3

(

hγ<δh
µ
β>3

∂µ qγ
)

+

+ C5

[

t<δβ>3
∂α Uα + 2 t<µγ>3 hγ<β hδ>3ν ∂µ Uν

]

= −
1

τ
C5 t<δβ>3

.

(49)

The system formed by the 15 Equations (47)1,2,3, (48), (49) and (47)5,6 is a closed system for
the 15 unknown (ρ, Uδ, T, Π, t<αβ>3

, qδ, ∆).
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4. Entropy Density, Convexity, Entropy Principle, and Well-Posedness of
Cauchy Problem

In this section, we evaluate the entropy law, and we want to prove that all solutions
are entropic with an entropy density that is a convex function.

4.1. Entropy Density

By substituting the distribution function (25) with (36) into (20), we can evaluate the
four-dimensional entropy flux. In this procedure, it is necessary to be careful concerning the
order of the nonequilibrium variables. The present linear constitutive equation is related to
the entropy with the second order of the nonequilibrium variables. By taking into account
up to the second order in the expansion of the distribution function and of the constitutive
equations, we may evaluate as follows:

hα = hα
E + hα

(1) + hα
(2) , (50)

where hα
(1)

and hα
(2)

are, respectively, the contribution of the first and second order terms of

the nonequilibrium variables, which can be derived as follows (see Appendix A for details):

hα
(1) = −

c

kB

∫

R3

∫ +∞

0
pα fE χE χ̃(1) ϕ(I) dI dP,

hα
(2) = −

c

2 kB

∫

R3

∫ +∞

0
pα fE χ̃(1)

2 ϕ(I) dI dP ,

(51)

where χ̃(1) is χ̃ defined in (25) with the linear constitutive equations studied in the previous.
After cumbersome calculations, we obtain explicit expression of them as follows:

hα
(1) = λE(V

α − Vα
E ) +

Uµ

T

(

Tαµ − T
αµ
E

)

=
qα

T
,

hα
(2) = −

m

2 kB

{

[(

λ − λE
)]2

Vα
E +

(

λµ − λE
µ

)(

λν − λE
ν

)

A
αµν
E +

(

λµν

)(

λψθ

)

A
αµνψθ
E +

+ 2
(

λ − λE
)(

λµ − λE
µ

)

T
αµ
E + 2

(

λ − λE
)

(

λµν

)

A
αµν
E + 2

(

λθ − λE
θ

)

(

λµν

)

A
αθµν
E

}

(52)

= −
1

c2
Uα

{

−
c2α4C5

2
t<µν>3 t<µν>3 −

(

c2α3
N3

D3
+

b3

2

)

qµqµ + L1Π2 + L2∆2 + 2L3Π∆

}

+
1

2

(

b1 − b3 + c2 N3

D3
α1 +

N31

D3
α2 + 2α3c2 NΠ

D4

)

Πqα +
1

2

(

b2 + c2 N3

D3
β1 +

N31

D3
β2 +

1

2
α3

N∆

D4

)

∆qα

+
1

2

(

b3 + 2c2α3C5 −
2

5
α4

N31

D3

)

t<αµ>3 qµ,

where

L1 =
3c2

2
α2

NΠ

D4
, L2 =

1

8

(

3β2
N∆

D4
− c2β1

)

, L3 =
1

4

(

3α2

4

N∆

D4
+ 3c2β2

NΠ

D4
−

c2α1

4

)

.

In particular, for the entropy density h = hαUα, we have

h = hE +
c2α4C5

2
t<µν>3 t<µν>3 +

(

c2α3
N3

D3
+

b3

2

)

qµqµ −
(

Π ∆
)

(

L1 L3

L3 L2

)(

Π

∆

)

. (53)

We emphasize that the convexity of the entropy density is satisfied because from (52)1,
we have hα

(1)
Uα = 0, and from (51), we have hα

(2)
Uα < 0 everywhere and zero only at

equilibrium. Therefore, the following inequalities are automatically satisfied:

α4C5 < 0, 2c2α3
N3

D3
+ b3 > 0 (because qαqα

< 0), L1 > 0, L1 L2 − (L3)
2
> 0.



Entropy 2022, 24, 43 15 of 30

4.2. Entropy Production

According with the theorem proved by Boillat and Ruggeri [19] (see also [1,2]), the
procedure of MEP at molecular level is equivalent to the closure using the entropy principle,
and the Lagrange multipliers coincide with the main field for which the original system
becomes symmetric hyperbolic [2]. Therefore, the closed system satisfies the entropy
balance law

∂αhα = Σ, (54)

where the entropy four-vector is given by (50), (52). For what concerns the entropy pro-
duction Σ according to the result of Ruggeri and Strumia [2], this is given by the scalar
product between the main field components and the production terms [21]. In the present
case, we have

Σ = Iβγ λβγ. (55)

By using Equation (45), we have

Σ =
1

τ

{

−
1

4c4
∆ UβUγλβγ +

( 1

4c2

N∆

D4
∆ +

NΠ

D4
Π
)

hβγλβγ +
(

−
2

c2

N3

D3
+

θ1,3

θ1,2

1

c2

)

q(βUγ)λβγ − C5t<βγ>3 λβγ

}

.

(56)

By substituting Equations (37)–(39) into Equation (56), and remembering that qβUγλβγ =

−qαhαβUγλβγ, we obtain Σ in a quadratic form, as follows:

Σ =
3kB C5

2τmc4ρθ2,3
t<βγ>3 t<βγ>3

+
9kBθ1,1

2τm2 n c6D3

(

− 2
N3

D3
+

θ1,3

θ1,2

)

qαqα +
(

∆ Π
)

(

M1 M2

M2 M3

)(

∆

Π

)

, (57)

where

M1 =
kB

16 c8τm2 n D4

(

D33
4 +

N∆

D4
D34

4

)

, M2 = −
kB

4 c6τm2 n D4

(

D43
4 +

N∆

D4
D44

4 −
NΠ

D4
D34

4

)

,

M3 = −
kB

c4τm2 n D4

NΠ

D4
D44

4 .

The Sylvester criteria allow us to state that the quadratic form is positive definite iff all the
following conditions hold:

3kB C5

2τmc4ρθ2,3
> 0,

(

−2
N3

D3
+

θ1,3

θ1,2

)

9kBθ1,1

2τm2 n c6D3
< 0, M1 > 0, M1 M3 − (M2)

2
> 0. (58)

The first condition of (58) is automatically satisfied because of the definition of the functions
involved.

In order to prove the second condition, we can consider a space like vector Xβ and the
following function that is defined to be positive for each value of Xβ:

g(Xβ) =
Uα

c τ kB

∫

R3

∫ +∞

0
fE pα

[

Xβ pβ

(

θ1,3

θ1,2

(

1 +
I

mc2

)

−
2

mc2

(

1 +
I

mc2

)2

Uν pν

)]2

φ(I)dIdP .

By exploiting the calculation in the above integral and by using Equation (27), we have

g(Xβ) =
m2 n c2

τ kB

[

1

3

(θ1,3)
2

θ1,2
−

2

5
θ1,4

]

Xβ Xβ .
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If we choose, as a particular value,

Xβ = −
1

D3

9 kB

2 m2 n c4
θ1,1 qβ,

we obtain

g(Xβ) =
9kBθ1,1

2τm2 n c6D3

(

− 2
N3

D3
+

θ1,3

θ1,2

)

qαqα > 0.

This proves that also the second condition of (58) is satisfied.
Conditions 3 and 4 of (58) can be proved by showing that they are coefficients of a

quadratic form that is definite positive. In order to obtain the entropy production up to
the second order, we have to substitute Equation (19)4 into (55) and take the collisional
term (43) up to the first order. Then,

Σ(2) =
c

m

∫

R3

∫ +∞

0
Q(1) pβ pγ λβγ

(

1 +
I

mc2

)2
φ(I) dI dP,

with

Q(1) =
fE

c2 τ kB
Uα pα

[

χ̃ −
kB

bmc2
pµqµ

(

1 +
I

mc2

)]

.

If we substitute to λβγ its expression obtained from Equation (25)2, we obtain

Σ(2) = c
∫

R3

∫ +∞

0
Q(1) χ̃ φ(I) dI dP.

In the state where qβ = 0 and t<αβ>3 = 0, the Lagrange multipliers and the Entropy
production assume particular values that we denote with a ∗, in particular

Σ(2∗) =
c

m

∫

R3

∫ +∞

0
Q(1∗) χ̃∗ φ(I) dI dP =

c

m

∫

R3

∫ +∞

0

fE

c2 τ kB
Uα pα [χ̃∗]2φ(I) dI dP,

which is clearly a positive quantity. Moreover, we have

Σ(2∗) = Iβγ∗λβγ∗

which corresponds to the quadratic form

(

∆ Π
)

(

M1 M2

M2 M3

)(

∆

Π

)

,

which, therefore, turns out to be definite positive. Therefore, the following is proved:

Statement 2. The entropy density (53) is a convex function and has its maximum at equilibrium.
The solutions satisfies the entropy principle (54) with an entropy production (57) that is always
non-negative. According to the general theory of symmetrization given first in covariant formulation
in [21], and the equivalence between Lagrange multipliers and main field [19], the closed system
is symmetric hyperbolic in the neighborhood of equilibrium if we chose as variables the main field
variables (36), with coefficients given in (40)–(42), and the Cauchy problem is well posed locally
in time.
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5. Diatomic Gases

The system (47) is very complex, in particular, because it is not simple to evaluate the
function ω(γ), which involves two integrals (12)3 that cannot have analytical expression
for a generic polyatomic gas. Taking into account the relations [7]

J2,1(γ) =
1

γ
K2(γ), J2,2(γ) =

1

γ

(

K3(γ)−
1

γ
K2(γ)

)

,

where Kn denotes the modified Bessel function, we can rewrite ω given in (12)3 in terms of
the modified Bessel functions [7]:

ω(γ) =
1

γ





∫ +∞

0 K3(γ
∗) φ(I) d I

∫ +∞

0
K2(γ∗)

γ∗ φ(I) d I
− 1



.

Moreover, to calculate the integrals, we need to prescribe the measure φ(I). In [7], the
measure φ(I) was assumed as

φ(I) = I a, a =
D − 5

2
,

because it is the one for which the macroscopic internal energy in the classical limit, when
γ → ∞ , it converges with that of a classical polyatomic gas, where D indicates the degree
of freedom of a molecule. As was observed by Ruggeri, Xiao, and Zhao [28] in the case of
a = 0 (i.e., D = 5 corresponding to diatomic gas), the energy e has an explicit expression
similar to monatomic gas:

e = p

(

γK0(γ)

K1(γ)
+ 3

)

.

Therefore, from (12), we have

ωdiat(γ) =
K0(γ)

K1(γ)
+

3

γ
.

Using the following recurrence formulas of the Bessel functions

Kn(γ) =
γ

2n

(

Kn+1(γ)− Kn−1(γ)
)

, (59)

we can express ω in terms of

G(γ) =
K3(γ)

K2(γ)
.

In fact, we can obtain immediately the following expression:

ωdiat(γ) =
1

γ
+

γ

γG − 4
, (60)

which is a simple function similar to the one of monatomic gas, for which we have [3]:

ωmono(γ) = −1 + γ G.

Taking into account that the derivatives of the Bessel function are known, all coefficients
appearing in the differential system (47) can be written explicitly in terms of G(γ), by
using (60) and the recurrence Formula (59). This is simple by using a symbolic calculus like
Mathematica®.
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6. Ultra-Relativistic Limit

In the ultra-relativistic limit where γ → 0, it was proved in [29,30] that the energy
converges to

e = (α + 1)
n m c2

γ
, with α =

{

2 if a ≤ 2
a if a ≥ 2 .

(61)

This implies

ωultra =
(α + 1)

γ
, with α =

{

2 if a ≤ 2
a if a ≥ 2 .

(62)

By means of this expression, we can evaluate the coefficients θh,j in (17), which become:

{θ0,0, θ0,1, θ0,2, θ0,3, θ0,4} =
{

1,
α + 1

γ
,
(α + 1)(α + 2)

γ2
,
(α + 1)(α + 2)(α + 3)

γ3
,
(α + 1)(α + 2)(α + 3)(α + 4)

γ4

}

,

{θ1,1, θ1,2, θ1,3, θ1,4} =
{

1

γ
,

3(α + 2)

γ2
,

6(α + 2)(α + 3)

γ3
,

10(α + 2)(α + 3)(α + 4)

γ4

}

,

{θ2,3, θ2,4} =
{

3(α + 2)

γ3
,

15(α + 2)(α + 4)

γ4

}

.

It follows that, in the ultra-relativistic limit, we have

N3

D3
=

2(α + 3)

γ
,

N31

D3
=

10

γ
, C5 =

α + 4

γ
,

and

NΠ

D4
= −

α + 4

γ
,

N∆

D4
= −

1

α + 1
, (63)

where the last two equations hold for α 6= 2 (i.e., a 6= 2). For a = 2, the ultra-relativistic

limit of NΠ

D4
and of N∆

D4
gives the indeterminate form

[

0
0

]

. We show (see Appendix B for
details) that it can be solved by considering higher order terms for the energy e, allowing
one to prove that Equation (63) is valid also with a = 2, and hence that the closure of the
present model is continuous with respect to the parameter α, at the ultra-relativistic limit.

7. Principal Subsystems of RET15

For a general hyperbolic system of balance laws, the system with a smaller set of
the field equations can be deduced (principal subsystems), retaining the property that the
convexity of the entropy and the positivity of the entropy production is preserved according
to the definition given in [20]. The principal subsystems are obtained by putting some
components of the main field as a constant, and the corresponding balance laws are deleted.

Let us recall the system (18). The balance law of Aαβγ is divided into the trace part A
αβ
β

and the traceless part Aα<βγ>. As we study below, by deleting the trace part and putting
the corresponding component of the main field as zero, we obtain the theory with 14 fields
(RET14). On the other hand, by conducting the same procedure on the traceless part, we
obtain the theory with 6 fields (RET6). It is remarkable that RET14 and RET6 is the same
order in the sense of the principle subsystem, differently from the classical case in which
the classical RET6 is a principal subsystem of classical RET14. Moreover, the relativistic
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Euler theory is deduced as a principal subsystem by deleting the balance laws of Aαβγ and
putting the corresponding component of the main field as zero.

7.1. RET14: 14 Fields Theory

The RET14 is obtained as a principal subsystem of RET15 under the condition λα
α = 0.

From (36)3, this condition provides ∆ expressed by Π as follows:

∆(14) = −
c2α1 − 3α2

c2β1 − 3β2
Π = 4

Na

Da
c2Π, (64)

where Na = D44
4 + D43

4 and Da = D34
4 + D33

4 . Then, the independent fields are the following
14 fields: (ρ, γ, Π, Uα, qα, t<αβ>3). By deleting the balance equation corresponding to λα

α,

that is, the one of A
αβ
β , the present system of the balance equations is as follows:

∂αVα = 0 , ∂αTαβ = 0 , ∂α Aα<βγ> = I<βγ>. (65)

With (64), the constitutive equation is modified in this subsystem. For the comparison
with the RET14 theory studied in [7], let us denote

Nπ
1

Dπ
1

= −
1

3

Na

Da
,

Nπ
11

Dπ
1

=
1

D4

(

Na

Da
N∆ + NΠ

)

.

We can prove the following identity:

Nb

Da
= −

1

D4

(

Na

Da
N∆ + NΠ

)

, with Nb = N∆34 + N∆33,

where N∆33 and N∆34 are the minor determinants of N∆, which deletes the third row and
third column, and the third row and fourth column, respectively. Then, as a result, instead
of (35), the closure for Aαβγ in the present principal subsystem is given by

Aαβγ =

(

ρ θ0,2 −
3

c2

Nπ
1

Dπ
1

Π

)

UαUβUγ +

(

ρ c2θ1,2 − 3
Nπ

11

Dπ
1

Π

)

U(αhβγ) + (66)

+
3

c2

N3

D3
q(αUβUγ) +

3

5

N31

D3
q(αhβγ) + 3 C5 t(<αβ>3Uγ) .

This result is formally the same as the result of [7] (Equation (56) of the paper). How-
ever, there are differences in the coefficients due to the presence of

(

mc2 + I
)n

instead of
mc2 + n I in the integrals.

Similarly, we obtain the production term in this principal subsystem as follows:

I<βγ> = −
1

c2τ

3Nπ
1 + Nπ

11

Dπ
1

Π U<βUγ> +
1

c2τ

(

θ1,3

θ1,2
− 2

N3

D3

)

q(βUγ) −
1

τ
C5 t<βγ>3 . (67)

This expression (67) is formally the same as the result of [8] (Equation (16) of the paper),

except that now we have
θ1,3
θ1,2

instead of B2
B4

defined in [8], and the difference of the integral

in the coefficients is similar with the case for Aαβγ.
The system (65) is symmetric hyperbolic in the main field (λ, λα, λ<µν>) given respectively

by (36) with ∆ = ∆(14) given by (64).
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7.2. RET6: 6 Fields Theory

We consider the principal subsystem with λ<µν> = λµν −
1
4 λα

αgµν = 0, and then we
have

λµν =
1

4
λα

αgµν. (68)

By comparing it with (36), we have

(

α1 +
α2

c2

)

Π +

(

β1 +
β2

c2

)

∆ = 0, qµ = 0, t<µν>3 = 0.

The first equation indicates that, in this principal subsystem, ∆ is expressed with Π

as follows:

∆(6) = −
c2α1 + α2

c2β1 + β2
Π = w Π (69)

where

w = 4c2 D44
4 − 3D43

4

D34
4 − 3D33

4

.

It should be mentioned that the relation between ∆ and Π is different from the case of
RET14.

The independent fields are now the 6 fields (ρ, γ, Uα, Π), and the balance equations
are the following:

∂αVα = 0 , ∂αTαβ = 0 , ∂α A
αβ

β = I
β
β . (70)

where the energy-momentum tensor is now given, instead of (22), by

Tαβ =
e

c2
UαUβ +

(

p + Π
)

hαβ. (71)

and, from (35),

A
αβ

β =
{

ρc2(θ0,2 − θ1,2) + A1

}

ΠUα, (72)

where

A1 = −
1

4c2

{(

1 + 3
N∆

D4

)

c2α1 + α2

c2β1 + β2
− 12c2 NΠ

D4

}

=
D44

4 − 3D43
4 + 3N∆34 − 9N∆33

D34
4 − 3D33

4

.

Similarly, from (45), we obtain

I
β
β = −

A1

τ
Π. (73)

The corresponding Lagrange multiplier to A
αβ

β is ψ = 1
4 λα

α, which is obtained from (68)

as follows:

ψ = c2 α1β2 − α2β1

c2β1 + β2
Π. (74)

The system (70) with (71) and (72) is symmetric hyperbolic in the main field (λ, λα, ψ) given
respectively by (see (36)1,2 ):

λ = −
g + c2

T
+ (a1 + a2 w)Π, λα =

1

T
[1 + (b1 + b2 w)Π]Uα, (75)
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and ψ given by (74).
The closed field equations with the material derivative are obtained as follows:

ρ̇ + ρ ∂α Uα = 0 ,

e + p + Π

c2
U̇δ + h

µ
δ ∂µ(p + Π) = 0 ,

ė + (e + p + Π) ∂αUα = 0 ,

Π̇ +
ρc2
(

θ′0,2 − θ′1,2

)

A1
γ̇ +

Ȧ1

A1
Π + Π∂αUα = −

Π

τ
.

(76)

Taking into account

h
µ
δ ∂µ(p + Π) = Uδ

ṗ + Π̇

c2
− ∂δ(p + Π), (77)

and from (12):

ė = c2(ρ̇ω + ρω′γ̇), ṗ =
c2

γ2
(γρ̇ − ργ̇), (78)

the system (76) can be put in the normal form:

ρ̇ + ρ ∂α Uα = 0 ,
(

ρ +
ρε + p + Π

c2

)

U̇δ − ∂δ(p + Π)−
(p + Π)

c2

[

1 −
1

A1ω′

(

A′
1

Π

ρc2
+

A1

γ2
+ θ′0,2 − θ′1,2

)]

Uδ ∂αUα =
Π

τc2
Uδ ,

ρc2ω′ γ̇ + (p + Π) ∂αUα = 0 , (79)

Π̇ +

{

Π −
p + Π

ρc2 A1ω′

[

A′
1Π + ρc2

(

θ′0,2 − θ′1,2

)

]

}

∂αUα = −
Π

τ
.

It is extremely interesting that in the relativistic theory the acceleration is influenced by
the relaxation time trough the right hand side of (79)2, and this may be important for the
application to the problems of cosmology.

7.3. RET5: Euler 5 Fields Theory

Let us consider the principal subsystem with λµν = 0. This indicates that any nonequi-
librium variables are set to be zero, i.e.,

Π = ∆ = 0, t<µν>3 = 0, qα = 0. (80)

The independent fields are the 5 fields (n, Uα, γ), and the balance equations are

∂αVα = 0 , ∂αTαβ = 0, (81)

with

Tαβ =
e

c2
UαUβ + phαβ. (82)

The deduced system is the one of the relativistic Euler theory, and the system (81) becomes symmetric
in the main field (λ = −(g + c2)/T, λα = Uα/T), as obtained first by Ruggeri and Strumia
in [21].

8. Maxwellian Iteration and Phenomenological Coefficients

In order to find the parabolic limit of a system (47) and to obtain the corresponding
Eckart equations, we adopt the Maxwellian iteration [31] on (47), in which only the first
order terms with respect to the relaxation time are retained. The phenomenological coeffi-
cients, that is, the heat conductivity χ, the shear viscosity µ, and the bulk viscosity ν, are
identified with the relaxation time.
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The method of the Maxwellian iteration is based on putting to zero the nonequilibrium
variables on the left side of Equation (47):

ρ̇ − ρ hβα ∂β Uα = 0 ,

e + p

c2
hδβ U̇β − h

µ
δ ∂µ p = 0 ,

ė − (e + p) h
µ
α ∂µUα = 0 ,

c2

3
hδβ

(

ρ̇θ1,2 + ρθ′1,2γ̇
)

−
1

3
ρc2θ1,2

[

hδβ h
µ
α ∂µ Uα + 2 hθ(δ h

µ

β)
∂µ Uθ

]

=

=
1

τ

(

1

4

N∆

D4

∆

c2
+

NΠ

D4
Π

)

hδβ −
1

τ
C5 t<δβ>3

,

hβδ U̇β

(

ρθ0,2c2 +
2

3
ρc2θ1,2

)

− h
µ
δ

c4

3
∂µ (ρθ1,2) =

1

τ

(

N3

D3
−

θ1,3

2 θ1,2

)

qδ ,

c4
(

ρ̇θ0,2 + ρθ′0,2γ̇
)

− ρc4
(

θ0,2 +
2

3
θ1,2

)

h
µ
α ∂µ Uα = −

1

4 τ
∆ .

(83)

From the first three equations of (83) and taking into account p = ρc2/γ, e = ρc2ω(γ)
(see (12)), we can deduce

ρ̇ = ρ hµα∂µ Uα, h
µ
δ ∂µ ρ = ρ

ωγ + 1

c2
hδβUµ ∂µ Uβ +

ρ

γ
h

µ
δ ∂µ γ, γ̇ =

1

γω′
hµα∂µ Uα . (84)

Putting (84) in the remaining Equation (83)4,5,6, we obtain the solution

qβ = −χ hα
β

[

∂αT −
T

c2
Uµ∂µUα

]

,

Π = −ν ∂αUα,

t<βδ>3
= 2µ hα

β h
µ
δ ∂<αUµ>,

∆ = σ ∂αUα,

(85)

with

χ = −
2ρc2

3BqT
[3θ0,2 + θ1,2(1 − ω γ)],

ν = −
ρc2

3BΠ
2

{

2

3
θ1,2 −

θ′1,2

γω′
+ 3

N∆

D4

(2

3
θ1,2 −

θ′0,2

γω′

)

}

,

µ = −
ρc2

3Bt
θ1,2 ,

(86)

and

σ =
ρ

B∆
1

(2

3
θ1,2 −

θ′0,2

γω′

)

,

where BΠ
2 , Bq, Bt are explicitly given by (44) with the relaxation time τ.

As the first three equations in (85) are the Eckart equations, we deduce that χ, ν, µ are
the heat conductivity, the bulk viscosity, and the shear viscosity, respectively. In addition,
we have a new phenomenological coefficient σ, but as ∆ doesn’t appear in either Vα or Tαβ

(see Equation (22) or the first three equations in (47)), we arrive at the conclusion that the
present theory converges to the Eckart one formed in the first three block equations of (47)
with constitutive Equation (85), in which the heat conductivity, bulk viscosity, and shear
viscosity are explicitly given by (86)1,2,3.
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We introduce, as in [9], the dimensionless variables, as follows:

χ̄ =
ρTχ

p2τ
= −

2

3
γ2 3θ0,2 + θ1,2(1 − ω γ)

θ1,3
θ1,2

− 2 N3
D3

,

ν̄ =
ν

pτ
= −

1

3

γ
NΠ

D4

{

2

3
θ1,2 −

θ′1,2

γω′
+ 3

N∆

D4

(2

3
θ1,2 −

θ′0,2

γω′

)

}

,

µ̄ =
µ

pτ
=

γ

3C5
θ1,2 ,

(87)

which are functions only of γ.

8.1. Ultra-Relativistic and Classical Limit of the Phenomenological Coefficients

Taking into account Equations (62) and (63), it is simple to obtain the limit of (87) when
γ → 0:

χ̄ultra = 0, ν̄ultra =
2

3

α2 − 4

(1 + α)(4 + α)
, µ̄ultra =

2 + α

4 + α
.

In particular, in the most significant case in which a ≤ 2 for which α = 2, we have

χ̄ultra = 0, ν̄ultra = 0, µ̄ultra =
2

3
. (88)

Instead, in the classical limit for which γ → ∞, it was proved in [7] that the internal
energy ε converges to the classical internal energy of polytropic gas: ε = (D/2)(kB/m)T.
Therefore, from (13), ω converges to

ωclass = 1 +
D

2γ
. (89)

In the present case, using (89), it is not difficult to find θh,j deduced in (17) in the limit
γ → ∞, as follows:

{θ0,0 , θ0,1 , θ0,2 , θ0,3 , θ0,4} =

{

1 , 1 +
D

2γ
, 1 +

D

γ
, 1 +

3D

2γ
, 1 +

2D

γ

}

,

{θ1,1 , θ1,2 , θ1,3 , θ1,4} =

{

1

γ
,

3

γ
,

6

γ
,

10

γ

}

,

{θ2,3 , θ2,4} =

{

3

γ2
,

15

γ2

}

.

(90)

Therefore, in the classical limit, we have

N3

D3
= 2 ,

N31

D3
=

10

2 + D
, C5 = 1 ,

NΠ

D4
= −1 ,

N∆

D4
= −

2

D
, (91)

and we find from (87)

χ̄class =
D + 2

2
, ν̄class =

2(D − 3)

3D
, µ̄class = 1 , (92)

which are in perfect agreement with the phenomenological coefficients of the classical RET
theory [2].

8.2. Phenomenological Coefficients in RET14 and RET6

By conducting the Maxwellian iteration to RET14 as a principal subsystem of RET15, we
may expect that a different bulk viscosity appears. This is because ∆ is related to Π by (64),
and it affects the balance laws corresponding to Π in RET14. In fact, from (66) and (67), we
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can obtain the closed field equations for Π, and then, through the Maxwellian iteration, as
has been done in [9], we obtain the bulk viscosity for RET14 as follows:

ν̄14 =

1
ω′

(

θ′0,2 +
1
3 θ′1,2

)

− 8
9 γθ1,2

(

−1 + N∆

D4

)

Na
Da

+ NΠ

D4

. (93)

We remark that the heat conductivity and the shear viscosity is the same between RET15

and RET14.
Similarly, from (79)4, we obtain the bulk viscosity estimated by RET6 as follows:

ν̄6 = −
θ′0,2 − θ′1,2

ω′A1
. (94)

It should be noted that, in the classical case studied in [15], the bulk viscosities of
RET15, RET14, and RET6 are the same. In fact, in the classical limit, ν̄14 and ν̄6 coincide with
ν̄class. However, due to the mathematical structure of the relativity (i.e., the scalar fields Π

and ∆ appear together in the triple tensor), the method of the principal subsystem dictates
the difference of the subsystems.

8.3. Heat Conductivity, Bulk Viscosity, and Shear Viscosity in Diatomic Gases

Inserting (60), after cumbersome calculations (easy with Mathematica®), we can obtain
the phenomenological coefficients in the diatomic case:

χ̄ = −
γ
(

γ2 + 2γG − 8
){

γ4
(

G2 − 1
)

+ 2γ2
(

G2 + 2
)

− 5γ3G − 16γG + 32
}2

(γG − 4)3
{

γ
[

−γ5 + 5γ3 + 48γ +
(

γ4 − 6γ2 − 12
)

γG2 +
(

− 5γ4 + 12γ2 + 96
)

G
]

− 192
} ,

µ̄ =

(

γ2 + 2γG − 8
)2

(γG − 4)
{

4
(

γ2 − 8
)

+ γ
(

γ2 + 8
)

G
} ,

ν̄ =
g1

3(γG − 4)g2
,

with

g1 = 4γ15G
(

G2 − 1
)2

+ 81920γ3G
(

7G2 + 20
)

− 196608γ2
(

7G2 + 4
)

+ 1024γ5G
(

21G4 + 660G2 − 392
)

−

4096γ4
(

35G4 + 348G2 − 56
)

+ 4γ14
(

G6 − 17G4 + 21G2 − 5
)

+ γ13G
(

7G6 − 86G4 + 435G2 − 256
)

+

4γ12
(

− 40G6 + 193G4 − 331G2 + 48
)

+ 4γ11G
(

− 14G6 + 422G4 − 943G2 + 500
)

+

16γ10
(

77G6 − 660G4 + 677G2 − 84
)

+ 16γ9G
(

7G6 − 714G4 + 2560G2 − 1108
)

−

64γ8
(

45G6 − 910G4 + 1472G2 − 204
)

+ 64γ7G
(

G6 + 492G4 − 2800G2 + 1760
)

−

256γ6
(

7G6 + 740G4 − 1344G2 + 192
)

+ 1835008γG − 1048576,

g2 = γ4
(

G2 − 1
)

+ γ2
(

G2 + 4
)

− 5γ3G − 8γG + 16
)[

γ
(

2γ9G2
(

G2 − 1
)

+ 5γ8G
(

1 − 3G2
)

+

40γ6G
(

6 − 5G2
)

+ 64γ4G
(

11G2 − 25
)

+ 512γ2G
(

G2 + 14
)

− 1024γ
(

3G2 + 5
)

+

γ7
(

19G4 − 17G2 + 28
)

− 4γ5
(

13G4 − 198G2 + 60
)

− 32γ3
(

G4 + 108G2 − 52
)

+ 8192G
)

− 8192
]

.

Let us compare the phenomenological coefficients with the ones for the monatomic
case obtained in [9]. In Figure 1, we plot the dependence of the dimensionless heat
conductivity and shear viscosity on γ for both diatomic and monatomic cases. Concerning
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ν, we also plot the dimensionless bulk viscosity of RET14 derived in (93) in Figure 2. We
observe that in the ultra-relativistic limit and the classical limit, the figures are in perfect
agreement with the limits (88) and (92) (for D = 3, 5). We remark, as is evidently shown
in Figure 2, how small the bulk viscosity in monatomic gas is with respect to that of the
diatomic case.

It is also remarkable that the value of the bulk viscosity of RET6 given by (94) is quite
near to the one of RET15. For this reason, we omit the plot of ν̄(6) in the figure. This indicates
that RET6 captures the effect of the dynamic pressure in consistency with RET15.

RET15

RET14Monatomic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

χ

0 10 20 30 40 50
γ

RET15

RET14Monatomic

0.6

0.7

0.8

0.9

1.0

1.1

μ

0 10 20 30 40 50
γ

Figure 1. Dependence of χ̄ (left) and µ̄ (right) for diatomic (red solid line) and monatomic (black

dashed line) gases on γ. The dotted line indicates the corresponding value in the classical limit. In

the ultra-relativistic limit (γ → 0), χ̄ultra = 0, µ̄ultra = 2/3 both for monatomic and diatomic gases. In

the classical limit (γ → ∞), χ̄class = 2.5, µ̄class = 1 for monatomic gas, and χ̄class = 3.5, µ̄class = 1 for

diatomic gas.

RET15
RET14
RET14Monatomic

0.00

0.05

0.10

0.15

0.20

0.25

0.30

ν

0 10 20 30 40 50
γ

0.000

0.001

0.002

0.003

0.004

ν

0 5 10 15 20 25γ

Figure 2. Dependence of ν̄ for diatomic (red solid line) and monatomic (black dashed line) gases on

γ. The prediction by RET14 as a principal subsystem of RET15 is also shown with the dotted line. In

the ultra-relativistic limit (γ → 0), ν̄ultra = 0 both for monatomic and diatomic gases. In the classical

limit (γ → ∞), ν̄class = 0 for monatomic gas, and ν̄class = 4/15 for diatomic gas.

9. Classic Limit of the Relativistic Theory

We want to perform the classical limit γ → ∞ of the closed relativistic system (47) now.
For this purpose, we recall the limits of the coefficients given in (90) and (91). Moreover,

taking into account the decomposition Uα ≡
(

Γ c , vi
)

, where Γ is the Lorentz factor, we

have ∂αUα = 1
c ∂t

(

Γ c
)

+ ∂k

(

Γ vk
)

, whose limit is ∂iv
i because ∂t Γ = − Γ3 vi

c2 ∂tv
i has zero

limit, and a similar evaluation applies to ∂k Γ. Then,

1

c2
Uµ∂µU0 =

1

c2
Γ c

1

c
∂t

(

Γ c
)

+
1

c2
Γ vk ∂k

(

Γ c
)

has 0 limit ,

1

c2
Uµ∂µUi =

1

c2
Γ c

1

c
∂t

(

Γ vi
)

+
1

c2
Γ vk ∂k

(

Γ vi
)

has 0 limit .
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Concerning the projection operator in the limit, it is necessary to remember that, with our
choice of the metric, vj = − vj, then

hβα =− gβα +
UβUα

c2
→ hij = − gij + Γ2 vivj

c2
→ lim

c→+∞
hij = − gij = δij,

lim
c→+∞

hi
j = − gi

j = −diag (1, 1, 1) .

While from

0 = Uαhiα = Γ c hi0 + Γ vk hik → hi0 = −
vk

c
hik ,

0 = Uαh0α = Γ c h00 + Γ vk h0k → h00 = −
vk

c
h0k = −

vavb

c2
hab .

The last two relations also hold without taking the non-relativistic limit. As a consequence,
we have that limc→+∞ hi0 = 0 and limc→+∞ h00 = 0.

The relativistic material derivative (46) of a function f converges to the classical
material derivative where we continue to indicate it with a dot. Then, the system (47)
becomes in the classical limit:

ρ̇ + ρ
∂vl

∂xl
= 0,

ρv̇i +
∂p

∂xi
+

∂Π

∂xi
−

∂σ〈ik〉

∂xk
= 0,

Ṫ +
2T

Dp

{

(p + Π)
∂vl

∂xl
− σ〈ik〉

∂vk

∂xi
+

∂ql

∂xl

}

= 0,

Π̇ +
2

3

D − 3

D
p

∂vl

∂xl
+

5D − 6

3D
Π

∂vl

∂xl
−

2

3

D − 3

D
σ〈lk〉

∂vl

∂xk
+

4(D − 3)

3D(D + 2)

∂ql

∂xl
= −

1

τ
Π,

σ̇〈ij〉 + σ〈ij〉
∂vl

∂xl
+ 2σ〈l〈i〉

∂vj〉

∂xl
− 2(p + Π)

∂v〈j

∂xi〉
−

4

D + 2

∂q〈i

∂xj〉
= −

1

τ
σ〈ij〉,

q̇i +
D + 4

D + 2
qi

∂vl

∂xl
+

D + 4

D + 2
ql

∂vi

∂xl
+

2

D + 2
ql

∂vl

∂xi

+
D + 2

2

p

ρT

{

(p + Π)δil − σ〈il〉

} ∂T

∂xl
−

p

ρ2

(

Πδil − σ〈il〉

) ∂ρ

∂xl

+
1

ρ

{

(p − Π)δil + σ〈il〉

}

(

∂Π

∂xl
−

∂σ〈rl〉

∂xr

)

+
1

2D

∂∆

∂xi
= −

1

τ
qi,

∆̇ +

(

D + 4

D
∆ + 8

p

ρ
Π

)

∂vl

∂xl
− 8

p

ρ
σ〈ik〉

∂vi

∂xk
−

8

ρ
qi

∂p

∂xi

+ 4(D + 4)
p

ρT
ql

∂T

∂xl
+

8p

ρ

∂ql

∂xl
−

8

ρ
qi

∂Π

∂xi
+

8

ρ
qi

∂σ〈il〉

∂xl
= −

1

τ
∆,

(95)

where σ〈ij〉 = −t〈ij〉. The system (95) coincides perfectly with the classical one obtained
recently in [15].

We remark that, as has been studied in [15], for classical polytropic gases, RET14 is
derived as a principal subsystem of RET15 by setting ∆ = 0. Moreover, RET6 is derived from
RET14 as a principal subsystem of RET14 by setting σ〈ij〉 = 0 and qi = 0. This corresponds

to the fact that, in the classical limit, both ∆(14) defined in (64) and ∆(6) defined in (69)
become zero.
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Appendix A. Entropy-Entropy Flux Density

In order to evaluate the entropy density from Equation (20), we need the expression of
f ln f up to the second order with respect to the nonequilibrium variables.
The expansion of the distribution function around an equilibrium state is

f = fE e
−1
kB

χ̃
= fE

[

1 −
1

kB
χ̃ +

1

2 k2
B

(χ̃)2 + (χ̃)3(· · · )

]

,

with χ̃ = (χ̃)(1) + (χ̃)(2) + (χ̃)(3) (· · · ) ,

defined in (25)2, and the notation η(i) represents the homogeneous part of the generic
quantity η at the order i with respect to the nonequilibrium variables. With this notation,

the quantities
(

λ − λE
)(1)

,
(

λβ − λE
β

)(1)
,
(

λβγ

)(1)
are those of Equation (36).

By composing the above expressions, we see that the distribution function up to the
second order is

f = fE

{

1 −
1

kB

[

(χ̃)(1) + (χ̃)(2)
]

+
1

2 k2
B

[

(χ̃)(1)
]2
}

.

and

f ln f = f

(

−1 −
1

kB
χ̃

)

= fE

{

1 −
1

kB

[

(χ̃)(1) + (χ̃)(2)
]

+
1

2 k2
B

[

(χ̃)(1)
]2

+ · · ·

}

·

{

−1 −
1

kB
χE −

1

kB

[

(χ̃)(1) + (χ̃)(2) + · · ·
]

}

= fE ln fE +
1

k2
B

fE χE (χ̃)(1) +
1

k2
B

fE χE

{

(χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

+

+
1

2 k2
B

fE

[

(χ̃)(1)
]2

.

It follows that

hα = −kB c
∫

R3

∫ +∞

0
pα f ln f ϕ(I) d I d P = hα

E + hα
(1) + hα

(2) ,

where

hα
(1) = −

c

kB

∫

R3

∫ +∞

0
pα fE χE (χ̃)(1) ϕ(I) d I d P =

= −
c

kB

∫

R3

∫ +∞

0
pα fE

[

m λE +

(

1 +
I

m c2

)

Uµ

T
pµ

]

(χ̃)(1) ϕ(I) d I d P,
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hα
(2) = −

c

kB

∫

R3

∫ +∞

0
pα fE χE

{

(χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P −

c

2 kB

∫

R3

∫ +∞

0
pα fE

[

(χ̃)(1)
]2

ϕ(I) d I d P.

Moreover, we have that the moments appearing in system (18) up to the second order are
as follows:

Vα = Vα
E −

m c

kB

∫

R3

∫ +∞

0
pα fE

{

(χ̃)(1) + (χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P ,

Tαβ = T
αβ
E −

c

kB

∫

R3

∫ +∞

0
pα pβ

(

1 +
I

m c2

)

fE

{

(χ̃)(1) + (χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P ,

UαUβUγ

c4
Aαβγ =

UαUβUγ

c4
A

αβγ
E −

UαUβUγ

c4

c

m kB

∫

R3

∫ +∞

0
pα pβ pγ

(

1 +
I

m c2

)2

fE

{

(χ̃)(1) + (χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P .

The underlined terms give 0 for Equation (36), and there remain

−
m c

kB

∫

R3

∫ +∞

0
pα fE

{

(χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P = 0 ,

−
c

kB

∫

R3

∫ +∞

0
pα pβ

(

1 +
I

m c2

)

fE

{

(χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P = 0 ,

UαUβUγ

c4

c

m kB

∫

R3

∫ +∞

0
pα pβ pγ

(

1 +
I

m c2

)2

fE

{

(χ̃)(2) −
1

2 kB

[

(χ̃)(1)
]2
}

ϕ(I) d I d P = 0 .

The first two of these allow one to prove Equation (52)1 and to write

hα
(2) = −

c

2 kB

∫

R3

∫ +∞

0
pα fE

[

(χ̃)(1)
]2

ϕ(I) d I d P .

It is sufficient to substitute the expression of χ̃ to obtain Equation (52)2.

Appendix B. Continuity of the Ultra Relativistic Limit for a = 2

From (12)2, and by using the recurrence relations (11) and (10), we have

γe

n m c2
=

γ
∫ +∞

0 J∗2,2

(

1 + I
mc2

)

φ(I) d I
∫ +∞

0 J∗2,1 φ(I) d I
= 3 +

∫ +∞

0 J∗0,1 φ(I) d I
∫ +∞

0 J∗2,1 φ(I) d I
.

By introducing the Ruggeri’s numbers Rk and using Equations (32)1 of [30], we have

γe

n m c2
= 3 +

3

− ln γ
R−4 = 3 −

1

ln γ

or

e =
n m c2

γ

(

3 −
1

ln γ

)

. (A1)

Therefore, we have to calculate D4, NΠ and N∆ with (A1) instead of (61).
In particular, for D4 we can add to its fourth line the second one pre-multiplied by − 1

3 ,
so that it becomes

1

γ ln γ

(

1

3
,

4

3 γ
,

20

3 γ2
,

4

3

c2

γ2

)

.
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It follows that, afte r cumbersome calculations that we do not report here for brevity,
we have

lim
γ→ 0

γ9 ln γ D4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 12 4

3 12 60 20

12 60 360 120

1
3

4
3

20
3

4
3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −64 .

Similarly, for NΠ we can add to its fourth line the third one multiplied by − 1
3 , so that it

becomes

1

γ2 ln γ

(

4

3
,

20

3 γ
,

40

γ2
,

8 c2

γ2

)

.

It follows that

lim
γ→ 0

γ10 ln γ NΠ = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 12 4

3 12 60 20

12 60 360 120

4
3

20
3 40 8

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 384 .

Finally, for N∆ we can add to its third line the second one multiplied by − 1
3 , so that its

third line becomes

1

γ ln γ

(

1

3
,

4

3 γ
,

20

3 γ2
,

4

3

c2

γ2

)

.

It follows that

lim
γ→ 0

γ9 ln γ N∆ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 12 4

3 12 60 20

1
3

4
3

20
3

4
3

4 20 120 40

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
64

3
.

By joining all these results we obtain

lim
γ→ 0

γ NΠ

D4
= −6 , lim

γ→ 0

N∆

D4
= −

1

3
,

which confirms (63) also for a = 2.
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