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Abstract: (1) Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune
liver diseases characterized by chronic hepatic inflammation and progressive liver fibrosis. The
possible use of saliva as a diagnostic tool has been explored in several oral and systemic diseases. The
use of proteomics for personalized medicine is a rapidly emerging field. (2) Salivary proteomic data
of 36 healthy controls (HCs), 36 AIH and 36 PBC patients, obtained by liquid chromatography/mass
spectrometry top-down pipeline, were analyzed by multiple Mann—Whitney test, Kendall corre-
lation, Random Forest (RF) analysis and Linear Discriminant Analysis (LDA); (3) Mann—Whitney
tests provided indications on the panel of differentially expressed salivary proteins and peptides,
namely cystatin A, statherin, histatin 3, histatin 5 and histatin 6, which were elevated in AIH patients
with respect to both HCs and PBC patients, while S100A12, S100A9 short, cystatin S1, S2, SN and
C showed varied levels in PBC with respect to HCs and/or AIH patients. RF analysis evidenced a
panel of salivary proteins/peptides able to classify with good accuracy PBC vs. HCs (83.3%), AIH
vs. HCs (79.9%) and PBC vs. AIH (80.2%); (4) RF appears to be an attractive machine-learning tool
suited for classification of AIH and PBC based on their different salivary proteomic profiles.

Keywords: autoimmune hepatitis; biomarkers; primary biliary cholangitis; RF analysis; salivary
proteomics; top-down proteomics

1. Introduction

Autoimmune liver diseases (AILDs) include a series of pathological conditions that
target the liver and have a wide spectrum of presentation, ranging from asymptomatic
forms to end stage liver disease requiring liver transplantation.

Despite progress in understanding the etiopathogenesis, diagnostic and therapeutic
approach of AILDs, there are still critical issues concerning early diagnosis, risk stratifica-
tion of disease progression and identification of response to therapy predictors. Indeed,
there are several confounding factors involved in the initiation of hepatic autoimmune
and inflammatory phenomena such as genetic predisposition, molecular mimicry and/or
abnormalities of T-regulatory lymphocytes, autoantibody variability and similarities and
overlap syndrome among the three main types of autoimmune liver diseases: autoimmune
hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis
(PSC) [1].
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AIH affects females about 3–4 times more than men and afflicts children and adults of
all ethnicities and races [2,3]. AIH patients are characterized by a serological increase in
antibody and immunoglobulin titers, associated with hepatocellular inflammation, necrosis
and fibrosis with possible evolution into cirrhosis and liver failure. AIH patients are
distinguished into type 1 (AIH1) and type 2 (AIH2), classified according to autoantibodies
profile: smooth muscle antibodies (SMAs) and antinuclear antibodies (ANAs) for AIH1,
which occurs more often in adults, whereas liver-kidney-microsome-1 (LKM-1) antibodies
characterize AIH2, which develops its most aggressive forms in childhood [4].

Management frequently consists of lifelong nonspecific immunosuppression with
azathioprine or other salvage therapies [5,6].

PBC usually affects women aged 40 to 60, with a male to female ratio of 1:10. It is
characterized by the attack of the immune system towards the bile ducts and their epithelial
cells, leading to progressive destruction of the intrahepatic bile ducts. Consequently, since
the ducts are no longer efficient at draining bile, it accumulates in the liver causing cholesta-
sis and, if the disease is not diagnosed and adequately treated, it develops toward fibrosis,
cirrhosis and finally liver failure [7]. Management consists of lifelong administration of
ursodeoxycholic acid (UDCA) [8].

PBC is never acute and affects the small bile ducts only, while PSC can affect both
small and large ducts [9].

Coexistence of comorbidities is a common finding in AILD patients and may af-
fect clinical phenotype at presentation. The most common association was found with
other concurrent extrahepatic autoimmune disorders (CEHAID), mainly with autoimmune
thyroid disease, but also with Sjögren’s syndrome, rheumatoid arthritis, nondestructive
polyarthropathy, type 1 diabetes, vitiligo, ulcerative colitis and psoriasis [10,11]. Further-
more, an interesting review article reported that celiac disease, which frequently coexists
with AILDs, could be genetically linked because both disorders express selected combi-
nations of genes coding for class II HLA molecules on chromosome 6 [12]. The diagnosis
and management of AILDs could be challenging in presence of CEHAID since they may
predate, coincide or even occur years after the diagnosis of AILDs. To improve AILDs
diagnosis, this association has been recognized and incorporated into the original and
revised International Autoimmune Hepatitis Group scoring system [3]. Another challenge
in AILDs diagnosis is represented by “overlap syndromes” which refer to autoimmune
liver diseases that may have characteristics of cholestasis (PBC or PSC) in combination
with AIH and that cannot be assimilated into classical diagnostic categories. The Paris
criteria can aid in diagnosing the AIH–PBC overlap syndrome [13], while so far, there are
no standardized diagnostic criteria for the other types of overlapping [14].

Current guidelines recommend liver biopsy as a prerequisite for the diagnosis, in
order to determine disease severity and to discriminate acute and chronic forms of AIH,
while recommending against liver biopsy for the diagnosis of PBC, unless PBC-specific
antibodies are absent or coexisting with AIH or other systemic co-morbidities [7,15].

To overcome the invasiveness of liver biopsy, peripheral biomarkers on other tissues
and biofluids, like blood cells, plasma, eyes and skin have been studied [16–20].

Serum autoantibodies ANA/SMA and LKM-1 are the diagnostic hallmark of AIH be-
cause of their high specificity [3]; however, a recent review reported a very poor diagnostic
accuracy for ANA, SMA and LKM-1 if detected alone, with accuracy increasing only in
presence of both ANA and SMA [21]. Moreover, ANA tests also detect antigen specificities
associated exclusively with PBC, including autoantibodies to Sp100 containing nuclear
bodies (NBs) or gp210 protein [22]. Among candidate autoantibodies that may aid in the
diagnosis of AIH, the most promising is α-actinin, a ubiquitous cytoskeletal cross-linking
protein within the family of filamentous actin (F-actin) [23]. Nevertheless, a minority of
patients with AIH do not have detectable autoantibodies at presentation and may express
them only intermittently or after empiric therapy [3]. As result, such patients must be
scored using revised diagnostic criteria (RDC) or liver biopsy. Regarding PBC, although
the high specificity of anti-gp210 is generally accepted, the diagnostic role of anti-Sp100 is



Int. J. Mol. Sci. 2023, 24, 959 3 of 21

still questioned since positivity was also found in other liver diseases or immunological
disorders without liver involvement [24].

In this scenario, while the possible use of saliva as a diagnostic fluid has been largely
investigated for oral and systemic diseases [25,26], it has been only marginally used in
autoimmune liver diseases, mainly to investigate the role played by oral microbiota in their
pathogenesis [27]. As a mirror of oral and systemic health, saliva provides valuable infor-
mation because it contains not only proteins specifically secreted by the salivary glands [28],
but also proteins from the gingival crevicular fluid [29,30], from oral microflora [31] and
plasmatic proteins transported from blood to saliva by both intra- and extracellular path-
ways. Several studies evidenced that various systemic disorders affected qualitatively and
quantitatively the salivary proteome [32–34].

Emerging omics technologies, together with the sophisticated development of artificial
intelligence algorithms, can now accelerate biomarker discovery leading to the use of pro-
teomics for personalized medicine in a rapidly emerging field. In recent years, substantial
clinical breakthroughs using Machine Learning (ML) applications have been made, includ-
ing disease prevention, diagnosis, prognosis, drug discovery and clinical trial design [35,36].
There are multiple examples in the literature where predictive ML models have been used
to identify diagnostic biomarkers in immune mediated inflammatory diseases [35,37], liver
diseases comprised [38–40].

Based on these considerations, the aim of the present study was to evidence by a top-
down proteomic pipeline possible qualitative and/ or quantitative differences of targeted
salivary proteins/peptides in patients with either AIH or PBC compared with healthy
controls (HCs). Mass Spectrometry (MS) data were analyzed by exact Mann—Whitney and
Kruskal—Wallis tests. Random forest (RF), one of the most widely used supervised machine
learning algorithms for mass spectrometry data, multidimensional scaling (MDS) and linear
discriminant analysis (LDA) were used to individuate plausible salivary biomarkers related
to AIH or PBC and to accurately classify the subjects.

2. Results
2.1. Top-Down Mass Spectrometry Pipeline

In this study, we analyzed the most common salivary peptides and proteins soluble
in acidic conditions and detectable by RP-HPLC-ESI-MS using a top-down pipeline. The
investigated proteins/peptides belong to the following families: acidic proline-rich proteins
(aPRPs); statherin and P-B peptide; histatins (Hst); salivary cystatins (S-type); cystatins A,
B, C, and D; α-defensins; antileukoproteinase (SLPI); S100A7, S100A8, S100A9, S100A12
proteins. Several variants and post-translationally modified proteoforms, previously char-
acterized in human saliva by our proteomic approach [39], were also investigated. The
post-translation modifications (PTMs) considered were phosphorylation, proteolysis, N-
terminal acetylation, methionine or tryptophan oxidation, and cysteine S-modification
(glutathionylation, cysteinylation, nitrosylation and formation of dimers by disulphide
bridges). The UniProt-KB code, experimental and theoretical average mass values (Mav),
elution times of proteins and peptides analyzed, m/z values and charge of the multiple-
charged ions selected for eXtracted Ion Current (XIC) searches in HPLC-low resolution MS
and PTMs are reported in Table S1. All the proteins/peptides listed in Table S1 have been
previously characterized by high-resolution tandem MS analysis [41,42].

Figure 1 shows the typical total ion current (TIC) chromatographic profile of the
acidic-soluble fraction of adult human saliva, and the elution ranges of the protein families
investigated in the two patient groups (AIH and PBC patients) and in HCs. Label-free
quantification was based on the eXtracted Ion Current (XIC) peak area values measured
at low-resolution MS for each peptide/protein in every sample normalized to total pro-
tein concentration (TPC). The normalized XIC peak areas values were submitted to the
following statistical analyses: (1) non-parametric Mann—Whitney and Kruskal—Wallis
tests to identify proteins/peptides with different abundance between groups, (2) Kendall
correlations to identify proteins with correlated levels within groups, and (3) random forest
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(RF) and linear discriminant analysis (LDA) to classify each subject as HCs, AIH or PBC
patient.
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ranges of the protein families investigated.

Moreover, to increase the functional characterization of varied proteins among the
three groups, a gene ontology (GO) enrichment analysis based on biological process (BP)
was performed.

2.2. Characteristics of the Participants and Saliva Sampling

AIH patients had a median age of 54.53 years and 89% were females, PBC patients had
a median age of 65.1 years and 97% were females and HCs had a median age of 50 years
and 80% were females. The detailed demographic data of HCs, AIH and PBC patients
(in the following indicated as AIHp and PBCp) are reported in Table S2. Demographic
characteristics, including age and gender were matched between the AIHp and HCs and
between PBCp and HCs (p > 0.05). Clinical and pharmacological features of AIHp and
PBCp, collected at the same time of saliva sampling, are reported in Table 1. They comprise
a panel of serum markers indices of liver dysfunction and were: markers of hepatocellular
dysfunction alanine transaminase (ALT) and/or aspartate aminotransferase (AST); mark-
ers of biliary disease such as alkaline phosphatase (ALP); markers of parenchymal liver
dysfunction or biliary obstruction, or total bilirubin (TB) and γ-glutamyltransferase (GGT)
and albumin useful in assessing hepatic synthetic function. Patients were also tested for
antinuclear antibodies (ANAs), smooth muscle antibodies (SMAs) and renal microsomal
antigen antibodies (LKMs).

Table 1. Clinical features and pharmacological treatment of AIHp and PBCp included in the study
measured at the time of saliva sampling.

Parameters AIHp PBCp

Age, Average (range) Years 54.53 (29.81–74.89) 65.13 (41.27–81.15)

Gender, n (%) Female 32 (88.8%) 35 (97.2%)

BMI, Average (range) Kg/m2 25.68 (17.57–38.45) 24.72 (19.10–40.43)

Cirrhosis, n (%) 7 (19.4%) 4 (11.1%)
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Table 1. Cont.

Parameters AIHp PBCp

Histological stage, n (%)

I 9 (25%) 15 (41.6%)
II 4 (11.1%) 8 (22.2%)
III 6 (16.6%) 1 (2.7%)
IV 4 (11.1%) 4 (11.1%)

Not available 11 (30.5%) 10 (27.7%)

Positivity to autoantibodies, n (%)
ANA 25 (69.4%) 30 (83.3%)
SMA 20 (55.5%) 7 (19.4%)
LKM 3 (8.3%) 1 (2.7%)

AST, Median (range) IU/L 23.5 (13–57) 27.0 (16–71)

ALT, Median (range) IU/L 21.0 (5–58) 23.0 (11–78)

GGT, Median (range) IU/L 25.5 (6–167) 42.0 (12–167)

ALP, Median (range) IU/L 67.0 (28–216) 107.0 (52–222)

IgG, Median (range) g/dL 1.4 (0.69–2.51) 1.4 (0.7–2.3)

Albumin, Median (range) g/dL 3.9 (1.2–4.83) 3.9 (2.8–4.3)

Prothrombin time, Median (range) INR 0.97 (0.92–1.06) 1.01(0.86–1.81)

TB, Median (range) mg/dL 0.7 (0.25–2.19) 0.6 (0.34–2.95)

Platelets, Median (range) 109/L 217.5 (91–423) 242 (46–418)

Pharmacological treatment (% treated) Azathioprine + Steroids 41% n.a.

Steroids 25.5% n.a.

Azathioprine 17.6% n.a.

Naïve 5.5% n.a.

UDCA n.a. 100%

n.a. not applicable; BMI: body mass index; ANA: antinuclear antibodies, SMA: smooth muscle antibodies;
LKM: renal microsomal antigen antibodies; AST: aspartate aminotransferase; ALT: alanine aminotransferase;
GGT: γ-glutamyl transferase; ALP: alkaline phosphatase, IgG: immunoglobulin G; TB: total bilirubin; UDCA:
Ursodeoxycholic Acid.

Regarding pharmacological therapies, 41% of AIHp were under both Azathioprine
and Steroids, 25.5% under Steroid only, 17.6% under Azathioprine only and 5.5% were
without therapy (naïve); PBCp were 100% under UDCA treatment.

The presence of other concurrent autoimmune diseases was investigated in patients;
nine AIHp and nine PBCp presented Hashimoto’s thyroiditis, two AIHp and two PBCp
presented rheumatoid arthritis.

2.3. Statistical Analysis of the Protein/Peptide Abundances between Groups

Statistical analysis considered both single proteoforms and the sum of different prote-
oforms of the same protein, which are defined “components” in the text.

Mann—Whitney and Kruskal—Wallis comparison results of all 71 components mea-
sured in HCs, AIHp, and PBCp are shown in Table 2. In addition, the XIC peak areas (25th
percentile, median and interquartile range) and the frequencies, are shown in Table S3.
In the case of aPRPs, statherin, P-B peptide, histatins, cystatin A, B, S1, S2, SN, S100A8,
S100A9 and α-defensins the sum of the XIC peak areas of all their proteoforms was also
considered and reported in Tables 2 and S3.

From Table 2 it can be observed that some components showed significant higher
levels in AIHp with respect to HCs. In PBCp, some components also showed a significant
different level with respect to HCs, some of which with significant statistical differences
(p < 0.0001).
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Table 2. Comparisons between HCs, AIHp and PBCp. For each pairwise comparison, two columns
are reported: the first column shows the Mann—Whitney significant p-values, highlighted by color
tones ranging from yellow to red; the second column shows the direction of the change. The last
column on the right shows the results of the ANOVA-analogue nonparametric Kruskal—Wallis test.

Components HCs vs. AIHp HCs vs. PBCp AIHp vs. PBCp AIHp vs. PBCp vs. HCs

N Description
Mann—Whitney Mann—Whitney Mann—Whitney Kruskal—Wallis

p-Value Change p-Value Change p-Value Change p-Value
1 S100A12 <0.05 PBC > AIH <0.05

2 S100A8

3 S100A7D27 <0.05 PBC > AIH <0.01

4 S100A9_short

5 S100A9_short_ox <0.05 C > PBC <0.05

6 S100A9_short_P <0.05

7 S100A9_short_P_ox

8 Sum_S100A9_short_and_ox

9 Sum_S100A9_s_and_s_P

10 Sum_S100A9_s_P_and_P_ox

11 Sum_S100A9_s_ox_and_P_ox <0.05 C > PBC <0.05

12 Sum_S100A9_short <0.05 C > PBC

13 S100A9_long_g

14 S100A9_long_g_p

15 S100A9_long_g_ox <0.05

16 Sum_S100A9_long_g

17 Cystatin_A <0.05 AIH > C <0.05 AIH > PBC <0.05

18 Cystatin_A_Acetyl

19 Cystatin_A_Acetyl_T96L

20 Sum_Cystatin_A <0.05 AIH > C

21 Cystatin_B_S_glut

22 Cystatin_B_S_cyst

23 Cystatin_B_SSdimer

24 Cystatin_B_S_CMC

25 Sum_Cystatin_B

26 Cystatin_C <0.05 PBC > C <0.01

27 Cystatin_D_des_1_5

28 Cystatin_S

29 Cystatin_S1 <0.001 PBC > C <0.01 PBC > AIH <0.001

30 Cystatin_S2 <0.0001 PBC > C <0.01 PBC > AIH <0.0001

31 Cystatin_SN <0.01 PBC > C <0.05 PBC > AIH <0.05

32 Cystatin_SN_des_1_4

33 Cystatin_SA

34 Cystatin_S1_ox <0.001 AIH > C <0.01

35 Cystatin_S2_ox

36 Cystatin_SN_ox

37 Sum_Cystatin_S1 <0.0001 PBC > C <0.01 PBC > AIH <0.0001

38 Sum_Cystatin_S2 <0.0001 PBC > C <0.01 PBC > AIH <0.0001

39 Sum_Cystatin_S_S1_S2 <0.0001 PBC > C <0.001 PBC > AIH <0.0001

40 Sum_Cystatin_SN <0.01 PBC > C <0.05

41 Sum_Cystatin_SA

42 Hst_1

43 Hst_1_0P

44 Sum_Hst_1

45 Hst_6 <0.01 AIH > C <0.05 AIH > PBC

46 Hst_5 <0.05 AIH > C <0.05 AIH > PBC <0.05

47 Hst_3 <0.05 AIH > C <0.01 AIH > PBC <0.01



Int. J. Mol. Sci. 2023, 24, 959 7 of 21

Table 2. Cont.

Components HCs vs. AIHp HCs vs. PBCp AIHp vs. PBCp AIHp vs. PBCp vs. HCs

N Description
Mann—Whitney Mann—Whitney Mann—Whitney Kruskal—Wallis

p-Value Change p-Value Change p-Value Change p-Value
48 Sum_Hst_3 <0.01 AIH > C <0.05 AIH > PBC <0.05

49 Sum_Hst <0.05 AIH > C <0.05

50 α_defensin_1

51 α_defensin_2

52 α_defensin_3

53 α_defensin_4

54 Sum_α_defensins

55 PRP1_2P <0.05 AIH > PBC

56 PRP1_1P

57 PRP1_0P

58 PRP1_3P <0.01 PBC > C <0.05

59 Sum_PRP1 <0.05 AIH > PBC

60 PRP3_2P

61 PRP3_1P <0.05 C > PBC <0.05 AIH > PBC <0.05

62 PRP3_0P

63 PRP_3_diphos_Des_Arg106 <0.05 PBC > AIH <0.05

64 Sum_PRP3

65 P_C_peptide

66 Statherin_2P <0.05 AIH > C

67 Statherin_1P <0.05 AIH > C <0.05 AIH > PBC

68 Statherin_0P

69 Sum_Statherin <0.05 AIH > C

70 PB_peptide <0.01 AIH > PBC <0.05

71 SLPI <0.05 PBC > C <0.05

Results of Mann—Whitney and Kruskal—Wallis tests highlighted that: (i) levels of
cystatins S1, S2, SN (components 29–31) and that of the sum of their related proteoforms
(components 37–40) were higher in PBCp with respect to both AIHp and HCs; (ii) levels
of cystatin A (component 17) and that of the sum of its related proteoforms (component
20) were higher in AIHp, with respect to both PBCp and HCs and with respect to HCs,
respectively; (iii) levels of histatin 3, 5 and 6 (components 45–49) were higher in AIHp
with respect to both PBCp and HCs, while level of component 49 was higher in AIHp with
respect to HCs; (iv) levels of statherin (components 66–67) and that of the sum of its related
proteoforms (component 69) were higher in AIHp with respect to both PBCp and HCs;
(v) levels of S100A9 proteoforms (components 5, 11, 12) and PRP3_1P (component 61) were
lower in PBCp with respect to HCs. It should be outlined that the relative quantification was
performed using the XIC peak areas of proteins/peptides normalized by TPC, and that the
same results (not shown) were obtained without normalization. Thus, the normalization
by TPC, even if affected by abundant proteins not considered in the analysis, did not
produce an underestimation of the investigated proteins, and did not introduce errors in
the statistical analysis.

2.4. Correlation between Protein Levels within Groups

A diagram of correlated proteins/peptides within each group was obtained by mul-
tidimensional scaling (MDS) applied to Kendall correlations (Figure 2). To facilitate the
understanding of MDS diagrams, the 71 components were subdivided into 12 categories
based on their structural/functional similitudes and secretory origin. In MDS diagrams,
the closeness between two components denotes the degree of correlation between their
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concentrations. Thus, MDS clusters represent groups of components that are all strongly
correlated with each other.
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Figure 2. Multidimensional scaling (MDS) diagrams of Kendall correlations among protein levels
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diagrams represent the information contained in the whole multi-dimensional structure.

The most compact cluster, more in HCs than in AIHp and PBCp groups, was that of
type 2 cystatins (purple category in Figure 2). In all groups component 26 (cystatin D),
34 (cystatin S1 oxidated), 35 (cystatin S2 oxidated) and 36 (cystatin SN oxidated) showed
a tendency to cluster with the category of histatins (yellow category), statherins (blue
category) and to a less extent PRPs (green category). All histatins (yellow category) formed
a relatively compact cluster in PBCp group, while component 47 (histatin-3) in HCs and
components 47 and 43 in AIHp (histatins 3 and 6) were less associated with the main group.
Loosely compact clusters, without appreciable differences among groups, were formed
by type 1 cystatins (red category) and by S100A9 proteoforms (pink category). However,
in HCs, components 4, 8, 9 and 12 of S100A9 proteoforms showed a strong association
with defensins (components 50–54, light blue category) while in AIHp and PBCp the same
components associated with S100A8 (component 2).

It is worth noting that PB peptide (single component of black category), which share
similar properties with respect to statherin, can be found correlated with aPRPs in all
three groups.

2.5. Random Forest (RF) Analysis

Confusion matrices of RF classifications of the three mixed data sets, validated by
out-of-bag samples, are shown in Figure 3a. RF was applied to a subset of components
selected according to the Boruta method (Table S4). This subset, mainly composed by type
2 cystatins (namely S, S1, S2, SN, A, C and D), PRP3 and histatins, provided a consistent
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increase of classification accuracy with respect to those obtained using the entire set of
proteins/peptides analyzed. Almost all components that showed significant changes with
p-values < 0.01 or less in Mann—Whitney comparisons, were also selected by the Boruta
algorithm for RF analysis, with the single exception of PRP1_3P in HCs vs. PBCp. On
the other hand, several components selected for RF, even with high Boruta scores, did not
reveal significant changes in Mann—Whitney comparisons. This was especially evident in
seven components of the S100A9 category and in S100A7D27, in the comparison between
HCs and AIHp. Such discrepancy can be explained by the way decision trees work, as they
are able to sort groups by identifying more than one split point in each variable. This means
that components with similar means or medians, that do not differ when compared by the
Student’s t or Mann—Whitney tests, may conversely contribute to discriminate groups
based on other differences in data distributions. Classification of samples of the HCs-PBCp
mixed data set showed the highest accuracy (83.3%), followed the AIHp-PBCp (80.6%), and
HCs-AIHp (79.2%) mixed data sets. Diagrams of RF classifications were obtained by MDS,
using the proximity between each pair of samples as distance (Figure 3b). A 3D movie
showing MDS of all three groups together is reported in the Supplementary Movie S1.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 23 
 

 

It is worth noting that PB peptide (single component of black category), which share 
similar properties with respect to statherin, can be found correlated with aPRPs in all three 
groups. 

2.5. Random Forest (RF) Analysis 
Confusion matrices of RF classifications of the three mixed data sets, validated by 

out-of-bag samples, are shown in Figure 3a. RF was applied to a subset of components 
selected according to the Boruta method (Table S4). This subset, mainly composed by type 
2 cystatins (namely S, S1, S2, SN, A, C and D), PRP3 and histatins, provided a consistent 
increase of classification accuracy with respect to those obtained using the entire set of 
proteins/peptides analyzed. Almost all components that showed significant changes with 
p-values < 0.01 or less in Mann—Whitney comparisons, were also selected by the Boruta 
algorithm for RF analysis, with the single exception of PRP1_3P in HCs vs. PBCp. On the 
other hand, several components selected for RF, even with high Boruta scores, did not 
reveal significant changes in Mann—Whitney comparisons. This was especially evident 
in seven components of the S100A9 category and in S100A7D27, in the comparison be-
tween HCs and AIHp. Such discrepancy can be explained by the way decision trees work, 
as they are able to sort groups by identifying more than one split point in each variable. 
This means that components with similar means or medians, that do not differ when com-
pared by the Student’s t or Mann—Whitney tests, may conversely contribute to discrimi-
nate groups based on other differences in data distributions. Classification of samples of 
the HCs-PBCp mixed data set showed the highest accuracy (83.3%), followed the AIHp-
PBCp (80.6%), and HCs-AIHp (79.2%) mixed data sets. Diagrams of RF classifications 
were obtained by MDS, using the proximity between each pair of samples as distance 
(Figure 3b). A 3D movie showing MDS of all three groups together is reported in the Sup-
plementary Movie S1.  

 
Figure 3. RF applied to three mixed data sets. (a) Confusion matrices of RF classifications validated 
by out-of-bag samples. Matrix rows represent the actual classes, while columns represent the pre-
dicted classes. Marginal rows show the frequency of false positives, while marginal columns show 
the frequency of false negatives. The overall accuracy considers both true positives and true nega-
tives. (b) Multidimensional Scaling (MDS) diagrams showing the relationship among subjects, using 

Figure 3. RF applied to three mixed data sets. (a) Confusion matrices of RF classifications validated by
out-of-bag samples. Matrix rows represent the actual classes, while columns represent the predicted
classes. Marginal rows show the frequency of false positives, while marginal columns show the
frequency of false negatives. The overall accuracy considers both true positives and true negatives.
(b) Multidimensional Scaling (MDS) diagrams showing the relationship among subjects, using the
proximity values calculated by RF. Each group is delimited by a dispersion ellipse with a confidence
of 1.6 standard deviations. Percent values indicate how much two-dimensional diagrams represent
the information contained in the whole multi-dimensional structure.

2.6. Linear Discriminant Analysis (LDA)

The classification of HCs, AIHp and PBCp subjects obtained by LDA is reported in
Figure 4. The overall accuracy of the original classification, considering both true positives
and true negatives, was 93% and after cross-validation 82%. Of the 71 components used
for LDA, the most discriminant among of the three groups of HCs, PBCp and AIHp were
type 2 cystatins (namely cystatins S1, S2, A, B, C and S) and some phosphorylated forms of
PRP3. These results are in close agreement with those obtained by RF.
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2.7. Enrichment Analyses

The results of the GO enrichment analysis of biological process, performed on selected
protein with higher Boruta score, are shown in Table 3. The table reports the most over-
represented terms for AIHp and PBCp with respect to HCs. In the case of the HCs-AIHp
mixed data set, we found an enrichment of terms mainly related to antimicrobial response
mediated by antimicrobial peptide, antimicrobial humoral response and regulation of
peptidase and/or protease activity. In the case of HCs-PBCp mixed data set, the enriched
terms referred mainly to regulation of proteolysis and negative regulation of peptidase
and/or proteases. However, 4 of the 10 biological processes (regulation of peptidase activity,
regulation of endopeptidase activity, regulation of proteolysis and regulation of hydrolase
activity) were in common in the enriched biological processes of both data sets.

Table 3. GO biological process enrichment of the most discriminant components of HCs-AIHp and
HCs-PBCp mixed data sets results by Boruta algorithm. For each group, only the first ten biological
processes are shown with the relative p-values and the number of associated proteins in respect to
the total number of components (nine for HCs-AIHp and six for HCs-PBCp) used for analysis.

HCs-AIHp Mixed Data Set

GO Biological Process No. Associated Proteins Enrichment p-Value

defense response (GO:0006952) 6/9 9.62 × 10−6

antimicrobial humoral immune response mediated by
antimicrobial peptide (GO:0061844) 5/9 4.69 × 10−10
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Table 3. Cont.

HCs-AIHp Mixed Data Set

GO Biological Process No. Associated Proteins Enrichment p-Value

antimicrobial humoral response (GO:0019730) 5/9 2.28 × 10−9

humoral immune response (GO:0006959) 5/9 1.51 × 10−7

defense response to bacterium (GO:0042742) 5/9 2.50 × 10−7

regulation of endopeptidase activity (GO:0052548) 5/9 4.40 × 10−7

regulation of peptidase activity (GO:0052547) 5/9 6.16 × 10−7

response to bacterium (GO:0009617) 5/9 6.95 × 10−6

regulation of proteolysis (GO:0030162) 5/9 7.47 × 10−6

regulation of hydrolase activity (GO:0051336) 5/9 3.22 × 10−5

HCs-PBCp Mixed Data Set

regulation of peptidase activity (GO:0052547) 5/6 3.10 × 10−8

regulation of endopeptidase activity (GO:0052548) 5/6 2.21 × 10−8

regulation of proteolysis (GO:0030162) 5/6 3.63 × 10−7

regulation of hydrolase activity (GO:0051336) 5/6 1.74 × 10−6

negative regulation of peptidase activity (GO:0010466) 4/6 3.71 × 10−7

negative regulation of endopeptidase activity (GO:0010951) 4/6 3.22 × 10−7

regulation of cysteine-type endopeptidase activity
(GO:2000116) 4/6 2.78 × 10−7

negative regulation of proteolysis (GO:0045861) 4/6 1.18 × 10−6

negative regulation of hydrolase activity (GO:0051346) 4/6 1.45 × 10−6

negative regulation of catalytic activity (GO:0043086) 4/6 2.96 × 10−5

3. Discussion

The top-down proteomic approach used in this study allowed the evidencing of quan-
titative/qualitative differences of naturally occurring selected salivary proteins/peptides
among patients with either AIH or PBC and HCs. To our knowledge, this is the first study
reporting the feasibility of the salivary proteome for identification of plausible biomarkers
of autoimmune liver diseases and for an accurate classification of subjects based on AIH or
PBC occurrence. Results obtained by analyzing the proteomic data sets through different
statistical approaches are the following: (i) cystatin A, statherin, histatin 3, histatin 5 and
histatin 6 were identified as potential salivary biomarkers in AIHp; (ii) proteins S100A12,
S100A9 short, cystatin S1, S2, SN and C were identified as potential salivary biomarkers
of PBCp; (iii) selected salivary proteins can be used to discriminate AIH and PBC subjects
from HCs with relatively good accuracy; (iv) proteins mostly discriminating AIHp from
HCs are involved in antimicrobial defense, while peptides/proteins involved in innate
immune system characterized PBCp with respect to HCs.

3.1. Potential Salivary Biomarkers in AIHp

Mann—Whitney tests provided indications of proteins and peptides on the panel,
either secreted or not secreted by the salivary glands, which were elevated in AIHp with
respect to both HCs and PBCp. Among these, the most compact group pertains to the
histatins family. Members of histatins family are peptides with a high number of histidine
residues [43] arising from two parent peptides, histatin-1 and histatin-3. Histatin-1 can be
found in either phosphorylated and poly-sulfated forms [44] while histatin-3, due to the
presence of a convertase consensus sequence, undergoes a sequential cleavage generation
at first histatin-6 (histatin Fr.1–25) and subsequently histatin-5 (histatin Fr. 1–24) [45].
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Major interest in histatins originates from the fact that they exhibit inhibitory activities
against a broad range of pathogens such as bacteria, fungi, viruses and parasites [46]. The
antimicrobial potential of histatin peptides, mainly His-3 and His-5, is also due to the pres-
ence of a copper and nickel amino terminal binding site, known as “ATCUN motif” [47,48]
which is responsible for the generation of reactive oxygen species that damage membranes
of cell organelles and DNA and hence lead to the fungal and bacterial cell death [49,50].
Considering the activity and the relative high abundance of histatins in parotid and sub-
mandibular/sublingual secretions [51], these proteins may represent major components
of the nonimmune innate host defense system involved in the maintenance of oral health.
Indeed, the observed increased level of His-3 and its derived fragments His-5 and His-6 in
AIHp, could be linked to oral dysbiosis, which is often observed in such patients. Different
studies have shown that oral and gut microbiome play important roles in the develop-
ment of many liver diseases. Dysbiosis has been found in the oral and gut microbiome
of patients with chronic hepatitis B [52], liver cirrhosis [53], primary sclerosing cholangi-
tis [54] and hepatocellular carcinoma (HCC) [55]. A recent epidemiological study reported
a significantly increased diversity also in AIHp oral microbiome [27], with seven genera,
mainly Fusobacterium, Actinomyces and Capnocytophaga, decreased in saliva of AIHp
with respect to controls, and 51 genera, mainly represented by Streptococcus, Veillonella
and Leptotrichia, increased. These findings suggest that elevated level of histatins in saliva
of AIHp may represent a physiological protective mechanism against pathogens in the oral
cavity to counter these persistent infections and inflammatory conditions. The Kendall
correlation analysis performed in this study evidenced that, in AIHp group, the abundance
of histatins was interrelated with that of aPRPs and statherins, which indeed have the same
secretory origin and share the same physiological role regarding oral homeostasis, bacterial
colonization and antimicrobial defense of the oral cavity [56].

3.2. Potential Salivary Biomarkers in PBCp

The panel of variated proteins and peptides in PBC, identified by Mann—Whitney
tests, was constituted by S100A12, S100A9 short, cystatin S1, S2, SN and C with respect
to HCs and/or AIHp. In this case, the most compact group pertains to the cystatins and
S100A protein families.

Cystatins are cysteine proteases inhibitors belonging to a large super-family which
comprises type 1 including cystatin A and B predominantly intracellular, type 2 including
cystatins C, D, E/M, F, G and salivary S-type S, SN and SA that are all extracellular proteins,
and type 3 mainly represented by kininogen.

As cysteine proteases inhibitors, cystatins are involved in multiple processes; indeed,
their down-regulation or up-regulation have been described in numerous diseases since
many normal and pathological processes are coordinated by the balance between lysosomal
cysteine proteases and their endogenous inhibitors cystatins. Among cystatins, our study
on saliva of PBCp showed increased level of salivary S-type cystatins and cystatin C, which
exert multifaceted biological functions.

Cystatin C is a potent, reversible inhibitor in vitro of the human lysosomal cysteine
proteases, mainly represented by Cathepsin-S (CTSS). CTSS plays a significant role in
various intracellular and extracellular processes, including proteolysis [57] and major
histocompatibility complex (MHC) class II antigen presentation, where it is important in
the degradation of the invariant chain [58]. This latter aspect triggered research toward
CTSS as a target in immunological disorders since inhibition of CTSS can prevent or retard
MHC class II presentation and thus inflammation. As a result, inhibition of CTSS proved to
have an anti-inflammatory therapeutic effect toward lupus progression [59], rheumatoid
arthritis, Sjögren’s syndrome [60], encephalomyelitis [55,61] and autoimmune-triggered
inflammatory responses in macrophages [62]. In the contest of liver disease, CTSS has been
related to the regulation of different aspects of natural killer T (NKT) cell activation, and
their inhibition prevent hepatic NKT cell expansion after lipopolysaccharides (LPS)-induced
inflammation [63,64].
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These evidences suggest that the increased level of cystatin C determined in PBCp
group may represent a physiological protective mechanism against exacerbated expression
of CTSS following immunological disorders, even if the heterogeneity of patients in terms
of clinical parameters, grade of liver inflammation and stage of liver fibrosis and therapies,
together with the transversal nature of the study, did not allow to demonstrate the causal
link of these proteins to PBC.

In the same manner, S-type cystatins (S, SN and SA), which are of secretory origin,
showed increased levels in saliva from PBCp. Cystatin S is not an inhibitor of the cys-
teine proteases but it is able to bind calcium, suggesting that its primary role in the oral
environment is likely related to the mineral balance of the tooth [65] while cystatins SN
and SA inhibit the human lysosomal cathepsins B, H and L. Interestingly, cathepsin B
plays important roles in various models of liver injury, including tumor necrosis factor-
α-mediated hepatocyte apoptosis [66], free fatty acid–induced liver damage [67], hepatic
ischemia–reperfusion injury [68], and cholestasis [69]. Cathepsin L also plays a critical role
in the pathogenesis of hepatic fibrosis since it can proteolytically degrade components of the
extracellular matrix (ECM) whose accumulation in liver tissue alters the hepatic structure
leading to cirrhosis [63,70]. As a result, inhibition of cathepsins B and L may be therapeutic
in liver diseases. Our results evidenced an increased level of S100A12 protein in PCBp with
respect to AIHp. S100A12 is a potent chemoattractant for monocytic cells [71], and it acti-
vates various cell types inducing expression of adhesion molecules and pro-inflammatory
cytokines [72]. A specific involvement of this protein toward inflammatory processes of
PBC has been already demonstrated since it participates in the damage of biliary epithelial
cells and hepatocytes [73]. In this context, it is surprising to have found reduced levels
of S100A9 proteins in saliva of PBCp because they function as cytokines and bind with
Receptor for Advanced Glycation End-Products (RAGE) and Toll-like receptor-4 to activate
the pro-inflammatory signaling cascade, thus increasing immune cell recruitment for their
proliferation and differentiation. In this regard, it is important to highlight that almost all
PBC patients recruited for this study were under UDCA therapy. UDCA is a secondary
bile acid generated by the metabolism of primary bile acid, chenodeoxycholic acid, and
exhibits hydrophilic and potentially cytoprotective properties. In many animal studies,
UDCA induced immune suppression, cellular protection, and suppressed inflammation.
It has been also demonstrated that UDCA markedly reduces ER stress, RAGE expression,
and pro-inflammatory responses, including reactive oxygen species production induced in
endothelial cells [74]. Correlation analysis evidenced that the cluster of type 1 cystatins and
S100A9 proteins form a more compact group in the PBCp group with respect to both HCs
and AIHp. These two protein families share the same non-glandular origin and resulted
important for the classification of the groups based on the Boruta scores, especially for the
classification of subjects in the PCBp group and in the AIHp group.

3.3. Classification AIH and PBC Subjects from HCs

RF analysis, one of several up-to-date machine learning methods, evidenced a panel
of proteins/peptides present in saliva able to correctly classify PBCp group with respect
to HCs with an 83.3% accuracy, AIHp group with respect to HCs with an 79.9% accuracy
and PBCp with respect to AIHp with an 80.2% accuracy. The same statistical approach
has been successfully used to classify groups of subjects based on age and health status
highlighting the feasibility of the salivary proteome to discriminate groups of subjects
based on physiological or pathological condition not only confined to oral cavity [75].
RF results were confirmed by LDA which provided a very good classification of subject
based on PBC or AIH occurrence and with respect to HCs. Interestingly, the same protein
families selected by Boruta algorithm for RF classification were also individuated as the
most discriminating for the three groups in LDA. In this regard, it is important outline that
strongly correlated components, which could be potentially discriminating among groups,
were excluded for LDA; therefore, while it was possible to obtain an accurate classification
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of subjects, it was not possible to obtain an exhaustive evaluation of the discriminant power
for all the components.

RF classification, which is one of the most widely used supervised machine learning
algorithms for mass spectrometry data [76], was preferred over other methods because
of several reasons: (a) it is not conditioned by the data distribution; (b) it has a low risk
of overfitting; (c) it does not require supplementary samples for the validation of results,
as each tree is built up omitting nearly one-third of the samples that are subsequently
used to test the misclassification rate; (d) it provides a measure of the relative importance
of each feature in the classification of samples (MDG); (e) it provides an estimation of
the proximity (i.e., similarity) between each two samples that opens the possibility of
applying MDS and hierarchical cluster analyses to obtain a visual representation of the
classification. In addition, the use of this approach provides the possibility to correlate
the position of misclassified subjects with their specific clinical profiles (i.e., severity of the
disease, therapy, presence of comorbidities, etc.). These aspects will be the subject of future
investigations. Surprisingly, some proteins identified as important for RF classification
were not found to be significantly changed by Mann—Whitney tests. As already mentioned
in the results, this apparent paradox is due to the modus operandi of RF, and more generally,
of methods based on decision trees that can break variables through multiple split points to
discriminate groups that would otherwise be confused, based on their averages or medians.
Because of this fact, although the classification produced by RF is of considerable interest
in several respects, the proteins that collectively contribute to the classification of AIHp
and PBCp cannot be tout-court considered as candidate markers of the diseases. In this
regard, the panel of differentially expressed proteins, identified by Mann—Whitney tests,
appears to provide more reliable indications on potential biomarkers of the diseases.

3.4. Functional Characterization of Proteins Most Discriminating AIHp from PBCp

GO analysis was performed to increase the functional characterization of proteins
mostly discriminating AIHp from PBCp groups. In AIHp only, an enrichment of terms
mainly related to antimicrobial response mediated by antimicrobial peptides and antimi-
crobial humoral response was found. α-defensin-4 also contributes to these biological
processes, being among the most discriminating proteins between AIHp and HCs in the RF
analysis, even if not statistically varied according to the Mann—Whitney test results. It is
noteworthy that statherin and histatins, which were identified as potential biomarkers of
AIH by Mann—Whitney and Kruskal—Wallis tests, have the same biological function as
antimicrobial peptides. In fact, antibacterial activities against oral pathogens have been
demonstrated for statherin and its C-terminal fragments [77], which retain the specific
binding sites for Porphyromonas gingivalis, the keystone pathogen in periodontitis [78].

GO analysis performed on proteins most discriminating PBCp with respect to HCs
highlights overrepresentation of terms mainly involved in the regulation of proteolysis
and negative regulation of peptidase and/or proteases. These results are also in strong
agreement with those obtained with Mann—Whitney test since the proteins identified as
potential biomarkers of PBC pertained to cyststin’s family, whose biological function is to
inhibit lysosomal cathepsins.

3.5. Study Limitation

The present study represents a cross-sectional preliminary analysis of the salivary
proteome in patients affected by autoimmune liver diseases; therefore, the low number
of subjects involved in the study may not be entirely representative of the considered
population. Nevertheless, the statistical analysis performed by our group provides a
good classification of subjects based on AIH or PBC occurrence. A larger population will
be useful to further validate our findings. We must also acknowledge that most of our
ALD patients were undergoing therapy at the time of saliva and blood sample collection;
therefore, we could not assess the potential impact of such treatments on the salivary
proteome since we have limited data regarding untreated patients. Future prospective
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studies enrolling a higher number of patients at the time of ALD diagnosis with different
grade of liver inflammation and stage of liver fibrosis could help clarify whether salivary
proteome might correlate with liver disease severity and ultimately response to therapy.
Moreover, the transversal nature of the study did not allow for a demonstration of the
causal link of the selected proteins to ALD, which can be considered potential biomarkers
rather than causal mediators of these pathologies.

4. Materials and Methods
4.1. Ethical Statement

This is a cross-sectional study performed in 2021 on AIHp and PBCp recruited from
the liver unit of University Hospital of Cagliari, Sardinia, Italy. Patients and healthy
controls signed the informed written consent that agreed with the latest stipulations es-
tablished by the Declaration of Helsinki. The Committee of the “Azienda Ospedaliero-
Universitaria di Cagliari”, Cagliari, Italy, approved the study on 21 July 2021 (reference
number PG/2021/11303).

4.2. Study Subjects and Clinical Studies

Patients were diagnosed based on the criteria reviewed by the International Au-
toimmune Hepatitis Study Group (IAIHG) in 1999 [79] and by the EASL clinical practice
guidelines [7]. Were included in the study patients showing, at the time of saliva sampling
almost normal values of ALT and AST;; based on this inclusion criteria, only patients that
were under pharmacological therapy for at least three years were selected. Only two AIHp
were without therapy but were included in this study because of their normal values of
transaminases. Patients affected by Overlap syndrome, chronic hepatitis induced by HBV
or HCV, drug or alcohol abuse, fatty liver disease, primary sclerosing cholangitis and any
major oral disease (periodontitis, caries) were excluded.

The control group (HCs) included age and sex matched healthy volunteers recruited
from the local population. Controls were excluded if they were relatives of the patients and
had a history of liver diseases, immunological disorders and major oral diseases. Most of
the controls were patient’s caregivers recruited in the hospital during follow-up and/or
medical and research personnel involved in the study.

4.3. Sample Collection and Treatment

Unstimulated whole saliva (WS) (from 0.2 to 1 mL) was collected with a soft plastic
aspirator at the basis of the tongue from 9 to 13 a.m. in fasting conditions using a standard
protocol optimized to preserve salivary proteins from proteolytic degradation. After
collection, samples were immediately mixed with an equal volume of 0.2% (v/v) 2,2,2-
trifluoroacetic acid (TFA) containing 50 µM of leu-enkephalin as internal standard and
centrifuged at 14,000 RPM for 10 min at 4 ◦C. The acidic-soluble fraction of whole saliva
(supernatant) was collected and stored at −80 ◦C until the analysis. The total protein
concentration (TPC) of each sample was determined in duplicate by the bicinchoninic
acid (BCA) Protein Assay kit (Pierce™ BCA Protein Assay Kit, Thermo Fisher Scientific,
Waltham, MA, USA), following the provided instructions.

4.4. RP-HPLC ESI-MS Analysis

All the chemicals and reagents used for analysis were purchased from Sigma Aldrich
(St. Louis, MO, USA). Peptides and proteins search and label-free quantification was
performed by RP-HPLC low-resolution ESI-MS. 35 µL of the acidic-soluble fraction of
WS from each sample were analyzed by a Surveyor HPLC system connected to a LCQ
advantage mass spectrometer (Thermo Fisher Scientific, CA, USA) equipped with an
ESI source. The chromatographic column was a Vydac (Hesperia, CA, USA) C8 column
with 5 µm particle diameter (150 × 2.1 mm). The following solutions were utilized for
the separation: (eluent A) 0.056% (v/v) aqueous TFA and (eluent B) 0.05% (v/v) TFA in
acetonitrile/water 80/20. A linear gradient was applied from 0 to 55% of B in 40 min, and
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from 55% to 100% of B in 10 min, at a flow rate of 0.10 mL/min toward the ESI source.
During the first 5 min of separation, the eluate was diverted to waste to avoid instrument
damage because of the high salt concentration. Mass spectra were collected every 3 ms in
the m/z range 300–2000 in positive ion mode. The MS spray voltage was set to 5.0 kV and
the capillary temperature to 260 ◦C. MS resolution was 6000. Deconvolution of averaged
ESI-MS spectra was performed by MagTran 1.0 software [80].

4.5. Data Analysis and Quantification

Experimental average mass values (Mav) of salivary proteins and peptides charac-
terized in previous studies [41,42] were compared with theoretical average mass values
(Mav) available at Swiss-Prot Data Bank (http://www.uniprot.org/, accessed on 1 May
2022). The label-free quantitation of peptides and proteins was performed by measuring
the area of RP-HPLC low-resolution ESI-MS eXtracted Ion Current (XIC) peaks generated
by selecting specific m/z ions for each protein/peptide, considered when the S/N ratio was
at least 5. Peak characteristics should satisfy the following parameters: baseline window 15,
area noise factor 50, peak noise factor 50, peak height 15% and tailing factor 1.5. Area of the
XIC peaks, expressed by arbitrary units, is proportional to the protein concentration, and,
under constant analytical conditions, it allows performing relative quantification of the
same protein in different samples and quantifies an indefinite number of proteins/peptides
in a unique analysis [81,82]. The estimated percentage error of the XIC analysis was < 8%.

Eventual dilution errors occurring during sample collection were adjusted by correct-
ing XIC peak areas of each peptide/protein with the XIC peak area of the leu-enkephalin
50 µM used as internal standard in the aqueous 0.2% trifluoroacetic solution added to
whole saliva in ratio 1:1 (v/v) at the collection time [42]. The following correction equation
was applied: corrected area of protein = measured area of protein ∗ (expected area of
leu-enkephalin 50 mM/measured area of leu-enkephalin). In addition, the TPC in g/L of
every single sample was used to normalize the XIC peak areas of each peptide/protein
detected as follows: the value of the XIC peak area corrected with leu-enkephalin was
divided by the TPC [40].

4.6. Statistical Analysis

According to Kolmogorov—Smirnov and other goodness-of-fit tests (Shapiro—Wilk,
Anderson—Darling, Lilliefors, with p-values < 0.0001 in almost all tests), distribution of XIC
peak areas of all proteins/peptides showed a considerable deviation from normality. Thus,
the non-parametric Mann—Whitney test, Kruskal—Wallis test, and Kendall correlation
were adopted.

The difference of TPC within the three groups was tested by both Mann—Whitney and
Kruskal—Wallis tests followed by Dunn’s post-hoc tests using GraphPad Prism software
(version 5.0).

Statistical analysis considered both single proteoforms and the sum of different pro-
teoforms of the same protein; for simplicity, both single and summed proteoforms are
named “components” in the text. The number of components examined in this study
is 71. MS data were analyzed using different statistical methods: (a) Mann—Whitney
and Kruskal—Wallis tests, (b) Kendall correlation, (3) random forest (RF) and (4) linear
discriminant analysis (LDA). Significant p-values of multiple Mann—Whitney tests were
verified by the Benjamini—Hochberg procedure [83] to maintain a false discovery rate
of 0.05. Multidimensional scaling (MDS) was applied to Kendall correlations to obtain
a dimensionally reduced diagram of co-expressed proteins. For RF analysis, algorithm
parameters, such as the number of trees to grow and the number of features randomly
sampled for each split, were preliminarily tuned to minimize the classification error. RF
was applied to three mixed data sets: (1) HCs and AIHp; (2) HCs and PBCp; (3) AIHp
and PBCp. Classification accuracy was calculated as the proportion of correct assessments
(both true positive and true negative) to the total number of assessments. The Boruta
algorithm [84] was used to select a subset of components to increase classification accuracy.

http://www.uniprot.org/
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Diagrams of classified subjects were obtained by MDS using the RF proximity values (the
proximity between two subjects is the normalized frequency of trees that contain the two
subjects in the same end node). LDA was applied to the mixed data set formed by the three
groups taken together: HCs, PBCp and AIHp.

Multivariate analyses were made using R (RCoreTeam. R: A language and environ-
ment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing;
2014. http://www.R-project.org/ (accessed on 1 August 2022)) and (XLSTAT 2007; Statisti-
cal Software for Excel. https://www.xlstat.com (accessed on 1 August 2022).

4.7. Gene Ontology Enrichment Analyses

To increase the functional characterization of varied proteins between groups, a gene
ontology (GO) Enrichment analysis based on biological process (BP) was performed [85–87].
The most discriminant components between groups resulting by Boruta algorithm, and
used for RF classification, were submitted to a Fisher’s exact test with FDR correction
versus homo sapiens reference list. The statistical analysis was performed with the tool
PANTHER Overrepresentation Test (version 17.0, Released 12 July 2022) and GO Ontology
database (Released 1 July 2022; DOI: 10.5281/zenodo.6799722, http://geneontology.org/,
last accessed on 7 October 2022). Statistical significance was set to 0.05 (p-value ≤ 0.05).

5. Conclusions

The top-down proteomic pipeline exploited in this study allowed evidencing, for the
first time, the qualitative and quantitative differences of targeted salivary proteins/peptides
in AIH and PCB patients with respect to healthy controls.

Despite the high heterogeneity of the clinical manifestation of the patients, the robust-
ness of the analytical and statistical approach used allowed highlighting a set of potential
salivary biomarkers of AIH and PBC. Biomarker candidates of AIHp were individuated in
peptides/proteins involved in antimicrobial defense, while peptides/proteins involved in
innate immune system characterized PBCp.

RF analysis revealed the feasibility of the salivary proteome to discriminate groups of
subjects based on AIH or PBC occurrence. In this regard, RF, strengthened by LDA, appears
an attractive machine-learning tool suited for classification of AIH and PBC based on their
different salivary proteomic profile.

In our opinion, the results suggest that differences found in the salivary proteomic
profile of AIH and PBC may reflect the immuno-pathological differences between the two
diseases, even with respect to controls, rather than the clinical course of the disease and/or
iatrogenic factors.
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